core.c 192.5 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#ifdef smp_mb__before_atomic
void __smp_mb__before_atomic(void)
{
	smp_mb__before_atomic();
}
EXPORT_SYMBOL(__smp_mb__before_atomic);
#endif

#ifdef smp_mb__after_atomic
void __smp_mb__after_atomic(void)
{
	smp_mb__after_atomic();
}
EXPORT_SYMBOL(__smp_mb__after_atomic);
#endif

109
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110
{
111 112
	unsigned long delta;
	ktime_t soft, hard, now;
113

114 115 116 117 118 119
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
120

121 122 123 124 125 126 127 128
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

129 130
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131

132
static void update_rq_clock_task(struct rq *rq, s64 delta);
133

134
void update_rq_clock(struct rq *rq)
135
{
136
	s64 delta;
137

138
	if (rq->skip_clock_update > 0)
139
		return;
140

141
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
142 143
	if (delta < 0)
		return;
144 145
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
146 147
}

I
Ingo Molnar 已提交
148 149 150
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
151 152 153 154

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
155
const_debug unsigned int sysctl_sched_features =
156
#include "features.h"
P
Peter Zijlstra 已提交
157 158 159 160 161 162 163 164
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

165
static const char * const sched_feat_names[] = {
166
#include "features.h"
P
Peter Zijlstra 已提交
167 168 169 170
};

#undef SCHED_FEAT

L
Li Zefan 已提交
171
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
172 173 174
{
	int i;

175
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
176 177 178
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
179
	}
L
Li Zefan 已提交
180
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
181

L
Li Zefan 已提交
182
	return 0;
P
Peter Zijlstra 已提交
183 184
}

185 186
#ifdef HAVE_JUMP_LABEL

187 188
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
189 190 191 192

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

193
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
194 195 196 197 198 199 200
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
201 202
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
203 204 205 206
}

static void sched_feat_enable(int i)
{
207 208
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
209 210 211 212 213 214
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

215
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
216 217
{
	int i;
218
	int neg = 0;
P
Peter Zijlstra 已提交
219

H
Hillf Danton 已提交
220
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
221 222 223 224
		neg = 1;
		cmp += 3;
	}

225
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
226
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
227
			if (neg) {
P
Peter Zijlstra 已提交
228
				sysctl_sched_features &= ~(1UL << i);
229 230
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
231
				sysctl_sched_features |= (1UL << i);
232 233
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
234 235 236 237
			break;
		}
	}

238 239 240 241 242 243 244 245 246 247
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;
248
	struct inode *inode;
249 250 251 252 253 254 255 256 257 258

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

259 260 261
	/* Ensure the static_key remains in a consistent state */
	inode = file_inode(filp);
	mutex_lock(&inode->i_mutex);
262
	i = sched_feat_set(cmp);
263
	mutex_unlock(&inode->i_mutex);
264
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
265 266
		return -EINVAL;

267
	*ppos += cnt;
P
Peter Zijlstra 已提交
268 269 270 271

	return cnt;
}

L
Li Zefan 已提交
272 273 274 275 276
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

277
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
278 279 280 281 282
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
283 284 285 286 287 288 289 290 291 292
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
293
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
294

295 296 297 298 299 300
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

301 302 303 304 305 306 307 308
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
309
/*
P
Peter Zijlstra 已提交
310
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
311 312
 * default: 1s
 */
P
Peter Zijlstra 已提交
313
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
314

315
__read_mostly int scheduler_running;
316

P
Peter Zijlstra 已提交
317 318 319 320 321
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
322

323
/*
324
 * __task_rq_lock - lock the rq @p resides on.
325
 */
326
static inline struct rq *__task_rq_lock(struct task_struct *p)
327 328
	__acquires(rq->lock)
{
329 330
	struct rq *rq;

331 332
	lockdep_assert_held(&p->pi_lock);

333
	for (;;) {
334
		rq = task_rq(p);
335
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
336
		if (likely(rq == task_rq(p)))
337
			return rq;
338
		raw_spin_unlock(&rq->lock);
339 340 341
	}
}

L
Linus Torvalds 已提交
342
/*
343
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
344
 */
345
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
346
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
347 348
	__acquires(rq->lock)
{
349
	struct rq *rq;
L
Linus Torvalds 已提交
350

351
	for (;;) {
352
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
353
		rq = task_rq(p);
354
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
355
		if (likely(rq == task_rq(p)))
356
			return rq;
357 358
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
359 360 361
	}
}

A
Alexey Dobriyan 已提交
362
static void __task_rq_unlock(struct rq *rq)
363 364
	__releases(rq->lock)
{
365
	raw_spin_unlock(&rq->lock);
366 367
}

368 369
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
370
	__releases(rq->lock)
371
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
372
{
373 374
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
375 376 377
}

/*
378
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
379
 */
A
Alexey Dobriyan 已提交
380
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
381 382
	__acquires(rq->lock)
{
383
	struct rq *rq;
L
Linus Torvalds 已提交
384 385 386

	local_irq_disable();
	rq = this_rq();
387
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
388 389 390 391

	return rq;
}

P
Peter Zijlstra 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

413
	raw_spin_lock(&rq->lock);
414
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
415
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
416
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
417 418 419 420

	return HRTIMER_NORESTART;
}

421
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
422 423 424 425 426 427 428 429 430

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

431 432 433 434
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
435
{
436
	struct rq *rq = arg;
437

438
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
439
	__hrtick_restart(rq);
440
	rq->hrtick_csd_pending = 0;
441
	raw_spin_unlock(&rq->lock);
442 443
}

444 445 446 447 448
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
449
void hrtick_start(struct rq *rq, u64 delay)
450
{
451 452
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
453

454
	hrtimer_set_expires(timer, time);
455 456

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
457
		__hrtick_restart(rq);
458
	} else if (!rq->hrtick_csd_pending) {
459
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
460 461
		rq->hrtick_csd_pending = 1;
	}
462 463 464 465 466 467 468 469 470 471 472 473 474 475
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
476
		hrtick_clear(cpu_rq(cpu));
477 478 479 480 481 482
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

483
static __init void init_hrtick(void)
484 485 486
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
487 488 489 490 491 492
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
493
void hrtick_start(struct rq *rq, u64 delay)
494
{
495
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
496
			HRTIMER_MODE_REL_PINNED, 0);
497
}
498

A
Andrew Morton 已提交
499
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
500 501
{
}
502
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
503

504
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
505
{
506 507
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
508

509 510 511 512
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
513

514 515
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
516
}
A
Andrew Morton 已提交
517
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
518 519 520 521 522 523 524 525
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

526 527 528
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
529
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
530

531 532 533 534 535 536 537 538 539 540 541 542 543 544
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

545
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
546 547 548 549 550 551 552 553 554 555
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

581 582 583 584 585 586
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
587 588 589 590 591 592 593

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
594 595
#endif

I
Ingo Molnar 已提交
596
/*
597
 * resched_curr - mark rq's current task 'to be rescheduled now'.
I
Ingo Molnar 已提交
598 599 600 601 602
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
603
void resched_curr(struct rq *rq)
I
Ingo Molnar 已提交
604
{
605
	struct task_struct *curr = rq->curr;
I
Ingo Molnar 已提交
606 607
	int cpu;

608
	lockdep_assert_held(&rq->lock);
I
Ingo Molnar 已提交
609

610
	if (test_tsk_need_resched(curr))
I
Ingo Molnar 已提交
611 612
		return;

613
	cpu = cpu_of(rq);
614

615
	if (cpu == smp_processor_id()) {
616
		set_tsk_need_resched(curr);
617
		set_preempt_need_resched();
I
Ingo Molnar 已提交
618
		return;
619
	}
I
Ingo Molnar 已提交
620

621
	if (set_nr_and_not_polling(curr))
I
Ingo Molnar 已提交
622
		smp_send_reschedule(cpu);
623 624
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
625 626
}

627
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
628 629 630 631
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

632
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
633
		return;
634
	resched_curr(rq);
635
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
636
}
637

638
#ifdef CONFIG_SMP
639
#ifdef CONFIG_NO_HZ_COMMON
640 641 642 643 644 645 646 647
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
648
int get_nohz_timer_target(int pinned)
649 650 651 652 653
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

654 655 656
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

657
	rcu_read_lock();
658
	for_each_domain(cpu, sd) {
659 660 661 662 663 664
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
665
	}
666 667
unlock:
	rcu_read_unlock();
668 669
	return cpu;
}
670 671 672 673 674 675 676 677 678 679
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
680
static void wake_up_idle_cpu(int cpu)
681 682 683 684 685 686
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

687
	if (set_nr_and_not_polling(rq->idle))
688
		smp_send_reschedule(cpu);
689 690
	else
		trace_sched_wake_idle_without_ipi(cpu);
691 692
}

693
static bool wake_up_full_nohz_cpu(int cpu)
694
{
695 696 697 698 699 700
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
701
	if (tick_nohz_full_cpu(cpu)) {
702 703
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
704
			tick_nohz_full_kick_cpu(cpu);
705 706 707 708 709 710 711 712
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
713
	if (!wake_up_full_nohz_cpu(cpu))
714 715 716
		wake_up_idle_cpu(cpu);
}

717
static inline bool got_nohz_idle_kick(void)
718
{
719
	int cpu = smp_processor_id();
720 721 722 723 724 725 726 727 728 729 730 731 732

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
733 734
}

735
#else /* CONFIG_NO_HZ_COMMON */
736

737
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
738
{
739
	return false;
P
Peter Zijlstra 已提交
740 741
}

742
#endif /* CONFIG_NO_HZ_COMMON */
743

744 745 746
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
747 748 749 750 751
	/*
	 * More than one running task need preemption.
	 * nr_running update is assumed to be visible
	 * after IPI is sent from wakers.
	 */
752 753
	if (this_rq()->nr_running > 1)
		return false;
754

755
	return true;
756 757
}
#endif /* CONFIG_NO_HZ_FULL */
758

759
void sched_avg_update(struct rq *rq)
760
{
761 762
	s64 period = sched_avg_period();

763
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
764 765 766 767 768 769
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
770 771 772
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
773 774
}

775
#endif /* CONFIG_SMP */
776

777 778
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
779
/*
780 781 782 783
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
784
 */
785
int walk_tg_tree_from(struct task_group *from,
786
			     tg_visitor down, tg_visitor up, void *data)
787 788
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
789
	int ret;
790

791 792
	parent = from;

793
down:
P
Peter Zijlstra 已提交
794 795
	ret = (*down)(parent, data);
	if (ret)
796
		goto out;
797 798 799 800 801 802 803
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
804
	ret = (*up)(parent, data);
805 806
	if (ret || parent == from)
		goto out;
807 808 809 810 811

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
812
out:
P
Peter Zijlstra 已提交
813
	return ret;
814 815
}

816
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
817
{
818
	return 0;
P
Peter Zijlstra 已提交
819
}
820 821
#endif

822 823
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
824 825 826
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
827 828 829 830
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
831
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
832
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
833 834
		return;
	}
835

836
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
837
	load->inv_weight = prio_to_wmult[prio];
838 839
}

840
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
841
{
842
	update_rq_clock(rq);
843
	sched_info_queued(rq, p);
844
	p->sched_class->enqueue_task(rq, p, flags);
845 846
}

847
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
848
{
849
	update_rq_clock(rq);
850
	sched_info_dequeued(rq, p);
851
	p->sched_class->dequeue_task(rq, p, flags);
852 853
}

854
void activate_task(struct rq *rq, struct task_struct *p, int flags)
855 856 857 858
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

859
	enqueue_task(rq, p, flags);
860 861
}

862
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
863 864 865 866
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

867
	dequeue_task(rq, p, flags);
868 869
}

870
static void update_rq_clock_task(struct rq *rq, s64 delta)
871
{
872 873 874 875 876 877 878 879
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
880
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
902 903
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
904
	if (static_key_false((&paravirt_steal_rq_enabled))) {
905 906 907 908 909 910 911 912 913 914 915
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

916 917
	rq->clock_task += delta;

918
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
919
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
920 921
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
922 923
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

954
/*
I
Ingo Molnar 已提交
955
 * __normal_prio - return the priority that is based on the static prio
956 957 958
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
959
	return p->static_prio;
960 961
}

962 963 964 965 966 967 968
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
969
static inline int normal_prio(struct task_struct *p)
970 971 972
{
	int prio;

973 974 975
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
976 977 978 979 980 981 982 983 984 985 986 987 988
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
989
static int effective_prio(struct task_struct *p)
990 991 992 993 994 995 996 997 998 999 1000 1001
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1002 1003 1004
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
1005 1006
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
1007
 */
1008
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1009 1010 1011 1012
{
	return cpu_curr(task_cpu(p)) == p;
}

1013 1014
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1015
				       int oldprio)
1016 1017 1018
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1019 1020
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
1021
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1022
		p->sched_class->prio_changed(rq, p, oldprio);
1023 1024
}

1025
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
1036
				resched_curr(rq);
1037 1038 1039 1040 1041 1042 1043 1044 1045
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
1046
	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1047 1048 1049
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1050
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1051
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1052
{
1053 1054 1055 1056 1057
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1058
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1059
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1060 1061

#ifdef CONFIG_LOCKDEP
1062 1063 1064 1065 1066
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1067
	 * see task_group().
1068 1069 1070 1071
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1072 1073 1074
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1075 1076
#endif

1077
	trace_sched_migrate_task(p, new_cpu);
1078

1079
	if (task_cpu(p) != new_cpu) {
1080 1081
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1082
		p->se.nr_migrations++;
1083
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1084
	}
I
Ingo Molnar 已提交
1085 1086

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1087 1088
}

1089 1090
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
1091
	if (task_on_rq_queued(p)) {
1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1125 1126
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1147 1148
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1171 1172 1173 1174
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1175 1176 1177 1178 1179 1180 1181 1182 1183
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1184
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1185 1186 1187 1188 1189 1190
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1191
struct migration_arg {
1192
	struct task_struct *task;
L
Linus Torvalds 已提交
1193
	int dest_cpu;
1194
};
L
Linus Torvalds 已提交
1195

