netvsc_drv.c 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*
 * Copyright (c) 2009, Microsoft Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
14
 * this program; if not, see <http://www.gnu.org/licenses/>.
15 16
 *
 * Authors:
17
 *   Haiyang Zhang <haiyangz@microsoft.com>
18 19
 *   Hank Janssen  <hjanssen@microsoft.com>
 */
20 21
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

22
#include <linux/init.h>
23
#include <linux/atomic.h>
24 25 26 27 28 29 30 31 32
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
33
#include <linux/if_vlan.h>
34
#include <linux/in.h>
35
#include <linux/slab.h>
36 37 38 39
#include <net/arp.h>
#include <net/route.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
40

41
#include "hyperv_net.h"
42 43

struct net_device_context {
44
	/* point back to our device context */
45
	struct hv_device *device_ctx;
46
	struct delayed_work dwork;
47
	struct work_struct work;
48 49
};

50
#define RING_SIZE_MIN 64
51
static int ring_size = 128;
S
Stephen Hemminger 已提交
52 53
module_param(ring_size, int, S_IRUGO);
MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
54

55 56
static void do_set_multicast(struct work_struct *w)
{
57 58
	struct net_device_context *ndevctx =
		container_of(w, struct net_device_context, work);
59 60 61 62
	struct netvsc_device *nvdev;
	struct rndis_device *rdev;

	nvdev = hv_get_drvdata(ndevctx->device_ctx);
63 64
	if (nvdev == NULL || nvdev->ndev == NULL)
		return;
65 66 67

	rdev = nvdev->extension;
	if (rdev == NULL)
68
		return;
69

70
	if (nvdev->ndev->flags & IFF_PROMISC)
71 72 73 74 75 76 77 78 79
		rndis_filter_set_packet_filter(rdev,
			NDIS_PACKET_TYPE_PROMISCUOUS);
	else
		rndis_filter_set_packet_filter(rdev,
			NDIS_PACKET_TYPE_BROADCAST |
			NDIS_PACKET_TYPE_ALL_MULTICAST |
			NDIS_PACKET_TYPE_DIRECTED);
}

80
static void netvsc_set_multicast_list(struct net_device *net)
81
{
82
	struct net_device_context *net_device_ctx = netdev_priv(net);
83

84
	schedule_work(&net_device_ctx->work);
85 86 87 88 89
}

static int netvsc_open(struct net_device *net)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
90
	struct hv_device *device_obj = net_device_ctx->device_ctx;
91 92
	struct netvsc_device *nvdev;
	struct rndis_device *rdev;
93
	int ret = 0;
94

95 96
	netif_carrier_off(net);

97 98 99 100 101
	/* Open up the device */
	ret = rndis_filter_open(device_obj);
	if (ret != 0) {
		netdev_err(net, "unable to open device (ret %d).\n", ret);
		return ret;
102 103
	}

104
	netif_tx_start_all_queues(net);
105

106 107 108 109 110
	nvdev = hv_get_drvdata(device_obj);
	rdev = nvdev->extension;
	if (!rdev->link_state)
		netif_carrier_on(net);

111 112 113 114 115 116
	return ret;
}

static int netvsc_close(struct net_device *net)
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
117
	struct hv_device *device_obj = net_device_ctx->device_ctx;
118
	int ret;
119

120
	netif_tx_disable(net);
121

122 123
	/* Make sure netvsc_set_multicast_list doesn't re-enable filter! */
	cancel_work_sync(&net_device_ctx->work);
124
	ret = rndis_filter_close(device_obj);
125
	if (ret != 0)
126
		netdev_err(net, "unable to close device (ret %d).\n", ret);
127 128 129 130

	return ret;
}

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static void *init_ppi_data(struct rndis_message *msg, u32 ppi_size,
				int pkt_type)
{
	struct rndis_packet *rndis_pkt;
	struct rndis_per_packet_info *ppi;

	rndis_pkt = &msg->msg.pkt;
	rndis_pkt->data_offset += ppi_size;

	ppi = (struct rndis_per_packet_info *)((void *)rndis_pkt +
		rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len);

	ppi->size = ppi_size;
	ppi->type = pkt_type;
	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);

	rndis_pkt->per_pkt_info_len += ppi_size;

	return ppi;
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
union sub_key {
	u64 k;
	struct {
		u8 pad[3];
		u8 kb;
		u32 ka;
	};
};

