netvsc_drv.c 27.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
14
 * this program; if not, see <http://www.gnu.org/licenses/>.
15 16
 *
 * Authors:
17
 *   Haiyang Zhang <haiyangz@microsoft.com>
18 19
 *   Hank Janssen  <hjanssen@microsoft.com>
 */
20 21
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

22
#include <linux/init.h>
23
#include <linux/atomic.h>
24 25 26 27 28 29 30 31 32
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
33
#include <linux/if_vlan.h>
34
#include <linux/in.h>
35
#include <linux/slab.h>
36 37 38 39
#include <net/arp.h>
#include <net/route.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
40

41
#include "hyperv_net.h"
42 43


44
#define RING_SIZE_MIN 64
45
static int ring_size = 128;
S
Stephen Hemminger 已提交
46 47
module_param(ring_size, int, S_IRUGO);
MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
48

49 50
static int max_num_vrss_chns = 8;

51 52 53 54 55 56 57 58 59
static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
				NETIF_MSG_LINK | NETIF_MSG_IFUP |
				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
				NETIF_MSG_TX_ERR;

static int debug = -1;
module_param(debug, int, S_IRUGO);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");

60 61
static void do_set_multicast(struct work_struct *w)
{
62 63
	struct net_device_context *ndevctx =
		container_of(w, struct net_device_context, work);
64 65 66 67
	struct netvsc_device *nvdev;
	struct rndis_device *rdev;

	nvdev = hv_get_drvdata(ndevctx->device_ctx);
68 69
	if (nvdev == NULL || nvdev->ndev == NULL)
		return;
70 71 72

	rdev = nvdev->extension;
	if (rdev == NULL)
73
		return;
74

75
	if (nvdev->ndev->flags & IFF_PROMISC)
76 77 78 79 80 81 82 83 84
		rndis_filter_set_packet_filter(rdev,
			NDIS_PACKET_TYPE_PROMISCUOUS);
	else
		rndis_filter_set_packet_filter(rdev,
			NDIS_PACKET_TYPE_BROADCAST |
			NDIS_PACKET_TYPE_ALL_MULTICAST |
			NDIS_PACKET_TYPE_DIRECTED);
}

85
static void netvsc_set_multicast_list(struct net_device *net)
86
{
87
	struct net_device_context *net_device_ctx = netdev_priv(net);
88

89
	schedule_work(&net_device_ctx->work);
90 91 92 93 94
}

static int netvsc_open(struct net_device *net)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
95
	struct hv_device *device_obj = net_device_ctx->device_ctx;
96 97
	struct netvsc_device *nvdev;
	struct rndis_device *rdev;
98
	int ret = 0;
99

100 101
	netif_carrier_off(net);

102 103 104 105 106
	/* Open up the device */
	ret = rndis_filter_open(device_obj);
	if (ret != 0) {
		netdev_err(net, "unable to open device (ret %d).\n", ret);
		return ret;
107 108
	}

109
	netif_tx_start_all_queues(net);
110

111 112 113 114 115
	nvdev = hv_get_drvdata(device_obj);
	rdev = nvdev->extension;
	if (!rdev->link_state)
		netif_carrier_on(net);

116 117 118 119 120 121
	return ret;
}

static int netvsc_close(struct net_device *net)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
122
	struct hv_device *device_obj = net_device_ctx->device_ctx;
123
	int ret;
124

125
	netif_tx_disable(net);
126

127 128
	/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
	cancel_work_sync(&net_device_ctx->work);
129
	ret = rndis_filter_close(device_obj);
130
	if (ret != 0)
131
		netdev_err(net, "unable to close device (ret %d).\n", ret);
132 133 134 135

	return ret;
}

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
				int pkt_type)
{
	struct rndis_packet *rndis_pkt;
	struct rndis_per_packet_info *ppi;

	rndis_pkt = &msg->msg.pkt;
	rndis_pkt->data_offset += ppi_size;

	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);

	ppi->size = ppi_size;
	ppi->type = pkt_type;
	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);

	rndis_pkt->per_pkt_info_len += ppi_size;

	return ppi;
}

157 158 159 160 161 162 163 164 165 166 167 168 169
union sub_key {
	u64 k;
	struct {
		u8 pad[3];
		u8 kb;
		u32 ka;
	};
};