1196 1197
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1198 1199 1200
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1201 1202 1203 1204 1205 1206 1207
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1208 1209 1210 1211 1212 1213
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1214
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1215 1216
{
	unsigned long flags;
1217
	int running, queued;
R
Roland McGrath 已提交
1218
	unsigned long ncsw;
1219
	struct rq *rq;
L
Linus Torvalds 已提交
1220

1221 1222 1223 1224 1225 1226 1227 1228
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1229

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1241 1242 1243
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1244
			cpu_relax();
R
Roland McGrath 已提交
1245
		}
1246

1247 1248 1249 1250 1251 1252
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1253
		trace_sched_wait_task(p);
1254
		running = task_running(rq, p);
1255
		queued = task_on_rq_queued(p);
R
Roland McGrath 已提交
1256
		ncsw = 0;
1257
		if (!match_state || p->state == match_state)
1258
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1259
		task_rq_unlock(rq, p, &flags);
1260

R
Roland McGrath 已提交
1261 1262 1263 1264 1265 1266
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1277

1278 1279 1280 1281 1282
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1283
		 * So if it was still runnable (but just not actively
1284 1285 1286
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
1287
		if (unlikely(queued)) {
1288 1289 1290 1291
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1292 1293
			continue;
		}
1294

1295 1296 1297 1298 1299 1300 1301
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1302 1303

	return ncsw;
L
Linus Torvalds 已提交
1304 1305 1306 1307 1308 1309 1310 1311 1312
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1313
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1314 1315 1316 1317 1318
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1319
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1320 1321 1322 1323 1324 1325 1326 1327 1328
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1329
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1330
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1331

1332
#ifdef CONFIG_SMP
1333
/*
1334
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1335
 */
1336 1337
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1338 1339
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1340 1341
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1360
	}
1361

1362 1363
	for (;;) {
		/* Any allowed, online CPU? */
1364
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1365 1366 1367 1368 1369 1370
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1371

1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1398
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1399 1400
					task_pid_nr(p), p->comm, cpu);
		}
1401 1402 1403 1404 1405
	}

	return dest_cpu;
}

1406
/*
1407
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1408
 */
1409
static inline
1410
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1411
{
1412
	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1424
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1425
		     !cpu_online(cpu)))
1426
		cpu = select_fallback_rq(task_cpu(p), p);
1427 1428

	return cpu;
1429
}
1430 1431 1432 1433 1434 1435

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1436 1437
#endif

P
Peter Zijlstra 已提交
1438
static void
1439
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1440
{
P
Peter Zijlstra 已提交
1441
#ifdef CONFIG_SCHEDSTATS
1442 1443
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1454
		rcu_read_lock();
P
Peter Zijlstra 已提交
1455 1456 1457 1458 1459 1460
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1461
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1462
	}
1463 1464 1465 1466

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1467 1468 1469
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1470
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1471 1472

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1473
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1474 1475 1476 1477 1478 1479

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1480
	activate_task(rq, p, en_flags);
1481
	p->on_rq = TASK_ON_RQ_QUEUED;
1482 1483 1484 1485

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1486 1487
}

1488 1489 1490
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1491
static void
1492
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1493 1494
{
	check_preempt_curr(rq, p, wake_flags);
1495
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1496 1497 1498 1499 1500 1501

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1502
	if (rq->idle_stamp) {
1503
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1504
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1505

1506 1507 1508
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1509
			rq->avg_idle = max;
1510

T
Tejun Heo 已提交
1511 1512 1513 1514 1515
		rq->idle_stamp = 0;
	}
#endif
}

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
1540
	if (task_on_rq_queued(p)) {
1541 1542
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1543 1544 1545 1546 1547 1548 1549 1550
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1551
#ifdef CONFIG_SMP
1552
void sched_ttwu_pending(void)
1553 1554
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1555 1556
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1557
	unsigned long flags;
1558

1559 1560 1561 1562
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1563

P
Peter Zijlstra 已提交
1564 1565 1566
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1567 1568 1569
		ttwu_do_activate(rq, p, 0);
	}

1570
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1571 1572 1573 1574
}

void scheduler_ipi(void)
{
1575 1576 1577 1578 1579
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1580
	preempt_fold_need_resched();
1581

1582
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1599
	sched_ttwu_pending();
1600 1601 1602 1603

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1604
	if (unlikely(got_nohz_idle_kick())) {
1605
		this_rq()->idle_balance = 1;
1606
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1607
	}
1608
	irq_exit();
1609 1610 1611 1612
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1613 1614 1615 1616 1617 1618 1619 1620
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1621
}
1622

1623
bool cpus_share_cache(int this_cpu, int that_cpu)
1624 1625 1626
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1627
#endif /* CONFIG_SMP */
1628

1629 1630 1631 1632
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1633
#if defined(CONFIG_SMP)
1634
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1635
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1636 1637 1638 1639 1640
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1641 1642 1643
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1644 1645 1646
}

/**
L
Linus Torvalds 已提交
1647
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1648
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1649
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1650
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656 1657
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1658
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1659
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1660
 */
1661 1662
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1663 1664
{
	unsigned long flags;
1665
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1666

1667 1668 1669 1670 1671 1672 1673
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1674
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1675
	if (!(p->state & state))
L
Linus Torvalds 已提交
1676 1677
		goto out;

1678
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1679 1680
	cpu = task_cpu(p);

1681
	if (task_on_rq_queued(p) && ttwu_remote(p, wake_flags))
1682
		goto stat;
L
Linus Torvalds 已提交
1683 1684

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1685
	/*
1686 1687
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1688
	 */
1689
	while (p->on_cpu)
1690
		cpu_relax();
1691
	/*
1692
	 * Pairs with the smp_wmb() in finish_lock_switch().
1693
	 */
1694
	smp_rmb();
L
Linus Torvalds 已提交
1695

1696
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1697
	p->state = TASK_WAKING;
1698

1699
	if (p->sched_class->task_waking)
1700
		p->sched_class->task_waking(p);
1701

1702
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1703 1704
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1705
		set_task_cpu(p, cpu);
1706
	}
L
Linus Torvalds 已提交
1707 1708
#endif /* CONFIG_SMP */

1709 1710
	ttwu_queue(p, cpu);
stat:
1711
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1712
out:
1713
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1714 1715 1716 1717

	return success;
}

T
Tejun Heo 已提交
1718 1719 1720 1721
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1722
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1723
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1724
 * the current task.
T
Tejun Heo 已提交
1725 1726 1727 1728 1729
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1730 1731 1732 1733
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1734 1735
	lockdep_assert_held(&rq->lock);

1736 1737 1738 1739 1740 1741
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1742
	if (!(p->state & TASK_NORMAL))
1743
		goto out;
T
Tejun Heo 已提交
1744

1745
	if (!task_on_rq_queued(p))
P
Peter Zijlstra 已提交
1746 1747
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1748
	ttwu_do_wakeup(rq, p, 0);
1749
	ttwu_stat(p, smp_processor_id(), 0);
1750 1751
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1752 1753
}

1754 1755 1756 1757 1758
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1759 1760 1761
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1762 1763 1764 1765
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1766
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1767
{
1768 1769
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1770 1771 1772
}
EXPORT_SYMBOL(wake_up_process);

1773
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1774 1775 1776 1777 1778 1779 1780
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1781 1782 1783
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1784
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1785
{
P
Peter Zijlstra 已提交
1786 1787 1788
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1789 1790
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1791
	p->se.prev_sum_exec_runtime	= 0;
1792
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1793
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1794
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1795 1796

#ifdef CONFIG_SCHEDSTATS
1797
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1798
#endif
N
Nick Piggin 已提交
1799

1800 1801 1802 1803
	RB_CLEAR_NODE(&p->dl.rb_node);
	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	p->dl.dl_runtime = p->dl.runtime = 0;
	p->dl.dl_deadline = p->dl.deadline = 0;
1804
	p->dl.dl_period = 0;
1805 1806
	p->dl.flags = 0;

P
Peter Zijlstra 已提交
1807
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1808

1809 1810 1811
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1812 1813 1814

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1815
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1816 1817 1818
		p->mm->numa_scan_seq = 0;
	}

1819 1820 1821 1822 1823
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1824 1825
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1826
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1827
	p->numa_work.next = &p->numa_work;
1828 1829
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1830 1831
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1832 1833 1834

	INIT_LIST_HEAD(&p->numa_entry);
	p->numa_group = NULL;
1835
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1836 1837
}

1838
#ifdef CONFIG_NUMA_BALANCING
1839
#ifdef CONFIG_SCHED_DEBUG
1840 1841 1842 1843 1844 1845 1846
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1847 1848 1849 1850 1851 1852
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1853
}
1854
#endif /* CONFIG_SCHED_DEBUG */
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1878 1879 1880 1881

/*
 * fork()/clone()-time setup:
 */
1882
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1883
{
1884
	unsigned long flags;
I
Ingo Molnar 已提交
1885 1886
	int cpu = get_cpu();

1887
	__sched_fork(clone_flags, p);
1888
	/*
1889
	 * We mark the process as running here. This guarantees that
1890 1891 1892
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1893
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1894

1895 1896 1897 1898 1899
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1900 1901 1902 1903
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1904
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1905
			p->policy = SCHED_NORMAL;
1906
			p->static_prio = NICE_TO_PRIO(0);
1907 1908 1909 1910 1911 1912
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1913

1914 1915 1916 1917 1918 1919
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1920

1921 1922 1923 1924 1925 1926
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1927
		p->sched_class = &fair_sched_class;
1928
	}
1929

P
Peter Zijlstra 已提交
1930 1931 1932
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1933 1934 1935 1936 1937 1938 1939
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1940
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1941
	set_task_cpu(p, cpu);
1942
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1943

1944
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1945
	if (likely(sched_info_on()))
1946
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1947
#endif
P
Peter Zijlstra 已提交
1948 1949
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1950
#endif
1951
	init_task_preempt_count(p);
1952
#ifdef CONFIG_SMP
1953
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1954
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1955
#endif
1956

N
Nick Piggin 已提交
1957
	put_cpu();
1958
	return 0;
L
Linus Torvalds 已提交
1959 1960
}

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->rd->dl_bw;
}

1983
static inline int dl_bw_cpus(int i)
1984
{
1985 1986 1987 1988 1989 1990 1991
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
1992 1993 1994 1995 1996 1997 1998
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

1999
static inline int dl_bw_cpus(int i)
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
{
	return 1;
}
#endif

static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2037
	u64 period = attr->sched_period ?: attr->sched_deadline;
2038 2039
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2040
	int cpus, err = -1;
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2051
	cpus = dl_bw_cpus(task_cpu(p));
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2072 2073 2074 2075 2076 2077 2078
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2079
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2080 2081
{
	unsigned long flags;
I
Ingo Molnar 已提交
2082
	struct rq *rq;
2083

2084
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2085 2086 2087 2088 2089 2090
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2091
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2092 2093
#endif

2094 2095
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2096
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2097
	activate_task(rq, p, 0);
2098
	p->on_rq = TASK_ON_RQ_QUEUED;
2099
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2100
	check_preempt_curr(rq, p, WF_FORK);
2101
#ifdef CONFIG_SMP
2102 2103
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2104
#endif
2105
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2106 2107
}

2108 2109 2110
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2111
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2112
 * @notifier: notifier struct to register
2113 2114 2115 2116 2117 2118 2119 2120 2121
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2122
 * @notifier: notifier struct to unregister
2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2136
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2137 2138 2139 2140 2141 2142 2143 2144 2145
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2146
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2147 2148 2149
		notifier->ops->sched_out(notifier, next);
}

2150
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2162
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2163

2164 2165 2166
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2167
 * @prev: the current task that is being switched out
2168 2169 2170 2171 2172 2173 2174 2175 2176
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2177 2178 2179
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2180
{
2181
	trace_sched_switch(prev, next);
2182
	sched_info_switch(rq, prev, next);
2183
	perf_event_task_sched_out(prev, next);
2184
	fire_sched_out_preempt_notifiers(prev, next);
2185 2186 2187 2188
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2189 2190
/**
 * finish_task_switch - clean up after a task-switch
2191
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2192 2193
 * @prev: the thread we just switched away from.
 *
2194 2195 2196 2197
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2198 2199
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2200
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2201 2202 2203
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2204
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2205 2206 2207
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2208
	long prev_state;
L
Linus Torvalds 已提交
2209 2210 2211 2212 2213

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2214
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2215 2216
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2217
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2218 2219 2220 2221 2222
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2223
	prev_state = prev->state;
2224
	vtime_task_switch(prev);
2225
	finish_arch_switch(prev);
2226
	perf_event_task_sched_in(prev, current);
2227
	finish_lock_switch(rq, prev);
2228
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2229

2230
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2231 2232
	if (mm)
		mmdrop(mm);
2233
	if (unlikely(prev_state == TASK_DEAD)) {
2234 2235 2236
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2237 2238 2239
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2240
		 */
2241
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2242
		put_task_struct(prev);
2243
	}
2244 2245

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
2246 2247
}

2248 2249 2250 2251 2252 2253 2254 2255
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2256
		raw_spin_lock_irqsave(&rq->lock, flags);
2257 2258
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2259
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2260 2261 2262 2263 2264 2265

		rq->post_schedule = 0;
	}
}

#else
2266

2267 2268
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2269 2270
}

2271 2272
#endif

L
Linus Torvalds 已提交
2273 2274 2275 2276
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2277
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2278 2279
	__releases(rq->lock)
{
2280 2281
	struct rq *rq = this_rq();

2282
	finish_task_switch(rq, prev);
2283

2284 2285 2286 2287 2288
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2289

2290 2291 2292 2293
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2294
	if (current->set_child_tid)
2295
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2296 2297 2298 2299 2300 2301
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2302
static inline void
2303
context_switch(struct rq *rq, struct task_struct *prev,
2304
	       struct task_struct *next)
L
Linus Torvalds 已提交
2305
{
I
Ingo Molnar 已提交
2306
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2307

2308
	prepare_task_switch(rq, prev, next);
2309

I
Ingo Molnar 已提交
2310 2311
	mm = next->mm;
	oldmm = prev->active_mm;
2312 2313 2314 2315 2316
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2317
	arch_start_context_switch(prev);
2318

