core.c 194.1 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#ifdef smp_mb__before_atomic
void __smp_mb__before_atomic(void)
{
	smp_mb__before_atomic();
}
EXPORT_SYMBOL(__smp_mb__before_atomic);
#endif

#ifdef smp_mb__after_atomic
void __smp_mb__after_atomic(void)
{
	smp_mb__after_atomic();
}
EXPORT_SYMBOL(__smp_mb__after_atomic);
#endif

109
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110
{
111 112
	unsigned long delta;
	ktime_t soft, hard, now;
113

114 115 116 117 118 119
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
120

121 122 123 124 125 126 127 128
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

129 130
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131

132
static void update_rq_clock_task(struct rq *rq, s64 delta);
133

134
void update_rq_clock(struct rq *rq)
135
{
136
	s64 delta;
137

138
	if (rq->skip_clock_update > 0)
139
		return;
140

141
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 143
	if (delta < 0)
		return;
144 145
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
146 147
}

I
Ingo Molnar 已提交
148 149 150
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
151 152 153 154

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
155
const_debug unsigned int sysctl_sched_features =
156
#include "features.h"
P
Peter Zijlstra 已提交
157 158 159 160 161 162 163 164
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

165
static const char * const sched_feat_names[] = {
166
#include "features.h"
P
Peter Zijlstra 已提交
167 168 169 170
};

#undef SCHED_FEAT

L
Li Zefan 已提交
171
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
172 173 174
{
	int i;

175
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
176 177 178
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
179
	}
L
Li Zefan 已提交
180
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
181

L
Li Zefan 已提交
182
	return 0;
P
Peter Zijlstra 已提交
183 184
}

185 186
#ifdef HAVE_JUMP_LABEL

187 188
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
189 190 191 192

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

193
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
194 195 196 197 198 199 200
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
201 202
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
203 204 205 206
}

static void sched_feat_enable(int i)
{
207 208
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
209 210 211 212 213 214
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

215
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
216 217
{
	int i;
218
	int neg = 0;
P
Peter Zijlstra 已提交
219

H
Hillf Danton 已提交
220
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
221 222 223 224
		neg = 1;
		cmp += 3;
	}

225
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
226
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
227
			if (neg) {
P
Peter Zijlstra 已提交
228
				sysctl_sched_features &= ~(1UL << i);
229 230
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
231
				sysctl_sched_features |= (1UL << i);
232 233
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
234 235 236 237
			break;
		}
	}

238 239 240 241 242 243 244 245 246 247
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
248
	struct inode *inode;
249 250 251 252 253 254 255 256 257 258

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

259 260 261
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
262
	i = sched_feat_set(cmp);
263
	mutex_unlock(&inode->i_mutex);
264
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
265 266
		return -EINVAL;

267
	*ppos += cnt;
P
Peter Zijlstra 已提交
268 269 270 271

	return cnt;
}

L
Li Zefan 已提交
272 273 274 275 276
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

277
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
278 279 280 281 282
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
283 284 285 286 287 288 289 290 291 292
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
293
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
294

295 296 297 298 299 300
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

301 302 303 304 305 306 307 308
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
309
/*
P
Peter Zijlstra 已提交
310
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
311 312
 * default: 1s
 */
P
Peter Zijlstra 已提交
313
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
314

315
__read_mostly int scheduler_running;
316

P
Peter Zijlstra 已提交
317 318 319 320 321
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
322

323
/*
324
 * __task_rq_lock - lock the rq @p resides on.
325
 */
326
static inline struct rq *__task_rq_lock(struct task_struct *p)
327 328
	__acquires(rq->lock)
{
329 330
	struct rq *rq;

331 332
	lockdep_assert_held(&p->pi_lock);

333
	for (;;) {
334
		rq = task_rq(p);
335
		raw_spin_lock(&rq->lock);
336
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
337
			return rq;
338
		raw_spin_unlock(&rq->lock);
339 340 341

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
342 343 344
	}
}

L
Linus Torvalds 已提交
345
/*
346
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
347
 */
348
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
349
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
350 351
	__acquires(rq->lock)
{
352
	struct rq *rq;
L
Linus Torvalds 已提交
353

354
	for (;;) {
355
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
356
		rq = task_rq(p);
357
		raw_spin_lock(&rq->lock);
358
		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p)))
359
			return rq;
360 361
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
362 363 364

		while (unlikely(task_on_rq_migrating(p)))
			cpu_relax();
L
Linus Torvalds 已提交
365 366 367
	}
}

A
Alexey Dobriyan 已提交
368
static void __task_rq_unlock(struct rq *rq)
369 370
	__releases(rq->lock)
{
371
	raw_spin_unlock(&rq->lock);
372 373
}

374 375
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
376
	__releases(rq->lock)
377
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
378
{
379 380
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
381 382 383
}

/*
384
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
385
 */
A
Alexey Dobriyan 已提交
386
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
387 388
	__acquires(rq->lock)
{
389
	struct rq *rq;
L
Linus Torvalds 已提交
390 391 392

	local_irq_disable();
	rq = this_rq();
393
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
394 395 396 397

	return rq;
}

P
Peter Zijlstra 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

419
	raw_spin_lock(&rq->lock);
420
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
421
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
422
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
423 424 425 426

	return HRTIMER_NORESTART;
}

427
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
428 429 430 431 432 433 434 435 436

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

437 438 439 440
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
441
{
442
	struct rq *rq = arg;
443

444
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
445
	__hrtick_restart(rq);
446
	rq->hrtick_csd_pending = 0;
447
	raw_spin_unlock(&rq->lock);
448 449
}

450 451 452 453 454
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
455
void hrtick_start(struct rq *rq, u64 delay)
456
{
457
	struct hrtimer *timer = &rq->hrtick_timer;
458 459 460 461 462 463 464 465 466
	ktime_t time;
	s64 delta;

	/*
	 * Don't schedule slices shorter than 10000ns, that just
	 * doesn't make sense and can cause timer DoS.
	 */
	delta = max_t(s64, delay, 10000LL);
	time = ktime_add_ns(timer->base->get_time(), delta);
467

468
	hrtimer_set_expires(timer, time);
469 470

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
471
		__hrtick_restart(rq);
472
	} else if (!rq->hrtick_csd_pending) {
473
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
474 475
		rq->hrtick_csd_pending = 1;
	}
476 477 478 479 480 481 482 483 484 485 486 487 488 489
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
490
		hrtick_clear(cpu_rq(cpu));
491 492 493 494 495 496
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

497
static __init void init_hrtick(void)
498 499 500
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
501 502 503 504 505 506
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
507
void hrtick_start(struct rq *rq, u64 delay)
508
{
509
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
510
			HRTIMER_MODE_REL_PINNED, 0);
511
}
512

A
Andrew Morton 已提交
513
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
514 515
{
}
516
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
517

518
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
519
{
520 521
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
522

523 524 525 526
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
527

528 529
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
530
}
A
Andrew Morton 已提交
531
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
532 533 534 535 536 537 538 539
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

540 541 542
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
543
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
544

545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

559
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
560 561 562 563 564 565 566 567 568 569
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

595 596 597 598 599 600
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
601 602 603 604 605 606 607

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
608 609
#endif

I
Ingo Molnar 已提交
610
/*
611
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
612 613 614 615 616
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
617
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
618
{
619
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
620 621
	int cpu;

622
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
623

624
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
625 626
		return;

627
	cpu = cpu_of(rq);
628

629
	if (cpu == smp_processor_id()) {
630
		set_tsk_need_resched(curr);
631
		set_preempt_need_resched();
I
Ingo Molnar 已提交
632
		return;
633
	}
I
Ingo Molnar 已提交
634

635
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
636
		smp_send_reschedule(cpu);
637 638
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
639 640
}

641
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
642 643 644 645
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

646
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
647
		return;
648
	resched_curr(rq);
649
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
650
}
651

652
#ifdef CONFIG_SMP
653
#ifdef CONFIG_NO_HZ_COMMON
654 655 656 657 658 659 660 661
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
662
int get_nohz_timer_target(int pinned)
663 664 665 666 667
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

668 669 670
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

671
	rcu_read_lock();
672
	for_each_domain(cpu, sd) {
673 674 675 676 677 678
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
679
	}
680 681
unlock:
	rcu_read_unlock();
682 683
	return cpu;
}
684 685 686 687 688 689 690 691 692 693
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
694
static void wake_up_idle_cpu(int cpu)
695 696 697 698 699 700
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

701
	if (set_nr_and_not_polling(rq->idle))
702
		smp_send_reschedule(cpu);
703 704
	else
		trace_sched_wake_idle_without_ipi(cpu);
705 706
}

707
static bool wake_up_full_nohz_cpu(int cpu)
708
{
709 710 711 712 713 714
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
715
	if (tick_nohz_full_cpu(cpu)) {
716 717
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
718
			tick_nohz_full_kick_cpu(cpu);
719 720 721 722 723 724 725 726
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
727
	if (!wake_up_full_nohz_cpu(cpu))
728 729 730
		wake_up_idle_cpu(cpu);
}

731
static inline bool got_nohz_idle_kick(void)
732
{
733
	int cpu = smp_processor_id();
734 735 736 737 738 739 740 741 742 743 744 745 746

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
747 748
}

749
#else /* CONFIG_NO_HZ_COMMON */
750

751
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
752
{
753
	return false;
P
Peter Zijlstra 已提交
754 755
}

756
#endif /* CONFIG_NO_HZ_COMMON */
757

758 759 760
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
761 762 763 764 765
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
766 767
	if (this_rq()->nr_running > 1)
		return false;
768

769
	return true;
770 771
}
#endif /* CONFIG_NO_HZ_FULL */
772

773
void sched_avg_update(struct rq *rq)
774
{
775 776
	s64 period = sched_avg_period();

777
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
778 779 780 781 782 783
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
784 785 786
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
787 788
}

789
#endif /* CONFIG_SMP */
790

791 792
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
793
/*
794 795 796 797
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
798
 */
799
int walk_tg_tree_from(struct task_group *from,
800
			     tg_visitor down, tg_visitor up, void *data)
801 802
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
803
	int ret;
804

805 806
	parent = from;

807
down:
P
Peter Zijlstra 已提交
808 809
	ret = (*down)(parent, data);
	if (ret)
810
		goto out;
811 812 813 814 815 816 817
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
818
	ret = (*up)(parent, data);
819 820
	if (ret || parent == from)
		goto out;
821 822 823 824 825

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
826
out:
P
Peter Zijlstra 已提交
827
	return ret;
828 829
}

830
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
831
{
832
	return 0;
P
Peter Zijlstra 已提交
833
}
834 835
#endif

836 837
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
838 839 840
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
841 842 843 844
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
845
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
846
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
847 848
		return;
	}
849

850
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
851
	load->inv_weight = prio_to_wmult[prio];
852 853
}

854
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
855
{
856
	update_rq_clock(rq);
857
	sched_info_queued(rq, p);
858
	p->sched_class->enqueue_task(rq, p, flags);
859 860
}

861
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
862
{
863
	update_rq_clock(rq);
864
	sched_info_dequeued(rq, p);
865
	p->sched_class->dequeue_task(rq, p, flags);
866 867
}

868
void activate_task(struct rq *rq, struct task_struct *p, int flags)
869 870 871 872
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

873
	enqueue_task(rq, p, flags);
874 875
}

876
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
877 878 879 880
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

881
	dequeue_task(rq, p, flags);
882 883
}

884
static void update_rq_clock_task(struct rq *rq, s64 delta)
885
{
886 887 888 889 890 891 892 893
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
894
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
916 917
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
918
	if (static_key_false((&paravirt_steal_rq_enabled))) {
919 920 921 922 923 924 925 926 927 928 929
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

930 931
	rq->clock_task += delta;

932
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
933
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
934 935
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
936 937
}

938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

968
/*
I
Ingo Molnar 已提交
969
 * __normal_prio - return the priority that is based on the static prio
970 971 972
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
973
	return p->static_prio;
974 975
}

976 977 978 979 980 981 982
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
983
static inline int normal_prio(struct task_struct *p)
984 985 986
{
	int prio;

987 988 989
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
990 991 992 993 994 995 996 997 998 999 1000 1001 1002
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1003
static int effective_prio(struct task_struct *p)
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1016 1017 1018
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
1019 1020
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
1021
 */
1022
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1023 1024 1025 1026
{
	return cpu_curr(task_cpu(p)) == p;
}

1027 1028
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1029
				       int oldprio)
1030 1031 1032
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1033 1034
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
1035
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1036
		p->sched_class->prio_changed(rq, p, oldprio);
1037 1038
}

1039
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1050
				resched_curr(rq);
1051 1052 1053 1054 1055 1056 1057 1058 1059
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1060
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1061 1062 1063
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1064
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1065
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1066
{
1067 1068 1069 1070 1071
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1072
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1073
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1074 1075

#ifdef CONFIG_LOCKDEP
1076 1077 1078 1079 1080
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1081
	 * see task_group().
1082 1083 1084 1085
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1086 1087 1088
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1089 1090
#endif

1091
	trace_sched_migrate_task(p, new_cpu);
1092

1093
	if (task_cpu(p) != new_cpu) {
1094 1095
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1096
		p->se.nr_migrations++;
1097
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1098
	}
I
Ingo Molnar 已提交
1099 1100

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1101 1102
}

1103 1104
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1105
	if (task_on_rq_queued(p)) {
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1139 1140
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1161 1162
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1185 1186 1187 1188
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1189 1190 1191 1192 1193 1194 1195 1196 1197
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1198
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1199 1200 1201 1202 1203 1204
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1205
struct migration_arg {
1206
	struct task_struct *task;
L
Linus Torvalds 已提交
1207
	int dest_cpu;
1208
};
L
Linus Torvalds 已提交
1209

1210 1211
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1212 1213 1214
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1215 1216 1217 1218 1219 1220 1221
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1222 1223 1224 1225 1226 1227
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1228
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1229 1230
{
	unsigned long flags;
1231
	int running, queued;
R
Roland McGrath 已提交
1232
	unsigned long ncsw;
1233
	struct rq *rq;
L
Linus Torvalds 已提交
1234

1235 1236 1237 1238 1239 1240 1241 1242
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1255 1256 1257
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1258
			cpu_relax();
R
Roland McGrath 已提交
1259
		}
1260

1261 1262 1263 1264 1265 1266
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1267
		trace_sched_wait_task(p);
1268
		running = task_running(rq, p);
1269
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1270
		ncsw = 0;
1271
		if (!match_state || p->state == match_state)
1272
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1273
		task_rq_unlock(rq, p, &flags);
1274

R
Roland McGrath 已提交
1275 1276 1277 1278 1279 1280
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1291