/* Toeplitz hash function
 * data: network byte order
 * return: host byte order
 */
170
static u32 comp_hash(u8 *key, int klen, void *data, int dlen)
171 172 173 174 175 176 177 178 179 180 181 182 183
{
	union sub_key subk;
	int k_next = 4;
	u8 dt;
	int i, j;
	u32 ret = 0;

	subk.k = 0;
	subk.ka = ntohl(*(u32 *)key);

	for (i = 0; i < dlen; i++) {
		subk.kb = key[k_next];
		k_next = (k_next + 1) % klen;
184
		dt = ((u8 *)data)[i];
185 186 187 188 189 190 191 192 193 194 195 196 197
		for (j = 0; j < 8; j++) {
			if (dt & 0x80)
				ret ^= subk.ka;
			dt <<= 1;
			subk.k <<= 1;
		}
	}

	return ret;
}

static bool netvsc_set_hash(u32 *hash, struct sk_buff *skb)
{
198
	struct flow_keys flow;
199 200
	int data_len;

201 202 203
	if (!skb_flow_dissect_flow_keys(skb, &flow) ||
	    !(flow.basic.n_proto == htons(ETH_P_IP) ||
	      flow.basic.n_proto == htons(ETH_P_IPV6)))
204 205
		return false;

206
	if (flow.basic.ip_proto == IPPROTO_TCP)
207 208 209
		data_len = 12;
	else
		data_len = 8;
210

211
	*hash = comp_hash(netvsc_hash_key, HASH_KEYLEN, &flow, data_len);
212

213
	return true;
214 215 216 217 218 219 220 221 222 223 224 225 226 227
}

static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
			void *accel_priv, select_queue_fallback_t fallback)
{
	struct net_device_context *net_device_ctx = netdev_priv(ndev);
	struct hv_device *hdev =  net_device_ctx->device_ctx;
	struct netvsc_device *nvsc_dev = hv_get_drvdata(hdev);
	u32 hash;
	u16 q_idx = 0;

	if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
		return 0;

228
	if (netvsc_set_hash(&hash, skb)) {
229 230
		q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
			ndev->real_num_tx_queues;
231 232
		skb_set_hash(skb, hash, PKT_HASH_TYPE_L3);
	}
233 234 235 236

	return q_idx;
}

237
void netvsc_xmit_completion(void *context)
238
{
239
	struct hv_netvsc_packet *packet = (struct hv_netvsc_packet *)context;
240
	struct sk_buff *skb = (struct sk_buff *)
241
		(unsigned long)packet->send_completion_tid;
242

243
	if (skb)
244
		dev_kfree_skb_any(skb);
245 246
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
			struct hv_page_buffer *pb)
{
	int j = 0;

	/* Deal with compund pages by ignoring unused part
	 * of the page.
	 */
	page += (offset >> PAGE_SHIFT);
	offset &= ~PAGE_MASK;

	while (len > 0) {
		unsigned long bytes;

		bytes = PAGE_SIZE - offset;
		if (bytes > len)
			bytes = len;
		pb[j].pfn = page_to_pfn(page);
		pb[j].offset = offset;
		pb[j].len = bytes;

		offset += bytes;
		len -= bytes;

		if (offset == PAGE_SIZE && len) {
			page++;
			offset = 0;
			j++;
		}
	}

	return j + 1;
}

281
static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
282
			   struct hv_netvsc_packet *packet)
283
{
284
	struct hv_page_buffer *pb = packet->page_buf;
285 286 287 288 289 290
	u32 slots_used = 0;
	char *data = skb->data;
	int frags = skb_shinfo(skb)->nr_frags;
	int i;

	/* The packet is laid out thus:
291
	 * 1. hdr: RNDIS header and PPI
292 293 294 295 296 297 298 299
	 * 2. skb linear data
	 * 3. skb fragment data
	 */
	if (hdr != NULL)
		slots_used += fill_pg_buf(virt_to_page(hdr),
					offset_in_page(hdr),
					len, &pb[slots_used]);

300 301 302
	packet->rmsg_size = len;
	packet->rmsg_pgcnt = slots_used;

303 304 305 306 307 308 309 310 311 312 313
	slots_used += fill_pg_buf(virt_to_page(data),
				offset_in_page(data),
				skb_headlen(skb), &pb[slots_used]);

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;

		slots_used += fill_pg_buf(skb_frag_page(frag),
					frag->page_offset,
					skb_frag_size(frag), &pb[slots_used]);
	}
314
	return slots_used;
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
}

static int count_skb_frag_slots(struct sk_buff *skb)
{
	int i, frags = skb_shinfo(skb)->nr_frags;
	int pages = 0;