/* Toeplitz hash function
 * data: network byte order
 * return: host byte order
 */
static u32 comp_hash(u8 *key, int klen, u8 *data, int dlen)
{
	union sub_key subk;
	int k_next = 4;
	u8 dt;
	int i, j;
	u32 ret = 0;

	subk.k = 0;
	subk.ka = ntohl(*(u32 *)key);

	for (i = 0; i < dlen; i++) {
		subk.kb = key[k_next];
		k_next = (k_next + 1) % klen;
		dt = data[i];
		for (j = 0; j < 8; j++) {
			if (dt & 0x80)
				ret ^= subk.ka;
			dt <<= 1;
			subk.k <<= 1;
		}
	}

	return ret;
}

static bool netvsc_set_hash(u32 *hash, struct sk_buff *skb)
{
	struct iphdr *iphdr;
	int data_len;
	bool ret = false;

	if (eth_hdr(skb)->h_proto != htons(ETH_P_IP))
		return false;

	iphdr = ip_hdr(skb);

	if (iphdr->version == 4) {
		if (iphdr->protocol == IPPROTO_TCP)
			data_len = 12;
		else
			data_len = 8;
		*hash = comp_hash(netvsc_hash_key, HASH_KEYLEN,
				  (u8 *)&iphdr->saddr, data_len);
		ret = true;
	}

	return ret;
}

static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
			void *accel_priv, select_queue_fallback_t fallback)
{
	struct net_device_context *net_device_ctx = netdev_priv(ndev);
	struct hv_device *hdev =  net_device_ctx->device_ctx;
	struct netvsc_device *nvsc_dev = hv_get_drvdata(hdev);
	u32 hash;
	u16 q_idx = 0;

	if (nvsc_dev == NULL || ndev->real_num_tx_queues <= 1)
		return 0;

	if (netvsc_set_hash(&hash, skb))
		q_idx = nvsc_dev->send_table[hash % VRSS_SEND_TAB_SIZE] %
			ndev->real_num_tx_queues;

	return q_idx;
}

234 235
static void netvsc_xmit_completion(void *context)
{
236
	struct hv_netvsc_packet *packet = (struct hv_netvsc_packet *)context;
237
	struct sk_buff *skb = (struct sk_buff *)
238
		(unsigned long)packet->completion.send.send_completion_tid;
239 240 241

	kfree(packet);

242
	if (skb)
243
		dev_kfree_skb_any(skb);
244 245
}

246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
			struct hv_page_buffer *pb)
{
	int j = 0;

	/* Deal with compund pages by ignoring unused part
	 * of the page.
	 */
	page += (offset >> PAGE_SHIFT);
	offset &= ~PAGE_MASK;

	while (len > 0) {
		unsigned long bytes;

		bytes = PAGE_SIZE - offset;
		if (bytes > len)
			bytes = len;
		pb[j].pfn = page_to_pfn(page);
		pb[j].offset = offset;
		pb[j].len = bytes;

		offset += bytes;
		len -= bytes;

		if (offset == PAGE_SIZE && len) {
			page++;
			offset = 0;
			j++;
		}
	}

	return j + 1;
}

280 281
static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
			   struct hv_page_buffer *pb)
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
{
	u32 slots_used = 0;
	char *data = skb->data;
	int frags = skb_shinfo(skb)->nr_frags;
	int i;

	/* The packet is laid out thus:
	 * 1. hdr
	 * 2. skb linear data
	 * 3. skb fragment data
	 */
	if (hdr != NULL)
		slots_used += fill_pg_buf(virt_to_page(hdr),
					offset_in_page(hdr),
					len, &pb[slots_used]);

	slots_used += fill_pg_buf(virt_to_page(data),
				offset_in_page(data),
				skb_headlen(skb), &pb[slots_used]);

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;

		slots_used += fill_pg_buf(skb_frag_page(frag),
					frag->page_offset,
					skb_frag_size(frag), &pb[slots_used]);
	}
309
	return slots_used;
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
}

static int count_skb_frag_slots(struct sk_buff *skb)
{
	int i, frags = skb_shinfo(skb)->nr_frags;
	int pages = 0;

	for (i = 0; i < frags; i++) {
		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
		unsigned long size = skb_frag_size(frag);
		unsigned long offset = frag->page_offset;