1292 1293 1294 1295 1296
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1297
		 * So if it was still runnable (but just not actively
1298 1299 1300
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1301
		if (unlikely(queued)) {
1302 1303 1304 1305
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1306 1307
			continue;
		}
1308

1309 1310 1311 1312 1313 1314 1315
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1316 1317

	return ncsw;
L
Linus Torvalds 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1327
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1328 1329 1330 1331 1332
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1333
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1343
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1344
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1345

1346
#ifdef CONFIG_SMP
1347
/*
1348
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1349
 */
1350 1351
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1352 1353
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1354 1355
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1356

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1374
	}
1375

1376 1377
	for (;;) {
		/* Any allowed, online CPU? */
1378
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1379 1380 1381 1382 1383 1384
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1385

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1412
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1413 1414
					task_pid_nr(p), p->comm, cpu);
		}
1415 1416 1417 1418 1419
	}

	return dest_cpu;
}

1420
/*
1421
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1422
 */
1423
static inline
1424
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1425
{
1426
	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1438
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1439
		     !cpu_online(cpu)))
1440
		cpu = select_fallback_rq(task_cpu(p), p);
1441 1442

	return cpu;
1443
}
1444 1445 1446 1447 1448 1449

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1450 1451
#endif

P
Peter Zijlstra 已提交
1452
static void
1453
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1454
{
P
Peter Zijlstra 已提交
1455
#ifdef CONFIG_SCHEDSTATS
1456 1457
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1468
		rcu_read_lock();
P
Peter Zijlstra 已提交
1469 1470 1471 1472 1473 1474
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1475
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1476
	}
1477 1478 1479 1480

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1481 1482 1483
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1484
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1485 1486

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1487
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1488 1489 1490 1491 1492 1493

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1494
	activate_task(rq, p, en_flags);
1495
	p->on_rq = TASK_ON_RQ_QUEUED;
1496 1497 1498 1499

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1500 1501
}

1502 1503 1504
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1505
static void
1506
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1507 1508
{
	check_preempt_curr(rq, p, wake_flags);
1509
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1510 1511 1512 1513 1514 1515

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1516
	if (rq->idle_stamp) {
1517
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1518
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1519

1520 1521 1522
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1523
			rq->avg_idle = max;
1524

T
Tejun Heo 已提交
1525 1526 1527 1528 1529
		rq->idle_stamp = 0;
	}
#endif
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1554
	if (task_on_rq_queued(p)) {
1555 1556
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1557 1558 1559 1560 1561 1562 1563 1564
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1565
#ifdef CONFIG_SMP
1566
void sched_ttwu_pending(void)
1567 1568
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1569 1570
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1571
	unsigned long flags;
1572

1573 1574 1575 1576
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1577

P
Peter Zijlstra 已提交
1578 1579 1580
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1581 1582 1583
		ttwu_do_activate(rq, p, 0);
	}

1584
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1585 1586 1587 1588
}

void scheduler_ipi(void)
{
1589 1590 1591 1592 1593
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1594
	preempt_fold_need_resched();
1595

1596
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1613
	sched_ttwu_pending();
1614 1615 1616 1617

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1618
	if (unlikely(got_nohz_idle_kick())) {
1619
		this_rq()->idle_balance = 1;
1620
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1621
	}
1622
	irq_exit();
1623 1624 1625 1626
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1627 1628 1629 1630 1631 1632 1633 1634
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1635
}
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
void wake_up_if_idle(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!is_idle_task(rq->curr))
		return;

	if (set_nr_if_polling(rq->idle)) {
		trace_sched_wake_idle_without_ipi(cpu);
	} else {
		raw_spin_lock_irqsave(&rq->lock, flags);
		if (is_idle_task(rq->curr))
			smp_send_reschedule(cpu);
		/* Else cpu is not in idle, do nothing here */
		raw_spin_unlock_irqrestore(&rq->lock, flags);
	}
}

1656
bool cpus_share_cache(int this_cpu, int that_cpu)
1657 1658 1659
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1660
#endif /* CONFIG_SMP */
1661

1662 1663 1664 1665
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1666
#if defined(CONFIG_SMP)
1667
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1668
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1669 1670 1671 1672 1673
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1674 1675 1676
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1677 1678 1679
}

/**
L
Linus Torvalds 已提交
1680
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1681
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1682
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1683
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1684 1685 1686 1687 1688 1689 1690
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1691
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1692
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1693
 */
1694 1695
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1696 1697
{
	unsigned long flags;
1698
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1699

1700 1701 1702 1703 1704 1705 1706
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1707
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1708
	if (!(p->state & state))
L
Linus Torvalds 已提交
1709 1710
		goto out;

1711
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1712 1713
	cpu = task_cpu(p);

1714
	if (p->on_rq && ttwu_remote(p, wake_flags))
1715
		goto stat;
L
Linus Torvalds 已提交
1716 1717

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1718
	/*
1719 1720
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1721
	 */
1722
	while (p->on_cpu)
1723
		cpu_relax();
1724
	/*
1725
	 * Pairs with the smp_wmb() in finish_lock_switch().
1726
	 */
1727
	smp_rmb();
L
Linus Torvalds 已提交
1728

1729
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1730
	p->state = TASK_WAKING;
1731

1732
	if (p->sched_class->task_waking)
1733
		p->sched_class->task_waking(p);
1734

1735
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1736 1737
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1738
		set_task_cpu(p, cpu);
1739
	}
L
Linus Torvalds 已提交
1740 1741
#endif /* CONFIG_SMP */

1742 1743
	ttwu_queue(p, cpu);
stat:
1744
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1745
out:
1746
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1747 1748 1749 1750

	return success;
}

T
Tejun Heo 已提交
1751 1752 1753 1754
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1755
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1756
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1757
 * the current task.
T
Tejun Heo 已提交
1758 1759 1760 1761 1762
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1763 1764 1765 1766
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1767 1768
	lockdep_assert_held(&rq->lock);

1769 1770 1771 1772 1773 1774
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1775
	if (!(p->state & TASK_NORMAL))
1776
		goto out;
T
Tejun Heo 已提交
1777

1778
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
1779 1780
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1781
	ttwu_do_wakeup(rq, p, 0);
1782
	ttwu_stat(p, smp_processor_id(), 0);
1783 1784
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1785 1786
}

1787 1788 1789 1790 1791
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1792 1793 1794
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1795 1796 1797 1798
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1799
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1800
{
1801 1802
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1803 1804 1805
}
EXPORT_SYMBOL(wake_up_process);

1806
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1807 1808 1809 1810 1811 1812 1813
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1814 1815 1816
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1817
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1818
{
P
Peter Zijlstra 已提交
1819 1820 1821
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1822 1823
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1824
	p->se.prev_sum_exec_runtime	= 0;
1825
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1826
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1827
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1828 1829

#ifdef CONFIG_SCHEDSTATS
1830
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1831
#endif
N
Nick Piggin 已提交
1832

1833 1834 1835 1836
	RB_CLEAR_NODE(&p->dl.rb_node);
	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	p->dl.dl_runtime = p->dl.runtime = 0;
	p->dl.dl_deadline = p->dl.deadline = 0;
1837
	p->dl.dl_period = 0;
1838 1839
	p->dl.flags = 0;

P
Peter Zijlstra 已提交
1840
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1841

1842 1843 1844
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1845 1846 1847

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1848
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1849 1850 1851
		p->mm->numa_scan_seq = 0;
	}

1852 1853 1854 1855 1856
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1857 1858
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1859
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1860
	p->numa_work.next = &p->numa_work;
1861 1862
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1863 1864
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1865 1866 1867

	INIT_LIST_HEAD(&p->numa_entry);
	p->numa_group = NULL;
1868
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1869 1870
}

1871
#ifdef CONFIG_NUMA_BALANCING
1872
#ifdef CONFIG_SCHED_DEBUG
1873 1874 1875 1876 1877 1878 1879
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1880 1881 1882 1883 1884 1885
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1886
}
1887
#endif /* CONFIG_SCHED_DEBUG */
1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1911 1912 1913 1914

/*
 * fork()/clone()-time setup:
 */
1915
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1916
{
1917
	unsigned long flags;
I
Ingo Molnar 已提交
1918 1919
	int cpu = get_cpu();

1920
	__sched_fork(clone_flags, p);
1921
	/*
1922
	 * We mark the process as running here. This guarantees that
1923 1924 1925
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1926
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1927

1928 1929 1930 1931 1932
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1933 1934 1935 1936
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1937
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1938
			p->policy = SCHED_NORMAL;
1939
			p->static_prio = NICE_TO_PRIO(0);
1940 1941 1942 1943 1944 1945
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1946

1947 1948 1949 1950 1951 1952
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1953

1954 1955 1956 1957 1958 1959
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1960
		p->sched_class = &fair_sched_class;
1961
	}
1962

P
Peter Zijlstra 已提交
1963 1964 1965
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1966 1967 1968 1969 1970 1971 1972
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1973
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1974
	set_task_cpu(p, cpu);
1975
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1976

1977
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1978
	if (likely(sched_info_on()))
1979
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1980
#endif
P
Peter Zijlstra 已提交
1981 1982
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1983
#endif
1984
	init_task_preempt_count(p);
1985
#ifdef CONFIG_SMP
1986
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1987
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1988
#endif
1989

N
Nick Piggin 已提交
1990
	put_cpu();
1991
	return 0;
L
Linus Torvalds 已提交
1992 1993
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->rd->dl_bw;
}

2016
static inline int dl_bw_cpus(int i)
2017
{
2018 2019 2020 2021 2022 2023 2024
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
2025 2026 2027 2028 2029 2030 2031
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

2032
static inline int dl_bw_cpus(int i)
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
{
	return 1;
}
#endif

static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2070
	u64 period = attr->sched_period ?: attr->sched_deadline;
2071 2072
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2073
	int cpus, err = -1;
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2084
	cpus = dl_bw_cpus(task_cpu(p));
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2105 2106 2107 2108 2109 2110 2111
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2112
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2113 2114
{
	unsigned long flags;
I
Ingo Molnar 已提交
2115
	struct rq *rq;
2116

2117
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2118 2119 2120 2121 2122 2123
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2124
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2125 2126
#endif

2127 2128
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2129
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2130
	activate_task(rq, p, 0);
2131
	p->on_rq = TASK_ON_RQ_QUEUED;
2132
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2133
	check_preempt_curr(rq, p, WF_FORK);
2134
#ifdef CONFIG_SMP
2135 2136
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2137
#endif
2138
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2139 2140
}

2141 2142 2143
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2144
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2145
 * @notifier: notifier struct to register
2146 2147 2148 2149 2150 2151 2152 2153 2154
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2155
 * @notifier: notifier struct to unregister
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2169
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2170 2171 2172 2173 2174 2175 2176 2177 2178
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2179
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2180 2181 2182
		notifier->ops->sched_out(notifier, next);
}

2183
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2195
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2196

2197 2198 2199
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2200
 * @prev: the current task that is being switched out
2201 2202 2203 2204 2205 2206 2207 2208 2209
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2210 2211 2212
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2213
{
2214
	trace_sched_switch(prev, next);
2215
	sched_info_switch(rq, prev, next);
2216
	perf_event_task_sched_out(prev, next);
2217
	fire_sched_out_preempt_notifiers(prev, next);
2218 2219 2220 2221
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2222 2223
/**
 * finish_task_switch - clean up after a task-switch
2224
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2225 2226
 * @prev: the thread we just switched away from.
 *
2227 2228 2229 2230
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2231 2232
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2233
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2234 2235 2236
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2237
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2238 2239 2240
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2241
	long prev_state;
L
Linus Torvalds 已提交
2242 2243 2244 2245 2246

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2247
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2248 2249
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2250
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2251 2252 2253 2254 2255
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2256
	prev_state = prev->state;
2257
	vtime_task_switch(prev);
2258
	finish_arch_switch(prev);
2259
	perf_event_task_sched_in(prev, current);
2260
	finish_lock_switch(rq, prev);
2261
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2262

2263
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2264 2265
	if (mm)
		mmdrop(mm);
2266
	if (unlikely(prev_state == TASK_DEAD)) {
2267 2268 2269
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2270 2271 2272
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2273
		 */
2274
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2275
		put_task_struct(prev);
2276
	}
2277 2278

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
2279 2280
}

2281 2282 2283 2284 2285 2286 2287 2288
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2289
		raw_spin_lock_irqsave(&rq->lock, flags);
2290 2291
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2292
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2293 2294 2295 2296 2297 2298

		rq->post_schedule = 0;
	}
}

#else
2299

2300 2301
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2302 2303
}

2304 2305
#endif

L
Linus Torvalds 已提交
2306 2307 2308 2309
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2310
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2311 2312
	__releases(rq->lock)
{
2313 2314
	struct rq *rq = this_rq();

2315
	finish_task_switch(rq, prev);
2316

2317 2318 2319 2320 2321
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2322

2323 2324 2325 2326
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2327
	if (current->set_child_tid)
2328
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2329 2330 2331 2332 2333 2334
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2335
static inline void
2336
context_switch(struct rq *rq, struct task_struct *prev,
2337
	       struct task_struct *next)
L
Linus Torvalds 已提交
2338
{
I
Ingo Molnar 已提交
2339
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2340

2341
	prepare_task_switch(rq, prev, next);
2342

I
Ingo Molnar 已提交
2343 2344
	mm = next->mm;
	oldmm = prev->active_mm;
2345 2346 2347 2348 2349
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2350
	arch_start_context_switch(prev);
2351

2352
	if (!mm) {
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357 2358
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2359
	if (!prev->mm) {
L
Linus Torvalds 已提交
2360 2361 2362
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2363 2364 2365 2366 2367 2368 2369
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2370
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2371
#endif
L
Linus Torvalds 已提交
2372

2373
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2374 2375 2376
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2377 2378 2379 2380 2381 2382 2383
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2384 2385 2386
}

/*
2387
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2388 2389
 *
 * externally visible scheduler statistics: current number of runnable
2390
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2400
}
L
Linus Torvalds 已提交
2401 2402

unsigned long long nr_context_switches(void)
2403
{
2404 2405
	int i;
	unsigned long long sum = 0;
2406

2407
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2408
		sum += cpu_rq(i)->nr_switches;
2409

L
Linus Torvalds 已提交
2410 2411
	return sum;
}
2412

L
Linus Torvalds 已提交
2413 2414 2415
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2416

2417
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2418
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2419

L
Linus Torvalds 已提交
2420 2421
	return sum;
}
2422

2423
unsigned long nr_iowait_cpu(int cpu)
2424
{
2425
	struct rq *this = cpu_rq(cpu);
2426 2427
	return atomic_read(&this->nr_iowait);
}
2428

