netvsc_drv.c 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
14
 * this program; if not, see <http://www.gnu.org/licenses/>.
15 16
 *
 * Authors:
17
 *   Haiyang Zhang <haiyangz@microsoft.com>
18 19
 *   Hank Janssen  <hjanssen@microsoft.com>
 */
20 21
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

22
#include <linux/init.h>
23
#include <linux/atomic.h>
24 25 26 27 28 29 30 31 32
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
33
#include <linux/if_vlan.h>
34
#include <linux/in.h>
35
#include <linux/slab.h>
36 37 38 39
#include <net/arp.h>
#include <net/route.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
40

41
#include "hyperv_net.h"
42 43

struct net_device_context {
44
	/* point back to our device context */
45
	struct hv_device *device_ctx;
46
	struct delayed_work dwork;
47
	struct work_struct work;
48 49
};

50
#define RING_SIZE_MIN 64
51
static int ring_size = 128;
S
Stephen Hemminger 已提交
52 53
module_param(ring_size, int, S_IRUGO);
MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
54

55 56
static void do_set_multicast(struct work_struct *w)
{
57 58
	struct net_device_context *ndevctx =
		container_of(w, struct net_device_context, work);
59 60 61 62
	struct netvsc_device *nvdev;
	struct rndis_device *rdev;

	nvdev = hv_get_drvdata(ndevctx->device_ctx);
63 64
	if (nvdev == NULL || nvdev->ndev == NULL)
		return;
65 66 67

	rdev = nvdev->extension;
	if (rdev == NULL)
68
		return;
69

70
	if (nvdev->ndev->flags & IFF_PROMISC)
71 72 73 74 75 76 77 78 79
		rndis_filter_set_packet_filter(rdev,
			NDIS_PACKET_TYPE_PROMISCUOUS);
	else
		rndis_filter_set_packet_filter(rdev,
			NDIS_PACKET_TYPE_BROADCAST |
			NDIS_PACKET_TYPE_ALL_MULTICAST |
			NDIS_PACKET_TYPE_DIRECTED);
}

80
static void netvsc_set_multicast_list(struct net_device *net)
81
{
82
	struct net_device_context *net_device_ctx = netdev_priv(net);
83

84
	schedule_work(&net_device_ctx->work);
85 86 87 88 89
}

static int netvsc_open(struct net_device *net)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
90
	struct hv_device *device_obj = net_device_ctx->device_ctx;
91 92
	struct netvsc_device *nvdev;
	struct rndis_device *rdev;
93
	int ret = 0;
94

95 96
	netif_carrier_off(net);

97 98 99 100 101
	/* Open up the device */
	ret = rndis_filter_open(device_obj);
	if (ret != 0) {
		netdev_err(net, "unable to open device (ret %d).\n", ret);
		return ret;
102 103
	}

104
	netif_tx_start_all_queues(net);
105

106 107 108 109 110
	nvdev = hv_get_drvdata(device_obj);
	rdev = nvdev->extension;
	if (!rdev->link_state)
		netif_carrier_on(net);

111 112 113 114 115 116
	return ret;
}

static int netvsc_close(struct net_device *net)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
117
	struct hv_device *device_obj = net_device_ctx->device_ctx;
118
	int ret;
119

120
	netif_tx_disable(net);
121

122 123
	/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
	cancel_work_sync(&net_device_ctx->work);
124
	ret = rndis_filter_close(device_obj);
125
	if (ret != 0)
126
		netdev_err(net, "unable to close device (ret %d).\n", ret);
127 128 129 130

	return ret;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
				int pkt_type)
{
	struct rndis_packet *rndis_pkt;
	struct rndis_per_packet_info *ppi;

	rndis_pkt = &msg->msg.pkt;
	rndis_pkt->data_offset += ppi_size;

	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);

	ppi->size = ppi_size;
	ppi->type = pkt_type;
	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);

	rndis_pkt->per_pkt_info_len += ppi_size;

	return ppi;
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
union sub_key {
	u64 k;
	struct {
		u8 pad[3];
		u8 kb;
		u32 ka;
	};
};