		/* Skip unused frames from start of page */
		offset &= ~PAGE_MASK;
		pages += PFN_UP(offset + size);
	}
	return pages;
}

static int netvsc_get_slots(struct sk_buff *skb)
{
	char *data = skb->data;
	unsigned int offset = offset_in_page(data);
	unsigned int len = skb_headlen(skb);
	int slots;
	int frag_slots;

	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
	frag_slots = count_skb_frag_slots(skb);
	return slots + frag_slots;
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
static u32 get_net_transport_info(struct sk_buff *skb, u32 *trans_off)
{
	u32 ret_val = TRANSPORT_INFO_NOT_IP;

	if ((eth_hdr(skb)->h_proto != htons(ETH_P_IP)) &&
		(eth_hdr(skb)->h_proto != htons(ETH_P_IPV6))) {
		goto not_ip;
	}

	*trans_off = skb_transport_offset(skb);

	if ((eth_hdr(skb)->h_proto == htons(ETH_P_IP))) {
		struct iphdr *iphdr = ip_hdr(skb);

		if (iphdr->protocol == IPPROTO_TCP)
			ret_val = TRANSPORT_INFO_IPV4_TCP;
		else if (iphdr->protocol == IPPROTO_UDP)
			ret_val = TRANSPORT_INFO_IPV4_UDP;
	} else {
		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
			ret_val = TRANSPORT_INFO_IPV6_TCP;
		else if (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)
			ret_val = TRANSPORT_INFO_IPV6_UDP;
	}

not_ip:
	return ret_val;
}

371
static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
372 373
{
	struct net_device_context *net_device_ctx = netdev_priv(net);
374
	struct hv_netvsc_packet *packet;
375
	int ret;
376 377 378 379 380 381
	unsigned int num_data_pgs;
	struct rndis_message *rndis_msg;
	struct rndis_packet *rndis_pkt;
	u32 rndis_msg_size;
	bool isvlan;
	struct rndis_per_packet_info *ppi;
382
	struct ndis_tcp_ip_checksum_info *csum_info;
383
	struct ndis_tcp_lso_info *lso_info;
384 385 386
	int  hdr_offset;
	u32 net_trans_info;

387

388 389 390 391
	/* We will atmost need two pages to describe the rndis
	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
	 * of pages in a single packet.
	 */
392 393
	num_data_pgs = netvsc_get_slots(skb) + 2;
	if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
394 395 396 397 398
		netdev_err(net, "Packet too big: %u\n", skb->len);
		dev_kfree_skb(skb);
		net->stats.tx_dropped++;
		return NETDEV_TX_OK;
	}
399

400
	/* Allocate a netvsc packet based on # of frags. */
401
	packet = kzalloc(sizeof(struct hv_netvsc_packet) +
402
			 (num_data_pgs * sizeof(struct hv_page_buffer)) +
403
			 sizeof(struct rndis_message) +
404 405 406
			 NDIS_VLAN_PPI_SIZE +
			 NDIS_CSUM_PPI_SIZE +
			 NDIS_LSO_PPI_SIZE, GFP_ATOMIC);
407
	if (!packet) {
408
		/* out of memory, drop packet */
409
		netdev_err(net, "unable to allocate hv_netvsc_packet\n");
410 411 412

		dev_kfree_skb(skb);
		net->stats.tx_dropped++;
413
		return NETDEV_TX_OK;
414 415
	}

416 417
	packet->vlan_tci = skb->vlan_tci;

418 419
	packet->q_idx = skb_get_queue_mapping(skb);

420
	packet->is_data_pkt = true;
421
	packet->total_data_buflen = skb->len;
422

423 424 425
	packet->rndis_msg = (struct rndis_message *)((unsigned long)packet +
				sizeof(struct hv_netvsc_packet) +
				(num_data_pgs * sizeof(struct hv_page_buffer)));
426

427
	/* Set the completion routine */
428 429 430
	packet->completion.send.send_completion = netvsc_xmit_completion;
	packet->completion.send.send_completion_ctx = packet;
	packet->completion.send.send_completion_tid = (unsigned long)skb;
431