2429 2430 2431 2432 2433 2434 2435
void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
{
	struct rq *this = this_rq();
	*nr_waiters = atomic_read(&this->nr_iowait);
	*load = this->cpu_load[0];
}

I
Ingo Molnar 已提交
2436
#ifdef CONFIG_SMP
2437

2438
/*
P
Peter Zijlstra 已提交
2439 2440
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2441
 */
P
Peter Zijlstra 已提交
2442
void sched_exec(void)
2443
{
P
Peter Zijlstra 已提交
2444
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2445
	unsigned long flags;
2446
	int dest_cpu;
2447

2448
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2449
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2450 2451
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2452

2453
	if (likely(cpu_active(dest_cpu))) {
2454
		struct migration_arg arg = { p, dest_cpu };
2455

2456 2457
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2458 2459
		return;
	}
2460
unlock:
2461
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2462
}
I
Ingo Molnar 已提交
2463

L
Linus Torvalds 已提交
2464 2465 2466
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2467
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2468 2469

EXPORT_PER_CPU_SYMBOL(kstat);
2470
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2471 2472

/*
2473
 * Return any ns on the sched_clock that have not yet been accounted in
2474
 * @p in case that task is currently running.
2475 2476
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2477
 */
2478 2479 2480 2481
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

2482 2483 2484 2485 2486
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
2487
	if (task_current(rq, p) && task_on_rq_queued(p)) {
2488
		update_rq_clock(rq);
2489
		ns = rq_clock_task(rq) - p->se.exec_start;
2490 2491 2492 2493 2494 2495 2496
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2497
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2498 2499
{
	unsigned long flags;
2500
	struct rq *rq;
2501
	u64 ns = 0;
2502

2503
	rq = task_rq_lock(p, &flags);
2504
	ns = do_task_delta_exec(p, rq);
2505
	task_rq_unlock(rq, p, &flags);
2506

2507 2508
	return ns;
}
2509

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

2521 2522 2523 2524 2525 2526 2527 2528 2529
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2530 2531
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2532
	 */
2533
	if (!p->on_cpu || !task_on_rq_queued(p))
2534 2535 2536
		return p->se.sum_exec_runtime;
#endif

2537 2538
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2539
	task_rq_unlock(rq, p, &flags);
2540 2541 2542

	return ns;
}
2543

2544 2545 2546 2547 2548 2549 2550 2551
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2552
	struct task_struct *curr = rq->curr;
2553 2554

	sched_clock_tick();
I
Ingo Molnar 已提交
2555

2556
	raw_spin_lock(&rq->lock);
2557
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2558
	curr->sched_class->task_tick(rq, curr, 0);
2559
	update_cpu_load_active(rq);
2560
	raw_spin_unlock(&rq->lock);
2561

2562
	perf_event_task_tick();
2563

2564
#ifdef CONFIG_SMP
2565
	rq->idle_balance = idle_cpu(cpu);
2566
	trigger_load_balance(rq);
2567
#endif
2568
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2569 2570
}

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2582 2583
 *
 * Return: Maximum deferment in nanoseconds.
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2595
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2596
}
2597
#endif
L
Linus Torvalds 已提交
2598

2599
notrace unsigned long get_parent_ip(unsigned long addr)
2600 2601 2602 2603 2604 2605 2606 2607
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2608

2609 2610 2611
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2612
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2613
{
2614
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2615 2616 2617
	/*
	 * Underflow?
	 */
2618 2619
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2620
#endif
2621
	__preempt_count_add(val);
2622
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2623 2624 2625
	/*
	 * Spinlock count overflowing soon?
	 */
2626 2627
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2628
#endif
2629 2630 2631 2632 2633 2634 2635
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2636
}
2637
EXPORT_SYMBOL(preempt_count_add);
2638
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2639

2640
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2641
{
2642
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2643 2644 2645
	/*
	 * Underflow?
	 */
2646
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2647
		return;
L
Linus Torvalds 已提交
2648 2649 2650
	/*
	 * Is the spinlock portion underflowing?
	 */
2651 2652 2653
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2654
#endif
2655

2656 2657
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2658
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2659
}
2660
EXPORT_SYMBOL(preempt_count_sub);
2661
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2662 2663 2664 2665

#endif

/*
I
Ingo Molnar 已提交
2666
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2667
 */
I
Ingo Molnar 已提交
2668
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2669
{
2670 2671 2672
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2673 2674
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2675

I
Ingo Molnar 已提交
2676
	debug_show_held_locks(prev);
2677
	print_modules();
I
Ingo Molnar 已提交
2678 2679
	if (irqs_disabled())
		print_irqtrace_events(prev);
2680 2681 2682 2683 2684 2685 2686
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2687
	dump_stack();
2688
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2689
}
L
Linus Torvalds 已提交
2690

I
Ingo Molnar 已提交
2691 2692 2693 2694 2695
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
2696 2697 2698
#ifdef CONFIG_SCHED_STACK_END_CHECK
	BUG_ON(unlikely(task_stack_end_corrupted(prev)));
#endif
L
Linus Torvalds 已提交
2699
	/*
I
Ingo Molnar 已提交
2700
	 * Test if we are atomic. Since do_exit() needs to call into
2701 2702
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2703
	 */
2704
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2705
		__schedule_bug(prev);
2706
	rcu_sleep_check();
I
Ingo Molnar 已提交
2707

L
Linus Torvalds 已提交
2708 2709
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2710
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2711 2712 2713 2714 2715 2716
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2717
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2718
{
2719
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2720
	struct task_struct *p;
L
Linus Torvalds 已提交
2721 2722

	/*
I
Ingo Molnar 已提交
2723 2724
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2725
	 */
2726
	if (likely(prev->sched_class == class &&
2727
		   rq->nr_running == rq->cfs.h_nr_running)) {
2728
		p = fair_sched_class.pick_next_task(rq, prev);
2729 2730 2731 2732 2733 2734 2735 2736
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2737 2738
	}

2739
again:
2740
	for_each_class(class) {
2741
		p = class->pick_next_task(rq, prev);
2742 2743 2744
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2745
			return p;
2746
		}
I
Ingo Molnar 已提交
2747
	}
2748 2749

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2750
}
L
Linus Torvalds 已提交
2751

I
Ingo Molnar 已提交
2752
/*
2753
 * __schedule() is the main scheduler function.
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2788
 */
2789
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2790 2791
{
	struct task_struct *prev, *next;
2792
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2793
	struct rq *rq;
2794
	int cpu;
I
Ingo Molnar 已提交
2795

2796 2797
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2798 2799
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2800
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2801 2802 2803
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2804

2805
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2806
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2807

2808 2809 2810 2811 2812 2813
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2814
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2815

2816
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2817
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2818
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2819
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2820
		} else {
2821 2822 2823
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2824
			/*
2825 2826 2827
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2828 2829 2830 2831 2832 2833 2834 2835 2836
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2837
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2838 2839
	}

2840
	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2841 2842 2843
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2844
	clear_tsk_need_resched(prev);
2845
	clear_preempt_need_resched();
2846
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2847 2848 2849 2850 2851 2852

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2853
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2854
		/*
2855 2856 2857 2858
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2859 2860 2861
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2862
	} else
2863
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2864

2865
	post_schedule(rq);
L
Linus Torvalds 已提交
2866

2867
	sched_preempt_enable_no_resched();
2868
	if (need_resched())
L
Linus Torvalds 已提交
2869 2870
		goto need_resched;
}
2871

2872 2873
static inline void sched_submit_work(struct task_struct *tsk)
{
2874
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2875 2876 2877 2878 2879 2880 2881 2882 2883
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

2884
asmlinkage __visible void __sched schedule(void)
2885
{
2886 2887 2888
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2889 2890
	__schedule();
}
L
Linus Torvalds 已提交
2891 2892
EXPORT_SYMBOL(schedule);

2893
#ifdef CONFIG_CONTEXT_TRACKING
2894
asmlinkage __visible void __sched schedule_user(void)
2895 2896 2897 2898 2899 2900 2901
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2902
	user_exit();
2903
	schedule();
2904
	user_enter();
2905 2906 2907
}
#endif

2908 2909 2910 2911 2912 2913 2914
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2915
	sched_preempt_enable_no_resched();
2916 2917 2918 2919
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2920 2921
#ifdef CONFIG_PREEMPT
/*
2922
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2923
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2924 2925
 * occur there and call schedule directly.
 */
2926
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2927 2928 2929
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2930
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2931
	 */
2932
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2933 2934
		return;

2935
	do {
2936
		__preempt_count_add(PREEMPT_ACTIVE);
2937
		__schedule();
2938
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2939

2940 2941 2942 2943 2944
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2945
	} while (need_resched());
L
Linus Torvalds 已提交
2946
}
2947
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
2948
EXPORT_SYMBOL(preempt_schedule);
2949
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2950 2951

/*
2952
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2953 2954 2955 2956
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
2957
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
2958
{
2959
	enum ctx_state prev_state;
2960

2961
	/* Catch callers which need to be fixed */
2962
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2963

2964 2965
	prev_state = exception_enter();

2966
	do {
2967
		__preempt_count_add(PREEMPT_ACTIVE);
2968
		local_irq_enable();
2969
		__schedule();
2970
		local_irq_disable();
2971
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2972

2973 2974 2975 2976 2977
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2978
	} while (need_resched());
2979 2980

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2981 2982
}

P
Peter Zijlstra 已提交
2983
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2984
			  void *key)
L
Linus Torvalds 已提交
2985
{
P
Peter Zijlstra 已提交
2986
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2987 2988 2989
}
EXPORT_SYMBOL(default_wake_function);

2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
3000 3001
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
3002
 */
3003
void rt_mutex_setprio(struct task_struct *p, int prio)
3004
{
3005
	int oldprio, queued, running, enqueue_flag = 0;
3006
	struct rq *rq;
3007
	const struct sched_class *prev_class;
3008

3009
	BUG_ON(prio > MAX_PRIO);
3010

3011
	rq = __task_rq_lock(p);
3012

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

3031
	trace_sched_pi_setprio(p, prio);
3032
	oldprio = p->prio;
3033
	prev_class = p->sched_class;
3034
	queued = task_on_rq_queued(p);
3035
	running = task_current(rq, p);
3036
	if (queued)
3037
		dequeue_task(rq, p, 0);
3038
	if (running)
3039
		put_prev_task(rq, p);
I
Ingo Molnar 已提交
3040

3041 3042 3043 3044 3045 3046 3047 3048 3049 3050
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3051 3052 3053
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3054 3055 3056 3057 3058
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3059
		p->sched_class = &dl_sched_class;
3060 3061 3062 3063 3064
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3065
		p->sched_class = &rt_sched_class;
3066 3067 3068
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
I
Ingo Molnar 已提交
3069
		p->sched_class = &fair_sched_class;
3070
	}
I
Ingo Molnar 已提交
3071

3072 3073
	p->prio = prio;

3074 3075
	if (running)
		p->sched_class->set_curr_task(rq);
3076
	if (queued)
3077
		enqueue_task(rq, p, enqueue_flag);
3078

P
Peter Zijlstra 已提交
3079
	check_class_changed(rq, p, prev_class, oldprio);
3080
out_unlock:
3081
	__task_rq_unlock(rq);
3082 3083
}
#endif
3084

3085
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3086
{
3087
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3088
	unsigned long flags;
3089
	struct rq *rq;
L
Linus Torvalds 已提交
3090

3091
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3102
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3103
	 */
3104
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3105 3106 3107
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3108 3109
	queued = task_on_rq_queued(p);
	if (queued)
3110
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3111 3112

	p->static_prio = NICE_TO_PRIO(nice);
3113
	set_load_weight(p);
3114 3115 3116
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3117

3118
	if (queued) {
3119
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3120
		/*
3121 3122
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3123
		 */
3124
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3125
			resched_curr(rq);
L
Linus Torvalds 已提交
3126 3127
	}
out_unlock:
3128
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3129 3130 3131
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3132 3133 3134 3135 3136
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3137
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3138
{
3139
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3140
	int nice_rlim = nice_to_rlimit(nice);
3141

3142
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3143 3144 3145
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3146 3147 3148 3149 3150 3151 3152 3153 3154
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3155
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3156
{
3157
	long nice, retval;
L
Linus Torvalds 已提交
3158 3159 3160 3161 3162 3163

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3164
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3165
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3166

3167
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3168 3169 3170
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3185
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3186 3187 3188
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3189
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3190 3191 3192 3193 3194 3195 3196
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3197 3198
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3199 3200 3201
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3216 3217 3218 3219 3220
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3221 3222
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3223
 */
3224
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3225 3226 3227 3228 3229 3230 3231
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3232 3233
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3234
 */
A
Alexey Dobriyan 已提交
3235
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3236
{
3237
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3238 3239
}

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	init_dl_task_timer(dl_se);
	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3256
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3257
	dl_se->flags = attr->sched_flags;
3258
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3259 3260
	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
3261
	dl_se->dl_yielded = 0;
3262 3263
}

3264 3265 3266 3267 3268 3269
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3270 3271
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3272
{
3273 3274
	int policy = attr->sched_policy;

3275
	if (policy == SETPARAM_POLICY)
3276 3277
		policy = p->policy;

L
Linus Torvalds 已提交
3278
	p->policy = policy;
3279

3280 3281
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3282
	else if (fair_policy(policy))
3283 3284
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3285 3286 3287 3288 3289 3290
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3291
	p->normal_prio = normal_prio(p);
3292 3293
	set_load_weight(p);
}
3294

3295 3296 3297 3298 3299
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3300

3301 3302 3303 3304 3305 3306
	/*
	 * If we get here, there was no pi waiters boosting the
	 * task. It is safe to use the normal prio.
	 */
	p->prio = normal_prio(p);

3307 3308 3309
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3310 3311 3312
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3313
}
3314 3315 3316 3317 3318 3319 3320 3321 3322

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3323
	attr->sched_period = dl_se->dl_period;
3324 3325 3326 3327 3328 3329
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3330
 * than the runtime, as well as the period of being zero or
3331
 * greater than deadline. Furthermore, we have to be sure that
3332 3333 3334 3335
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3336 3337 3338 3339
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3366 3367
}

3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3378 3379
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3380 3381 3382 3383
	rcu_read_unlock();
	return match;
}

3384 3385 3386
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3387
{
3388 3389
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3390
	int retval, oldprio, oldpolicy = -1, queued, running;
3391
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3392
	unsigned long flags;
3393
	const struct sched_class *prev_class;
3394
	struct rq *rq;
3395
	int reset_on_fork;
L
Linus Torvalds 已提交
3396

3397 3398
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3399 3400
recheck:
	/* double check policy once rq lock held */
3401 3402
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3403
		policy = oldpolicy = p->policy;
3404
	} else {
3405
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3406