/* Toeplitz hash function
 * data: network byte order
 * return: host byte order
 */
static u32 comp_hash(u8 *key, int klen, u8 *data, int dlen)
{
	union sub_key subk;
	int k_next = 4;
	u8 dt;
	int i, j;
	u32 ret = 0;

	subk.k = 0;
	subk.ka = ntohl(*(u32 *)key);

	for (i = 0; i < dlen; i++) {
		subk.kb = key[k_next];
		k_next = (k_next + 1) % klen;
		dt = data[i];
		for (j = 0; j < 8; j++) {
			if (dt & 0x80)
				ret ^= subk.ka;
			dt <<= 1;
			subk.k <<= 1;
		}
	}

	return ret;
}

static bool netvsc_set_hash(u32 *hash, struct sk_buff *skb)
{
	struct iphdr *iphdr;
	int data_len;
	bool ret = false;

	if (eth_hdr(skb)->h_proto != htons(ETH_P_IP))
		return false;

	iphdr = ip_hdr(skb);

	if (iphdr->version == 4) {
		if (iphdr->protocol == IPPROTO_TCP)
			data_len = 12;
		else
			data_len = 8;
		*hash = comp_hash(netvsc_hash_key, HASH_KEYLEN,
				  (u8 *)&iphdr->saddr, data_len);
		ret = true;
	}

	return ret;
}

static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
			void *accel_priv, select_queue_fallback_t fallback)
{
	struct net_device_context *net_device_ctx = netdev_priv(ndev);
	struct hv_device *hdev =  net_device_ctx->device_ctx;
	struct netvsc_device *nvsc_dev = hv_get_drvdata(hdev);
	u32 hash;
	u16 q_idx = 0;

	if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
		return 0;

	if (netvsc_set_hash(&hash, skb))
		q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
			ndev->real_num_tx_queues;

	return q_idx;
}

234 235
static void netvsc_xmit_completion(void *context)
{
236
	struct hv_netvsc_packet *packet = (struct hv_netvsc_packet *)context;
237
	struct sk_buff *skb = (struct sk_buff *)
238
		(unsigned long)packet->send_completion_tid;
239
	u32 index = packet->send_buf_index;
240 241 242

	kfree(packet);

243
	if (skb && (index == NETVSC_INVALID_INDEX))
244
		dev_kfree_skb_any(skb);
245 246
}

247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
			struct hv_page_buffer *pb)
{
	int j = 0;

	/* Deal with compund pages by ignoring unused part
	 * of the page.
	 */
	page += (offset >> PAGE_SHIFT);
	offset &= ~PAGE_MASK;

	while (len > 0) {
		unsigned long bytes;

		bytes = PAGE_SIZE - offset;
		if (bytes > len)
			bytes = len;
		pb[j].pfn = page_to_pfn(page);
		pb[j].offset = offset;
		pb[j].len = bytes;

		offset += bytes;
		len -= bytes;

		if (offset == PAGE_SIZE && len) {
			page++;
			offset = 0;
			j++;
		}
	}

	return j + 1;
}

281 282
static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
			   struct hv_page_buffer *pb)
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
{
	u32 slots_used = 0;
	char *data = skb->data;
	int frags = skb_shinfo(skb)->nr_frags;
	int i;

	/* The packet is laid out thus:
	 * 1. hdr
	 * 2. skb linear data
	 * 3. skb fragment data
	 */
	if (hdr != NULL)
		slots_used += fill_pg_buf(virt_to_page(hdr),
					offset_in_page(hdr),
					len, &pb[slots_used]);

	slots_used += fill_pg_buf(virt_to_page(data),
				offset_in_page(data),
				skb_headlen(skb), &pb[slots_used]);