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
	isvlan = packet->vlan_tci & VLAN_TAG_PRESENT;

	/* Add the rndis header */
	rndis_msg = packet->rndis_msg;
	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
	rndis_msg->msg_len = packet->total_data_buflen;
	rndis_pkt = &rndis_msg->msg.pkt;
	rndis_pkt->data_offset = sizeof(struct rndis_packet);
	rndis_pkt->data_len = packet->total_data_buflen;
	rndis_pkt->per_pkt_info_offset = sizeof(struct rndis_packet);

	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);

	if (isvlan) {
		struct ndis_pkt_8021q_info *vlan;

		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
		ppi = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
					IEEE_8021Q_INFO);
		vlan = (struct ndis_pkt_8021q_info *)((void *)ppi +
						ppi->ppi_offset);
		vlan->vlanid = packet->vlan_tci & VLAN_VID_MASK;
		vlan->pri = (packet->vlan_tci & VLAN_PRIO_MASK) >>
				VLAN_PRIO_SHIFT;
	}

458 459 460 461 462 463 464 465 466
	net_trans_info = get_net_transport_info(skb, &hdr_offset);
	if (net_trans_info == TRANSPORT_INFO_NOT_IP)
		goto do_send;

	/*
	 * Setup the sendside checksum offload only if this is not a
	 * GSO packet.
	 */
	if (skb_is_gso(skb))
467
		goto do_lso;
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

	rndis_msg_size += NDIS_CSUM_PPI_SIZE;
	ppi = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
			    TCPIP_CHKSUM_PKTINFO);

	csum_info = (struct ndis_tcp_ip_checksum_info *)((void *)ppi +
			ppi->ppi_offset);

	if (net_trans_info & (INFO_IPV4 << 16))
		csum_info->transmit.is_ipv4 = 1;
	else
		csum_info->transmit.is_ipv6 = 1;

	if (net_trans_info & INFO_TCP) {
		csum_info->transmit.tcp_checksum = 1;
		csum_info->transmit.tcp_header_offset = hdr_offset;
	} else if (net_trans_info & INFO_UDP) {
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
		/* UDP checksum offload is not supported on ws2008r2.
		 * Furthermore, on ws2012 and ws2012r2, there are some
		 * issues with udp checksum offload from Linux guests.
		 * (these are host issues).
		 * For now compute the checksum here.
		 */
		struct udphdr *uh;
		u16 udp_len;

		ret = skb_cow_head(skb, 0);
		if (ret)
			goto drop;

		uh = udp_hdr(skb);
		udp_len = ntohs(uh->len);
		uh->check = 0;
		uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
					      ip_hdr(skb)->daddr,
					      udp_len, IPPROTO_UDP,
					      csum_partial(uh, udp_len, 0));
		if (uh->check == 0)
			uh->check = CSUM_MANGLED_0;

		csum_info->transmit.udp_checksum = 0;
509
	}
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
	goto do_send;

do_lso:
	rndis_msg_size += NDIS_LSO_PPI_SIZE;
	ppi = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
			    TCP_LARGESEND_PKTINFO);

	lso_info = (struct ndis_tcp_lso_info *)((void *)ppi +
			ppi->ppi_offset);

	lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
	if (net_trans_info & (INFO_IPV4 << 16)) {
		lso_info->lso_v2_transmit.ip_version =
			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
		ip_hdr(skb)->tot_len = 0;
		ip_hdr(skb)->check = 0;
		tcp_hdr(skb)->check =
		~csum_tcpudp_magic(ip_hdr(skb)->saddr,
				   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
	} else {
		lso_info->lso_v2_transmit.ip_version =
			NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
		ipv6_hdr(skb)->payload_len = 0;
		tcp_hdr(skb)->check =
		~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
				&ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
	}
	lso_info->lso_v2_transmit.tcp_header_offset = hdr_offset;
	lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
539 540

do_send:
541 542 543 544 545 546 547
	/* Start filling in the page buffers with the rndis hdr */
	rndis_msg->msg_len += rndis_msg_size;
	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
					skb, &packet->page_buf[0]);

	ret = netvsc_send(net_device_ctx->device_ctx, packet);