3407 3408
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3409 3410 3411 3412 3413
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3414 3415 3416
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3417 3418
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3419 3420
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3421
	 */
3422
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3423
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3424
		return -EINVAL;
3425 3426
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3427 3428
		return -EINVAL;

3429 3430 3431
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3432
	if (user && !capable(CAP_SYS_NICE)) {
3433
		if (fair_policy(policy)) {
3434
			if (attr->sched_nice < task_nice(p) &&
3435
			    !can_nice(p, attr->sched_nice))
3436 3437 3438
				return -EPERM;
		}

3439
		if (rt_policy(policy)) {
3440 3441
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3442 3443 3444 3445 3446 3447

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3448 3449
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3450 3451
				return -EPERM;
		}
3452

3453 3454 3455 3456 3457 3458 3459 3460 3461
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3462
		/*
3463 3464
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3465
		 */
3466
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3467
			if (!can_nice(p, task_nice(p)))
3468 3469
				return -EPERM;
		}
3470

3471
		/* can't change other user's priorities */
3472
		if (!check_same_owner(p))
3473
			return -EPERM;
3474 3475 3476 3477

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3478
	}
L
Linus Torvalds 已提交
3479

3480
	if (user) {
3481
		retval = security_task_setscheduler(p);
3482 3483 3484 3485
		if (retval)
			return retval;
	}

3486 3487 3488
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3489
	 *
L
Lucas De Marchi 已提交
3490
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3491 3492
	 * runqueue lock must be held.
	 */
3493
	rq = task_rq_lock(p, &flags);
3494

3495 3496 3497 3498
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3499
		task_rq_unlock(rq, p, &flags);
3500 3501 3502
		return -EINVAL;
	}

3503
	/*
3504 3505
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3506
	 */
3507
	if (unlikely(policy == p->policy)) {
3508
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3509 3510 3511
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3512 3513
		if (dl_policy(policy))
			goto change;
3514

3515
		p->sched_reset_on_fork = reset_on_fork;
3516
		task_rq_unlock(rq, p, &flags);
3517 3518
		return 0;
	}
3519
change:
3520

3521
	if (user) {
3522
#ifdef CONFIG_RT_GROUP_SCHED
3523 3524 3525 3526 3527
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3528 3529
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3530
			task_rq_unlock(rq, p, &flags);
3531 3532 3533
			return -EPERM;
		}
#endif
3534 3535 3536 3537 3538 3539 3540 3541 3542
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3543 3544
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3545 3546 3547 3548 3549 3550
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3551

L
Linus Torvalds 已提交
3552 3553 3554
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3555
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3556 3557
		goto recheck;
	}
3558 3559 3560 3561 3562 3563

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3564
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3565 3566 3567 3568
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

3587
	queued = task_on_rq_queued(p);
3588
	running = task_current(rq, p);
3589
	if (queued)
3590
		dequeue_task(rq, p, 0);
3591
	if (running)
3592
		put_prev_task(rq, p);
3593

3594
	prev_class = p->sched_class;
3595
	__setscheduler(rq, p, attr);
3596

3597 3598
	if (running)
		p->sched_class->set_curr_task(rq);
3599
	if (queued) {
3600 3601 3602 3603 3604 3605
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3606

P
Peter Zijlstra 已提交
3607
	check_class_changed(rq, p, prev_class, oldprio);
3608
	task_rq_unlock(rq, p, &flags);
3609

3610 3611
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3612 3613
	return 0;
}
3614

3615 3616 3617 3618 3619 3620 3621 3622 3623
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3624 3625
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3626 3627 3628 3629 3630 3631 3632
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3633 3634 3635 3636 3637 3638
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3639 3640
 * Return: 0 on success. An error code otherwise.
 *
3641 3642 3643
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3644
		       const struct sched_param *param)
3645
{
3646
	return _sched_setscheduler(p, policy, param, true);
3647
}
L
Linus Torvalds 已提交
3648 3649
EXPORT_SYMBOL_GPL(sched_setscheduler);

3650 3651 3652 3653 3654 3655
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3666 3667
 *
 * Return: 0 on success. An error code otherwise.
3668 3669
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3670
			       const struct sched_param *param)
3671
{
3672
	return _sched_setscheduler(p, policy, param, false);
3673 3674
}

I
Ingo Molnar 已提交
3675 3676
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3677 3678 3679
{
	struct sched_param lparam;
	struct task_struct *p;
3680
	int retval;
L
Linus Torvalds 已提交
3681 3682 3683 3684 3685

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3686 3687 3688

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3689
	p = find_process_by_pid(pid);
3690 3691 3692
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3693

L
Linus Torvalds 已提交
3694 3695 3696
	return retval;
}

3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3759
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3760

3761
	return 0;
3762 3763 3764

err_size:
	put_user(sizeof(*attr), &uattr->size);
3765
	return -E2BIG;
3766 3767
}

L
Linus Torvalds 已提交
3768 3769 3770 3771 3772
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3773 3774
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3775
 */
3776 3777
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3778
{
3779 3780 3781 3782
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3783 3784 3785 3786 3787 3788 3789
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3790 3791
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3792
 */
3793
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3794
{
3795
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
3796 3797
}

3798 3799 3800
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3801
 * @uattr: structure containing the extended parameters.
3802
 * @flags: for future extension.
3803
 */
3804 3805
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3806 3807 3808 3809 3810
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3811
	if (!uattr || pid < 0 || flags)
3812 3813
		return -EINVAL;

3814 3815 3816
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
3817

3818
	if ((int)attr.sched_policy < 0)
3819
		return -EINVAL;
3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3831 3832 3833
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3834 3835 3836
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3837
 */
3838
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3839
{
3840
	struct task_struct *p;
3841
	int retval;
L
Linus Torvalds 已提交
3842 3843

	if (pid < 0)
3844
		return -EINVAL;
L
Linus Torvalds 已提交
3845 3846

	retval = -ESRCH;
3847
	rcu_read_lock();
L
Linus Torvalds 已提交
3848 3849 3850 3851
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3852 3853
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3854
	}
3855
	rcu_read_unlock();
L
Linus Torvalds 已提交
3856 3857 3858 3859
	return retval;
}

/**
3860
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3861 3862
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3863 3864 3865
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3866
 */
3867
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3868
{
3869
	struct sched_param lp = { .sched_priority = 0 };
3870
	struct task_struct *p;
3871
	int retval;
L
Linus Torvalds 已提交
3872 3873

	if (!param || pid < 0)
3874
		return -EINVAL;
L
Linus Torvalds 已提交
3875

3876
	rcu_read_lock();
L
Linus Torvalds 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3886 3887
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
3888
	rcu_read_unlock();
L
Linus Torvalds 已提交
3889 3890 3891 3892 3893 3894 3895 3896 3897

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3898
	rcu_read_unlock();
L
Linus Torvalds 已提交
3899 3900 3901
	return retval;
}

3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
3925
				return -EFBIG;
3926 3927 3928 3929 3930
		}

		attr->size = usize;
	}

3931
	ret = copy_to_user(uattr, attr, attr->size);
3932 3933 3934
	if (ret)
		return -EFAULT;

3935
	return 0;
3936 3937 3938
}

/**
3939
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3940
 * @pid: the pid in question.
J
Juri Lelli 已提交
3941
 * @uattr: structure containing the extended parameters.
3942
 * @size: sizeof(attr) for fwd/bwd comp.
3943
 * @flags: for future extension.
3944
 */
3945 3946
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3947 3948 3949 3950 3951 3952 3953 3954
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3955
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3969 3970
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3971 3972 3973
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3974 3975
		attr.sched_priority = p->rt_priority;
	else
3976
		attr.sched_nice = task_nice(p);
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3988
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3989
{
3990
	cpumask_var_t cpus_allowed, new_mask;
3991 3992
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3993

3994
	rcu_read_lock();
L
Linus Torvalds 已提交
3995 3996 3997

	p = find_process_by_pid(pid);
	if (!p) {
3998
		rcu_read_unlock();
L
Linus Torvalds 已提交
3999 4000 4001
		return -ESRCH;
	}

4002
	/* Prevent p going away */
L
Linus Torvalds 已提交
4003
	get_task_struct(p);
4004
	rcu_read_unlock();
L
Linus Torvalds 已提交
4005

4006 4007 4008 4009
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
4010 4011 4012 4013 4014 4015 4016 4017
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
4018
	retval = -EPERM;
E
Eric W. Biederman 已提交
4019 4020 4021 4022 4023 4024 4025 4026
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
4027

4028
	retval = security_task_setscheduler(p);
4029 4030 4031
	if (retval)
		goto out_unlock;

4032 4033 4034 4035

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
	if (task_has_dl_policy(p)) {
		const struct cpumask *span = task_rq(p)->rd->span;

4046
		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
4047 4048 4049 4050 4051
			retval = -EBUSY;
			goto out_unlock;
		}
	}
#endif
P
Peter Zijlstra 已提交
4052
again:
4053
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4054

P
Paul Menage 已提交
4055
	if (!retval) {
4056 4057
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4058 4059 4060 4061 4062
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4063
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4064 4065 4066
			goto again;
		}
	}
L
Linus Torvalds 已提交
4067
out_unlock:
4068 4069 4070 4071
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4072 4073 4074 4075 4076
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4077
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4078
{
4079 4080 4081 4082 4083
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4084 4085 4086 4087 4088 4089 4090 4091
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4092 4093
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4094
 */
4095 4096
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4097
{
4098
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4099 4100
	int retval;

4101 4102
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4103

4104 4105 4106 4107 4108
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4109 4110
}

4111
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4112
{
4113
	struct task_struct *p;
4114
	unsigned long flags;
L
Linus Torvalds 已提交
4115 4116
	int retval;

4117
	rcu_read_lock();
L
Linus Torvalds 已提交
4118 4119 4120 4121 4122 4123

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4124 4125 4126 4127
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4128
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4129
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4130
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4131 4132

out_unlock:
4133
	rcu_read_unlock();
L
Linus Torvalds 已提交
4134

4135
	return retval;
L
Linus Torvalds 已提交
4136 4137 4138 4139 4140 4141 4142
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4143 4144
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4145
 */
4146 4147
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4148 4149
{
	int ret;
4150
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4151

A
Anton Blanchard 已提交
4152
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4153 4154
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4155 4156
		return -EINVAL;

4157 4158
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4159

4160 4161
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4162
		size_t retlen = min_t(size_t, len, cpumask_size());
4163 4164

		if (copy_to_user(user_mask_ptr, mask, retlen))
4165 4166
			ret = -EFAULT;
		else
4167
			ret = retlen;
4168 4169
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4170

4171
	return ret;
L
Linus Torvalds 已提交
4172 4173 4174 4175 4176
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4177 4178
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4179 4180
 *
 * Return: 0.
L
Linus Torvalds 已提交
4181
 */
4182
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4183
{
4184
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4185

4186
	schedstat_inc(rq, yld_count);
4187
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4188 4189 4190 4191 4192 4193

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4194
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4195
	do_raw_spin_unlock(&rq->lock);
4196
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4197 4198 4199 4200 4201 4202

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4203
static void __cond_resched(void)
L
Linus Torvalds 已提交
4204
{
4205
	__preempt_count_add(PREEMPT_ACTIVE);
4206
	__schedule();
4207
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4208 4209
}

4210
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4211
{
P
Peter Zijlstra 已提交
4212
	if (should_resched()) {
L
Linus Torvalds 已提交
4213 4214 4215 4216 4217
		__cond_resched();
		return 1;
	}
	return 0;
}
4218
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4219 4220

/*
4221
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4222 4223
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4224
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4225 4226 4227
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4228
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4229
{
P
Peter Zijlstra 已提交
4230
	int resched = should_resched();
J
Jan Kara 已提交
4231 4232
	int ret = 0;

4233 4234
	lockdep_assert_held(lock);

4235
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4236
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4237
		if (resched)
N
Nick Piggin 已提交
4238 4239 4240
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4241
		ret = 1;
L
Linus Torvalds 已提交
4242 4243
		spin_lock(lock);
	}
J
Jan Kara 已提交
4244
	return ret;
L
Linus Torvalds 已提交
4245
}
4246
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4247

4248
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4249 4250 4251
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4252
	if (should_resched()) {
4253
		local_bh_enable();
L
Linus Torvalds 已提交
4254 4255 4256 4257 4258 4259
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4260
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4261 4262 4263 4264

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4283 4284 4285 4286 4287 4288 4289 4290
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4291 4292 4293 4294
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4295 4296
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4297 4298 4299 4300
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4301
 * Return:
4302 4303 4304
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4305
 */
4306
int __sched yield_to(struct task_struct *p, bool preempt)
4307 4308 4309 4310
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4311
	int yielded = 0;
4312 4313 4314 4315 4316 4317

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4318 4319 4320 4321 4322 4323 4324 4325 4326
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4327
	double_rq_lock(rq, p_rq);
4328
	if (task_rq(p) != p_rq) {
4329 4330 4331 4332 4333
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4334
		goto out_unlock;
4335 4336

	if (curr->sched_class != p->sched_class)
4337
		goto out_unlock;
4338 4339

	if (task_running(p_rq, p) || p->state)
4340
		goto out_unlock;
4341 4342

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4343
	if (yielded) {
4344
		schedstat_inc(rq, yld_count);
4345 4346 4347 4348 4349
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4350
			resched_curr(p_rq);
4351
	}
4352

4353
out_unlock:
4354
	double_rq_unlock(rq, p_rq);
4355
out_irq:
4356 4357
	local_irq_restore(flags);

4358
	if (yielded > 0)
4359 4360 4361 4362 4363 4364
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4365
/*
I
Ingo Molnar 已提交
4366
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4367 4368 4369 4370
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4371
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4372

4373
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4374
	atomic_inc(&rq->nr_iowait);
4375
	blk_flush_plug(current);
4376
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4377
	schedule();
4378
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4379
	atomic_dec(&rq->nr_iowait);
4380
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4381 4382 4383 4384 4385
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4386
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4387 4388
	long ret;