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
		unsigned long size = skb_frag_size(frag);
		unsigned long offset = frag->page_offset;

		/* Skip unused frames from start of page */
		offset &= ~PAGE_MASK;
		pages += PFN_UP(offset + size);
	}
	return pages;
}

static int netvsc_get_slots(struct sk_buff *skb)
{
	char *data = skb->data;
	unsigned int offset = offset_in_page(data);
	unsigned int len = skb_headlen(skb);
	int slots;
	int frag_slots;

	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
	frag_slots = count_skb_frag_slots(skb);
	return slots + frag_slots;
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
{
	u32 ret_val = TRANSPORT_INFO_NOT_IP;

	if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
		(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
		goto not_ip;
	}

	*trans_off = skb_transport_offset(skb);

	if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
		struct iphdr *iphdr = ip_hdr(skb);

		if (iphdr->protocol == IPPROTO_TCP)
			ret_val = TRANSPORT_INFO_IPV4_TCP;
		else if (iphdr->protocol == IPPROTO_UDP)
			ret_val = TRANSPORT_INFO_IPV4_UDP;
	} else {
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			ret_val = TRANSPORT_INFO_IPV6_TCP;
		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
			ret_val = TRANSPORT_INFO_IPV6_UDP;
	}

not_ip:
	return ret_val;
}

376
static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
377 378
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
379
	struct hv_netvsc_packet *packet = NULL;
380
	int ret;
381 382 383 384 385
	unsigned int num_data_pgs;
	struct rndis_message *rndis_msg;
	struct rndis_packet *rndis_pkt;
	u32 rndis_msg_size;
	bool isvlan;
386
	bool linear = false;
387
	struct rndis_per_packet_info *ppi;
388
	struct ndis_tcp_ip_checksum_info *csum_info;
389
	struct ndis_tcp_lso_info *lso_info;
390 391
	int  hdr_offset;
	u32 net_trans_info;
392
	u32 hash;
393
	u32 skb_length;
394 395
	u32 pkt_sz;
	struct hv_page_buffer page_buf[MAX_PAGE_BUFFER_COUNT];
396
	struct netvsc_stats *tx_stats = this_cpu_ptr(net_device_ctx->tx_stats);
397

398 399
	/* We will atmost need two pages to describe the rndis
	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
400 401
	 * of pages in a single packet. If skb is scattered around
	 * more pages we try linearizing it.
402
	 */
403 404 405

check_size:
	skb_length = skb->len;
406
	num_data_pgs = netvsc_get_slots(skb) + 2;
407 408 409
	if (num_data_pgs > MAX_PAGE_BUFFER_COUNT && linear) {
		net_alert_ratelimited("packet too big: %u pages (%u bytes)\n",
				      num_data_pgs, skb->len);
410 411
		ret = -EFAULT;
		goto drop;
412 413 414 415 416 417 418 419
	} else if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
		if (skb_linearize(skb)) {
			net_alert_ratelimited("failed to linearize skb\n");
			ret = -ENOMEM;
			goto drop;
		}
		linear = true;
		goto check_size;
420
	}
421

422
	pkt_sz = sizeof(struct hv_netvsc_packet) + RNDIS_AND_PPI_SIZE;
423

424 425 426 427 428
	ret = skb_cow_head(skb, pkt_sz);
	if (ret) {
		netdev_err(net, "unable to alloc hv_netvsc_packet\n");
		ret = -ENOMEM;
		goto drop;
429
	}
430 431
	/* Use the headroom for building up the packet */
	packet = (struct hv_netvsc_packet *)skb->head;
432

433
	packet->status = 0;
434 435
	packet->xmit_more = skb->xmit_more;

436
	packet->vlan_tci = skb->vlan_tci;
437
	packet->page_buf = page_buf;
438

439 440
	packet->q_idx = skb_get_queue_mapping(skb);

441
	packet->is_data_pkt = true;
442
	packet->total_data_buflen = skb->len;
443

444
	packet->rndis_msg = (struct rndis_message *)((unsigned long)packet +
445 446
				sizeof(struct hv_netvsc_packet));

447
	memset(packet->rndis_msg, 0, RNDIS_AND_PPI_SIZE);
448

449
	/* Set the completion routine */
450 451 452
	packet->send_completion = netvsc_xmit_completion;
	packet->send_completion_ctx = packet;
	packet->send_completion_tid = (unsigned long)skb;
453