2319
	if (!mm) {
L
Linus Torvalds 已提交
2320 2321 2322 2323 2324 2325
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2326
	if (!prev->mm) {
L
Linus Torvalds 已提交
2327 2328 2329
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2330 2331 2332 2333 2334 2335 2336
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2337
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2338
#endif
L
Linus Torvalds 已提交
2339

2340
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2341 2342 2343
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2344 2345 2346 2347 2348 2349 2350
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2351 2352 2353
}

/*
2354
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2355 2356
 *
 * externally visible scheduler statistics: current number of runnable
2357
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2367
}
L
Linus Torvalds 已提交
2368 2369

unsigned long long nr_context_switches(void)
2370
{
2371 2372
	int i;
	unsigned long long sum = 0;
2373

2374
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2375
		sum += cpu_rq(i)->nr_switches;
2376

L
Linus Torvalds 已提交
2377 2378
	return sum;
}
2379

L
Linus Torvalds 已提交
2380 2381 2382
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2383

2384
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2385
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2386

L
Linus Torvalds 已提交
2387 2388
	return sum;
}
2389

2390
unsigned long nr_iowait_cpu(int cpu)
2391
{
2392
	struct rq *this = cpu_rq(cpu);
2393 2394
	return atomic_read(&this->nr_iowait);
}
2395

I
Ingo Molnar 已提交
2396
#ifdef CONFIG_SMP
2397

2398
/*
P
Peter Zijlstra 已提交
2399 2400
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2401
 */
P
Peter Zijlstra 已提交
2402
void sched_exec(void)
2403
{
P
Peter Zijlstra 已提交
2404
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2405
	unsigned long flags;
2406
	int dest_cpu;
2407

2408
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2409
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2410 2411
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2412

2413
	if (likely(cpu_active(dest_cpu))) {
2414
		struct migration_arg arg = { p, dest_cpu };
2415

2416 2417
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2418 2419
		return;
	}
2420
unlock:
2421
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2422
}
I
Ingo Molnar 已提交
2423

L
Linus Torvalds 已提交
2424 2425 2426
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2427
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2428 2429

EXPORT_PER_CPU_SYMBOL(kstat);
2430
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2431 2432

/*
2433
 * Return any ns on the sched_clock that have not yet been accounted in
2434
 * @p in case that task is currently running.
2435 2436
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2437
 */
2438 2439 2440 2441
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

2442 2443 2444 2445 2446
	/*
	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
	 * project cycles that may never be accounted to this
	 * thread, breaking clock_gettime().
	 */
2447
	if (task_current(rq, p) && task_on_rq_queued(p)) {
2448
		update_rq_clock(rq);
2449
		ns = rq_clock_task(rq) - p->se.exec_start;
2450 2451 2452 2453 2454 2455 2456
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2457
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2458 2459
{
	unsigned long flags;
2460
	struct rq *rq;
2461
	u64 ns = 0;
2462

2463
	rq = task_rq_lock(p, &flags);
2464
	ns = do_task_delta_exec(p, rq);
2465
	task_rq_unlock(rq, p, &flags);
2466

2467 2468
	return ns;
}
2469

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

2481 2482 2483 2484 2485 2486 2487 2488 2489
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
2490 2491
	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
	 * been accounted, so we're correct here as well.
2492
	 */
2493
	if (!p->on_cpu || !task_on_rq_queued(p))
2494 2495 2496
		return p->se.sum_exec_runtime;
#endif

2497 2498
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2499
	task_rq_unlock(rq, p, &flags);
2500 2501 2502

	return ns;
}
2503

2504 2505 2506 2507 2508 2509 2510 2511
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2512
	struct task_struct *curr = rq->curr;
2513 2514

	sched_clock_tick();
I
Ingo Molnar 已提交
2515

2516
	raw_spin_lock(&rq->lock);
2517
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2518
	curr->sched_class->task_tick(rq, curr, 0);
2519
	update_cpu_load_active(rq);
2520
	raw_spin_unlock(&rq->lock);
2521

2522
	perf_event_task_tick();
2523

2524
#ifdef CONFIG_SMP
2525
	rq->idle_balance = idle_cpu(cpu);
2526
	trigger_load_balance(rq);
2527
#endif
2528
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2529 2530
}

2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2542 2543
 *
 * Return: Maximum deferment in nanoseconds.
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2555
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2556
}
2557
#endif
L
Linus Torvalds 已提交
2558

2559
notrace unsigned long get_parent_ip(unsigned long addr)
2560 2561 2562 2563 2564 2565 2566 2567
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2568

2569 2570 2571
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2572
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2573
{
2574
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2575 2576 2577
	/*
	 * Underflow?
	 */
2578 2579
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2580
#endif
2581
	__preempt_count_add(val);
2582
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2583 2584 2585
	/*
	 * Spinlock count overflowing soon?
	 */
2586 2587
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2588
#endif
2589 2590 2591 2592 2593 2594 2595
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2596
}
2597
EXPORT_SYMBOL(preempt_count_add);
2598
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2599

2600
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2601
{
2602
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2603 2604 2605
	/*
	 * Underflow?
	 */
2606
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2607
		return;
L
Linus Torvalds 已提交
2608 2609 2610
	/*
	 * Is the spinlock portion underflowing?
	 */
2611 2612 2613
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2614
#endif
2615

2616 2617
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2618
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2619
}
2620
EXPORT_SYMBOL(preempt_count_sub);
2621
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2622 2623 2624 2625

#endif

/*
I
Ingo Molnar 已提交
2626
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2627
 */
I
Ingo Molnar 已提交
2628
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2629
{
2630 2631 2632
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2633 2634
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2635

I
Ingo Molnar 已提交
2636
	debug_show_held_locks(prev);
2637
	print_modules();
I
Ingo Molnar 已提交
2638 2639
	if (irqs_disabled())
		print_irqtrace_events(prev);
2640 2641 2642 2643 2644 2645 2646
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2647
	dump_stack();
2648
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2649
}
L
Linus Torvalds 已提交
2650

I
Ingo Molnar 已提交
2651 2652 2653 2654 2655
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2656
	/*
I
Ingo Molnar 已提交
2657
	 * Test if we are atomic. Since do_exit() needs to call into
2658 2659
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2660
	 */
2661
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2662
		__schedule_bug(prev);
2663
	rcu_sleep_check();
I
Ingo Molnar 已提交
2664

L
Linus Torvalds 已提交
2665 2666
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2667
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2668 2669 2670 2671 2672 2673
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2674
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2675
{
2676
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2677
	struct task_struct *p;
L
Linus Torvalds 已提交
2678 2679

	/*
I
Ingo Molnar 已提交
2680 2681
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2682
	 */
2683
	if (likely(prev->sched_class == class &&
2684
		   rq->nr_running == rq->cfs.h_nr_running)) {
2685
		p = fair_sched_class.pick_next_task(rq, prev);
2686 2687 2688 2689 2690 2691 2692 2693
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2694 2695
	}

2696
again:
2697
	for_each_class(class) {
2698
		p = class->pick_next_task(rq, prev);
2699 2700 2701
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2702
			return p;
2703
		}
I
Ingo Molnar 已提交
2704
	}
2705 2706

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2707
}
L
Linus Torvalds 已提交
2708

I
Ingo Molnar 已提交
2709
/*
2710
 * __schedule() is the main scheduler function.
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2745
 */
2746
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2747 2748
{
	struct task_struct *prev, *next;
2749
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2750
	struct rq *rq;
2751
	int cpu;
I
Ingo Molnar 已提交
2752

2753 2754
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2755 2756
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2757
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2758 2759 2760
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2761

2762
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2763
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2764

2765 2766 2767 2768 2769 2770
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2771
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2772

2773
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2774
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2775
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2776
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2777
		} else {
2778 2779 2780
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2781
			/*
2782 2783 2784
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2794
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2795 2796
	}

2797
	if (task_on_rq_queued(prev) || rq->skip_clock_update < 0)
2798 2799 2800
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2801
	clear_tsk_need_resched(prev);
2802
	clear_preempt_need_resched();
2803
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2804 2805 2806 2807 2808 2809

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2810
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2811
		/*
2812 2813 2814 2815
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2816 2817 2818
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2819
	} else
2820
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2821

2822
	post_schedule(rq);
L
Linus Torvalds 已提交
2823

2824
	sched_preempt_enable_no_resched();
2825
	if (need_resched())
L
Linus Torvalds 已提交
2826 2827
		goto need_resched;
}
2828

2829 2830
static inline void sched_submit_work(struct task_struct *tsk)
{
2831
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2832 2833 2834 2835 2836 2837 2838 2839 2840
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

2841
asmlinkage __visible void __sched schedule(void)
2842
{
2843 2844 2845
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2846 2847
	__schedule();
}
L
Linus Torvalds 已提交
2848 2849
EXPORT_SYMBOL(schedule);

2850
#ifdef CONFIG_CONTEXT_TRACKING
2851
asmlinkage __visible void __sched schedule_user(void)
2852 2853 2854 2855 2856 2857 2858
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2859
	user_exit();
2860
	schedule();
2861
	user_enter();
2862 2863 2864
}
#endif

2865 2866 2867 2868 2869 2870 2871
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2872
	sched_preempt_enable_no_resched();
2873 2874 2875 2876
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2877 2878
#ifdef CONFIG_PREEMPT
/*
2879
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2880
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2881 2882
 * occur there and call schedule directly.
 */
2883
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2884 2885 2886
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2887
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2888
	 */
2889
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2890 2891
		return;

2892
	do {
2893
		__preempt_count_add(PREEMPT_ACTIVE);
2894
		__schedule();
2895
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2896

2897 2898 2899 2900 2901
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2902
	} while (need_resched());
L
Linus Torvalds 已提交
2903
}
2904
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
2905
EXPORT_SYMBOL(preempt_schedule);
2906
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2907 2908

/*
2909
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2910 2911 2912 2913
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
2914
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
2915
{
2916
	enum ctx_state prev_state;
2917

2918
	/* Catch callers which need to be fixed */
2919
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2920

2921 2922
	prev_state = exception_enter();

2923
	do {
2924
		__preempt_count_add(PREEMPT_ACTIVE);
2925
		local_irq_enable();
2926
		__schedule();
2927
		local_irq_disable();
2928
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2929

2930 2931 2932 2933 2934
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2935
	} while (need_resched());
2936 2937

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2938 2939
}

P
Peter Zijlstra 已提交
2940
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2941
			  void *key)
L
Linus Torvalds 已提交
2942
{
P
Peter Zijlstra 已提交
2943
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2944 2945 2946
}
EXPORT_SYMBOL(default_wake_function);

2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
2957 2958
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
2959
 */
2960
void rt_mutex_setprio(struct task_struct *p, int prio)
2961
{
2962
	int oldprio, queued, running, enqueue_flag = 0;
2963
	struct rq *rq;
2964
	const struct sched_class *prev_class;
2965

2966
	BUG_ON(prio > MAX_PRIO);
2967

2968
	rq = __task_rq_lock(p);
2969

2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

2988
	trace_sched_pi_setprio(p, prio);
2989
	oldprio = p->prio;
2990
	prev_class = p->sched_class;
2991
	queued = task_on_rq_queued(p);
2992
	running = task_current(rq, p);
2993
	if (queued)
2994
		dequeue_task(rq, p, 0);
2995 2996
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
3008 3009 3010
		struct task_struct *pi_task = rt_mutex_get_top_task(p);
		if (!dl_prio(p->normal_prio) ||
		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3011 3012 3013 3014 3015
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3016
		p->sched_class = &dl_sched_class;
3017 3018 3019 3020 3021
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3022
		p->sched_class = &rt_sched_class;
3023 3024 3025
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
I
Ingo Molnar 已提交
3026
		p->sched_class = &fair_sched_class;
3027
	}
I
Ingo Molnar 已提交
3028

3029 3030
	p->prio = prio;

3031 3032
	if (running)
		p->sched_class->set_curr_task(rq);
3033
	if (queued)
3034
		enqueue_task(rq, p, enqueue_flag);
3035

P
Peter Zijlstra 已提交
3036
	check_class_changed(rq, p, prev_class, oldprio);
3037
out_unlock:
3038
	__task_rq_unlock(rq);
3039 3040
}
#endif
3041

3042
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3043
{
3044
	int old_prio, delta, queued;
L
Linus Torvalds 已提交
3045
	unsigned long flags;
3046
	struct rq *rq;
L
Linus Torvalds 已提交
3047

3048
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3059
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3060
	 */
3061
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3062 3063 3064
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
3065 3066
	queued = task_on_rq_queued(p);
	if (queued)
3067
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3068 3069

	p->static_prio = NICE_TO_PRIO(nice);
3070
	set_load_weight(p);
3071 3072 3073
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3074

3075
	if (queued) {
3076
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3077
		/*
3078 3079
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3080
		 */
3081
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3082
			resched_curr(rq);
L
Linus Torvalds 已提交
3083 3084
	}
out_unlock:
3085
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3086 3087 3088
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3089 3090 3091 3092 3093
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3094
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3095
{
3096
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3097
	int nice_rlim = nice_to_rlimit(nice);
3098

3099
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3100 3101 3102
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3103 3104 3105 3106 3107 3108 3109 3110 3111
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3112
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3113
{
3114
	long nice, retval;
L
Linus Torvalds 已提交
3115 3116 3117 3118 3119 3120

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3121
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3122
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3123

3124
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3125 3126 3127
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3142
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3143 3144 3145
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3146
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3147 3148 3149 3150 3151 3152 3153
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3154 3155
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3156 3157 3158
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3173 3174 3175 3176 3177
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3178 3179
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3180
 */
3181
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3182 3183 3184 3185 3186 3187 3188
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3189 3190
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3191
 */
A
Alexey Dobriyan 已提交
3192
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3193
{
3194
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3195 3196
}

3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	init_dl_task_timer(dl_se);
	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3213
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3214
	dl_se->flags = attr->sched_flags;
3215
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3216 3217
	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
3218
	dl_se->dl_yielded = 0;
3219 3220
}

3221 3222 3223 3224 3225 3226
/*
 * sched_setparam() passes in -1 for its policy, to let the functions
 * it calls know not to change it.
 */
#define SETPARAM_POLICY	-1

3227 3228
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3229
{
3230 3231
	int policy = attr->sched_policy;

3232
	if (policy == SETPARAM_POLICY)
3233 3234
		policy = p->policy;