4389
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4390
	atomic_inc(&rq->nr_iowait);
4391
	blk_flush_plug(current);
4392
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4393
	ret = schedule_timeout(timeout);
4394
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4395
	atomic_dec(&rq->nr_iowait);
4396
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4397 4398 4399 4400 4401 4402 4403
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4404 4405 4406
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4407
 */
4408
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4409 4410 4411 4412 4413 4414 4415 4416
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4417
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4418
	case SCHED_NORMAL:
4419
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4420
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4431 4432 4433
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4434
 */
4435
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4436 4437 4438 4439 4440 4441 4442 4443
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4444
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4445
	case SCHED_NORMAL:
4446
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4447
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4460 4461 4462
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4463
 */
4464
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4465
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4466
{
4467
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4468
	unsigned int time_slice;
4469 4470
	unsigned long flags;
	struct rq *rq;
4471
	int retval;
L
Linus Torvalds 已提交
4472 4473 4474
	struct timespec t;

	if (pid < 0)
4475
		return -EINVAL;
L
Linus Torvalds 已提交
4476 4477

	retval = -ESRCH;
4478
	rcu_read_lock();
L
Linus Torvalds 已提交
4479 4480 4481 4482 4483 4484 4485 4486
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4487
	rq = task_rq_lock(p, &flags);
4488 4489 4490
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4491
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4492

4493
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4494
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4495 4496
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4497

L
Linus Torvalds 已提交
4498
out_unlock:
4499
	rcu_read_unlock();
L
Linus Torvalds 已提交
4500 4501 4502
	return retval;
}

4503
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4504

4505
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4506 4507
{
	unsigned long free = 0;
4508
	int ppid;
4509
	unsigned state;
L
Linus Torvalds 已提交
4510 4511

	state = p->state ? __ffs(p->state) + 1 : 0;
4512
	printk(KERN_INFO "%-15.15s %c", p->comm,
4513
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4514
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4515
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4516
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4517
	else
P
Peter Zijlstra 已提交
4518
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4519 4520
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4521
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4522
	else
P
Peter Zijlstra 已提交
4523
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4524 4525
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4526
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4527
#endif
4528 4529 4530
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4531
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4532
		task_pid_nr(p), ppid,
4533
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4534

4535
	print_worker_info(KERN_INFO, p);
4536
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4537 4538
}

I
Ingo Molnar 已提交
4539
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4540
{
4541
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4542

4543
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4544 4545
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4546
#else
P
Peter Zijlstra 已提交
4547 4548
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4549
#endif
4550
	rcu_read_lock();
4551
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4552 4553
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4554
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4555 4556
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4557
		if (!state_filter || (p->state & state_filter))
4558
			sched_show_task(p);
4559
	}
L
Linus Torvalds 已提交
4560

4561 4562
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4563 4564 4565
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4566
	rcu_read_unlock();
I
Ingo Molnar 已提交
4567 4568 4569
	/*
	 * Only show locks if all tasks are dumped:
	 */
4570
	if (!state_filter)
I
Ingo Molnar 已提交
4571
		debug_show_all_locks();
L
Linus Torvalds 已提交
4572 4573
}

4574
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4575
{
I
Ingo Molnar 已提交
4576
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4577 4578
}

4579 4580 4581 4582 4583 4584 4585 4586
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4587
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4588
{
4589
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4590 4591
	unsigned long flags;

4592
	raw_spin_lock_irqsave(&rq->lock, flags);
4593

4594
	__sched_fork(0, idle);
4595
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4596 4597
	idle->se.exec_start = sched_clock();

4598
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4610
	__set_task_cpu(idle, cpu);
4611
	rcu_read_unlock();
L
Linus Torvalds 已提交
4612 4613

	rq->curr = rq->idle = idle;
4614
	idle->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
4615 4616
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4617
#endif
4618
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4619 4620

	/* Set the preempt count _outside_ the spinlocks! */
4621
	init_idle_preempt_count(idle, cpu);
4622

I
Ingo Molnar 已提交
4623 4624 4625 4626
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4627
	ftrace_graph_init_idle_task(idle, cpu);
4628
	vtime_init_idle(idle, cpu);
4629 4630 4631
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4632 4633
}

L
Linus Torvalds 已提交
4634
#ifdef CONFIG_SMP
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
/*
 * move_queued_task - move a queued task to new rq.
 *
 * Returns (locked) new rq. Old rq's lock is released.
 */
static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
{
	struct rq *rq = task_rq(p);

	lockdep_assert_held(&rq->lock);

	dequeue_task(rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, new_cpu);
	raw_spin_unlock(&rq->lock);

	rq = cpu_rq(new_cpu);

	raw_spin_lock(&rq->lock);
	BUG_ON(task_cpu(p) != new_cpu);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(rq, p, 0);
	check_preempt_curr(rq, p, 0);

	return rq;
}

4662 4663 4664 4665
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4666 4667

	cpumask_copy(&p->cpus_allowed, new_mask);
4668
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4669 4670
}

L
Linus Torvalds 已提交
4671 4672 4673
/*
 * This is how migration works:
 *
4674 4675 4676 4677 4678 4679
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4680
 *    it and puts it into the right queue.
4681 4682
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4683 4684 4685 4686 4687 4688 4689 4690
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4691
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4692 4693
 * call is not atomic; no spinlocks may be held.
 */
4694
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4695 4696
{
	unsigned long flags;
4697
	struct rq *rq;
4698
	unsigned int dest_cpu;
4699
	int ret = 0;
L
Linus Torvalds 已提交
4700 4701

	rq = task_rq_lock(p, &flags);
4702

4703 4704 4705
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4706
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4707 4708 4709 4710
		ret = -EINVAL;
		goto out;
	}

4711
	do_set_cpus_allowed(p, new_mask);
4712

L
Linus Torvalds 已提交
4713
	/* Can the task run on the task's current CPU? If so, we're done */
4714
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4715 4716
		goto out;

4717
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4718
	if (task_running(rq, p) || p->state == TASK_WAKING) {
4719
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4720
		/* Need help from migration thread: drop lock and wait. */
4721
		task_rq_unlock(rq, p, &flags);
4722
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4723 4724
		tlb_migrate_finish(p->mm);
		return 0;
4725 4726
	} else if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
L
Linus Torvalds 已提交
4727
out:
4728
	task_rq_unlock(rq, p, &flags);
4729

L
Linus Torvalds 已提交
4730 4731
	return ret;
}
4732
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4733 4734

/*
I
Ingo Molnar 已提交
4735
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4736 4737 4738 4739 4740 4741
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4742 4743
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4744
 */
4745
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4746
{
4747
	struct rq *rq;
4748
	int ret = 0;
L
Linus Torvalds 已提交
4749

4750
	if (unlikely(!cpu_active(dest_cpu)))
4751
		return ret;
L
Linus Torvalds 已提交
4752

4753
	rq = cpu_rq(src_cpu);
L
Linus Torvalds 已提交
4754

4755
	raw_spin_lock(&p->pi_lock);
4756
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4757 4758
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4759
		goto done;
4760

L
Linus Torvalds 已提交
4761
	/* Affinity changed (again). */
4762
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4763
		goto fail;
L
Linus Torvalds 已提交
4764

4765 4766 4767 4768
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
4769 4770
	if (task_on_rq_queued(p))
		rq = move_queued_task(p, dest_cpu);
L
Linus Torvalds 已提交
4771
done:
4772
	ret = 1;
L
Linus Torvalds 已提交
4773
fail:
4774
	raw_spin_unlock(&rq->lock);
4775
	raw_spin_unlock(&p->pi_lock);
4776
	return ret;
L
Linus Torvalds 已提交
4777 4778
}

4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4794
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4795 4796
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4797 4798 4799 4800 4801 4802 4803 4804 4805

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
4806
	bool queued, running;
4807 4808

	rq = task_rq_lock(p, &flags);
4809
	queued = task_on_rq_queued(p);
4810 4811
	running = task_current(rq, p);

4812
	if (queued)
4813 4814
		dequeue_task(rq, p, 0);
	if (running)
4815
		put_prev_task(rq, p);
4816 4817 4818 4819 4820

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
4821
	if (queued)
4822 4823 4824
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4825 4826
#endif

L
Linus Torvalds 已提交
4827
/*
4828 4829 4830
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4831
 */
4832
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4833
{
4834
	struct migration_arg *arg = data;
4835

4836 4837 4838 4839
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4840
	local_irq_disable();
L
Lai Jiangshan 已提交
4841 4842 4843 4844 4845 4846
	/*
	 * We need to explicitly wake pending tasks before running
	 * __migrate_task() such that we will not miss enforcing cpus_allowed
	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
	 */
	sched_ttwu_pending();
4847
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4848
	local_irq_enable();
L
Linus Torvalds 已提交
4849
	return 0;
4850 4851
}

L
Linus Torvalds 已提交
4852
#ifdef CONFIG_HOTPLUG_CPU
4853

4854
/*
4855 4856
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4857
 */
4858
void idle_task_exit(void)
L
Linus Torvalds 已提交
4859
{
4860
	struct mm_struct *mm = current->active_mm;
4861

4862
	BUG_ON(cpu_online(smp_processor_id()));
4863

4864
	if (mm != &init_mm) {
4865
		switch_mm(mm, &init_mm, current);
4866 4867
		finish_arch_post_lock_switch();
	}
4868
	mmdrop(mm);
L
Linus Torvalds 已提交
4869 4870 4871
}

/*
4872 4873 4874 4875 4876
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4877
 */
4878
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4879
{
4880 4881 4882
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4883 4884
}

4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4901
/*
4902 4903 4904 4905 4906 4907
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4908
 */
4909
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4910
{
4911
	struct rq *rq = cpu_rq(dead_cpu);
4912 4913
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4914 4915

	/*
4916 4917 4918 4919 4920 4921 4922
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4923
	 */
4924
	rq->stop = NULL;
4925

4926 4927 4928 4929 4930 4931 4932
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4933
	for ( ; ; ) {
4934 4935 4936 4937 4938
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4939
			break;
4940

4941
		next = pick_next_task(rq, &fake_task);
4942
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4943
		next->sched_class->put_prev_task(rq, next);
4944

4945 4946 4947 4948 4949 4950 4951
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4952
	}
4953

4954
	rq->stop = stop;
4955
}
4956

L
Linus Torvalds 已提交
4957 4958
#endif /* CONFIG_HOTPLUG_CPU */

4959 4960 4961
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4962 4963
	{
		.procname	= "sched_domain",
4964
		.mode		= 0555,
4965
	},
4966
	{}
4967 4968 4969
};

static struct ctl_table sd_ctl_root[] = {
4970 4971
	{
		.procname	= "kernel",
4972
		.mode		= 0555,
4973 4974
		.child		= sd_ctl_dir,
	},
4975
	{}
4976 4977 4978 4979 4980
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4981
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4982 4983 4984 4985

	return entry;
}

4986 4987
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4988
	struct ctl_table *entry;
4989

4990 4991 4992
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4993
	 * will always be set. In the lowest directory the names are
4994 4995 4996
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4997 4998
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4999 5000 5001
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5002 5003 5004 5005 5006

	kfree(*tablep);
	*tablep = NULL;
}

5007
static int min_load_idx = 0;
5008
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5009

5010
static void
5011
set_table_entry(struct ctl_table *entry,
5012
		const char *procname, void *data, int maxlen,
5013 5014
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
5015 5016 5017 5018 5019 5020
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
5021 5022 5023 5024 5025

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
5026 5027 5028 5029 5030
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5031
	struct ctl_table *table = sd_alloc_ctl_entry(14);
5032

5033 5034 5035
	if (table == NULL)
		return NULL;

5036
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5037
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5038
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5039
		sizeof(long), 0644, proc_doulongvec_minmax, false);
5040
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5041
		sizeof(int), 0644, proc_dointvec_minmax, true);
5042
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5043
		sizeof(int), 0644, proc_dointvec_minmax, true);
5044
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5045
		sizeof(int), 0644, proc_dointvec_minmax, true);
5046
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5047
		sizeof(int), 0644, proc_dointvec_minmax, true);
5048
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5049
		sizeof(int), 0644, proc_dointvec_minmax, true);
5050
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5051
		sizeof(int), 0644, proc_dointvec_minmax, false);
5052
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5053
		sizeof(int), 0644, proc_dointvec_minmax, false);
5054
	set_table_entry(&table[9], "cache_nice_tries",
5055
		&sd->cache_nice_tries,
5056
		sizeof(int), 0644, proc_dointvec_minmax, false);
5057
	set_table_entry(&table[10], "flags", &sd->flags,
5058
		sizeof(int), 0644, proc_dointvec_minmax, false);
5059 5060 5061 5062
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
5063
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5064
	/* &table[13] is terminator */
5065 5066 5067 5068

	return table;
}

5069
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5070 5071 5072 5073 5074 5075 5076 5077 5078
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5079 5080
	if (table == NULL)
		return NULL;
5081 5082 5083 5084 5085

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5086
		entry->mode = 0555;
5087 5088 5089 5090 5091 5092 5093 5094
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5095
static void register_sched_domain_sysctl(void)
5096
{
5097
	int i, cpu_num = num_possible_cpus();
5098 5099 5100
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5101 5102 5103
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5104 5105 5106
	if (entry == NULL)
		return;

5107
	for_each_possible_cpu(i) {
5108 5109
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5110
		entry->mode = 0555;
5111
		entry->child = sd_alloc_ctl_cpu_table(i);
5112
		entry++;
5113
	}
5114 5115

	WARN_ON(sd_sysctl_header);
5116 5117
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5118

5119
/* may be called multiple times per register */
5120 5121
static void unregister_sched_domain_sysctl(void)
{
5122 5123
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5124
	sd_sysctl_header = NULL;
5125 5126
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5127
}
5128
#else
5129 5130 5131 5132
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5133 5134 5135 5136
{
}
#endif

5137 5138 5139 5140 5141
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5142
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5162
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5163 5164 5165 5166
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5167 5168 5169 5170
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5171
static int
5172
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5173
{
5174
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5175
	unsigned long flags;
5176
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5177

5178
	switch (action & ~CPU_TASKS_FROZEN) {
5179

L
Linus Torvalds 已提交
5180
	case CPU_UP_PREPARE:
5181
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5182
		break;
5183

L
Linus Torvalds 已提交
5184
	case CPU_ONLINE:
5185
		/* Update our root-domain */
5186
		raw_spin_lock_irqsave(&rq->lock, flags);
5187
		if (rq->rd) {
5188
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5189 5190

			set_rq_online(rq);
5191
		}
5192
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5193
		break;
5194

L
Linus Torvalds 已提交
5195
#ifdef CONFIG_HOTPLUG_CPU
5196
	case CPU_DYING:
5197
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5198
		/* Update our root-domain */
5199
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5200
		if (rq->rd) {
5201
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5202
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5203
		}
5204 5205
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5206
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5207
		break;
5208

5209
	case CPU_DEAD:
5210
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5211
		break;
L
Linus Torvalds 已提交
5212 5213
#endif
	}
5214 5215 5216

	update_max_interval();

L
Linus Torvalds 已提交
5217 5218 5219
	return NOTIFY_OK;
}

5220 5221 5222
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5223
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5224
 */
5225
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5226
	.notifier_call = migration_call,
5227
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5228 5229
};