454 455 456 457 458 459 460 461 462 463 464 465 466
	isvlan = packet->vlan_tci & VLAN_TAG_PRESENT;

	/* Add the rndis header */
	rndis_msg = packet->rndis_msg;
	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
	rndis_msg->msg_len = packet->total_data_buflen;
	rndis_pkt = &rndis_msg->msg.pkt;
	rndis_pkt->data_offset = sizeof(struct rndis_packet);
	rndis_pkt->data_len = packet->total_data_buflen;
	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);

	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);

467 468 469 470 471 472 473 474
	hash = skb_get_hash_raw(skb);
	if (hash != 0 && net->real_num_tx_queues > 1) {
		rndis_msg_size += NDIS_HASH_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
				    NBL_HASH_VALUE);
		*(u32 *)((void *)ppi + ppi->ppi_offset) = hash;
	}

475 476 477 478 479 480 481 482 483 484 485 486 487
	if (isvlan) {
		struct ndis_pkt_8021q_info *vlan;

		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
					IEEE_8021Q_INFO);
		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
						ppi->ppi_offset);
		vlan->vlanid = packet->vlan_tci & VLAN_VID_MASK;
		vlan->pri = (packet->vlan_tci & VLAN_PRIO_MASK) >>
				VLAN_PRIO_SHIFT;
	}

488 489 490 491 492 493 494 495 496
	net_trans_info = get_net_transport_info(skb, &hdr_offset);
	if (net_trans_info == TRANSPORT_INFO_NOT_IP)
		goto do_send;

	/*
	 * Setup the sendside checksum offload only if this is not a
	 * GSO packet.
	 */
	if (skb_is_gso(skb))
497
		goto do_lso;
498

499 500 501 502
	if ((skb->ip_summed == CHECKSUM_NONE) ||
	    (skb->ip_summed == CHECKSUM_UNNECESSARY))
		goto do_send;

503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	rndis_msg_size += NDIS_CSUM_PPI_SIZE;
	ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
			    TCPIP_CHKSUM_PKTINFO);

	csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
			ppi->ppi_offset);

	if (net_trans_info & (INFO_IPV4 << 16))
		csum_info->transmit.is_ipv4 = 1;
	else
		csum_info->transmit.is_ipv6 = 1;

	if (net_trans_info & INFO_TCP) {
		csum_info->transmit.tcp_checksum = 1;
		csum_info->transmit.tcp_header_offset = hdr_offset;
	} else if (net_trans_info & INFO_UDP) {
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		/* UDP checksum offload is not supported on ws2008r2.
		 * Furthermore, on ws2012 and ws2012r2, there are some
		 * issues with udp checksum offload from Linux guests.
		 * (these are host issues).
		 * For now compute the checksum here.
		 */
		struct udphdr *uh;
		u16 udp_len;

		ret = skb_cow_head(skb, 0);
		if (ret)
			goto drop;

		uh = udp_hdr(skb);
		udp_len = ntohs(uh->len);
		uh->check = 0;
		uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
					      ip_hdr(skb)->daddr,
					      udp_len, IPPROTO_UDP,
					      csum_partial(uh, udp_len, 0));
		if (uh->check == 0)
			uh->check = CSUM_MANGLED_0;

		csum_info->transmit.udp_checksum = 0;
543
	}
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
	goto do_send;

do_lso:
	rndis_msg_size += NDIS_LSO_PPI_SIZE;
	ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
			    TCP_LARGESEND_PKTINFO);

	lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
			ppi->ppi_offset);

	lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
	if (net_trans_info & (INFO_IPV4 << 16)) {
		lso_info->lso_v2_transmit.ip_version =
			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
		ip_hdr(skb)->tot_len = 0;
		ip_hdr(skb)->check = 0;
		tcp_hdr(skb)->check =
		~csum_tcpudp_magic(ip_hdr(skb)->saddr,
				   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
	} else {
		lso_info->lso_v2_transmit.ip_version =
			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check =
		~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
				&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
	}
	lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
	lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
573 574

do_send:
575 576
	/* Start filling in the page buffers with the rndis hdr */
	rndis_msg->msg_len += rndis_msg_size;
577
	packet->total_data_buflen = rndis_msg->msg_len;
578
	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
579
					       skb, packet);
580 581 582

	ret = netvsc_send(net_device_ctx->device_ctx, packet);