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;

		slots_used += fill_pg_buf(skb_frag_page(frag),
					frag->page_offset,
					skb_frag_size(frag), &pb[slots_used]);
	}
310
	return slots_used;
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
}

static int count_skb_frag_slots(struct sk_buff *skb)
{
	int i, frags = skb_shinfo(skb)->nr_frags;
	int pages = 0;

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
		unsigned long size = skb_frag_size(frag);
		unsigned long offset = frag->page_offset;

		/* Skip unused frames from start of page */
		offset &= ~PAGE_MASK;
		pages += PFN_UP(offset + size);
	}
	return pages;
}

static int netvsc_get_slots(struct sk_buff *skb)
{
	char *data = skb->data;
	unsigned int offset = offset_in_page(data);
	unsigned int len = skb_headlen(skb);
	int slots;
	int frag_slots;

	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
	frag_slots = count_skb_frag_slots(skb);
	return slots + frag_slots;
}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
{
	u32 ret_val = TRANSPORT_INFO_NOT_IP;

	if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
		(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
		goto not_ip;
	}

	*trans_off = skb_transport_offset(skb);

	if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
		struct iphdr *iphdr = ip_hdr(skb);

		if (iphdr->protocol == IPPROTO_TCP)
			ret_val = TRANSPORT_INFO_IPV4_TCP;
		else if (iphdr->protocol == IPPROTO_UDP)
			ret_val = TRANSPORT_INFO_IPV4_UDP;
	} else {
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			ret_val = TRANSPORT_INFO_IPV6_TCP;
		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
			ret_val = TRANSPORT_INFO_IPV6_UDP;
	}

not_ip:
	return ret_val;
}

372
static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
373 374
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
375
	struct hv_netvsc_packet *packet;
376
	int ret;
377 378 379 380 381 382
	unsigned int num_data_pgs;
	struct rndis_message *rndis_msg;
	struct rndis_packet *rndis_pkt;
	u32 rndis_msg_size;
	bool isvlan;
	struct rndis_per_packet_info *ppi;
383
	struct ndis_tcp_ip_checksum_info *csum_info;
384
	struct ndis_tcp_lso_info *lso_info;
385 386 387
	int  hdr_offset;
	u32 net_trans_info;

388

389 390 391 392
	/* We will atmost need two pages to describe the rndis
	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
	 * of pages in a single packet.
	 */
393 394
	num_data_pgs = netvsc_get_slots(skb) + 2;
	if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
395 396 397 398 399
		netdev_err(net, "Packet too big: %u\n", skb->len);
		dev_kfree_skb(skb);
		net->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}
400

401
	/* Allocate a netvsc packet based on # of frags. */
402
	packet = kzalloc(sizeof(struct hv_netvsc_packet) +
403
			 (num_data_pgs * sizeof(struct hv_page_buffer)) +
404
			 sizeof(struct rndis_message) +
405 406 407
			 NDIS_VLAN_PPI_SIZE +
			 NDIS_CSUM_PPI_SIZE +
			 NDIS_LSO_PPI_SIZE, GFP_ATOMIC);
408
	if (!packet) {
409
		/* out of memory, drop packet */
410
		netdev_err(net, "unable to allocate hv_netvsc_packet\n");
411 412 413

		dev_kfree_skb(skb);
		net->stats.tx_dropped++;
414
		return NETDEV_TX_OK;
415 416
	}

417 418
	packet->vlan_tci = skb->vlan_tci;

419 420
	packet->q_idx = skb_get_queue_mapping(skb);

421
	packet->is_data_pkt = true;
422
	packet->total_data_buflen = skb->len;
423

424 425 426
	packet->rndis_msg = (struct rndis_message *)((unsigned long)packet +
				sizeof(struct hv_netvsc_packet) +
				(num_data_pgs * sizeof(struct hv_page_buffer)));
427

428
	/* Set the completion routine */
429 430 431
	packet->send_completion = netvsc_xmit_completion;
	packet->send_completion_ctx = packet;
	packet->send_completion_tid = (unsigned long)skb;
432