5230 5231 5232 5233 5234 5235 5236
static void __cpuinit set_cpu_rq_start_time(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5237
static int sched_cpu_active(struct notifier_block *nfb,
5238 5239 5240
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5241 5242 5243
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5244 5245 5246 5247 5248 5249 5250 5251
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5252
static int sched_cpu_inactive(struct notifier_block *nfb,
5253 5254
					unsigned long action, void *hcpu)
{
5255 5256 5257
	unsigned long flags;
	long cpu = (long)hcpu;

5258 5259
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			struct dl_bw *dl_b = dl_bw_of(cpu);
			bool overflow;
			int cpus;

			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5276 5277
		return NOTIFY_OK;
	}
5278 5279

	return NOTIFY_DONE;
5280 5281
}

5282
static int __init migration_init(void)
L
Linus Torvalds 已提交
5283 5284
{
	void *cpu = (void *)(long)smp_processor_id();
5285
	int err;
5286

5287
	/* Initialize migration for the boot CPU */
5288 5289
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5290 5291
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5292

5293 5294 5295 5296
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5297
	return 0;
L
Linus Torvalds 已提交
5298
}
5299
early_initcall(migration_init);
L
Linus Torvalds 已提交
5300 5301 5302
#endif

#ifdef CONFIG_SMP
5303

5304 5305
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5306
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5307

5308
static __read_mostly int sched_debug_enabled;
5309

5310
static int __init sched_debug_setup(char *str)
5311
{
5312
	sched_debug_enabled = 1;
5313 5314 5315

	return 0;
}
5316 5317 5318 5319 5320 5321
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5322

5323
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5324
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5325
{
I
Ingo Molnar 已提交
5326
	struct sched_group *group = sd->groups;
5327
	char str[256];
L
Linus Torvalds 已提交
5328

R
Rusty Russell 已提交
5329
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5330
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5331 5332 5333 5334

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5335
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5336
		if (sd->parent)
P
Peter Zijlstra 已提交
5337 5338
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5339
		return -1;
N
Nick Piggin 已提交
5340 5341
	}

P
Peter Zijlstra 已提交
5342
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5343

5344
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5345 5346
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5347
	}
5348
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5349 5350
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5351
	}
L
Linus Torvalds 已提交
5352

I
Ingo Molnar 已提交
5353
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5354
	do {
I
Ingo Molnar 已提交
5355
		if (!group) {
P
Peter Zijlstra 已提交
5356 5357
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5358 5359 5360
			break;
		}

5361
		/*
5362 5363
		 * Even though we initialize ->capacity to something semi-sane,
		 * we leave capacity_orig unset. This allows us to detect if
5364 5365
		 * domain iteration is still funny without causing /0 traps.
		 */
5366
		if (!group->sgc->capacity_orig) {
P
Peter Zijlstra 已提交
5367
			printk(KERN_CONT "\n");
5368
			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
I
Ingo Molnar 已提交
5369 5370
			break;
		}
L
Linus Torvalds 已提交
5371

5372
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5373 5374
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5375 5376
			break;
		}
L
Linus Torvalds 已提交
5377

5378 5379
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5380 5381
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5382 5383
			break;
		}
L
Linus Torvalds 已提交
5384

5385
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5386

R
Rusty Russell 已提交
5387
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5388

P
Peter Zijlstra 已提交
5389
		printk(KERN_CONT " %s", str);
5390
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5391 5392
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5393
		}
L
Linus Torvalds 已提交
5394

I
Ingo Molnar 已提交
5395 5396
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5397
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5398

5399
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5400
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5401

5402 5403
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5404 5405
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5406 5407
	return 0;
}
L
Linus Torvalds 已提交
5408

I
Ingo Molnar 已提交
5409 5410 5411
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5412

5413
	if (!sched_debug_enabled)
5414 5415
		return;

I
Ingo Molnar 已提交
5416 5417 5418 5419
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5420

I
Ingo Molnar 已提交
5421 5422 5423
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5424
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5425
			break;
L
Linus Torvalds 已提交
5426 5427
		level++;
		sd = sd->parent;
5428
		if (!sd)
I
Ingo Molnar 已提交
5429 5430
			break;
	}
L
Linus Torvalds 已提交
5431
}
5432
#else /* !CONFIG_SCHED_DEBUG */
5433
# define sched_domain_debug(sd, cpu) do { } while (0)
5434 5435 5436 5437
static inline bool sched_debug(void)
{
	return false;
}
5438
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5439

5440
static int sd_degenerate(struct sched_domain *sd)
5441
{
5442
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5443 5444 5445 5446 5447 5448
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5449
			 SD_BALANCE_EXEC |
5450
			 SD_SHARE_CPUCAPACITY |
5451 5452
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5453 5454 5455 5456 5457
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5458
	if (sd->flags & (SD_WAKE_AFFINE))
5459 5460 5461 5462 5463
		return 0;

	return 1;
}

5464 5465
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5466 5467 5468 5469 5470 5471
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5472
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5473 5474 5475 5476 5477 5478 5479
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5480
				SD_BALANCE_EXEC |
5481
				SD_SHARE_CPUCAPACITY |
5482
				SD_SHARE_PKG_RESOURCES |
5483 5484
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5485 5486
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5487 5488 5489 5490 5491 5492 5493
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5494
static void free_rootdomain(struct rcu_head *rcu)
5495
{
5496
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5497

5498
	cpupri_cleanup(&rd->cpupri);
5499
	cpudl_cleanup(&rd->cpudl);
5500
	free_cpumask_var(rd->dlo_mask);
5501 5502 5503 5504 5505 5506
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5507 5508
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5509
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5510 5511
	unsigned long flags;

5512
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5513 5514

	if (rq->rd) {
I
Ingo Molnar 已提交
5515
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5516

5517
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5518
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5519

5520
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5521

I
Ingo Molnar 已提交
5522
		/*
5523
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5524 5525 5526 5527 5528
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5529 5530 5531 5532 5533
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5534
	cpumask_set_cpu(rq->cpu, rd->span);
5535
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5536
		set_rq_online(rq);
G
Gregory Haskins 已提交
5537

5538
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5539 5540

	if (old_rd)
5541
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5542 5543
}

5544
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5545 5546 5547
{
	memset(rd, 0, sizeof(*rd));

5548
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5549
		goto out;
5550
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5551
		goto free_span;
5552
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5553
		goto free_online;
5554 5555
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5556

5557
	init_dl_bw(&rd->dl_bw);
5558 5559
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5560

5561
	if (cpupri_init(&rd->cpupri) != 0)
5562
		goto free_rto_mask;
5563
	return 0;
5564

5565 5566
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5567 5568
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5569 5570 5571 5572
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5573
out:
5574
	return -ENOMEM;
G
Gregory Haskins 已提交
5575 5576
}

5577 5578 5579 5580 5581 5582
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5583 5584
static void init_defrootdomain(void)
{
5585
	init_rootdomain(&def_root_domain);
5586

G
Gregory Haskins 已提交
5587 5588 5589
	atomic_set(&def_root_domain.refcount, 1);
}

5590
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5591 5592 5593 5594 5595 5596 5597
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5598
	if (init_rootdomain(rd) != 0) {
5599 5600 5601
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5602 5603 5604 5605

	return rd;
}

5606
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5617 5618
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5619 5620 5621 5622 5623 5624

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5625 5626 5627
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5628 5629 5630 5631 5632 5633 5634 5635

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5636
		kfree(sd->groups->sgc);
5637
		kfree(sd->groups);
5638
	}
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5653 5654 5655 5656 5657 5658 5659
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5660
 * two cpus are in the same cache domain, see cpus_share_cache().
5661 5662
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5663
DEFINE_PER_CPU(int, sd_llc_size);
5664
DEFINE_PER_CPU(int, sd_llc_id);
5665
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5666 5667
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5668 5669 5670 5671

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5672
	struct sched_domain *busy_sd = NULL;
5673
	int id = cpu;
5674
	int size = 1;
5675 5676

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5677
	if (sd) {
5678
		id = cpumask_first(sched_domain_span(sd));
5679
		size = cpumask_weight(sched_domain_span(sd));
5680
		busy_sd = sd->parent; /* sd_busy */
5681
	}
5682
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5683 5684

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5685
	per_cpu(sd_llc_size, cpu) = size;
5686
	per_cpu(sd_llc_id, cpu) = id;
5687 5688 5689

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5690 5691 5692

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5693 5694
}

L
Linus Torvalds 已提交
5695
/*
I
Ingo Molnar 已提交
5696
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5697 5698
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5699 5700
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5701
{
5702
	struct rq *rq = cpu_rq(cpu);
5703 5704 5705
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5706
	for (tmp = sd; tmp; ) {
5707 5708 5709
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5710

5711
		if (sd_parent_degenerate(tmp, parent)) {
5712
			tmp->parent = parent->parent;
5713 5714
			if (parent->parent)
				parent->parent->child = tmp;
5715 5716 5717 5718 5719 5720 5721
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5722
			destroy_sched_domain(parent, cpu);
5723 5724
		} else
			tmp = tmp->parent;
5725 5726
	}

5727
	if (sd && sd_degenerate(sd)) {
5728
		tmp = sd;
5729
		sd = sd->parent;
5730
		destroy_sched_domain(tmp, cpu);
5731 5732 5733
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5734

5735
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5736

G
Gregory Haskins 已提交
5737
	rq_attach_root(rq, rd);
5738
	tmp = rq->sd;
N
Nick Piggin 已提交
5739
	rcu_assign_pointer(rq->sd, sd);
5740
	destroy_sched_domains(tmp, cpu);
5741 5742

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5743 5744 5745
}

/* cpus with isolated domains */
5746
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5747 5748 5749 5750

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5751
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5752
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5753 5754 5755
	return 1;
}

I
Ingo Molnar 已提交
5756
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5757

5758
struct s_data {
5759
	struct sched_domain ** __percpu sd;
5760 5761 5762
	struct root_domain	*rd;
};

5763 5764
enum s_alloc {
	sa_rootdomain,
5765
	sa_sd,
5766
	sa_sd_storage,
5767 5768 5769
	sa_none,
};

P
Peter Zijlstra 已提交
5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5808 5809 5810 5811 5812 5813 5814
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
5815
	struct sched_domain *sibling;
5816 5817 5818 5819 5820 5821 5822 5823 5824 5825
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

5826
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
5827 5828

		/* See the comment near build_group_mask(). */
5829
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
5830 5831
			continue;

5832
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5833
				GFP_KERNEL, cpu_to_node(cpu));
5834 5835 5836 5837 5838

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
5839 5840 5841
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
5842 5843 5844 5845
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

5846 5847
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
5848 5849
			build_group_mask(sd, sg);

5850
		/*
5851
		 * Initialize sgc->capacity such that even if we mess up the
5852 5853 5854
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
5855
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5856
		sg->sgc->capacity_orig = sg->sgc->capacity;
5857

P
Peter Zijlstra 已提交
5858 5859 5860 5861 5862
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5863
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5864
		    group_balance_cpu(sg) == cpu)
5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5884
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5885
{
5886 5887
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5888

5889 5890
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5891

5892
	if (sg) {
5893
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5894 5895
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5896
	}
5897 5898

	return cpu;
5899 5900
}

5901
/*
5902 5903
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
5904
 * and ->cpu_capacity to 0.
5905 5906
 *
 * Assumes the sched_domain tree is fully constructed
5907
 */
5908 5909
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5910
{
5911 5912 5913
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5914
	struct cpumask *covered;
5915
	int i;
5916

5917 5918 5919
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5920
	if (cpu != cpumask_first(span))
5921 5922
		return 0;

5923 5924 5925
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5926
	cpumask_clear(covered);
5927

5928 5929
	for_each_cpu(i, span) {
		struct sched_group *sg;
5930
		int group, j;
5931

5932 5933
		if (cpumask_test_cpu(i, covered))
			continue;
5934

5935
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
5936
		cpumask_setall(sched_group_mask(sg));
5937

5938 5939 5940
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5941

5942 5943 5944
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5945

5946 5947 5948 5949 5950 5951 5952
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5953 5954

	return 0;
5955
}
5956

5957
/*
5958
 * Initialize sched groups cpu_capacity.
5959
 *
5960
 * cpu_capacity indicates the capacity of sched group, which is used while
5961
 * distributing the load between different sched groups in a sched domain.
5962 5963 5964 5965
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
5966
 */
5967
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5968
{
5969
	struct sched_group *sg = sd->groups;
5970

5971
	WARN_ON(!sg);
5972 5973 5974 5975 5976

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5977

P
Peter Zijlstra 已提交
5978
	if (cpu != group_balance_cpu(sg))
5979
		return;
5980

5981 5982
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5983 5984
}

5985 5986 5987 5988 5989
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5990
static int default_relax_domain_level = -1;
5991
int sched_domain_level_max;
5992 5993 5994

static int __init setup_relax_domain_level(char *str)
{
5995 5996
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5997

5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
6016
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6017 6018
	} else {
		/* turn on idle balance on this domain */
6019
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6020 6021 6022
	}
}

6023 6024 6025
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

6026 6027 6028 6029 6030
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
6031 6032
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
6033 6034
	case sa_sd:
		free_percpu(d->sd); /* fall through */
6035
	case sa_sd_storage:
6036
		__sdt_free(cpu_map); /* fall through */
6037 6038 6039 6040
	case sa_none:
		break;
	}
}
6041

6042 6043 6044
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
6045 6046
	memset(d, 0, sizeof(*d));

6047 6048
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
6049 6050 6051
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
6052
	d->rd = alloc_rootdomain();
6053
	if (!d->rd)
6054
		return sa_sd;
6055 6056
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
6057

6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

6070
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6071
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6072

6073 6074
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6075 6076
}

6077 6078 6079 6080 6081
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6082
#endif
6083

6084 6085 6086
/*
 * SD_flags allowed in topology descriptions.
 *
6087
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6088 6089
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6090
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6091 6092 6093 6094 6095
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6096
	(SD_SHARE_CPUCAPACITY |		\
6097 6098
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6099 6100
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6101 6102

static struct sched_domain *
6103
sd_init(struct sched_domain_topology_level *tl, int cpu)
6104 6105
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6122 6123 6124 6125 6126

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6127
		.imbalance_pct		= 125,
6128 6129 6130 6131

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6132 6133 6134 6135 6136 6137
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6138 6139
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6140
					| 0*SD_BALANCE_WAKE
6141
					| 1*SD_WAKE_AFFINE
6142
					| 0*SD_SHARE_CPUCAPACITY
6143
					| 0*SD_SHARE_PKG_RESOURCES
6144
					| 0*SD_SERIALIZE
6145
					| 0*SD_PREFER_SIBLING
6146 6147
					| 0*SD_NUMA
					| sd_flags
6148
					,
6149