583
drop:
584
	if (ret == 0) {
585
		u64_stats_update_begin(&tx_stats->syncp);
586 587
		tx_stats->packets++;
		tx_stats->bytes += skb_length;
588
		u64_stats_update_end(&tx_stats->syncp);
589
	} else {
590 591 592 593
		if (ret != -EAGAIN) {
			dev_kfree_skb_any(skb);
			net->stats.tx_dropped++;
		}
594 595
	}

596
	return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
597 598
}

599
/*
600 601
 * netvsc_linkstatus_callback - Link up/down notification
 */
602
void netvsc_linkstatus_callback(struct hv_device *device_obj,
603
				struct rndis_message *resp)
604
{
605
	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
606
	struct net_device *net;
607
	struct net_device_context *ndev_ctx;
608
	struct netvsc_device *net_device;
609
	struct rndis_device *rdev;
610 611

	net_device = hv_get_drvdata(device_obj);
612 613
	rdev = net_device->extension;

614 615 616 617 618 619 620 621 622 623 624 625 626
	switch (indicate->status) {
	case RNDIS_STATUS_MEDIA_CONNECT:
		rdev->link_state = false;
		break;
	case RNDIS_STATUS_MEDIA_DISCONNECT:
		rdev->link_state = true;
		break;
	case RNDIS_STATUS_NETWORK_CHANGE:
		rdev->link_change = true;
		break;
	default:
		return;
	}
627

628
	net = net_device->ndev;
629

630
	if (!net || net->reg_state != NETREG_REGISTERED)
631 632
		return;

633
	ndev_ctx = netdev_priv(net);
634
	if (!rdev->link_state) {
635
		schedule_delayed_work(&ndev_ctx->dwork, 0);
636
		schedule_delayed_work(&ndev_ctx->dwork, msecs_to_jiffies(20));
637
	} else {
638
		schedule_delayed_work(&ndev_ctx->dwork, 0);
639 640 641
	}
}

642 643 644
/*
 * netvsc_recv_callback -  Callback when we receive a packet from the
 * "wire" on the specified device.
645
 */
646
int netvsc_recv_callback(struct hv_device *device_obj,
647 648
				struct hv_netvsc_packet *packet,
				struct ndis_tcp_ip_checksum_info *csum_info)
649
{
650
	struct net_device *net;
651
	struct net_device_context *net_device_ctx;
652
	struct sk_buff *skb;
653
	struct netvsc_stats *rx_stats;
654

655
	net = ((struct netvsc_device *)hv_get_drvdata(device_obj))->ndev;
656
	if (!net || net->reg_state != NETREG_REGISTERED) {
657
		packet->status = NVSP_STAT_FAIL;
658 659
		return 0;
	}
660 661
	net_device_ctx = netdev_priv(net);
	rx_stats = this_cpu_ptr(net_device_ctx->rx_stats);
662

663
	/* Allocate a skb - TODO direct I/O to pages? */
664
	skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
665 666
	if (unlikely(!skb)) {
		++net->stats.rx_dropped;
667
		packet->status = NVSP_STAT_FAIL;
668 669
		return 0;
	}
670

671 672 673 674
	/*
	 * Copy to skb. This copy is needed here since the memory pointed by
	 * hv_netvsc_packet cannot be deallocated
	 */
675 676
	memcpy(skb_put(skb, packet->total_data_buflen), packet->data,
		packet->total_data_buflen);
677 678

	skb->protocol = eth_type_trans(skb, net);
679 680 681 682 683 684 685 686 687 688 689
	if (csum_info) {
		/* We only look at the IP checksum here.
		 * Should we be dropping the packet if checksum
		 * failed? How do we deal with other checksums - TCP/UDP?
		 */
		if (csum_info->receive.ip_checksum_succeeded)
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		else
			skb->ip_summed = CHECKSUM_NONE;
	}

690 691 692
	if (packet->vlan_tci & VLAN_TAG_PRESENT)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
				       packet->vlan_tci);
693

694
	skb_record_rx_queue(skb, packet->channel->
695
			    offermsg.offer.sub_channel_index);
696

697
	u64_stats_update_begin(&rx_stats->syncp);
698 699
	rx_stats->packets++;
	rx_stats->bytes += packet->total_data_buflen;
700
	u64_stats_update_end(&rx_stats->syncp);
701