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
	isvlan = packet->vlan_tci & VLAN_TAG_PRESENT;

	/* Add the rndis header */
	rndis_msg = packet->rndis_msg;
	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
	rndis_msg->msg_len = packet->total_data_buflen;
	rndis_pkt = &rndis_msg->msg.pkt;
	rndis_pkt->data_offset = sizeof(struct rndis_packet);
	rndis_pkt->data_len = packet->total_data_buflen;
	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);

	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);

	if (isvlan) {
		struct ndis_pkt_8021q_info *vlan;

		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
					IEEE_8021Q_INFO);
		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
						ppi->ppi_offset);
		vlan->vlanid = packet->vlan_tci & VLAN_VID_MASK;
		vlan->pri = (packet->vlan_tci & VLAN_PRIO_MASK) >>
				VLAN_PRIO_SHIFT;
	}

459 460 461 462 463 464 465 466 467
	net_trans_info = get_net_transport_info(skb, &hdr_offset);
	if (net_trans_info == TRANSPORT_INFO_NOT_IP)
		goto do_send;

	/*
	 * Setup the sendside checksum offload only if this is not a
	 * GSO packet.
	 */
	if (skb_is_gso(skb))
468
		goto do_lso;
469

470 471 472 473
	if ((skb->ip_summed == CHECKSUM_NONE) ||
	    (skb->ip_summed == CHECKSUM_UNNECESSARY))
		goto do_send;

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
	rndis_msg_size += NDIS_CSUM_PPI_SIZE;
	ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
			    TCPIP_CHKSUM_PKTINFO);

	csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
			ppi->ppi_offset);

	if (net_trans_info & (INFO_IPV4 << 16))
		csum_info->transmit.is_ipv4 = 1;
	else
		csum_info->transmit.is_ipv6 = 1;

	if (net_trans_info & INFO_TCP) {
		csum_info->transmit.tcp_checksum = 1;
		csum_info->transmit.tcp_header_offset = hdr_offset;
	} else if (net_trans_info & INFO_UDP) {
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		/* UDP checksum offload is not supported on ws2008r2.
		 * Furthermore, on ws2012 and ws2012r2, there are some
		 * issues with udp checksum offload from Linux guests.
		 * (these are host issues).
		 * For now compute the checksum here.
		 */
		struct udphdr *uh;
		u16 udp_len;

		ret = skb_cow_head(skb, 0);
		if (ret)
			goto drop;

		uh = udp_hdr(skb);
		udp_len = ntohs(uh->len);
		uh->check = 0;
		uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
					      ip_hdr(skb)->daddr,
					      udp_len, IPPROTO_UDP,
					      csum_partial(uh, udp_len, 0));
		if (uh->check == 0)
			uh->check = CSUM_MANGLED_0;

		csum_info->transmit.udp_checksum = 0;
514
	}
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	goto do_send;

do_lso:
	rndis_msg_size += NDIS_LSO_PPI_SIZE;
	ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
			    TCP_LARGESEND_PKTINFO);

	lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
			ppi->ppi_offset);

	lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
	if (net_trans_info & (INFO_IPV4 << 16)) {
		lso_info->lso_v2_transmit.ip_version =
			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
		ip_hdr(skb)->tot_len = 0;
		ip_hdr(skb)->check = 0;
		tcp_hdr(skb)->check =
		~csum_tcpudp_magic(ip_hdr(skb)->saddr,
				   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
	} else {
		lso_info->lso_v2_transmit.ip_version =
			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check =
		~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
				&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
	}
	lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
	lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
544 545

do_send:
546 547 548 549 550 551 552
	/* Start filling in the page buffers with the rndis hdr */
	rndis_msg->msg_len += rndis_msg_size;
	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
					skb, &packet->page_buf[0]);

	ret = netvsc_send(net_device_ctx->device_ctx, packet);