L
Linus Torvalds 已提交
3235
	p->policy = policy;
3236

3237 3238
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3239
	else if (fair_policy(policy))
3240 3241
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3242 3243 3244 3245 3246 3247
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3248
	p->normal_prio = normal_prio(p);
3249 3250
	set_load_weight(p);
}
3251

3252 3253 3254 3255 3256
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3257

3258 3259 3260 3261 3262 3263
	/*
	 * If we get here, there was no pi waiters boosting the
	 * task. It is safe to use the normal prio.
	 */
	p->prio = normal_prio(p);

3264 3265 3266
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3267 3268 3269
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3270
}
3271 3272 3273 3274 3275 3276 3277 3278 3279

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3280
	attr->sched_period = dl_se->dl_period;
3281 3282 3283 3284 3285 3286
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3287
 * than the runtime, as well as the period of being zero or
3288
 * greater than deadline. Furthermore, we have to be sure that
3289 3290 3291 3292
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3293 3294 3295 3296
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3323 3324
}

3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3335 3336
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3337 3338 3339 3340
	rcu_read_unlock();
	return match;
}

3341 3342 3343
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3344
{
3345 3346
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3347
	int retval, oldprio, oldpolicy = -1, queued, running;
3348
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3349
	unsigned long flags;
3350
	const struct sched_class *prev_class;
3351
	struct rq *rq;
3352
	int reset_on_fork;
L
Linus Torvalds 已提交
3353

3354 3355
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3356 3357
recheck:
	/* double check policy once rq lock held */
3358 3359
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3360
		policy = oldpolicy = p->policy;
3361
	} else {
3362
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3363

3364 3365
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3366 3367 3368 3369 3370
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3371 3372 3373
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3374 3375
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3376 3377
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3378
	 */
3379
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3380
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3381
		return -EINVAL;
3382 3383
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3384 3385
		return -EINVAL;

3386 3387 3388
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3389
	if (user && !capable(CAP_SYS_NICE)) {
3390
		if (fair_policy(policy)) {
3391
			if (attr->sched_nice < task_nice(p) &&
3392
			    !can_nice(p, attr->sched_nice))
3393 3394 3395
				return -EPERM;
		}

3396
		if (rt_policy(policy)) {
3397 3398
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3399 3400 3401 3402 3403 3404

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3405 3406
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3407 3408
				return -EPERM;
		}
3409

3410 3411 3412 3413 3414 3415 3416 3417 3418
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3419
		/*
3420 3421
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3422
		 */
3423
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3424
			if (!can_nice(p, task_nice(p)))
3425 3426
				return -EPERM;
		}
3427

3428
		/* can't change other user's priorities */
3429
		if (!check_same_owner(p))
3430
			return -EPERM;
3431 3432 3433 3434

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3435
	}
L
Linus Torvalds 已提交
3436

3437
	if (user) {
3438
		retval = security_task_setscheduler(p);
3439 3440 3441 3442
		if (retval)
			return retval;
	}

3443 3444 3445
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3446
	 *
L
Lucas De Marchi 已提交
3447
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3448 3449
	 * runqueue lock must be held.
	 */
3450
	rq = task_rq_lock(p, &flags);
3451

3452 3453 3454 3455
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3456
		task_rq_unlock(rq, p, &flags);
3457 3458 3459
		return -EINVAL;
	}

3460
	/*
3461 3462
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3463
	 */
3464
	if (unlikely(policy == p->policy)) {
3465
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3466 3467 3468
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3469 3470
		if (dl_policy(policy))
			goto change;
3471

3472
		p->sched_reset_on_fork = reset_on_fork;
3473
		task_rq_unlock(rq, p, &flags);
3474 3475
		return 0;
	}
3476
change:
3477

3478
	if (user) {
3479
#ifdef CONFIG_RT_GROUP_SCHED
3480 3481 3482 3483 3484
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3485 3486
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3487
			task_rq_unlock(rq, p, &flags);
3488 3489 3490
			return -EPERM;
		}
#endif
3491 3492 3493 3494 3495 3496 3497 3498 3499
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3500 3501
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3502 3503 3504 3505 3506 3507
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3508

L
Linus Torvalds 已提交
3509 3510 3511
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3512
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3513 3514
		goto recheck;
	}
3515 3516 3517 3518 3519 3520

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3521
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3522 3523 3524 3525
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

3544
	queued = task_on_rq_queued(p);
3545
	running = task_current(rq, p);
3546
	if (queued)
3547
		dequeue_task(rq, p, 0);
3548 3549
	if (running)
		p->sched_class->put_prev_task(rq, p);
3550

3551
	prev_class = p->sched_class;
3552
	__setscheduler(rq, p, attr);
3553

3554 3555
	if (running)
		p->sched_class->set_curr_task(rq);
3556
	if (queued) {
3557 3558 3559 3560 3561 3562
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3563

P
Peter Zijlstra 已提交
3564
	check_class_changed(rq, p, prev_class, oldprio);
3565
	task_rq_unlock(rq, p, &flags);
3566

3567 3568
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3569 3570
	return 0;
}
3571

3572 3573 3574 3575 3576 3577 3578 3579 3580
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

3581 3582
	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3583 3584 3585 3586 3587 3588 3589
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3590 3591 3592 3593 3594 3595
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3596 3597
 * Return: 0 on success. An error code otherwise.
 *
3598 3599 3600
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3601
		       const struct sched_param *param)
3602
{
3603
	return _sched_setscheduler(p, policy, param, true);
3604
}
L
Linus Torvalds 已提交
3605 3606
EXPORT_SYMBOL_GPL(sched_setscheduler);

3607 3608 3609 3610 3611 3612
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3623 3624
 *
 * Return: 0 on success. An error code otherwise.
3625 3626
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3627
			       const struct sched_param *param)
3628
{
3629
	return _sched_setscheduler(p, policy, param, false);
3630 3631
}

I
Ingo Molnar 已提交
3632 3633
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3634 3635 3636
{
	struct sched_param lparam;
	struct task_struct *p;
3637
	int retval;
L
Linus Torvalds 已提交
3638 3639 3640 3641 3642

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3643 3644 3645

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3646
	p = find_process_by_pid(pid);
3647 3648 3649
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3650

L
Linus Torvalds 已提交
3651 3652 3653
	return retval;
}

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3716
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3717

3718
	return 0;
3719 3720 3721

err_size:
	put_user(sizeof(*attr), &uattr->size);
3722
	return -E2BIG;
3723 3724
}

L
Linus Torvalds 已提交
3725 3726 3727 3728 3729
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3730 3731
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3732
 */
3733 3734
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3735
{
3736 3737 3738 3739
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3740 3741 3742 3743 3744 3745 3746
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3747 3748
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3749
 */
3750
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3751
{
3752
	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
L
Linus Torvalds 已提交
3753 3754
}

3755 3756 3757
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3758
 * @uattr: structure containing the extended parameters.
3759
 * @flags: for future extension.
3760
 */
3761 3762
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3763 3764 3765 3766 3767
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3768
	if (!uattr || pid < 0 || flags)
3769 3770
		return -EINVAL;

3771 3772 3773
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
3774

3775
	if ((int)attr.sched_policy < 0)
3776
		return -EINVAL;
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3788 3789 3790
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3791 3792 3793
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3794
 */
3795
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3796
{
3797
	struct task_struct *p;
3798
	int retval;
L
Linus Torvalds 已提交
3799 3800

	if (pid < 0)
3801
		return -EINVAL;
L
Linus Torvalds 已提交
3802 3803

	retval = -ESRCH;
3804
	rcu_read_lock();
L
Linus Torvalds 已提交
3805 3806 3807 3808
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3809 3810
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3811
	}
3812
	rcu_read_unlock();
L
Linus Torvalds 已提交
3813 3814 3815 3816
	return retval;
}

/**
3817
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3818 3819
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3820 3821 3822
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3823
 */
3824
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3825
{
3826
	struct sched_param lp = { .sched_priority = 0 };
3827
	struct task_struct *p;
3828
	int retval;
L
Linus Torvalds 已提交
3829 3830

	if (!param || pid < 0)
3831
		return -EINVAL;
L
Linus Torvalds 已提交
3832

3833
	rcu_read_lock();
L
Linus Torvalds 已提交
3834 3835 3836 3837 3838 3839 3840 3841 3842
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3843 3844
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
3845
	rcu_read_unlock();
L
Linus Torvalds 已提交
3846 3847 3848 3849 3850 3851 3852 3853 3854

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3855
	rcu_read_unlock();
L
Linus Torvalds 已提交
3856 3857 3858
	return retval;
}

3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
3882
				return -EFBIG;
3883 3884 3885 3886 3887
		}

		attr->size = usize;
	}

3888
	ret = copy_to_user(uattr, attr, attr->size);
3889 3890 3891
	if (ret)
		return -EFAULT;

3892
	return 0;
3893 3894 3895
}

/**
3896
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3897
 * @pid: the pid in question.
J
Juri Lelli 已提交
3898
 * @uattr: structure containing the extended parameters.
3899
 * @size: sizeof(attr) for fwd/bwd comp.
3900
 * @flags: for future extension.
3901
 */
3902 3903
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3904 3905 3906 3907 3908 3909 3910 3911
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3912
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3926 3927
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3928 3929 3930
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3931 3932
		attr.sched_priority = p->rt_priority;
	else
3933
		attr.sched_nice = task_nice(p);
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3945
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3946
{
3947
	cpumask_var_t cpus_allowed, new_mask;
3948 3949
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3950

3951
	rcu_read_lock();
L
Linus Torvalds 已提交
3952 3953 3954

	p = find_process_by_pid(pid);
	if (!p) {
3955
		rcu_read_unlock();
L
Linus Torvalds 已提交
3956 3957 3958
		return -ESRCH;
	}

3959
	/* Prevent p going away */
L
Linus Torvalds 已提交
3960
	get_task_struct(p);
3961
	rcu_read_unlock();
L
Linus Torvalds 已提交
3962

3963 3964 3965 3966
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3967 3968 3969 3970 3971 3972 3973 3974
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3975
	retval = -EPERM;
E
Eric W. Biederman 已提交
3976 3977 3978 3979 3980 3981 3982 3983
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3984

3985
	retval = security_task_setscheduler(p);
3986 3987 3988
	if (retval)
		goto out_unlock;

3989 3990 3991 3992

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

3993 3994 3995 3996 3997 3998 3999 4000 4001 4002
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
	if (task_has_dl_policy(p)) {
		const struct cpumask *span = task_rq(p)->rd->span;

4003
		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
4004 4005 4006 4007 4008
			retval = -EBUSY;
			goto out_unlock;
		}
	}
#endif
P
Peter Zijlstra 已提交
4009
again:
4010
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
4011

P
Paul Menage 已提交
4012
	if (!retval) {
4013 4014
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
4015 4016 4017 4018 4019
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4020
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4021 4022 4023
			goto again;
		}
	}
L
Linus Torvalds 已提交
4024
out_unlock:
4025 4026 4027 4028
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4029 4030 4031 4032 4033
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4034
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4035
{
4036 4037 4038 4039 4040
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4041 4042 4043 4044 4045 4046 4047 4048
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4049 4050
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4051
 */
4052 4053
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4054
{
4055
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4056 4057
	int retval;

4058 4059
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4060

4061 4062 4063 4064 4065
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4066 4067
}

4068
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4069
{
4070
	struct task_struct *p;
4071
	unsigned long flags;
L
Linus Torvalds 已提交
4072 4073
	int retval;

4074
	rcu_read_lock();
L
Linus Torvalds 已提交
4075 4076 4077 4078 4079 4080

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4081 4082 4083 4084
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4085
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4086
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4087
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4088 4089

out_unlock:
4090
	rcu_read_unlock();
L
Linus Torvalds 已提交
4091

4092
	return retval;
L
Linus Torvalds 已提交
4093 4094 4095 4096 4097 4098 4099
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4100 4101
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4102
 */
4103 4104
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4105 4106
{
	int ret;
4107
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4108

A
Anton Blanchard 已提交
4109
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4110 4111
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4112 4113
		return -EINVAL;

4114 4115
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4116

4117 4118
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4119
		size_t retlen = min_t(size_t, len, cpumask_size());
4120 4121

		if (copy_to_user(user_mask_ptr, mask, retlen))
4122 4123
			ret = -EFAULT;
		else
4124
			ret = retlen;
4125 4126
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4127

4128
	return ret;
L
Linus Torvalds 已提交
4129 4130 4131 4132 4133
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4134 4135
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4136 4137
 *
 * Return: 0.
L
Linus Torvalds 已提交
4138
 */
4139
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4140
{
4141
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4142

4143
	schedstat_inc(rq, yld_count);
4144
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4145 4146 4147 4148 4149 4150

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4151
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4152
	do_raw_spin_unlock(&rq->lock);
4153
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4154 4155 4156 4157 4158 4159

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4160
static void __cond_resched(void)
L
Linus Torvalds 已提交
4161
{
4162
	__preempt_count_add(PREEMPT_ACTIVE);
4163
	__schedule();
4164
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4165 4166
}

4167
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4168
{
P
Peter Zijlstra 已提交
4169
	if (should_resched()) {
L
Linus Torvalds 已提交
4170 4171 4172 4173 4174
		__cond_resched();
		return 1;
	}
	return 0;
}
4175
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4176 4177

/*
4178
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4179 4180
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4181
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4182 4183 4184
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4185
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4186
{
P
Peter Zijlstra 已提交
4187
	int resched = should_resched();
J
Jan Kara 已提交
4188 4189
	int ret = 0;

4190 4191
	lockdep_assert_held(lock);

4192
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4193
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4194
		if (resched)
N
Nick Piggin 已提交
4195 4196 4197
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4198
		ret = 1;
L
Linus Torvalds 已提交
4199 4200
		spin_lock(lock);
	}
J
Jan Kara 已提交
4201
	return ret;
L
Linus Torvalds 已提交
4202
}
4203
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4204

4205
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4206 4207 4208
{
	BUG_ON(!in_softirq());

P
Peter Zijlstra 已提交
4209
	if (should_resched()) {
4210
		local_bh_enable();
L
Linus Torvalds 已提交
4211 4212 4213 4214 4215 4216
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4217
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4218 4219 4220 4221