548
drop:
549
	if (ret == 0) {
550 551
		net->stats.tx_bytes += skb->len;
		net->stats.tx_packets++;
552
	} else {
553
		kfree(packet);
554 555 556 557
		if (ret != -EAGAIN) {
			dev_kfree_skb_any(skb);
			net->stats.tx_dropped++;
		}
558 559
	}

560
	return (ret == -EAGAIN) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
561 562
}

563
/*
564 565
 * netvsc_linkstatus_callback - Link up/down notification
 */
566
void netvsc_linkstatus_callback(struct hv_device *device_obj,
567
				       unsigned int status)
568
{
569
	struct net_device *net;
570
	struct net_device_context *ndev_ctx;
571
	struct netvsc_device *net_device;
572
	struct rndis_device *rdev;
573 574

	net_device = hv_get_drvdata(device_obj);
575 576 577 578
	rdev = net_device->extension;

	rdev->link_state = status != 1;

579
	net = net_device->ndev;
580

581
	if (!net || net->reg_state != NETREG_REGISTERED)
582 583
		return;

584
	ndev_ctx = netdev_priv(net);
585
	if (status == 1) {
586
		schedule_delayed_work(&ndev_ctx->dwork, 0);
587
		schedule_delayed_work(&ndev_ctx->dwork, msecs_to_jiffies(20));
588
	} else {
589
		schedule_delayed_work(&ndev_ctx->dwork, 0);
590 591 592
	}
}

593 594 595
/*
 * netvsc_recv_callback -  Callback when we receive a packet from the
 * "wire" on the specified device.
596
 */
597
int netvsc_recv_callback(struct hv_device *device_obj,
598 599
				struct hv_netvsc_packet *packet,
				struct ndis_tcp_ip_checksum_info *csum_info)
600
{
601
	struct net_device *net;
602 603
	struct sk_buff *skb;

604
	net = ((struct netvsc_device *)hv_get_drvdata(device_obj))->ndev;
605
	if (!net || net->reg_state != NETREG_REGISTERED) {
606
		packet->status = NVSP_STAT_FAIL;
607 608 609
		return 0;
	}

610
	/* Allocate a skb - TODO direct I/O to pages? */
611
	skb = netdev_alloc_skb_ip_align(net, packet->total_data_buflen);
612 613
	if (unlikely(!skb)) {
		++net->stats.rx_dropped;
614
		packet->status = NVSP_STAT_FAIL;
615 616
		return 0;
	}
617

618 619 620 621
	/*
	 * Copy to skb. This copy is needed here since the memory pointed by
	 * hv_netvsc_packet cannot be deallocated
	 */
622 623
	memcpy(skb_put(skb, packet->total_data_buflen), packet->data,
		packet->total_data_buflen);
624 625

	skb->protocol = eth_type_trans(skb, net);
626 627 628 629 630 631 632 633 634 635 636
	if (csum_info) {
		/* We only look at the IP checksum here.
		 * Should we be dropping the packet if checksum
		 * failed? How do we deal with other checksums - TCP/UDP?
		 */
		if (csum_info->receive.ip_checksum_succeeded)
			skb->ip_summed = CHECKSUM_UNNECESSARY;
		else
			skb->ip_summed = CHECKSUM_NONE;
	}

637 638 639
	if (packet->vlan_tci & VLAN_TAG_PRESENT)
		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
				       packet->vlan_tci);
640

641
	skb_record_rx_queue(skb, packet->channel->
642 643 644
			    offermsg.offer.sub_channel_index %
			    net->real_num_rx_queues);

645
	net->stats.rx_packets++;
646
	net->stats.rx_bytes += packet->total_data_buflen;
647

648 649
	/*
	 * Pass the skb back up. Network stack will deallocate the skb when it
650 651
	 * is done.
	 * TODO - use NAPI?
652
	 */
653
	netif_rx(skb);
654 655 656 657

	return 0;
}

658 659 660
static void netvsc_get_drvinfo(struct net_device *net,
			       struct ethtool_drvinfo *info)
{
661 662
	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
663 664
}