553
drop:
554
	if (ret == 0) {
555 556
		net->stats.tx_bytes += skb->len;
		net->stats.tx_packets++;
557
	} else {
558
		kfree(packet);
559 560 561 562
		if (ret != -EAGAIN) {
			dev_kfree_skb_any(skb);
			net->stats.tx_dropped++;
		}
563 564
	}

565
	return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
566 567
}

568
/*
569 570
 * netvsc_linkstatus_callback - Link up/down notification
 */
571
void netvsc_linkstatus_callback(struct hv_device *device_obj,
572
				       unsigned int status)
573
{
574
	struct net_device *net;
575
	struct net_device_context *ndev_ctx;
576
	struct netvsc_device *net_device;
577
	struct rndis_device *rdev;
578 579

	net_device = hv_get_drvdata(device_obj);
580 581 582 583
	rdev = net_device->extension;

	rdev->link_state = status != 1;

584
	net = net_device->ndev;
585

586
	if (!net || net->reg_state != NETREG_REGISTERED)
587 588
		return;

589
	ndev_ctx = netdev_priv(net);
590
	if (status == 1) {
591
		schedule_delayed_work(&ndev_ctx->dwork, 0);
592
		schedule_delayed_work(&ndev_ctx->dwork, msecs_to_jiffies(20));
593
	} else {
594
		schedule_delayed_work(&ndev_ctx->dwork, 0);
595 596 597
	}
}

598 599 600
/*
 * netvsc_recv_callback -  Callback when we receive a packet from the
 * "wire" on the specified device.
601
 */
602
int netvsc_recv_callback(struct hv_device *device_obj,
603 604
				struct hv_netvsc_packet *packet,
				struct ndis_tcp_ip_checksum_info *csum_info)
605
{
606
	struct net_device *net;
607 608
	struct sk_buff *skb;

609
	net = ((struct netvsc_device *)hv_get_drvdata(device_obj))->ndev;
610
	if (!net || net->reg_state != NETREG_REGISTERED) {
611
		packet->status = NVSP_STAT_FAIL;
612 613 614
		return 0;
	}

615
	/* Allocate a skb - TODO direct I/O to pages? */
616
	skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
617 618
	if (unlikely(!skb)) {
		++net->stats.rx_dropped;
619
		packet->status = NVSP_STAT_FAIL;
620 621
		return 0;
	}
622

623 624 625 626
	/*
	 * Copy to skb. This copy is needed here since the memory pointed by
	 * hv_netvsc_packet cannot be deallocated
	 */
627 628
	memcpy(skb_put(skb, packet->total_data_buflen), packet->data,
		packet->total_data_buflen);
629 630

	skb->protocol = eth_type_trans(skb, net);
631 632 633 634 635 636 637 638 639 640 641
	if (csum_info) {
		/* We only look at the IP checksum here.
		 * Should we be dropping the packet if checksum
		 * failed? How do we deal with other checksums - TCP/UDP?
		 */
		if (csum_info->receive.ip_checksum_succeeded)
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		else
			skb->ip_summed = CHECKSUM_NONE;
	}

642 643 644
	if (packet->vlan_tci & VLAN_TAG_PRESENT)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
				       packet->vlan_tci);
645

646
	skb_record_rx_queue(skb, packet->channel->
647
			    offermsg.offer.sub_channel_index);
648

649
	net->stats.rx_packets++;
650
	net->stats.rx_bytes += packet->total_data_buflen;
651

652 653
	/*
	 * Pass the skb back up. Network stack will deallocate the skb when it
654 655
	 * is done.
	 * TODO - use NAPI?
656
	 */
657
	netif_rx(skb);
658 659 660 661

	return 0;
}

662 663 664
static void netvsc_get_drvinfo(struct net_device *net,
			       struct ethtool_drvinfo *info)
{
665 666
	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
667 668
}