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4240 4241 4242 4243 4244 4245 4246 4247
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4248 4249 4250 4251
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4252 4253
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4254 4255 4256 4257
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4258
 * Return:
4259 4260 4261
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4262
 */
4263
int __sched yield_to(struct task_struct *p, bool preempt)
4264 4265 4266 4267
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4268
	int yielded = 0;
4269 4270 4271 4272 4273 4274

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4275 4276 4277 4278 4279 4280 4281 4282 4283
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4284
	double_rq_lock(rq, p_rq);
4285
	if (task_rq(p) != p_rq) {
4286 4287 4288 4289 4290
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4291
		goto out_unlock;
4292 4293

	if (curr->sched_class != p->sched_class)
4294
		goto out_unlock;
4295 4296

	if (task_running(p_rq, p) || p->state)
4297
		goto out_unlock;
4298 4299

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4300
	if (yielded) {
4301
		schedstat_inc(rq, yld_count);
4302 4303 4304 4305 4306
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
4307
			resched_curr(p_rq);
4308
	}
4309

4310
out_unlock:
4311
	double_rq_unlock(rq, p_rq);
4312
out_irq:
4313 4314
	local_irq_restore(flags);

4315
	if (yielded > 0)
4316 4317 4318 4319 4320 4321
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4322
/*
I
Ingo Molnar 已提交
4323
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4324 4325 4326 4327
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4328
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4329

4330
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4331
	atomic_inc(&rq->nr_iowait);
4332
	blk_flush_plug(current);
4333
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4334
	schedule();
4335
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4336
	atomic_dec(&rq->nr_iowait);
4337
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4338 4339 4340 4341 4342
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4343
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4344 4345
	long ret;

4346
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4347
	atomic_inc(&rq->nr_iowait);
4348
	blk_flush_plug(current);
4349
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4350
	ret = schedule_timeout(timeout);
4351
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4352
	atomic_dec(&rq->nr_iowait);
4353
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4354 4355 4356 4357 4358 4359 4360
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4361 4362 4363
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4364
 */
4365
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4366 4367 4368 4369 4370 4371 4372 4373
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4374
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4375
	case SCHED_NORMAL:
4376
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4377
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4388 4389 4390
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4391
 */
4392
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4393 4394 4395 4396 4397 4398 4399 4400
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4401
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4402
	case SCHED_NORMAL:
4403
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4404
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4417 4418 4419
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4420
 */
4421
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4422
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4423
{
4424
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4425
	unsigned int time_slice;
4426 4427
	unsigned long flags;
	struct rq *rq;
4428
	int retval;
L
Linus Torvalds 已提交
4429 4430 4431
	struct timespec t;

	if (pid < 0)
4432
		return -EINVAL;
L
Linus Torvalds 已提交
4433 4434

	retval = -ESRCH;
4435
	rcu_read_lock();
L
Linus Torvalds 已提交
4436 4437 4438 4439 4440 4441 4442 4443
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4444
	rq = task_rq_lock(p, &flags);
4445 4446 4447
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4448
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4449

4450
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4451
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4452 4453
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4454

L
Linus Torvalds 已提交
4455
out_unlock:
4456
	rcu_read_unlock();
L
Linus Torvalds 已提交
4457 4458 4459
	return retval;
}

4460
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4461

4462
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4463 4464
{
	unsigned long free = 0;
4465
	int ppid;
4466
	unsigned state;
L
Linus Torvalds 已提交
4467 4468

	state = p->state ? __ffs(p->state) + 1 : 0;
4469
	printk(KERN_INFO "%-15.15s %c", p->comm,
4470
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4471
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4472
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4473
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4474
	else
P
Peter Zijlstra 已提交
4475
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4476 4477
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4478
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4479
	else
P
Peter Zijlstra 已提交
4480
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4481 4482
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4483
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4484
#endif
4485 4486 4487
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4488
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4489
		task_pid_nr(p), ppid,
4490
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4491

4492
	print_worker_info(KERN_INFO, p);
4493
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4494 4495
}

I
Ingo Molnar 已提交
4496
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4497
{
4498
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4499

4500
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4501 4502
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4503
#else
P
Peter Zijlstra 已提交
4504 4505
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4506
#endif
4507
	rcu_read_lock();
4508
	for_each_process_thread(g, p) {
L
Linus Torvalds 已提交
4509 4510
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4511
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4512 4513
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4514
		if (!state_filter || (p->state & state_filter))
4515
			sched_show_task(p);
4516
	}
L
Linus Torvalds 已提交
4517

4518 4519
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4520 4521 4522
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4523
	rcu_read_unlock();
I
Ingo Molnar 已提交
4524 4525 4526
	/*
	 * Only show locks if all tasks are dumped:
	 */
4527
	if (!state_filter)
I
Ingo Molnar 已提交
4528
		debug_show_all_locks();
L
Linus Torvalds 已提交
4529 4530
}

4531
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4532
{
I
Ingo Molnar 已提交
4533
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4534 4535
}

4536 4537 4538 4539 4540 4541 4542 4543
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4544
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4545
{
4546
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4547 4548
	unsigned long flags;

4549
	raw_spin_lock_irqsave(&rq->lock, flags);
4550

4551
	__sched_fork(0, idle);
4552
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4553 4554
	idle->se.exec_start = sched_clock();

4555
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4567
	__set_task_cpu(idle, cpu);
4568
	rcu_read_unlock();
L
Linus Torvalds 已提交
4569 4570

	rq->curr = rq->idle = idle;
4571
	idle->on_rq = TASK_ON_RQ_QUEUED;
P
Peter Zijlstra 已提交
4572 4573
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4574
#endif
4575
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4576 4577

	/* Set the preempt count _outside_ the spinlocks! */
4578
	init_idle_preempt_count(idle, cpu);
4579

I
Ingo Molnar 已提交
4580 4581 4582 4583
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4584
	ftrace_graph_init_idle_task(idle, cpu);
4585
	vtime_init_idle(idle, cpu);
4586 4587 4588
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4589 4590
}

L
Linus Torvalds 已提交
4591
#ifdef CONFIG_SMP
4592 4593 4594 4595
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4596 4597

	cpumask_copy(&p->cpus_allowed, new_mask);
4598
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4599 4600
}

L
Linus Torvalds 已提交
4601 4602 4603
/*
 * This is how migration works:
 *
4604 4605 4606 4607 4608 4609
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4610
 *    it and puts it into the right queue.
4611 4612
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4613 4614 4615 4616 4617 4618 4619 4620
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4621
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4622 4623
 * call is not atomic; no spinlocks may be held.
 */
4624
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4625 4626
{
	unsigned long flags;
4627
	struct rq *rq;
4628
	unsigned int dest_cpu;
4629
	int ret = 0;
L
Linus Torvalds 已提交
4630 4631

	rq = task_rq_lock(p, &flags);
4632

4633 4634 4635
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4636
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4637 4638 4639 4640
		ret = -EINVAL;
		goto out;
	}

4641
	do_set_cpus_allowed(p, new_mask);
4642

L
Linus Torvalds 已提交
4643
	/* Can the task run on the task's current CPU? If so, we're done */
4644
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4645 4646
		goto out;

4647
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4648
	if (task_on_rq_queued(p)) {
4649
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4650
		/* Need help from migration thread: drop lock and wait. */
4651
		task_rq_unlock(rq, p, &flags);
4652
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4653 4654 4655 4656
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4657
	task_rq_unlock(rq, p, &flags);
4658

L
Linus Torvalds 已提交
4659 4660
	return ret;
}
4661
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4662 4663

/*
I
Ingo Molnar 已提交
4664
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4665 4666 4667 4668 4669 4670
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4671 4672
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4673
 */
4674
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4675
{
4676
	struct rq *rq_dest, *rq_src;
4677
	int ret = 0;
L
Linus Torvalds 已提交
4678

4679
	if (unlikely(!cpu_active(dest_cpu)))
4680
		return ret;
L
Linus Torvalds 已提交
4681 4682 4683 4684

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4685
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4686 4687 4688
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4689
		goto done;
L
Linus Torvalds 已提交
4690
	/* Affinity changed (again). */
4691
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4692
		goto fail;
L
Linus Torvalds 已提交
4693

4694 4695 4696 4697
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
4698
	if (task_on_rq_queued(p)) {
4699
		dequeue_task(rq_src, p, 0);
4700
		set_task_cpu(p, dest_cpu);
4701
		enqueue_task(rq_dest, p, 0);
4702
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4703
	}
L
Linus Torvalds 已提交
4704
done:
4705
	ret = 1;
L
Linus Torvalds 已提交
4706
fail:
L
Linus Torvalds 已提交
4707
	double_rq_unlock(rq_src, rq_dest);
4708
	raw_spin_unlock(&p->pi_lock);
4709
	return ret;
L
Linus Torvalds 已提交
4710 4711
}

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4727
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4728 4729
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4730 4731 4732 4733 4734 4735 4736 4737 4738

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
4739
	bool queued, running;
4740 4741

	rq = task_rq_lock(p, &flags);
4742
	queued = task_on_rq_queued(p);
4743 4744
	running = task_current(rq, p);

4745
	if (queued)
4746 4747 4748 4749 4750 4751 4752 4753
		dequeue_task(rq, p, 0);
	if (running)
		p->sched_class->put_prev_task(rq, p);

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
4754
	if (queued)
4755 4756 4757
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4758 4759
#endif

L
Linus Torvalds 已提交
4760
/*
4761 4762 4763
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4764
 */
4765
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4766
{
4767
	struct migration_arg *arg = data;
4768

4769 4770 4771 4772
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4773
	local_irq_disable();
4774
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4775
	local_irq_enable();
L
Linus Torvalds 已提交
4776
	return 0;
4777 4778
}

L
Linus Torvalds 已提交
4779
#ifdef CONFIG_HOTPLUG_CPU
4780

4781
/*
4782 4783
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4784
 */
4785
void idle_task_exit(void)
L
Linus Torvalds 已提交
4786
{
4787
	struct mm_struct *mm = current->active_mm;
4788

4789
	BUG_ON(cpu_online(smp_processor_id()));
4790

4791
	if (mm != &init_mm) {
4792
		switch_mm(mm, &init_mm, current);
4793 4794
		finish_arch_post_lock_switch();
	}
4795
	mmdrop(mm);
L
Linus Torvalds 已提交
4796 4797 4798
}

/*
4799 4800 4801 4802 4803
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4804
 */
4805
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4806
{
4807 4808 4809
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4810 4811
}

4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4828
/*
4829 4830 4831 4832 4833 4834
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4835
 */
4836
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4837
{
4838
	struct rq *rq = cpu_rq(dead_cpu);
4839 4840
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4841 4842

	/*
4843 4844 4845 4846 4847 4848 4849
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4850
	 */
4851
	rq->stop = NULL;
4852

4853 4854 4855 4856 4857 4858 4859
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4860
	for ( ; ; ) {
4861 4862 4863 4864 4865
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4866
			break;
4867

4868
		next = pick_next_task(rq, &fake_task);
4869
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4870
		next->sched_class->put_prev_task(rq, next);
4871

4872 4873 4874 4875 4876 4877 4878
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4879
	}
4880

4881
	rq->stop = stop;
4882
}
4883

L
Linus Torvalds 已提交
4884 4885
#endif /* CONFIG_HOTPLUG_CPU */

4886 4887 4888
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4889 4890
	{
		.procname	= "sched_domain",
4891
		.mode		= 0555,
4892
	},
4893
	{}
4894 4895 4896
};

static struct ctl_table sd_ctl_root[] = {
4897 4898
	{
		.procname	= "kernel",
4899
		.mode		= 0555,
4900 4901
		.child		= sd_ctl_dir,
	},
4902
	{}
4903 4904 4905 4906 4907
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4908
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4909 4910 4911 4912

	return entry;
}

4913 4914
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4915
	struct ctl_table *entry;
4916

4917 4918 4919
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4920
	 * will always be set. In the lowest directory the names are
4921 4922 4923
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4924 4925
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4926 4927 4928
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4929 4930 4931 4932 4933

	kfree(*tablep);
	*tablep = NULL;
}

4934
static int min_load_idx = 0;
4935
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4936

4937
static void
4938
set_table_entry(struct ctl_table *entry,
4939
		const char *procname, void *data, int maxlen,
4940 4941
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4942 4943 4944 4945 4946 4947
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4948 4949 4950 4951 4952

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4953 4954 4955 4956 4957
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4958
	struct ctl_table *table = sd_alloc_ctl_entry(14);
4959

4960 4961 4962
	if (table == NULL)
		return NULL;

4963
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4964
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4965
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4966
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4967
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4968
		sizeof(int), 0644, proc_dointvec_minmax, true);
4969
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4970
		sizeof(int), 0644, proc_dointvec_minmax, true);
4971
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4972
		sizeof(int), 0644, proc_dointvec_minmax, true);
4973
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4974
		sizeof(int), 0644, proc_dointvec_minmax, true);
4975
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4976
		sizeof(int), 0644, proc_dointvec_minmax, true);
4977
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4978
		sizeof(int), 0644, proc_dointvec_minmax, false);
4979
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4980
		sizeof(int), 0644, proc_dointvec_minmax, false);
4981
	set_table_entry(&table[9], "cache_nice_tries",
4982
		&sd->cache_nice_tries,
4983
		sizeof(int), 0644, proc_dointvec_minmax, false);
4984
	set_table_entry(&table[10], "flags", &sd->flags,
4985
		sizeof(int), 0644, proc_dointvec_minmax, false);
4986 4987 4988 4989
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
4990
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4991
	/* &table[13] is terminator */
4992 4993 4994 4995

	return table;
}

4996
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4997 4998 4999 5000 5001 5002 5003 5004 5005
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5006 5007
	if (table == NULL)
		return NULL;
5008 5009 5010 5011 5012

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5013
		entry->mode = 0555;
5014 5015 5016 5017 5018 5019 5020 5021
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5022
static void register_sched_domain_sysctl(void)
5023
{
5024
	int i, cpu_num = num_possible_cpus();
5025 5026 5027
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5028 5029 5030
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5031 5032 5033
	if (entry == NULL)
		return;