665 666 667 668 669 670 671 672 673 674 675
static int netvsc_change_mtu(struct net_device *ndev, int mtu)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
	struct hv_device *hdev =  ndevctx->device_ctx;
	struct netvsc_device *nvdev = hv_get_drvdata(hdev);
	struct netvsc_device_info device_info;
	int limit = ETH_DATA_LEN;

	if (nvdev == NULL || nvdev->destroy)
		return -ENODEV;

676
	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
677 678 679 680 681 682
		limit = NETVSC_MTU;

	if (mtu < 68 || mtu > limit)
		return -EINVAL;

	nvdev->start_remove = true;
683
	cancel_work_sync(&ndevctx->work);
684
	netif_tx_disable(ndev);
685 686 687 688 689 690 691 692
	rndis_filter_device_remove(hdev);

	ndev->mtu = mtu;

	ndevctx->device_ctx = hdev;
	hv_set_drvdata(hdev, ndev);
	device_info.ring_size = ring_size;
	rndis_filter_device_add(hdev, &device_info);
693
	netif_tx_wake_all_queues(ndev);
694 695 696 697

	return 0;
}

698 699 700 701 702 703

static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
{
	struct net_device_context *ndevctx = netdev_priv(ndev);
	struct hv_device *hdev =  ndevctx->device_ctx;
	struct sockaddr *addr = p;
704
	char save_adr[ETH_ALEN];
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	unsigned char save_aatype;
	int err;

	memcpy(save_adr, ndev->dev_addr, ETH_ALEN);
	save_aatype = ndev->addr_assign_type;

	err = eth_mac_addr(ndev, p);
	if (err != 0)
		return err;

	err = rndis_filter_set_device_mac(hdev, addr->sa_data);
	if (err != 0) {
		/* roll back to saved MAC */
		memcpy(ndev->dev_addr, save_adr, ETH_ALEN);
		ndev->addr_assign_type = save_aatype;
	}

	return err;
}


726 727 728 729 730
static const struct ethtool_ops ethtool_ops = {
	.get_drvinfo	= netvsc_get_drvinfo,
	.get_link	= ethtool_op_get_link,
};

731 732 733 734
static const struct net_device_ops device_ops = {
	.ndo_open =			netvsc_open,
	.ndo_stop =			netvsc_close,
	.ndo_start_xmit =		netvsc_start_xmit,
735
	.ndo_set_rx_mode =		netvsc_set_multicast_list,
736
	.ndo_change_mtu =		netvsc_change_mtu,
737
	.ndo_validate_addr =		eth_validate_addr,
738
	.ndo_set_mac_address =		netvsc_set_mac_addr,
739
	.ndo_select_queue =		netvsc_select_queue,
740 741
};

742 743 744 745
/*
 * Send GARP packet to network peers after migrations.
 * After Quick Migration, the network is not immediately operational in the
 * current context when receiving RNDIS_STATUS_MEDIA_CONNECT event. So, add
746
 * another netif_notify_peers() into a delayed work, otherwise GARP packet
747
 * will not be sent after quick migration, and cause network disconnection.
748
 * Also, we update the carrier status here.
749
 */
750
static void netvsc_link_change(struct work_struct *w)
751 752 753
{
	struct net_device_context *ndev_ctx;
	struct net_device *net;
754
	struct netvsc_device *net_device;
755 756 757 758
	struct rndis_device *rdev;
	bool notify;

	rtnl_lock();
759

760
	ndev_ctx = container_of(w, struct net_device_context, dwork.work);
761
	net_device = hv_get_drvdata(ndev_ctx->device_ctx);
762
	rdev = net_device->extension;
763
	net = net_device->ndev;
764 765 766 767 768 769 770 771 772 773 774 775 776

	if (rdev->link_state) {
		netif_carrier_off(net);
		notify = false;
	} else {
		netif_carrier_on(net);
		notify = true;
	}

	rtnl_unlock();

	if (notify)
		netdev_notify_peers(net);
777 778 779
}


780 781
static int netvsc_probe(struct hv_device *dev,
			const struct hv_vmbus_device_id *dev_id)
782 783 784 785
{
	struct net_device *net = NULL;
	struct net_device_context *net_device_ctx;
	struct netvsc_device_info device_info;
786
	struct netvsc_device *nvdev;
787 788
	int ret;