702 703
	/*
	 * Pass the skb back up. Network stack will deallocate the skb when it
704 705
	 * is done.
	 * TODO - use NAPI?
706
	 */
707
	netif_rx(skb);
708 709 710 711

	return 0;
}

712 713 714
static void netvsc_get_drvinfo(struct net_device *net,
			       struct ethtool_drvinfo *info)
{
715 716
	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
717 718
}

719 720 721 722 723 724 725 726 727 728 729 730 731
static void netvsc_get_channels(struct net_device *net,
				struct ethtool_channels *channel)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
	struct hv_device *dev = net_device_ctx->device_ctx;
	struct netvsc_device *nvdev = hv_get_drvdata(dev);

	if (nvdev) {
		channel->max_combined	= nvdev->max_chn;
		channel->combined_count = nvdev->num_chn;
	}
}

732 733 734 735 736 737 738 739 740 741 742
static int netvsc_change_mtu(struct net_device *ndev, int mtu)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
	struct hv_device *hdev =  ndevctx->device_ctx;
	struct netvsc_device *nvdev = hv_get_drvdata(hdev);
	struct netvsc_device_info device_info;
	int limit = ETH_DATA_LEN;

	if (nvdev == NULL || nvdev->destroy)
		return -ENODEV;

743
	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
744
		limit = NETVSC_MTU - ETH_HLEN;
745

746 747
	/* Hyper-V hosts don't support MTU < ETH_DATA_LEN (1500) */
	if (mtu < ETH_DATA_LEN || mtu > limit)
748 749 750
		return -EINVAL;

	nvdev->start_remove = true;
751
	cancel_work_sync(&ndevctx->work);
752
	netif_tx_disable(ndev);
753 754 755 756 757 758 759
	rndis_filter_device_remove(hdev);

	ndev->mtu = mtu;

	ndevctx->device_ctx = hdev;
	hv_set_drvdata(hdev, ndev);
	device_info.ring_size = ring_size;
760
	device_info.max_num_vrss_chns = max_num_vrss_chns;
761
	rndis_filter_device_add(hdev, &device_info);
762
	netif_tx_wake_all_queues(ndev);
763 764 765 766

	return 0;
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static struct rtnl_link_stats64 *netvsc_get_stats64(struct net_device *net,
						    struct rtnl_link_stats64 *t)
{
	struct net_device_context *ndev_ctx = netdev_priv(net);
	int cpu;

	for_each_possible_cpu(cpu) {
		struct netvsc_stats *tx_stats = per_cpu_ptr(ndev_ctx->tx_stats,
							    cpu);
		struct netvsc_stats *rx_stats = per_cpu_ptr(ndev_ctx->rx_stats,
							    cpu);
		u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
		unsigned int start;

		do {
782
			start = u64_stats_fetch_begin_irq(&tx_stats->syncp);
783 784
			tx_packets = tx_stats->packets;
			tx_bytes = tx_stats->bytes;
785
		} while (u64_stats_fetch_retry_irq(&tx_stats->syncp, start));
786 787

		do {
788
			start = u64_stats_fetch_begin_irq(&rx_stats->syncp);
789 790
			rx_packets = rx_stats->packets;
			rx_bytes = rx_stats->bytes;
791
		} while (u64_stats_fetch_retry_irq(&rx_stats->syncp, start));
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

		t->tx_bytes	+= tx_bytes;
		t->tx_packets	+= tx_packets;
		t->rx_bytes	+= rx_bytes;
		t->rx_packets	+= rx_packets;
	}

	t->tx_dropped	= net->stats.tx_dropped;
	t->tx_errors	= net->stats.tx_dropped;

	t->rx_dropped	= net->stats.rx_dropped;
	t->rx_errors	= net->stats.rx_errors;

	return t;
}
807 808 809 810 811 812

static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
	struct hv_device *hdev =  ndevctx->device_ctx;
	struct sockaddr *addr = p;
813
	char save_adr[ETH_ALEN];
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
	unsigned char save_aatype;
	int err;

	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
	save_aatype = ndev->addr_assign_type;

	err = eth_mac_addr(ndev, p);
	if (err != 0)
		return err;

	err = rndis_filter_set_device_mac(hdev, addr->sa_data);
	if (err != 0) {
		/* roll back to saved MAC */
		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
		ndev->addr_assign_type = save_aatype;
	}

	return err;
}

R
Richard Weinberger 已提交
834 835 836 837 838 839 840 841
#ifdef CONFIG_NET_POLL_CONTROLLER
static void netvsc_poll_controller(struct net_device *net)
{
	/* As netvsc_start_xmit() works synchronous we don't have to
	 * trigger anything here.
	 */
}
#endif
842