5034
	for_each_possible_cpu(i) {
5035 5036
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5037
		entry->mode = 0555;
5038
		entry->child = sd_alloc_ctl_cpu_table(i);
5039
		entry++;
5040
	}
5041 5042

	WARN_ON(sd_sysctl_header);
5043 5044
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5045

5046
/* may be called multiple times per register */
5047 5048
static void unregister_sched_domain_sysctl(void)
{
5049 5050
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5051
	sd_sysctl_header = NULL;
5052 5053
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5054
}
5055
#else
5056 5057 5058 5059
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5060 5061 5062 5063
{
}
#endif

5064 5065 5066 5067 5068
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5069
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5089
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5090 5091 5092 5093
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5094 5095 5096 5097
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5098
static int
5099
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5100
{
5101
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5102
	unsigned long flags;
5103
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5104

5105
	switch (action & ~CPU_TASKS_FROZEN) {
5106

L
Linus Torvalds 已提交
5107
	case CPU_UP_PREPARE:
5108
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5109
		break;
5110

L
Linus Torvalds 已提交
5111
	case CPU_ONLINE:
5112
		/* Update our root-domain */
5113
		raw_spin_lock_irqsave(&rq->lock, flags);
5114
		if (rq->rd) {
5115
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5116 5117

			set_rq_online(rq);
5118
		}
5119
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5120
		break;
5121

L
Linus Torvalds 已提交
5122
#ifdef CONFIG_HOTPLUG_CPU
5123
	case CPU_DYING:
5124
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5125
		/* Update our root-domain */
5126
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5127
		if (rq->rd) {
5128
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5129
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5130
		}
5131 5132
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5133
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5134
		break;
5135

5136
	case CPU_DEAD:
5137
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5138
		break;
L
Linus Torvalds 已提交
5139 5140
#endif
	}
5141 5142 5143

	update_max_interval();

L
Linus Torvalds 已提交
5144 5145 5146
	return NOTIFY_OK;
}

5147 5148 5149
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5150
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5151
 */
5152
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5153
	.notifier_call = migration_call,
5154
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5155 5156
};

5157 5158 5159 5160 5161 5162 5163
static void __cpuinit set_cpu_rq_start_time(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5164
static int sched_cpu_active(struct notifier_block *nfb,
5165 5166 5167
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5168 5169 5170
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5171 5172 5173 5174 5175 5176 5177 5178
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5179
static int sched_cpu_inactive(struct notifier_block *nfb,
5180 5181
					unsigned long action, void *hcpu)
{
5182 5183 5184
	unsigned long flags;
	long cpu = (long)hcpu;

5185 5186
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			struct dl_bw *dl_b = dl_bw_of(cpu);
			bool overflow;
			int cpus;

			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5203 5204
		return NOTIFY_OK;
	}
5205 5206

	return NOTIFY_DONE;
5207 5208
}

5209
static int __init migration_init(void)
L
Linus Torvalds 已提交
5210 5211
{
	void *cpu = (void *)(long)smp_processor_id();
5212
	int err;
5213

5214
	/* Initialize migration for the boot CPU */
5215 5216
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5217 5218
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5219

5220 5221 5222 5223
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5224
	return 0;
L
Linus Torvalds 已提交
5225
}
5226
early_initcall(migration_init);
L
Linus Torvalds 已提交
5227 5228 5229
#endif

#ifdef CONFIG_SMP
5230

5231 5232
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5233
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5234

5235
static __read_mostly int sched_debug_enabled;
5236

5237
static int __init sched_debug_setup(char *str)
5238
{
5239
	sched_debug_enabled = 1;
5240 5241 5242

	return 0;
}
5243 5244 5245 5246 5247 5248
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5249

5250
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5251
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5252
{
I
Ingo Molnar 已提交
5253
	struct sched_group *group = sd->groups;
5254
	char str[256];
L
Linus Torvalds 已提交
5255

R
Rusty Russell 已提交
5256
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5257
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5258 5259 5260 5261

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5262
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5263
		if (sd->parent)
P
Peter Zijlstra 已提交
5264 5265
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5266
		return -1;
N
Nick Piggin 已提交
5267 5268
	}

P
Peter Zijlstra 已提交
5269
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5270

5271
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5272 5273
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5274
	}
5275
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5276 5277
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5278
	}
L
Linus Torvalds 已提交
5279

I
Ingo Molnar 已提交
5280
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5281
	do {
I
Ingo Molnar 已提交
5282
		if (!group) {
P
Peter Zijlstra 已提交
5283 5284
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5285 5286 5287
			break;
		}

5288
		/*
5289 5290
		 * Even though we initialize ->capacity to something semi-sane,
		 * we leave capacity_orig unset. This allows us to detect if
5291 5292
		 * domain iteration is still funny without causing /0 traps.
		 */
5293
		if (!group->sgc->capacity_orig) {
P
Peter Zijlstra 已提交
5294
			printk(KERN_CONT "\n");
5295
			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
I
Ingo Molnar 已提交
5296 5297
			break;
		}
L
Linus Torvalds 已提交
5298

5299
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5300 5301
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5302 5303
			break;
		}
L
Linus Torvalds 已提交
5304

5305 5306
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5307 5308
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5309 5310
			break;
		}
L
Linus Torvalds 已提交
5311

5312
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5313

R
Rusty Russell 已提交
5314
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5315

P
Peter Zijlstra 已提交
5316
		printk(KERN_CONT " %s", str);
5317
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5318 5319
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5320
		}
L
Linus Torvalds 已提交
5321

I
Ingo Molnar 已提交
5322 5323
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5324
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5325

5326
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5327
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5328

5329 5330
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5331 5332
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5333 5334
	return 0;
}
L
Linus Torvalds 已提交
5335

I
Ingo Molnar 已提交
5336 5337 5338
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5339

5340
	if (!sched_debug_enabled)
5341 5342
		return;

I
Ingo Molnar 已提交
5343 5344 5345 5346
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5347

I
Ingo Molnar 已提交
5348 5349 5350
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5351
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5352
			break;
L
Linus Torvalds 已提交
5353 5354
		level++;
		sd = sd->parent;
5355
		if (!sd)
I
Ingo Molnar 已提交
5356 5357
			break;
	}
L
Linus Torvalds 已提交
5358
}
5359
#else /* !CONFIG_SCHED_DEBUG */
5360
# define sched_domain_debug(sd, cpu) do { } while (0)
5361 5362 5363 5364
static inline bool sched_debug(void)
{
	return false;
}
5365
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5366

5367
static int sd_degenerate(struct sched_domain *sd)
5368
{
5369
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5370 5371 5372 5373 5374 5375
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5376
			 SD_BALANCE_EXEC |
5377
			 SD_SHARE_CPUCAPACITY |
5378 5379
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5380 5381 5382 5383 5384
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5385
	if (sd->flags & (SD_WAKE_AFFINE))
5386 5387 5388 5389 5390
		return 0;

	return 1;
}

5391 5392
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5393 5394 5395 5396 5397 5398
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5399
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5400 5401 5402 5403 5404 5405 5406
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5407
				SD_BALANCE_EXEC |
5408
				SD_SHARE_CPUCAPACITY |
5409
				SD_SHARE_PKG_RESOURCES |
5410 5411
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5412 5413
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5414 5415 5416 5417 5418 5419 5420
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5421
static void free_rootdomain(struct rcu_head *rcu)
5422
{
5423
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5424

5425
	cpupri_cleanup(&rd->cpupri);
5426
	cpudl_cleanup(&rd->cpudl);
5427
	free_cpumask_var(rd->dlo_mask);
5428 5429 5430 5431 5432 5433
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5434 5435
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5436
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5437 5438
	unsigned long flags;

5439
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5440 5441

	if (rq->rd) {
I
Ingo Molnar 已提交
5442
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5443

5444
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5445
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5446

5447
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5448

I
Ingo Molnar 已提交
5449
		/*
5450
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5451 5452 5453 5454 5455
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5456 5457 5458 5459 5460
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5461
	cpumask_set_cpu(rq->cpu, rd->span);
5462
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5463
		set_rq_online(rq);
G
Gregory Haskins 已提交
5464

5465
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5466 5467

	if (old_rd)
5468
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5469 5470
}

5471
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5472 5473 5474
{
	memset(rd, 0, sizeof(*rd));

5475
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5476
		goto out;
5477
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5478
		goto free_span;
5479
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5480
		goto free_online;
5481 5482
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5483

5484
	init_dl_bw(&rd->dl_bw);
5485 5486
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5487

5488
	if (cpupri_init(&rd->cpupri) != 0)
5489
		goto free_rto_mask;
5490
	return 0;
5491

5492 5493
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5494 5495
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5496 5497 5498 5499
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5500
out:
5501
	return -ENOMEM;
G
Gregory Haskins 已提交
5502 5503
}

5504 5505 5506 5507 5508 5509
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5510 5511
static void init_defrootdomain(void)
{
5512
	init_rootdomain(&def_root_domain);
5513

G
Gregory Haskins 已提交
5514 5515 5516
	atomic_set(&def_root_domain.refcount, 1);
}

5517
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5518 5519 5520 5521 5522 5523 5524
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5525
	if (init_rootdomain(rd) != 0) {
5526 5527 5528
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5529 5530 5531 5532

	return rd;
}

5533
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5544 5545
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5546 5547 5548 5549 5550 5551

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5552 5553 5554
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5555 5556 5557 5558 5559 5560 5561 5562

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5563
		kfree(sd->groups->sgc);
5564
		kfree(sd->groups);
5565
	}
5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5580 5581 5582 5583 5584 5585 5586
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5587
 * two cpus are in the same cache domain, see cpus_share_cache().
5588 5589
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5590
DEFINE_PER_CPU(int, sd_llc_size);
5591
DEFINE_PER_CPU(int, sd_llc_id);
5592
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5593 5594
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5595 5596 5597 5598

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5599
	struct sched_domain *busy_sd = NULL;
5600
	int id = cpu;
5601
	int size = 1;
5602 5603

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5604
	if (sd) {
5605
		id = cpumask_first(sched_domain_span(sd));
5606
		size = cpumask_weight(sched_domain_span(sd));
5607
		busy_sd = sd->parent; /* sd_busy */
5608
	}
5609
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5610 5611

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5612
	per_cpu(sd_llc_size, cpu) = size;
5613
	per_cpu(sd_llc_id, cpu) = id;
5614 5615 5616

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5617 5618 5619

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5620 5621
}

L
Linus Torvalds 已提交
5622
/*
I
Ingo Molnar 已提交
5623
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5624 5625
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5626 5627
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5628
{
5629
	struct rq *rq = cpu_rq(cpu);
5630 5631 5632
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5633
	for (tmp = sd; tmp; ) {
5634 5635 5636
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5637

5638
		if (sd_parent_degenerate(tmp, parent)) {
5639
			tmp->parent = parent->parent;
5640 5641
			if (parent->parent)
				parent->parent->child = tmp;
5642 5643 5644 5645 5646 5647 5648
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5649
			destroy_sched_domain(parent, cpu);
5650 5651
		} else
			tmp = tmp->parent;
5652 5653
	}

5654
	if (sd && sd_degenerate(sd)) {
5655
		tmp = sd;
5656
		sd = sd->parent;
5657
		destroy_sched_domain(tmp, cpu);
5658 5659 5660
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5661

5662
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5663

G
Gregory Haskins 已提交
5664
	rq_attach_root(rq, rd);
5665
	tmp = rq->sd;
N
Nick Piggin 已提交
5666
	rcu_assign_pointer(rq->sd, sd);
5667
	destroy_sched_domains(tmp, cpu);
5668 5669

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5670 5671 5672
}

/* cpus with isolated domains */
5673
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5674 5675 5676 5677

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5678
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5679
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5680 5681 5682
	return 1;
}

I
Ingo Molnar 已提交
5683
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5684

5685
struct s_data {
5686
	struct sched_domain ** __percpu sd;
5687 5688 5689
	struct root_domain	*rd;
};

5690 5691
enum s_alloc {
	sa_rootdomain,
5692
	sa_sd,
5693
	sa_sd_storage,
5694 5695 5696
	sa_none,
};

P
Peter Zijlstra 已提交
5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5735 5736 5737 5738 5739 5740 5741
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
5742
	struct sched_domain *sibling;
5743 5744 5745 5746 5747 5748 5749 5750 5751 5752
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

5753
		sibling = *per_cpu_ptr(sdd->sd, i);
P
Peter Zijlstra 已提交
5754 5755

		/* See the comment near build_group_mask(). */
5756
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
P
Peter Zijlstra 已提交
5757 5758
			continue;

5759
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5760
				GFP_KERNEL, cpu_to_node(cpu));
5761 5762 5763 5764 5765

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
5766 5767 5768
		if (sibling->child)
			cpumask_copy(sg_span, sched_domain_span(sibling->child));
		else
5769 5770 5771 5772
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

5773 5774
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
5775 5776
			build_group_mask(sd, sg);

5777
		/*
5778
		 * Initialize sgc->capacity such that even if we mess up the
5779 5780 5781
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
5782
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5783
		sg->sgc->capacity_orig = sg->sgc->capacity;
5784

P
Peter Zijlstra 已提交
5785 5786 5787 5788 5789
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5790
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5791
		    group_balance_cpu(sg) == cpu)
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5811
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5812
{
5813 5814
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5815

5816 5817
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5818

5819
	if (sg) {
5820
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5821 5822
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5823
	}
5824 5825

	return cpu;
5826 5827
}

5828
/*
5829 5830
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
5831
 * and ->cpu_capacity to 0.
5832 5833
 *
 * Assumes the sched_domain tree is fully constructed
5834
 */
5835 5836
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5837
{
5838 5839 5840
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5841
	struct cpumask *covered;
5842
	int i;
5843

5844 5845 5846
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5847
	if (cpu != cpumask_first(span))
5848 5849
		return 0;

5850 5851 5852
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5853
	cpumask_clear(covered);
5854

5855 5856
	for_each_cpu(i, span) {
		struct sched_group *sg;
5857
		int group, j;
5858

5859 5860
		if (cpumask_test_cpu(i, covered))
			continue;
5861

5862
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
5863
		cpumask_setall(sched_group_mask(sg));
5864