789 790
	net = alloc_etherdev_mq(sizeof(struct net_device_context),
				num_online_cpus());
791
	if (!net)
792
		return -ENOMEM;
793

794 795
	netif_carrier_off(net);

796
	net_device_ctx = netdev_priv(net);
797
	net_device_ctx->device_ctx = dev;
798
	hv_set_drvdata(dev, net);
799
	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
800
	INIT_WORK(&net_device_ctx->work, do_set_multicast);
801 802 803

	net->netdev_ops = &device_ops;

804 805
	net->hw_features = NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_IP_CSUM |
				NETIF_F_TSO;
806
	net->features = NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_SG | NETIF_F_RXCSUM |
807
			NETIF_F_IP_CSUM | NETIF_F_TSO;
808

809
	SET_ETHTOOL_OPS(net, &ethtool_ops);
810
	SET_NETDEV_DEV(net, &dev->device);
811

812 813 814 815 816
	/* Notify the netvsc driver of the new device */
	device_info.ring_size = ring_size;
	ret = rndis_filter_device_add(dev, &device_info);
	if (ret != 0) {
		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
817
		free_netdev(net);
818
		hv_set_drvdata(dev, NULL);
819
		return ret;
820
	}
821 822
	memcpy(net->dev_addr, device_info.mac_adr, ETH_ALEN);

823 824 825 826 827 828
	nvdev = hv_get_drvdata(dev);
	netif_set_real_num_tx_queues(net, nvdev->num_chn);
	netif_set_real_num_rx_queues(net, nvdev->num_chn);
	dev_info(&dev->device, "real num tx,rx queues:%u, %u\n",
		 net->real_num_tx_queues, net->real_num_rx_queues);

829 830 831 832 833
	ret = register_netdev(net);
	if (ret != 0) {
		pr_err("Unable to register netdev.\n");
		rndis_filter_device_remove(dev);
		free_netdev(net);
834 835
	} else {
		schedule_delayed_work(&net_device_ctx->dwork, 0);
836 837
	}

838 839 840
	return ret;
}

841
static int netvsc_remove(struct hv_device *dev)
842
{
843
	struct net_device *net;
844
	struct net_device_context *ndev_ctx;
845 846 847 848
	struct netvsc_device *net_device;

	net_device = hv_get_drvdata(dev);
	net = net_device->ndev;
849 850

	if (net == NULL) {
851
		dev_err(&dev->device, "No net device to remove\n");
852 853 854
		return 0;
	}

855 856
	net_device->start_remove = true;

857 858
	ndev_ctx = netdev_priv(net);
	cancel_delayed_work_sync(&ndev_ctx->dwork);
859
	cancel_work_sync(&ndev_ctx->work);
860

861
	/* Stop outbound asap */
862
	netif_tx_disable(net);
863 864 865 866 867 868 869

	unregister_netdev(net);

	/*
	 * Call to the vsc driver to let it know that the device is being
	 * removed
	 */
870
	rndis_filter_device_remove(dev);
871 872

	free_netdev(net);
873
	return 0;
874 875
}

876
static const struct hv_vmbus_device_id id_table[] = {
877
	/* Network guid */
878
	{ HV_NIC_GUID, },
879
	{ },
880 881 882 883
};

MODULE_DEVICE_TABLE(vmbus, id_table);

884
/* The one and only one */
885
static struct  hv_driver netvsc_drv = {
886
	.name = KBUILD_MODNAME,
887
	.id_table = id_table,
888 889
	.probe = netvsc_probe,
	.remove = netvsc_remove,
890
};
891

892
static void __exit netvsc_drv_exit(void)
893
{
894
	vmbus_driver_unregister(&netvsc_drv);
895 896
}

897
static int __init netvsc_drv_init(void)
898
{
899 900 901 902 903
	if (ring_size < RING_SIZE_MIN) {
		ring_size = RING_SIZE_MIN;
		pr_info("Increased ring_size to %d (min allowed)\n",
			ring_size);
	}
904
	return vmbus_driver_register(&netvsc_drv);
905 906
}

907
MODULE_LICENSE("GPL");
908
MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
909

910
module_init(netvsc_drv_init);
911
module_exit(netvsc_drv_exit);