669 670 671 672 673 674 675 676 677 678 679
static int netvsc_change_mtu(struct net_device *ndev, int mtu)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
	struct hv_device *hdev =  ndevctx->device_ctx;
	struct netvsc_device *nvdev = hv_get_drvdata(hdev);
	struct netvsc_device_info device_info;
	int limit = ETH_DATA_LEN;

	if (nvdev == NULL || nvdev->destroy)
		return -ENODEV;

680
	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
681 682 683 684 685 686
		limit = NETVSC_MTU;

	if (mtu < 68 || mtu > limit)
		return -EINVAL;

	nvdev->start_remove = true;
687
	cancel_work_sync(&ndevctx->work);
688
	netif_tx_disable(ndev);
689 690 691 692 693 694 695 696
	rndis_filter_device_remove(hdev);

	ndev->mtu = mtu;

	ndevctx->device_ctx = hdev;
	hv_set_drvdata(hdev, ndev);
	device_info.ring_size = ring_size;
	rndis_filter_device_add(hdev, &device_info);
697
	netif_tx_wake_all_queues(ndev);
698 699 700 701

	return 0;
}

702 703 704 705 706 707

static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
	struct hv_device *hdev =  ndevctx->device_ctx;
	struct sockaddr *addr = p;
708
	char save_adr[ETH_ALEN];
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	unsigned char save_aatype;
	int err;

	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
	save_aatype = ndev->addr_assign_type;

	err = eth_mac_addr(ndev, p);
	if (err != 0)
		return err;

	err = rndis_filter_set_device_mac(hdev, addr->sa_data);
	if (err != 0) {
		/* roll back to saved MAC */
		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
		ndev->addr_assign_type = save_aatype;
	}

	return err;
}


730 731 732 733 734
static const struct ethtool_ops ethtool_ops = {
	.get_drvinfo	= netvsc_get_drvinfo,
	.get_link	= ethtool_op_get_link,
};

735 736 737 738
static const struct net_device_ops device_ops = {
	.ndo_open =			netvsc_open,
	.ndo_stop =			netvsc_close,
	.ndo_start_xmit =		netvsc_start_xmit,
739
	.ndo_set_rx_mode =		netvsc_set_multicast_list,
740
	.ndo_change_mtu =		netvsc_change_mtu,
741
	.ndo_validate_addr =		eth_validate_addr,
742
	.ndo_set_mac_address =		netvsc_set_mac_addr,
743
	.ndo_select_queue =		netvsc_select_queue,
744 745
};

746 747 748 749
/*
 * Send GARP packet to network peers after migrations.
 * After Quick Migration, the network is not immediately operational in the
 * current context when receiving RNDIS_STATUS_MEDIA_CONNECT event. So, add
750
 * another netif_notify_peers() into a delayed work, otherwise GARP packet
751
 * will not be sent after quick migration, and cause network disconnection.
752
 * Also, we update the carrier status here.
753
 */
754
static void netvsc_link_change(struct work_struct *w)
755 756 757
{
	struct net_device_context *ndev_ctx;
	struct net_device *net;
758
	struct netvsc_device *net_device;
759 760 761 762
	struct rndis_device *rdev;
	bool notify;

	rtnl_lock();
763

764
	ndev_ctx = container_of(w, struct net_device_context, dwork.work);
765
	net_device = hv_get_drvdata(ndev_ctx->device_ctx);
766
	rdev = net_device->extension;
767
	net = net_device->ndev;
768 769 770 771 772 773 774 775 776 777 778 779 780

	if (rdev->link_state) {
		netif_carrier_off(net);
		notify = false;
	} else {
		netif_carrier_on(net);
		notify = true;
	}

	rtnl_unlock();

	if (notify)
		netdev_notify_peers(net);
781 782 783
}


784 785
static int netvsc_probe(struct hv_device *dev,
			const struct hv_vmbus_device_id *dev_id)
786 787 788 789
{
	struct net_device *net = NULL;
	struct net_device_context *net_device_ctx;
	struct netvsc_device_info device_info;
790
	struct netvsc_device *nvdev;
791 792
	int ret;