6150 6151
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6152
		.smt_gain		= 0,
6153 6154
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6155 6156 6157
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6158 6159 6160
	};

	/*
6161
	 * Convert topological properties into behaviour.
6162
	 */
6163

6164
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6195 6196 6197 6198

	return sd;
}

6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6225 6226 6227 6228 6229
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6311
		}
6312 6313 6314 6315 6316 6317

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6318 6319 6320 6321 6322
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6323
	 * The sched_domains_numa_distance[] array includes the actual distance
6324 6325 6326
	 * numbers.
	 */

6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6353
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6354 6355 6356 6357 6358 6359
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6360
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6361 6362 6363 6364 6365 6366 6367
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6368 6369 6370
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6371
	tl = kzalloc((i + level + 1) *
6372 6373 6374 6375 6376 6377 6378
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6379 6380
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6381 6382 6383 6384 6385 6386 6387

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6388
			.sd_flags = cpu_numa_flags,
6389 6390
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6391
			SD_INIT_NAME(NUMA)
6392 6393 6394 6395
		};
	}

	sched_domain_topology = tl;
6396 6397

	sched_domains_numa_levels = level;
6398
}
6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6446 6447 6448 6449 6450
}
#else
static inline void sched_init_numa(void)
{
}
6451 6452 6453 6454 6455 6456 6457

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6458 6459
#endif /* CONFIG_NUMA */

6460 6461 6462 6463 6464
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6465
	for_each_sd_topology(tl) {
6466 6467 6468 6469 6470 6471 6472 6473 6474 6475
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6476 6477
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6478 6479
			return -ENOMEM;

6480 6481 6482
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6483
			struct sched_group_capacity *sgc;
6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6497 6498
			sg->next = sg;

6499
			*per_cpu_ptr(sdd->sg, j) = sg;
6500

6501
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6502
					GFP_KERNEL, cpu_to_node(j));
6503
			if (!sgc)
6504 6505
				return -ENOMEM;

6506
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6518
	for_each_sd_topology(tl) {
6519 6520 6521
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6533 6534
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6535 6536
		}
		free_percpu(sdd->sd);
6537
		sdd->sd = NULL;
6538
		free_percpu(sdd->sg);
6539
		sdd->sg = NULL;
6540 6541
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6542 6543 6544
	}
}

6545
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6546 6547
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6548
{
6549
	struct sched_domain *sd = sd_init(tl, cpu);
6550
	if (!sd)
6551
		return child;
6552 6553

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6554 6555 6556
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6557
		child->parent = sd;
6558
		sd->child = child;
P
Peter Zijlstra 已提交
6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6573
	}
6574
	set_domain_attribute(sd, attr);
6575 6576 6577 6578

	return sd;
}

6579 6580 6581 6582
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6583 6584
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6585
{
6586
	enum s_alloc alloc_state;
6587
	struct sched_domain *sd;
6588
	struct s_data d;
6589
	int i, ret = -ENOMEM;
6590

6591 6592 6593
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6594

6595
	/* Set up domains for cpus specified by the cpu_map. */
6596
	for_each_cpu(i, cpu_map) {
6597 6598
		struct sched_domain_topology_level *tl;

6599
		sd = NULL;
6600
		for_each_sd_topology(tl) {
6601
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6602 6603
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6604 6605
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6606 6607
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6608
		}
6609 6610 6611 6612 6613 6614
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6615 6616 6617 6618 6619 6620 6621
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6622
		}
6623
	}
6624

6625
	/* Calculate CPU capacity for physical packages and nodes */
6626 6627 6628
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6629

6630 6631
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6632
			init_sched_groups_capacity(i, sd);
6633
		}
6634
	}
6635

L
Linus Torvalds 已提交
6636
	/* Attach the domains */
6637
	rcu_read_lock();
6638
	for_each_cpu(i, cpu_map) {
6639
		sd = *per_cpu_ptr(d.sd, i);
6640
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6641
	}
6642
	rcu_read_unlock();
6643

6644
	ret = 0;
6645
error:
6646
	__free_domain_allocs(&d, alloc_state, cpu_map);
6647
	return ret;
L
Linus Torvalds 已提交
6648
}
P
Paul Jackson 已提交
6649

6650
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6651
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6652 6653
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6654 6655 6656

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6657 6658
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6659
 */
6660
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6661

6662 6663 6664 6665 6666
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6667
int __weak arch_update_cpu_topology(void)
6668
{
6669
	return 0;
6670 6671
}

6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6697
/*
I
Ingo Molnar 已提交
6698
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6699 6700
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6701
 */
6702
static int init_sched_domains(const struct cpumask *cpu_map)
6703
{
6704 6705
	int err;

6706
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6707
	ndoms_cur = 1;
6708
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6709
	if (!doms_cur)
6710 6711
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6712
	err = build_sched_domains(doms_cur[0], NULL);
6713
	register_sched_domain_sysctl();
6714 6715

	return err;
6716 6717 6718 6719 6720 6721
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6722
static void detach_destroy_domains(const struct cpumask *cpu_map)
6723 6724 6725
{
	int i;

6726
	rcu_read_lock();
6727
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6728
		cpu_attach_domain(NULL, &def_root_domain, i);
6729
	rcu_read_unlock();
6730 6731
}

6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6748 6749
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6750
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6751 6752 6753
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6754
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6755 6756 6757
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6758 6759 6760
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6761 6762 6763 6764 6765 6766
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6767
 *
6768
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6769 6770
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6771
 *
P
Paul Jackson 已提交
6772 6773
 * Call with hotplug lock held
 */
6774
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6775
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6776
{
6777
	int i, j, n;
6778
	int new_topology;
P
Paul Jackson 已提交
6779

6780
	mutex_lock(&sched_domains_mutex);
6781

6782 6783 6784
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6785 6786 6787
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6788
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6789 6790 6791

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6792
		for (j = 0; j < n && !new_topology; j++) {
6793
			if (cpumask_equal(doms_cur[i], doms_new[j])
6794
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6795 6796 6797
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6798
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6799 6800 6801 6802
match1:
		;
	}

6803
	n = ndoms_cur;
6804
	if (doms_new == NULL) {
6805
		n = 0;
6806
		doms_new = &fallback_doms;
6807
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6808
		WARN_ON_ONCE(dattr_new);
6809 6810
	}

P
Paul Jackson 已提交
6811 6812
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6813
		for (j = 0; j < n && !new_topology; j++) {
6814
			if (cpumask_equal(doms_new[i], doms_cur[j])
6815
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6816 6817 6818
				goto match2;
		}
		/* no match - add a new doms_new */
6819
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6820 6821 6822 6823 6824
match2:
		;
	}

	/* Remember the new sched domains */
6825 6826
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6827
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6828
	doms_cur = doms_new;
6829
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6830
	ndoms_cur = ndoms_new;
6831 6832

	register_sched_domain_sysctl();
6833

6834
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6835 6836
}

6837 6838
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6839
/*
6840 6841 6842
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6843 6844 6845
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6846
 */
6847 6848
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6849
{
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6872
	case CPU_ONLINE:
6873
	case CPU_DOWN_FAILED:
6874
		cpuset_update_active_cpus(true);
6875
		break;
6876 6877 6878
	default:
		return NOTIFY_DONE;
	}
6879
	return NOTIFY_OK;
6880
}
6881

6882 6883
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6884
{
6885
	switch (action) {
6886
	case CPU_DOWN_PREPARE:
6887
		cpuset_update_active_cpus(false);
6888 6889 6890 6891 6892
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6893 6894 6895
	default:
		return NOTIFY_DONE;
	}
6896
	return NOTIFY_OK;
6897 6898
}

L
Linus Torvalds 已提交
6899 6900
void __init sched_init_smp(void)
{
6901 6902 6903
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6904
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6905

6906 6907
	sched_init_numa();

6908 6909 6910 6911 6912
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
6913
	mutex_lock(&sched_domains_mutex);
6914
	init_sched_domains(cpu_active_mask);
6915 6916 6917
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6918
	mutex_unlock(&sched_domains_mutex);
6919

6920
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6921 6922
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6923

6924
	init_hrtick();
6925 6926

	/* Move init over to a non-isolated CPU */
6927
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6928
		BUG();
I
Ingo Molnar 已提交
6929
	sched_init_granularity();
6930
	free_cpumask_var(non_isolated_cpus);
6931

6932
	init_sched_rt_class();
6933
	init_sched_dl_class();
L
Linus Torvalds 已提交
6934 6935 6936 6937
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6938
	sched_init_granularity();
L
Linus Torvalds 已提交
6939 6940 6941
}
#endif /* CONFIG_SMP */

6942 6943
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6944 6945 6946 6947 6948 6949 6950
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6951
#ifdef CONFIG_CGROUP_SCHED
6952 6953 6954 6955
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6956
struct task_group root_task_group;
6957
LIST_HEAD(task_groups);
6958
#endif
P
Peter Zijlstra 已提交
6959

6960
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6961

L
Linus Torvalds 已提交
6962 6963
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6964
	int i, j;
6965 6966 6967 6968 6969 6970 6971
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6972
#endif
6973
#ifdef CONFIG_CPUMASK_OFFSTACK
6974
	alloc_size += num_possible_cpus() * cpumask_size();
6975 6976
#endif
	if (alloc_size) {
6977
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6978 6979

#ifdef CONFIG_FAIR_GROUP_SCHED
6980
		root_task_group.se = (struct sched_entity **)ptr;
6981 6982
		ptr += nr_cpu_ids * sizeof(void **);

6983
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6984
		ptr += nr_cpu_ids * sizeof(void **);
6985

6986
#endif /* CONFIG_FAIR_GROUP_SCHED */
6987
#ifdef CONFIG_RT_GROUP_SCHED
6988
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6989 6990
		ptr += nr_cpu_ids * sizeof(void **);

6991
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6992 6993
		ptr += nr_cpu_ids * sizeof(void **);

6994
#endif /* CONFIG_RT_GROUP_SCHED */
6995 6996
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6997
			per_cpu(load_balance_mask, i) = (void *)ptr;
6998 6999 7000
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
7001
	}
I
Ingo Molnar 已提交
7002

7003 7004 7005
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
7006
			global_rt_period(), global_rt_runtime());
7007

G
Gregory Haskins 已提交
7008 7009 7010 7011
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7012
#ifdef CONFIG_RT_GROUP_SCHED
7013
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7014
			global_rt_period(), global_rt_runtime());
7015
#endif /* CONFIG_RT_GROUP_SCHED */
7016

D
Dhaval Giani 已提交
7017
#ifdef CONFIG_CGROUP_SCHED
7018 7019
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
7020
	INIT_LIST_HEAD(&root_task_group.siblings);
7021
	autogroup_init(&init_task);
7022

D
Dhaval Giani 已提交
7023
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
7024

7025
	for_each_possible_cpu(i) {
7026
		struct rq *rq;
L
Linus Torvalds 已提交
7027 7028

		rq = cpu_rq(i);
7029
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
7030
		rq->nr_running = 0;
7031 7032
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
7033
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
7034
		init_rt_rq(&rq->rt, rq);
7035
		init_dl_rq(&rq->dl, rq);
I
Ingo Molnar 已提交
7036
#ifdef CONFIG_FAIR_GROUP_SCHED
7037
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
7038
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
7039
		/*
7040
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
7041 7042 7043 7044
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
7045
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
7046 7047 7048
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
7049
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
7050 7051 7052
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
7053
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
7054
		 *
7055 7056
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
7057
		 */
7058
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7059
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
7060 7061 7062
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7063
#ifdef CONFIG_RT_GROUP_SCHED
7064
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
7065
#endif
L
Linus Torvalds 已提交
7066

I
Ingo Molnar 已提交
7067 7068
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
7069 7070 7071

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
7072
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7073
		rq->sd = NULL;
G
Gregory Haskins 已提交
7074
		rq->rd = NULL;
7075
		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7076
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7077
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7078
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7079
		rq->push_cpu = 0;
7080
		rq->cpu = i;
7081
		rq->online = 0;
7082 7083
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7084
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7085 7086 7087

		INIT_LIST_HEAD(&rq->cfs_tasks);

7088
		rq_attach_root(rq, &def_root_domain);
7089
#ifdef CONFIG_NO_HZ_COMMON
7090
		rq->nohz_flags = 0;
7091
#endif
7092 7093 7094
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7095
#endif
P
Peter Zijlstra 已提交
7096
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7097 7098 7099
		atomic_set(&rq->nr_iowait, 0);
	}

7100
	set_load_weight(&init_task);
7101

7102 7103 7104 7105
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7119 7120 7121

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7122 7123 7124 7125
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7126

7127
#ifdef CONFIG_SMP
7128
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7129 7130 7131
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7132
	idle_thread_set_boot_cpu();
7133
	set_cpu_rq_start_time();
7134 7135
#endif
	init_sched_fair_class();
7136

7137
	scheduler_running = 1;
L
Linus Torvalds 已提交
7138 7139
}

7140
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7141 7142
static inline int preempt_count_equals(int preempt_offset)
{
7143
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7144

A
Arnd Bergmann 已提交
7145
	return (nested == preempt_offset);
7146 7147
}

7148
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7149 7150 7151
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7152
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7153 7154
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7155
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7156 7157 7158 7159 7160
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7161 7162 7163 7164 7165 7166 7167
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7168 7169 7170 7171

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7172 7173 7174 7175 7176 7177 7178
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7179
	dump_stack();
L
Linus Torvalds 已提交
7180 7181 7182 7183 7184
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7185 7186
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7187
	const struct sched_class *prev_class = p->sched_class;
7188 7189 7190
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
7191
	int old_prio = p->prio;
7192
	int queued;
7193

7194 7195
	queued = task_on_rq_queued(p);
	if (queued)
7196
		dequeue_task(rq, p, 0);
7197
	__setscheduler(rq, p, &attr);
7198
	if (queued) {
7199
		enqueue_task(rq, p, 0);
7200
		resched_curr(rq);
7201
	}
P
Peter Zijlstra 已提交
7202 7203

	check_class_changed(rq, p, prev_class, old_prio);
7204 7205
}

L
Linus Torvalds 已提交
7206 7207
void normalize_rt_tasks(void)
{
7208
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7209
	unsigned long flags;
7210
	struct rq *rq;
L
Linus Torvalds 已提交
7211

7212
	read_lock_irqsave(&tasklist_lock, flags);
7213
	for_each_process_thread(g, p) {
7214 7215 7216 7217 7218 7219
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7220 7221
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7222 7223 7224
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7225
#endif
I
Ingo Molnar 已提交
7226