843 844 845
static const struct ethtool_ops ethtool_ops = {
	.get_drvinfo	= netvsc_get_drvinfo,
	.get_link	= ethtool_op_get_link,
846
	.get_channels   = netvsc_get_channels,
847 848
};

849 850 851 852
static const struct net_device_ops device_ops = {
	.ndo_open =			netvsc_open,
	.ndo_stop =			netvsc_close,
	.ndo_start_xmit =		netvsc_start_xmit,
853
	.ndo_set_rx_mode =		netvsc_set_multicast_list,
854
	.ndo_change_mtu =		netvsc_change_mtu,
855
	.ndo_validate_addr =		eth_validate_addr,
856
	.ndo_set_mac_address =		netvsc_set_mac_addr,
857
	.ndo_select_queue =		netvsc_select_queue,
858
	.ndo_get_stats64 =		netvsc_get_stats64,
R
Richard Weinberger 已提交
859 860 861
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller =		netvsc_poll_controller,
#endif
862 863
};

864 865 866 867
/*
 * Send GARP packet to network peers after migrations.
 * After Quick Migration, the network is not immediately operational in the
 * current context when receiving RNDIS_STATUS_MEDIA_CONNECT event. So, add
868
 * another netif_notify_peers() into a delayed work, otherwise GARP packet
869
 * will not be sent after quick migration, and cause network disconnection.
870
 * Also, we update the carrier status here.
871
 */
872
static void netvsc_link_change(struct work_struct *w)
873 874 875
{
	struct net_device_context *ndev_ctx;
	struct net_device *net;
876
	struct netvsc_device *net_device;
877
	struct rndis_device *rdev;
878 879 880
	bool notify, refresh = false;
	char *argv[] = { "/etc/init.d/network", "restart", NULL };
	char *envp[] = { "HOME=/", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL };
881 882

	rtnl_lock();
883

884
	ndev_ctx = container_of(w, struct net_device_context, dwork.work);
885
	net_device = hv_get_drvdata(ndev_ctx->device_ctx);
886
	rdev = net_device->extension;
887
	net = net_device->ndev;
888 889 890 891 892 893 894

	if (rdev->link_state) {
		netif_carrier_off(net);
		notify = false;
	} else {
		netif_carrier_on(net);
		notify = true;
895 896 897 898
		if (rdev->link_change) {
			rdev->link_change = false;
			refresh = true;
		}
899 900 901 902
	}

	rtnl_unlock();

903 904 905
	if (refresh)
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);

906 907
	if (notify)
		netdev_notify_peers(net);
908 909
}

910 911 912 913 914 915 916 917
static void netvsc_free_netdev(struct net_device *netdev)
{
	struct net_device_context *net_device_ctx = netdev_priv(netdev);

	free_percpu(net_device_ctx->tx_stats);
	free_percpu(net_device_ctx->rx_stats);
	free_netdev(netdev);
}
918

919 920
static int netvsc_probe(struct hv_device *dev,
			const struct hv_vmbus_device_id *dev_id)
921 922 923 924
{
	struct net_device *net = NULL;
	struct net_device_context *net_device_ctx;
	struct netvsc_device_info device_info;
925
	struct netvsc_device *nvdev;
926
	int ret;
927
	u32 max_needed_headroom;
928

929 930
	net = alloc_etherdev_mq(sizeof(struct net_device_context),
				num_online_cpus());
931
	if (!net)
932
		return -ENOMEM;
933

934
	max_needed_headroom = sizeof(struct hv_netvsc_packet) +
935
			      RNDIS_AND_PPI_SIZE;
936

937 938
	netif_carrier_off(net);

939
	net_device_ctx = netdev_priv(net);
940
	net_device_ctx->device_ctx = dev;
941 942 943 944 945
	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
	if (netif_msg_probe(net_device_ctx))
		netdev_dbg(net, "netvsc msg_enable: %d\n",
			   net_device_ctx->msg_enable);