793 794
	net = alloc_etherdev_mq(sizeof(struct net_device_context),
				num_online_cpus());
795
	if (!net)
796
		return -ENOMEM;
797

798 799
	netif_carrier_off(net);

800
	net_device_ctx = netdev_priv(net);
801
	net_device_ctx->device_ctx = dev;
802
	hv_set_drvdata(dev, net);
803
	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
804
	INIT_WORK(&net_device_ctx->work, do_set_multicast);
805 806 807

	net->netdev_ops = &device_ops;

808 809
	net->hw_features = NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_IP_CSUM |
				NETIF_F_TSO;
810
	net->features = NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_SG | NETIF_F_RXCSUM |
811
			NETIF_F_IP_CSUM | NETIF_F_TSO;
812

813
	SET_ETHTOOL_OPS(net, &ethtool_ops);
814
	SET_NETDEV_DEV(net, &dev->device);
815

816 817 818 819 820
	/* Notify the netvsc driver of the new device */
	device_info.ring_size = ring_size;
	ret = rndis_filter_device_add(dev, &device_info);
	if (ret != 0) {
		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
821
		free_netdev(net);
822
		hv_set_drvdata(dev, NULL);
823
		return ret;
824
	}
825 826
	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);

827 828 829 830
	nvdev = hv_get_drvdata(dev);
	netif_set_real_num_tx_queues(net, nvdev->num_chn);
	netif_set_real_num_rx_queues(net, nvdev->num_chn);

831 832 833 834 835
	ret = register_netdev(net);
	if (ret != 0) {
		pr_err("Unable to register netdev.\n");
		rndis_filter_device_remove(dev);
		free_netdev(net);
836 837
	} else {
		schedule_delayed_work(&net_device_ctx->dwork, 0);
838 839
	}

840 841 842
	return ret;
}

843
static int netvsc_remove(struct hv_device *dev)
844
{
845
	struct net_device *net;
846
	struct net_device_context *ndev_ctx;
847 848 849 850
	struct netvsc_device *net_device;

	net_device = hv_get_drvdata(dev);
	net = net_device->ndev;
851 852

	if (net == NULL) {
853
		dev_err(&dev->device, "No net device to remove\n");
854 855 856
		return 0;
	}

857 858
	net_device->start_remove = true;

859 860
	ndev_ctx = netdev_priv(net);
	cancel_delayed_work_sync(&ndev_ctx->dwork);
861
	cancel_work_sync(&ndev_ctx->work);
862

863
	/* Stop outbound asap */
864
	netif_tx_disable(net);
865 866 867 868 869 870 871

	unregister_netdev(net);

	/*
	 * Call to the vsc driver to let it know that the device is being
	 * removed
	 */
872
	rndis_filter_device_remove(dev);
873 874

	free_netdev(net);
875
	return 0;
876 877
}

878
static const struct hv_vmbus_device_id id_table[] = {
879
	/* Network guid */
880
	{ HV_NIC_GUID, },
881
	{ },
882 883 884 885
};

MODULE_DEVICE_TABLE(vmbus, id_table);

886
/* The one and only one */
887
static struct  hv_driver netvsc_drv = {
888
	.name = KBUILD_MODNAME,
889
	.id_table = id_table,
890 891
	.probe = netvsc_probe,
	.remove = netvsc_remove,
892
};
893

894
static void __exit netvsc_drv_exit(void)
895
{
896
	vmbus_driver_unregister(&netvsc_drv);
897 898
}

899
static int __init netvsc_drv_init(void)
900
{
901 902 903 904 905
	if (ring_size < RING_SIZE_MIN) {
		ring_size = RING_SIZE_MIN;
		pr_info("Increased ring_size to %d (min allowed)\n",
			ring_size);
	}
906
	return vmbus_driver_register(&netvsc_drv);
907 908
}

909
MODULE_LICENSE("GPL");
910
MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
911

912
module_init(netvsc_drv_init);
913
module_exit(netvsc_drv_exit);