5865 5866 5867
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5868

5869 5870 5871
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5872

5873 5874 5875 5876 5877 5878 5879
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5880 5881

	return 0;
5882
}
5883

5884
/*
5885
 * Initialize sched groups cpu_capacity.
5886
 *
5887
 * cpu_capacity indicates the capacity of sched group, which is used while
5888
 * distributing the load between different sched groups in a sched domain.
5889 5890 5891 5892
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
5893
 */
5894
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5895
{
5896
	struct sched_group *sg = sd->groups;
5897

5898
	WARN_ON(!sg);
5899 5900 5901 5902 5903

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5904

P
Peter Zijlstra 已提交
5905
	if (cpu != group_balance_cpu(sg))
5906
		return;
5907

5908 5909
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5910 5911
}

5912 5913 5914 5915 5916
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5917
static int default_relax_domain_level = -1;
5918
int sched_domain_level_max;
5919 5920 5921

static int __init setup_relax_domain_level(char *str)
{
5922 5923
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5924

5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5943
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5944 5945
	} else {
		/* turn on idle balance on this domain */
5946
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5947 5948 5949
	}
}

5950 5951 5952
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5953 5954 5955 5956 5957
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5958 5959
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5960 5961
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5962
	case sa_sd_storage:
5963
		__sdt_free(cpu_map); /* fall through */
5964 5965 5966 5967
	case sa_none:
		break;
	}
}
5968

5969 5970 5971
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5972 5973
	memset(d, 0, sizeof(*d));

5974 5975
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5976 5977 5978
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5979
	d->rd = alloc_rootdomain();
5980
	if (!d->rd)
5981
		return sa_sd;
5982 5983
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5984

5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5997
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5998
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5999

6000 6001
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6002 6003
}

6004 6005 6006 6007 6008
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
6009
#endif
6010

6011 6012 6013
/*
 * SD_flags allowed in topology descriptions.
 *
6014
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6015 6016
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6017
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6018 6019 6020 6021 6022
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6023
	(SD_SHARE_CPUCAPACITY |		\
6024 6025
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6026 6027
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6028 6029

static struct sched_domain *
6030
sd_init(struct sched_domain_topology_level *tl, int cpu)
6031 6032
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6049 6050 6051 6052 6053

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6054
		.imbalance_pct		= 125,
6055 6056 6057 6058

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6059 6060 6061 6062 6063 6064
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6065 6066
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6067
					| 0*SD_BALANCE_WAKE
6068
					| 1*SD_WAKE_AFFINE
6069
					| 0*SD_SHARE_CPUCAPACITY
6070
					| 0*SD_SHARE_PKG_RESOURCES
6071
					| 0*SD_SERIALIZE
6072
					| 0*SD_PREFER_SIBLING
6073 6074
					| 0*SD_NUMA
					| sd_flags
6075
					,
6076

6077 6078
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6079
		.smt_gain		= 0,
6080 6081
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6082 6083 6084
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6085 6086 6087
	};

	/*
6088
	 * Convert topological properties into behaviour.
6089
	 */
6090

6091
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6122 6123 6124 6125

	return sd;
}

6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6152 6153 6154 6155 6156
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6238
		}
6239 6240 6241 6242 6243 6244

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6245 6246 6247 6248 6249
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6250
	 * The sched_domains_numa_distance[] array includes the actual distance
6251 6252 6253
	 * numbers.
	 */

6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6280
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6281 6282 6283 6284 6285 6286
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6287
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6288 6289 6290 6291 6292 6293 6294
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6295 6296 6297
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6298
	tl = kzalloc((i + level + 1) *
6299 6300 6301 6302 6303 6304 6305
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6306 6307
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6308 6309 6310 6311 6312 6313 6314

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6315
			.sd_flags = cpu_numa_flags,
6316 6317
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6318
			SD_INIT_NAME(NUMA)
6319 6320 6321 6322
		};
	}

	sched_domain_topology = tl;
6323 6324

	sched_domains_numa_levels = level;
6325
}
6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6373 6374 6375 6376 6377
}
#else
static inline void sched_init_numa(void)
{
}
6378 6379 6380 6381 6382 6383 6384

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6385 6386
#endif /* CONFIG_NUMA */

6387 6388 6389 6390 6391
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6392
	for_each_sd_topology(tl) {
6393 6394 6395 6396 6397 6398 6399 6400 6401 6402
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6403 6404
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6405 6406
			return -ENOMEM;

6407 6408 6409
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6410
			struct sched_group_capacity *sgc;
6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6424 6425
			sg->next = sg;

6426
			*per_cpu_ptr(sdd->sg, j) = sg;
6427

6428
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6429
					GFP_KERNEL, cpu_to_node(j));
6430
			if (!sgc)
6431 6432
				return -ENOMEM;

6433
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6445
	for_each_sd_topology(tl) {
6446 6447 6448
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6460 6461
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6462 6463
		}
		free_percpu(sdd->sd);
6464
		sdd->sd = NULL;
6465
		free_percpu(sdd->sg);
6466
		sdd->sg = NULL;
6467 6468
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6469 6470 6471
	}
}

6472
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6473 6474
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6475
{
6476
	struct sched_domain *sd = sd_init(tl, cpu);
6477
	if (!sd)
6478
		return child;
6479 6480

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6481 6482 6483
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6484
		child->parent = sd;
6485
		sd->child = child;
P
Peter Zijlstra 已提交
6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499

		if (!cpumask_subset(sched_domain_span(child),
				    sched_domain_span(sd))) {
			pr_err("BUG: arch topology borken\n");
#ifdef CONFIG_SCHED_DEBUG
			pr_err("     the %s domain not a subset of the %s domain\n",
					child->name, sd->name);
#endif
			/* Fixup, ensure @sd has at least @child cpus. */
			cpumask_or(sched_domain_span(sd),
				   sched_domain_span(sd),
				   sched_domain_span(child));
		}

6500
	}
6501
	set_domain_attribute(sd, attr);
6502 6503 6504 6505

	return sd;
}

6506 6507 6508 6509
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6510 6511
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6512
{
6513
	enum s_alloc alloc_state;
6514
	struct sched_domain *sd;
6515
	struct s_data d;
6516
	int i, ret = -ENOMEM;
6517

6518 6519 6520
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6521

6522
	/* Set up domains for cpus specified by the cpu_map. */
6523
	for_each_cpu(i, cpu_map) {
6524 6525
		struct sched_domain_topology_level *tl;

6526
		sd = NULL;
6527
		for_each_sd_topology(tl) {
6528
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6529 6530
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6531 6532
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6533 6534
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6535
		}
6536 6537 6538 6539 6540 6541
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6542 6543 6544 6545 6546 6547 6548
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6549
		}
6550
	}
6551

6552
	/* Calculate CPU capacity for physical packages and nodes */
6553 6554 6555
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6556

6557 6558
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6559
			init_sched_groups_capacity(i, sd);
6560
		}
6561
	}
6562

L
Linus Torvalds 已提交
6563
	/* Attach the domains */
6564
	rcu_read_lock();
6565
	for_each_cpu(i, cpu_map) {
6566
		sd = *per_cpu_ptr(d.sd, i);
6567
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6568
	}
6569
	rcu_read_unlock();
6570

6571
	ret = 0;
6572
error:
6573
	__free_domain_allocs(&d, alloc_state, cpu_map);
6574
	return ret;
L
Linus Torvalds 已提交
6575
}
P
Paul Jackson 已提交
6576

6577
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6578
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6579 6580
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6581 6582 6583

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6584 6585
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6586
 */
6587
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6588

6589 6590 6591 6592 6593
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6594
int __weak arch_update_cpu_topology(void)
6595
{
6596
	return 0;
6597 6598
}

6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6624
/*
I
Ingo Molnar 已提交
6625
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6626 6627
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6628
 */
6629
static int init_sched_domains(const struct cpumask *cpu_map)
6630
{
6631 6632
	int err;

6633
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6634
	ndoms_cur = 1;
6635
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6636
	if (!doms_cur)
6637 6638
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6639
	err = build_sched_domains(doms_cur[0], NULL);
6640
	register_sched_domain_sysctl();
6641 6642

	return err;
6643 6644 6645 6646 6647 6648
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6649
static void detach_destroy_domains(const struct cpumask *cpu_map)
6650 6651 6652
{
	int i;

6653
	rcu_read_lock();
6654
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6655
		cpu_attach_domain(NULL, &def_root_domain, i);
6656
	rcu_read_unlock();
6657 6658
}

6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6675 6676
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6677
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6678 6679 6680
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6681
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6682 6683 6684
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6685 6686 6687
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6688 6689 6690 6691 6692 6693
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6694
 *
6695
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6696 6697
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6698
 *
P
Paul Jackson 已提交
6699 6700
 * Call with hotplug lock held
 */
6701
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6702
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6703
{
6704
	int i, j, n;
6705
	int new_topology;
P
Paul Jackson 已提交
6706

6707
	mutex_lock(&sched_domains_mutex);
6708

6709 6710 6711
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6712 6713 6714
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6715
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6716 6717 6718

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6719
		for (j = 0; j < n && !new_topology; j++) {
6720
			if (cpumask_equal(doms_cur[i], doms_new[j])
6721
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6722 6723 6724
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6725
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6726 6727 6728 6729
match1:
		;
	}

6730
	n = ndoms_cur;
6731
	if (doms_new == NULL) {
6732
		n = 0;
6733
		doms_new = &fallback_doms;
6734
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6735
		WARN_ON_ONCE(dattr_new);
6736 6737
	}

P
Paul Jackson 已提交
6738 6739
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6740
		for (j = 0; j < n && !new_topology; j++) {
6741
			if (cpumask_equal(doms_new[i], doms_cur[j])
6742
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6743 6744 6745
				goto match2;
		}
		/* no match - add a new doms_new */
6746
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6747 6748 6749 6750 6751
match2:
		;
	}

	/* Remember the new sched domains */
6752 6753
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6754
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6755
	doms_cur = doms_new;
6756
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6757
	ndoms_cur = ndoms_new;
6758 6759

	register_sched_domain_sysctl();
6760

6761
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6762 6763
}

6764 6765
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6766
/*
6767 6768 6769
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6770 6771 6772
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6773
 */
6774 6775
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6776
{
6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6799
	case CPU_ONLINE:
6800
	case CPU_DOWN_FAILED:
6801
		cpuset_update_active_cpus(true);
6802
		break;
6803 6804 6805
	default:
		return NOTIFY_DONE;
	}
6806
	return NOTIFY_OK;
6807
}
6808

6809 6810
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6811
{
6812
	switch (action) {
6813
	case CPU_DOWN_PREPARE:
6814
		cpuset_update_active_cpus(false);
6815 6816 6817 6818 6819
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6820 6821 6822
	default:
		return NOTIFY_DONE;
	}
6823
	return NOTIFY_OK;
6824 6825
}

L
Linus Torvalds 已提交
6826 6827
void __init sched_init_smp(void)
{
6828 6829 6830
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6831
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6832

6833 6834
	sched_init_numa();

6835 6836 6837 6838 6839
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
6840
	mutex_lock(&sched_domains_mutex);
6841
	init_sched_domains(cpu_active_mask);
6842 6843 6844
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6845
	mutex_unlock(&sched_domains_mutex);
6846

6847
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6848 6849
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6850

6851
	init_hrtick();
6852 6853

	/* Move init over to a non-isolated CPU */
6854
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6855
		BUG();
I
Ingo Molnar 已提交
6856
	sched_init_granularity();
6857
	free_cpumask_var(non_isolated_cpus);
6858

6859
	init_sched_rt_class();
6860
	init_sched_dl_class();
L
Linus Torvalds 已提交
6861 6862 6863 6864
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6865
	sched_init_granularity();
L
Linus Torvalds 已提交
6866 6867 6868
}
#endif /* CONFIG_SMP */

6869 6870
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6871 6872 6873 6874 6875 6876 6877
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6878
#ifdef CONFIG_CGROUP_SCHED
6879 6880 6881 6882
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6883
struct task_group root_task_group;
6884
LIST_HEAD(task_groups);
6885
#endif
P
Peter Zijlstra 已提交
6886

6887
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6888

L
Linus Torvalds 已提交
6889 6890
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6891
	int i, j;
6892 6893 6894 6895 6896 6897 6898
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6899
#endif
6900
#ifdef CONFIG_CPUMASK_OFFSTACK
6901
	alloc_size += num_possible_cpus() * cpumask_size();
6902 6903
#endif
	if (alloc_size) {
6904
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6905 6906

#ifdef CONFIG_FAIR_GROUP_SCHED
6907
		root_task_group.se = (struct sched_entity **)ptr;
6908 6909
		ptr += nr_cpu_ids * sizeof(void **);

6910
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6911
		ptr += nr_cpu_ids * sizeof(void **);
6912

6913
#endif /* CONFIG_FAIR_GROUP_SCHED */
6914
#ifdef CONFIG_RT_GROUP_SCHED
6915
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6916 6917
		ptr += nr_cpu_ids * sizeof(void **);

6918
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6919 6920
		ptr += nr_cpu_ids * sizeof(void **);

6921
#endif /* CONFIG_RT_GROUP_SCHED */
6922 6923
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6924
			per_cpu(load_balance_mask, i) = (void *)ptr;
6925 6926 6927
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6928
	}
I
Ingo Molnar 已提交
6929

6930 6931 6932
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
6933
			global_rt_period(), global_rt_runtime());
6934

G
Gregory Haskins 已提交
6935 6936 6937 6938
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6939
#ifdef CONFIG_RT_GROUP_SCHED
6940
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6941
			global_rt_period(), global_rt_runtime());
6942
#endif /* CONFIG_RT_GROUP_SCHED */
6943

D
Dhaval Giani 已提交
6944
#ifdef CONFIG_CGROUP_SCHED
6945 6946
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6947
	INIT_LIST_HEAD(&root_task_group.siblings);
6948
	autogroup_init(&init_task);
6949

D
Dhaval Giani 已提交
6950
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6951