946 947 948 949 950 951 952 953 954 955 956 957
	net_device_ctx->tx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
	if (!net_device_ctx->tx_stats) {
		free_netdev(net);
		return -ENOMEM;
	}
	net_device_ctx->rx_stats = netdev_alloc_pcpu_stats(struct netvsc_stats);
	if (!net_device_ctx->rx_stats) {
		free_percpu(net_device_ctx->tx_stats);
		free_netdev(net);
		return -ENOMEM;
	}

958
	hv_set_drvdata(dev, net);
959
	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
960
	INIT_WORK(&net_device_ctx->work, do_set_multicast);
961 962 963

	net->netdev_ops = &device_ops;

964 965
	net->hw_features = NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_IP_CSUM |
				NETIF_F_TSO;
966
	net->features = NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_SG | NETIF_F_RXCSUM |
967
			NETIF_F_IP_CSUM | NETIF_F_TSO;
968

969
	net->ethtool_ops = &ethtool_ops;
970
	SET_NETDEV_DEV(net, &dev->device);
971

972 973 974 975 976 977 978
	/*
	 * Request additional head room in the skb.
	 * We will use this space to build the rndis
	 * heaser and other state we need to maintain.
	 */
	net->needed_headroom = max_needed_headroom;

979 980
	/* Notify the netvsc driver of the new device */
	device_info.ring_size = ring_size;
981
	device_info.max_num_vrss_chns = max_num_vrss_chns;
982 983 984
	ret = rndis_filter_device_add(dev, &device_info);
	if (ret != 0) {
		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
985
		netvsc_free_netdev(net);
986
		hv_set_drvdata(dev, NULL);
987
		return ret;
988
	}
989 990
	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);

991 992 993 994
	nvdev = hv_get_drvdata(dev);
	netif_set_real_num_tx_queues(net, nvdev->num_chn);
	netif_set_real_num_rx_queues(net, nvdev->num_chn);

995 996 997 998
	ret = register_netdev(net);
	if (ret != 0) {
		pr_err("Unable to register netdev.\n");
		rndis_filter_device_remove(dev);
999
		netvsc_free_netdev(net);
1000 1001
	} else {
		schedule_delayed_work(&net_device_ctx->dwork, 0);
1002 1003
	}

1004 1005 1006
	return ret;
}

1007
static int netvsc_remove(struct hv_device *dev)
1008
{
1009
	struct net_device *net;
1010
	struct net_device_context *ndev_ctx;
1011 1012 1013 1014
	struct netvsc_device *net_device;

	net_device = hv_get_drvdata(dev);
	net = net_device->ndev;
1015 1016

	if (net == NULL) {
1017
		dev_err(&dev->device, "No net device to remove\n");
1018 1019 1020
		return 0;
	}

1021 1022
	net_device->start_remove = true;

1023 1024
	ndev_ctx = netdev_priv(net);
	cancel_delayed_work_sync(&ndev_ctx->dwork);
1025
	cancel_work_sync(&ndev_ctx->work);
1026

1027
	/* Stop outbound asap */
1028
	netif_tx_disable(net);
1029 1030 1031 1032 1033 1034 1035

	unregister_netdev(net);

	/*
	 * Call to the vsc driver to let it know that the device is being
	 * removed
	 */
1036
	rndis_filter_device_remove(dev);
1037

1038
	netvsc_free_netdev(net);
1039
	return 0;
1040 1041
}

1042
static const struct hv_vmbus_device_id id_table[] = {
1043
	/* Network guid */
1044
	{ HV_NIC_GUID, },
1045
	{ },
1046 1047 1048 1049
};

MODULE_DEVICE_TABLE(vmbus, id_table);

1050
/* The one and only one */
1051
static struct  hv_driver netvsc_drv = {
1052
	.name = KBUILD_MODNAME,
1053
	.id_table = id_table,
1054 1055
	.probe = netvsc_probe,
	.remove = netvsc_remove,
1056
};
1057

1058
static void __exit netvsc_drv_exit(void)
1059
{
1060
	vmbus_driver_unregister(&netvsc_drv);
1061 1062
}

1063
static int __init netvsc_drv_init(void)
1064
{
1065 1066 1067 1068 1069
	if (ring_size < RING_SIZE_MIN) {
		ring_size = RING_SIZE_MIN;
		pr_info("Increased ring_size to %d (min allowed)\n",
			ring_size);
	}
1070
	return vmbus_driver_register(&netvsc_drv);
1071 1072
}

1073
MODULE_LICENSE("GPL");
1074
MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
1075

1076
module_init(netvsc_drv_init);
1077
module_exit(netvsc_drv_exit);