7227
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7228 7229 7230 7231
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7232
			if (task_nice(p) < 0 && p->mm)
I
Ingo Molnar 已提交
7233
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7234
			continue;
I
Ingo Molnar 已提交
7235
		}
L
Linus Torvalds 已提交
7236

7237
		raw_spin_lock(&p->pi_lock);
7238
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7239

7240
		normalize_task(rq, p);
7241

7242
		__task_rq_unlock(rq);
7243
		raw_spin_unlock(&p->pi_lock);
7244
	}
7245
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7246 7247 7248
}

#endif /* CONFIG_MAGIC_SYSRQ */
7249

7250
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7251
/*
7252
 * These functions are only useful for the IA64 MCA handling, or kdb.
7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7266 7267
 *
 * Return: The current task for @cpu.
7268
 */
7269
struct task_struct *curr_task(int cpu)
7270 7271 7272 7273
{
	return cpu_curr(cpu);
}

7274 7275 7276
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7277 7278 7279 7280 7281 7282
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7283 7284
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7285 7286 7287 7288 7289 7290 7291
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7292
void set_curr_task(int cpu, struct task_struct *p)
7293 7294 7295 7296 7297
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7298

D
Dhaval Giani 已提交
7299
#ifdef CONFIG_CGROUP_SCHED
7300 7301 7302
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7303 7304 7305 7306
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7307
	autogroup_free(tg);
7308 7309 7310 7311
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7312
struct task_group *sched_create_group(struct task_group *parent)
7313 7314 7315 7316 7317 7318 7319
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7320
	if (!alloc_fair_sched_group(tg, parent))
7321 7322
		goto err;

7323
	if (!alloc_rt_sched_group(tg, parent))
7324 7325
		goto err;

7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7337
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7338
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7339 7340 7341 7342 7343

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7344
	list_add_rcu(&tg->siblings, &parent->children);
7345
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7346 7347
}

7348
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7349
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7350 7351
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7352
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7353 7354
}

7355
/* Destroy runqueue etc associated with a task group */
7356
void sched_destroy_group(struct task_group *tg)
7357 7358 7359 7360 7361 7362
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7363
{
7364
	unsigned long flags;
7365
	int i;
S
Srivatsa Vaddagiri 已提交
7366

7367 7368
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7369
		unregister_fair_sched_group(tg, i);
7370 7371

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7372
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7373
	list_del_rcu(&tg->siblings);
7374
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7375 7376
}

7377
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7378 7379 7380
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7381 7382
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7383
{
P
Peter Zijlstra 已提交
7384
	struct task_group *tg;
7385
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7386 7387 7388 7389 7390
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7391
	running = task_current(rq, tsk);
7392
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7393

7394
	if (queued)
S
Srivatsa Vaddagiri 已提交
7395
		dequeue_task(rq, tsk, 0);
7396
	if (unlikely(running))
7397
		put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7398

7399
	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
P
Peter Zijlstra 已提交
7400 7401 7402 7403 7404
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7405
#ifdef CONFIG_FAIR_GROUP_SCHED
7406
	if (tsk->sched_class->task_move_group)
7407
		tsk->sched_class->task_move_group(tsk, queued);
7408
	else
P
Peter Zijlstra 已提交
7409
#endif
7410
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7411

7412 7413
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7414
	if (queued)
7415
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7416

7417
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7418
}
D
Dhaval Giani 已提交
7419
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7420

7421 7422 7423 7424 7425
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7426

P
Peter Zijlstra 已提交
7427 7428
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7429
{
P
Peter Zijlstra 已提交
7430
	struct task_struct *g, *p;
7431

7432
	for_each_process_thread(g, p) {
7433
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7434
			return 1;
7435
	}
7436

P
Peter Zijlstra 已提交
7437 7438
	return 0;
}
7439

P
Peter Zijlstra 已提交
7440 7441 7442 7443 7444
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7445

7446
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7447 7448 7449 7450 7451
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7452

P
Peter Zijlstra 已提交
7453 7454
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7455

P
Peter Zijlstra 已提交
7456 7457 7458
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7459 7460
	}

7461 7462 7463 7464 7465
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7466

7467 7468 7469
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7470 7471
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7472

P
Peter Zijlstra 已提交
7473
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7474

7475 7476 7477 7478 7479
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7480

7481 7482 7483
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7484 7485 7486
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7487

P
Peter Zijlstra 已提交
7488 7489 7490 7491
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7492

P
Peter Zijlstra 已提交
7493
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7494
	}
P
Peter Zijlstra 已提交
7495

P
Peter Zijlstra 已提交
7496 7497 7498 7499
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7500 7501
}

P
Peter Zijlstra 已提交
7502
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7503
{
7504 7505
	int ret;

P
Peter Zijlstra 已提交
7506 7507 7508 7509 7510 7511
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7512 7513 7514 7515 7516
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7517 7518
}

7519
static int tg_set_rt_bandwidth(struct task_group *tg,
7520
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7521
{
P
Peter Zijlstra 已提交
7522
	int i, err = 0;
P
Peter Zijlstra 已提交
7523 7524

	mutex_lock(&rt_constraints_mutex);
7525
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7526 7527
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7528
		goto unlock;
P
Peter Zijlstra 已提交
7529

7530
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7531 7532
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7533 7534 7535 7536

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7537
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7538
		rt_rq->rt_runtime = rt_runtime;
7539
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7540
	}
7541
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7542
unlock:
7543
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7544 7545 7546
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7547 7548
}

7549
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7550 7551 7552 7553 7554 7555 7556 7557
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7558
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7559 7560
}

7561
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7562 7563 7564
{
	u64 rt_runtime_us;

7565
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7566 7567
		return -1;

7568
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7569 7570 7571
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7572

7573
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7574 7575 7576 7577 7578 7579
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7580 7581 7582
	if (rt_period == 0)
		return -EINVAL;

7583
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7584 7585
}

7586
static long sched_group_rt_period(struct task_group *tg)
7587 7588 7589 7590 7591 7592 7593
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7594
#endif /* CONFIG_RT_GROUP_SCHED */
7595

7596
#ifdef CONFIG_RT_GROUP_SCHED
7597 7598 7599 7600 7601
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7602
	read_lock(&tasklist_lock);
7603
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7604
	read_unlock(&tasklist_lock);
7605 7606 7607 7608
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7609

7610
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7611 7612 7613 7614 7615 7616 7617 7618
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7619
#else /* !CONFIG_RT_GROUP_SCHED */
7620 7621
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7622
	unsigned long flags;
7623
	int i, ret = 0;
7624

7625
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7626 7627 7628
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7629
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7630
		rt_rq->rt_runtime = global_rt_runtime();
7631
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7632
	}
7633
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7634

7635
	return ret;
7636
}
7637
#endif /* CONFIG_RT_GROUP_SCHED */
7638

7639 7640
static int sched_dl_global_constraints(void)
{
7641 7642
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7643
	u64 new_bw = to_ratio(period, runtime);
7644
	int cpu, ret = 0;
7645
	unsigned long flags;
7646 7647 7648 7649 7650 7651 7652 7653 7654 7655

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7656 7657
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);
7658

7659
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7660 7661
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7662
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7663 7664 7665

		if (ret)
			break;
7666 7667
	}

7668
	return ret;
7669 7670
}

7671
static void sched_dl_do_global(void)
7672
{
7673 7674
	u64 new_bw = -1;
	int cpu;
7675
	unsigned long flags;
7676

7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);

7689
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7690
		dl_b->bw = new_bw;
7691
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7692
	}
7693 7694 7695 7696 7697 7698 7699
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7700 7701
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7702 7703 7704 7705 7706 7707 7708 7709 7710
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7711 7712
}

7713
int sched_rt_handler(struct ctl_table *table, int write,
7714
		void __user *buffer, size_t *lenp,
7715 7716 7717 7718
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7719
	int ret;
7720 7721 7722 7723 7724

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7725
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7726 7727

	if (!ret && write) {
7728 7729 7730 7731
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7732
		ret = sched_rt_global_constraints();
7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746
		if (ret)
			goto undo;

		ret = sched_dl_global_constraints();
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7747 7748 7749 7750 7751
	}
	mutex_unlock(&mutex);

	return ret;
}
7752

7753
int sched_rr_handler(struct ctl_table *table, int write,
7754 7755 7756 7757 7758 7759 7760 7761
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7762 7763
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7764
	if (!ret && write) {
7765 7766
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7767 7768 7769 7770 7771
	}
	mutex_unlock(&mutex);
	return ret;
}

7772
#ifdef CONFIG_CGROUP_SCHED
7773

7774
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7775
{
7776
	return css ? container_of(css, struct task_group, css) : NULL;
7777 7778
}

7779 7780
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7781
{
7782 7783
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7784

7785
	if (!parent) {
7786
		/* This is early initialization for the top cgroup */
7787
		return &root_task_group.css;
7788 7789
	}

7790
	tg = sched_create_group(parent);
7791 7792 7793 7794 7795 7796
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7797
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7798
{
7799
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
7800
	struct task_group *parent = css_tg(css->parent);
7801

T
Tejun Heo 已提交
7802 7803
	if (parent)
		sched_online_group(tg, parent);
7804 7805 7806
	return 0;
}

7807
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7808
{
7809
	struct task_group *tg = css_tg(css);
7810 7811 7812 7813

	sched_destroy_group(tg);
}

7814
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7815
{
7816
	struct task_group *tg = css_tg(css);
7817 7818 7819 7820

	sched_offline_group(tg);
}

7821
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7822
				 struct cgroup_taskset *tset)
7823
{
7824 7825
	struct task_struct *task;

7826
	cgroup_taskset_for_each(task, tset) {
7827
#ifdef CONFIG_RT_GROUP_SCHED
7828
		if (!sched_rt_can_attach(css_tg(css), task))
7829
			return -EINVAL;
7830
#else
7831 7832 7833
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7834
#endif
7835
	}
7836 7837
	return 0;
}
7838

7839
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7840
			      struct cgroup_taskset *tset)
7841
{
7842 7843
	struct task_struct *task;

7844
	cgroup_taskset_for_each(task, tset)
7845
		sched_move_task(task);
7846 7847
}

7848 7849 7850
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7863
#ifdef CONFIG_FAIR_GROUP_SCHED
7864 7865
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7866
{
7867
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7868 7869
}

7870 7871
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7872
{
7873
	struct task_group *tg = css_tg(css);
7874

7875
	return (u64) scale_load_down(tg->shares);
7876
}
7877 7878

#ifdef CONFIG_CFS_BANDWIDTH
7879 7880
static DEFINE_MUTEX(cfs_constraints_mutex);

7881 7882 7883
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7884 7885
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7886 7887
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7888
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7889
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7910 7911 7912 7913 7914
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
7915 7916 7917 7918 7919
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7920
	runtime_enabled = quota != RUNTIME_INF;
7921
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7922 7923 7924 7925 7926 7927
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7928 7929 7930
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7931

P
Paul Turner 已提交
7932
	__refill_cfs_bandwidth_runtime(cfs_b);
7933 7934 7935
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
7936
		__start_cfs_bandwidth(cfs_b, true);
7937
	}
7938 7939
	raw_spin_unlock_irq(&cfs_b->lock);

7940
	for_each_online_cpu(i) {
7941
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7942
		struct rq *rq = cfs_rq->rq;
7943 7944

		raw_spin_lock_irq(&rq->lock);
7945
		cfs_rq->runtime_enabled = runtime_enabled;
7946
		cfs_rq->runtime_remaining = 0;
7947

7948
		if (cfs_rq->throttled)
7949
			unthrottle_cfs_rq(cfs_rq);
7950 7951
		raw_spin_unlock_irq(&rq->lock);
	}
7952 7953
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7954 7955
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7956
	put_online_cpus();
7957

7958
	return ret;
7959 7960 7961 7962 7963 7964
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7965
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7978
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7979 7980
		return -1;

7981
	quota_us = tg->cfs_bandwidth.quota;
7982 7983 7984 7985 7986 7987 7988 7989 7990 7991
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7992
	quota = tg->cfs_bandwidth.quota;
7993 7994 7995 7996 7997 7998 7999 8000

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

8001
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8002 8003 8004 8005 8006
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

8007 8008
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
8009
{
8010
	return tg_get_cfs_quota(css_tg(css));
8011 8012
}

8013 8014
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
8015
{
8016
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8017 8018
}

8019 8020
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8021
{
8022
	return tg_get_cfs_period(css_tg(css));
8023 8024
}

8025 8026
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
8027
{
8028
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8029 8030
}

8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
8063
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8064 8065 8066 8067 8068
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
8069
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8070 8071

		quota = normalize_cfs_quota(tg, d);
8072
		parent_quota = parent_b->hierarchical_quota;
8073 8074 8075 8076 8077 8078 8079 8080 8081 8082

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
8083
	cfs_b->hierarchical_quota = quota;
8084 8085 8086 8087 8088 8089

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8090
	int ret;
8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8102 8103 8104 8105 8106
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8107
}
8108

8109
static int cpu_stats_show(struct seq_file *sf, void *v)
8110
{
8111
	struct task_group *tg = css_tg(seq_css(sf));
8112
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8113

8114 8115 8116
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8117 8118 8119

	return 0;
}
8120
#endif /* CONFIG_CFS_BANDWIDTH */
8121
#endif /* CONFIG_FAIR_GROUP_SCHED */
8122

8123
#ifdef CONFIG_RT_GROUP_SCHED
8124 8125
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8126
{
8127
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8128 8129
}

8130 8131
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8132
{
8133
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8134
}
8135

8136 8137
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8138
{
8139
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8140 8141
}

8142 8143
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8144
{
8145
	return sched_group_rt_period(css_tg(css));
8146
}
8147
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8148

8149
static struct cftype cpu_files[] = {
8150
#ifdef CONFIG_FAIR_GROUP_SCHED
8151 8152
	{
		.name = "shares",
8153 8154
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8155
	},
8156
#endif
8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8168 8169
	{
		.name = "stat",
8170
		.seq_show = cpu_stats_show,
8171
	},
8172
#endif
8173
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8174
	{
P
Peter Zijlstra 已提交
8175
		.name = "rt_runtime_us",
8176 8177
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8178
	},
8179 8180
	{
		.name = "rt_period_us",
8181 8182
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8183
	},
8184
#endif
8185
	{ }	/* terminate */
8186 8187
};

8188
struct cgroup_subsys cpu_cgrp_subsys = {
8189 8190
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8191 8192
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8193 8194
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8195
	.exit		= cpu_cgroup_exit,
8196
	.legacy_cftypes	= cpu_files,
8197 8198 8199
	.early_init	= 1,
};

8200
#endif	/* CONFIG_CGROUP_SCHED */
8201

8202 8203 8204 8205 8206
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}