6952
	for_each_possible_cpu(i) {
6953
		struct rq *rq;
L
Linus Torvalds 已提交
6954 6955

		rq = cpu_rq(i);
6956
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6957
		rq->nr_running = 0;
6958 6959
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6960
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6961
		init_rt_rq(&rq->rt, rq);
6962
		init_dl_rq(&rq->dl, rq);
I
Ingo Molnar 已提交
6963
#ifdef CONFIG_FAIR_GROUP_SCHED
6964
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6965
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6966
		/*
6967
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6968 6969 6970 6971
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6972
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6973 6974 6975
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6976
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6977 6978 6979
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6980
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6981
		 *
6982 6983
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6984
		 */
6985
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6986
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6987 6988 6989
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6990
#ifdef CONFIG_RT_GROUP_SCHED
6991
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6992
#endif
L
Linus Torvalds 已提交
6993

I
Ingo Molnar 已提交
6994 6995
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6996 6997 6998

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6999
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7000
		rq->sd = NULL;
G
Gregory Haskins 已提交
7001
		rq->rd = NULL;
7002
		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
7003
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
7004
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7005
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7006
		rq->push_cpu = 0;
7007
		rq->cpu = i;
7008
		rq->online = 0;
7009 7010
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
7011
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7012 7013 7014

		INIT_LIST_HEAD(&rq->cfs_tasks);

7015
		rq_attach_root(rq, &def_root_domain);
7016
#ifdef CONFIG_NO_HZ_COMMON
7017
		rq->nohz_flags = 0;
7018
#endif
7019 7020 7021
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
7022
#endif
P
Peter Zijlstra 已提交
7023
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7024 7025 7026
		atomic_set(&rq->nr_iowait, 0);
	}

7027
	set_load_weight(&init_task);
7028

7029 7030 7031 7032
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7046 7047 7048

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7049 7050 7051 7052
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7053

7054
#ifdef CONFIG_SMP
7055
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7056 7057 7058
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7059
	idle_thread_set_boot_cpu();
7060
	set_cpu_rq_start_time();
7061 7062
#endif
	init_sched_fair_class();
7063

7064
	scheduler_running = 1;
L
Linus Torvalds 已提交
7065 7066
}

7067
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7068 7069
static inline int preempt_count_equals(int preempt_offset)
{
7070
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7071

A
Arnd Bergmann 已提交
7072
	return (nested == preempt_offset);
7073 7074
}

7075
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7076 7077 7078
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7079
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7080 7081
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7082
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7083 7084 7085 7086 7087
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7088 7089 7090 7091 7092 7093 7094
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7095 7096 7097 7098

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7099 7100 7101 7102 7103 7104 7105
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7106
	dump_stack();
L
Linus Torvalds 已提交
7107 7108 7109 7110 7111
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7112 7113
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7114
	const struct sched_class *prev_class = p->sched_class;
7115 7116 7117
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
7118
	int old_prio = p->prio;
7119
	int queued;
7120

7121 7122
	queued = task_on_rq_queued(p);
	if (queued)
7123
		dequeue_task(rq, p, 0);
7124
	__setscheduler(rq, p, &attr);
7125
	if (queued) {
7126
		enqueue_task(rq, p, 0);
7127
		resched_curr(rq);
7128
	}
P
Peter Zijlstra 已提交
7129 7130

	check_class_changed(rq, p, prev_class, old_prio);
7131 7132
}

L
Linus Torvalds 已提交
7133 7134
void normalize_rt_tasks(void)
{
7135
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7136
	unsigned long flags;
7137
	struct rq *rq;
L
Linus Torvalds 已提交
7138

7139
	read_lock_irqsave(&tasklist_lock, flags);
7140
	for_each_process_thread(g, p) {
7141 7142 7143 7144 7145 7146
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7147 7148
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7149 7150 7151
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7152
#endif
I
Ingo Molnar 已提交
7153

7154
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7155 7156 7157 7158
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7159
			if (task_nice(p) < 0 && p->mm)
I
Ingo Molnar 已提交
7160
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7161
			continue;
I
Ingo Molnar 已提交
7162
		}
L
Linus Torvalds 已提交
7163

7164
		raw_spin_lock(&p->pi_lock);
7165
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7166

7167
		normalize_task(rq, p);
7168

7169
		__task_rq_unlock(rq);
7170
		raw_spin_unlock(&p->pi_lock);
7171
	}
7172
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7173 7174 7175
}

#endif /* CONFIG_MAGIC_SYSRQ */
7176

7177
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7178
/*
7179
 * These functions are only useful for the IA64 MCA handling, or kdb.
7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7193 7194
 *
 * Return: The current task for @cpu.
7195
 */
7196
struct task_struct *curr_task(int cpu)
7197 7198 7199 7200
{
	return cpu_curr(cpu);
}

7201 7202 7203
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7204 7205 7206 7207 7208 7209
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7210 7211
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7212 7213 7214 7215 7216 7217 7218
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7219
void set_curr_task(int cpu, struct task_struct *p)
7220 7221 7222 7223 7224
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7225

D
Dhaval Giani 已提交
7226
#ifdef CONFIG_CGROUP_SCHED
7227 7228 7229
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7230 7231 7232 7233
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7234
	autogroup_free(tg);
7235 7236 7237 7238
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7239
struct task_group *sched_create_group(struct task_group *parent)
7240 7241 7242 7243 7244 7245 7246
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7247
	if (!alloc_fair_sched_group(tg, parent))
7248 7249
		goto err;

7250
	if (!alloc_rt_sched_group(tg, parent))
7251 7252
		goto err;

7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7264
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7265
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7266 7267 7268 7269 7270

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7271
	list_add_rcu(&tg->siblings, &parent->children);
7272
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7273 7274
}

7275
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7276
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7277 7278
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7279
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7280 7281
}

7282
/* Destroy runqueue etc associated with a task group */
7283
void sched_destroy_group(struct task_group *tg)
7284 7285 7286 7287 7288 7289
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7290
{
7291
	unsigned long flags;
7292
	int i;
S
Srivatsa Vaddagiri 已提交
7293

7294 7295
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7296
		unregister_fair_sched_group(tg, i);
7297 7298

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7299
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7300
	list_del_rcu(&tg->siblings);
7301
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7302 7303
}

7304
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7305 7306 7307
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7308 7309
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7310
{
P
Peter Zijlstra 已提交
7311
	struct task_group *tg;
7312
	int queued, running;
S
Srivatsa Vaddagiri 已提交
7313 7314 7315 7316 7317
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7318
	running = task_current(rq, tsk);
7319
	queued = task_on_rq_queued(tsk);
S
Srivatsa Vaddagiri 已提交
7320

7321
	if (queued)
S
Srivatsa Vaddagiri 已提交
7322
		dequeue_task(rq, tsk, 0);
7323 7324
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7325

7326
	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
P
Peter Zijlstra 已提交
7327 7328 7329 7330 7331
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7332
#ifdef CONFIG_FAIR_GROUP_SCHED
7333
	if (tsk->sched_class->task_move_group)
7334
		tsk->sched_class->task_move_group(tsk, queued);
7335
	else
P
Peter Zijlstra 已提交
7336
#endif
7337
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7338

7339 7340
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
7341
	if (queued)
7342
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7343

7344
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7345
}
D
Dhaval Giani 已提交
7346
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7347

7348 7349 7350 7351 7352
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7353

P
Peter Zijlstra 已提交
7354 7355
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7356
{
P
Peter Zijlstra 已提交
7357
	struct task_struct *g, *p;
7358

7359
	for_each_process_thread(g, p) {
7360
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7361
			return 1;
7362
	}
7363

P
Peter Zijlstra 已提交
7364 7365
	return 0;
}
7366

P
Peter Zijlstra 已提交
7367 7368 7369 7370 7371
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7372

7373
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7374 7375 7376 7377 7378
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7379

P
Peter Zijlstra 已提交
7380 7381
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7382

P
Peter Zijlstra 已提交
7383 7384 7385
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7386 7387
	}

7388 7389 7390 7391 7392
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7393

7394 7395 7396
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7397 7398
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7399

P
Peter Zijlstra 已提交
7400
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7401

7402 7403 7404 7405 7406
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7407

7408 7409 7410
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7411 7412 7413
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7414

P
Peter Zijlstra 已提交
7415 7416 7417 7418
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7419

P
Peter Zijlstra 已提交
7420
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7421
	}
P
Peter Zijlstra 已提交
7422

P
Peter Zijlstra 已提交
7423 7424 7425 7426
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7427 7428
}

P
Peter Zijlstra 已提交
7429
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7430
{
7431 7432
	int ret;

P
Peter Zijlstra 已提交
7433 7434 7435 7436 7437 7438
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7439 7440 7441 7442 7443
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7444 7445
}

7446
static int tg_set_rt_bandwidth(struct task_group *tg,
7447
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7448
{
P
Peter Zijlstra 已提交
7449
	int i, err = 0;
P
Peter Zijlstra 已提交
7450 7451

	mutex_lock(&rt_constraints_mutex);
7452
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7453 7454
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7455
		goto unlock;
P
Peter Zijlstra 已提交
7456

7457
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7458 7459
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7460 7461 7462 7463

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7464
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7465
		rt_rq->rt_runtime = rt_runtime;
7466
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7467
	}
7468
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7469
unlock:
7470
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7471 7472 7473
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7474 7475
}

7476
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7477 7478 7479 7480 7481 7482 7483 7484
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7485
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7486 7487
}

7488
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7489 7490 7491
{
	u64 rt_runtime_us;

7492
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7493 7494
		return -1;

7495
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7496 7497 7498
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7499

7500
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7501 7502 7503 7504 7505 7506
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7507 7508 7509
	if (rt_period == 0)
		return -EINVAL;

7510
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7511 7512
}

7513
static long sched_group_rt_period(struct task_group *tg)
7514 7515 7516 7517 7518 7519 7520
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7521
#endif /* CONFIG_RT_GROUP_SCHED */
7522

7523
#ifdef CONFIG_RT_GROUP_SCHED
7524 7525 7526 7527 7528
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7529
	read_lock(&tasklist_lock);
7530
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7531
	read_unlock(&tasklist_lock);
7532 7533 7534 7535
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7536

7537
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7538 7539 7540 7541 7542 7543 7544 7545
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7546
#else /* !CONFIG_RT_GROUP_SCHED */
7547 7548
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7549
	unsigned long flags;
7550
	int i, ret = 0;
7551

7552
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7553 7554 7555
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7556
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7557
		rt_rq->rt_runtime = global_rt_runtime();
7558
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7559
	}
7560
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7561

7562
	return ret;
7563
}
7564
#endif /* CONFIG_RT_GROUP_SCHED */
7565

7566 7567
static int sched_dl_global_constraints(void)
{
7568 7569
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7570
	u64 new_bw = to_ratio(period, runtime);
7571
	int cpu, ret = 0;
7572
	unsigned long flags;
7573 7574 7575 7576 7577 7578 7579 7580 7581 7582

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7583 7584
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);
7585

7586
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7587 7588
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7589
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7590 7591 7592

		if (ret)
			break;
7593 7594
	}

7595
	return ret;
7596 7597
}

7598
static void sched_dl_do_global(void)
7599
{
7600 7601
	u64 new_bw = -1;
	int cpu;
7602
	unsigned long flags;
7603

7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);

7616
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7617
		dl_b->bw = new_bw;
7618
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7619
	}
7620 7621 7622 7623 7624 7625 7626
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7627 7628
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7629 7630 7631 7632 7633 7634 7635 7636 7637
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7638 7639
}

7640
int sched_rt_handler(struct ctl_table *table, int write,
7641
		void __user *buffer, size_t *lenp,
7642 7643 7644 7645
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7646
	int ret;
7647 7648 7649 7650 7651

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7652
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7653 7654

	if (!ret && write) {
7655 7656 7657 7658
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7659
		ret = sched_rt_global_constraints();
7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673
		if (ret)
			goto undo;

		ret = sched_dl_global_constraints();
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7674 7675 7676 7677 7678
	}
	mutex_unlock(&mutex);

	return ret;
}
7679

7680
int sched_rr_handler(struct ctl_table *table, int write,
7681 7682 7683 7684 7685 7686 7687 7688
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7689 7690
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7691
	if (!ret && write) {
7692 7693
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7694 7695 7696 7697 7698
	}
	mutex_unlock(&mutex);
	return ret;
}

7699
#ifdef CONFIG_CGROUP_SCHED
7700

7701
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7702
{
7703
	return css ? container_of(css, struct task_group, css) : NULL;
7704 7705
}

7706 7707
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7708
{
7709 7710
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7711

7712
	if (!parent) {
7713
		/* This is early initialization for the top cgroup */
7714
		return &root_task_group.css;
7715 7716
	}

7717
	tg = sched_create_group(parent);
7718 7719 7720 7721 7722 7723
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7724
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7725
{
7726
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
7727
	struct task_group *parent = css_tg(css->parent);
7728

T
Tejun Heo 已提交
7729 7730
	if (parent)
		sched_online_group(tg, parent);
7731 7732 7733
	return 0;
}

7734
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7735
{
7736
	struct task_group *tg = css_tg(css);
7737 7738 7739 7740

	sched_destroy_group(tg);
}

7741
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7742
{
7743
	struct task_group *tg = css_tg(css);
7744 7745 7746 7747

	sched_offline_group(tg);
}

7748
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7749
				 struct cgroup_taskset *tset)
7750
{
7751 7752
	struct task_struct *task;

7753
	cgroup_taskset_for_each(task, tset) {
7754
#ifdef CONFIG_RT_GROUP_SCHED
7755
		if (!sched_rt_can_attach(css_tg(css), task))
7756
			return -EINVAL;
7757
#else
7758 7759 7760
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7761
#endif
7762
	}
7763 7764
	return 0;
}
7765

7766
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7767
			      struct cgroup_taskset *tset)
7768
{
7769 7770
	struct task_struct *task;

7771
	cgroup_taskset_for_each(task, tset)
7772
		sched_move_task(task);
7773 7774
}

7775 7776 7777
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7790
#ifdef CONFIG_FAIR_GROUP_SCHED
7791 7792
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7793
{
7794
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7795 7796
}

7797 7798
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7799
{
7800
	struct task_group *tg = css_tg(css);
7801

7802
	return (u64) scale_load_down(tg->shares);
7803
}
7804 7805

#ifdef CONFIG_CFS_BANDWIDTH
7806 7807
static DEFINE_MUTEX(cfs_constraints_mutex);

7808 7809 7810
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7811 7812
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7813 7814
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7815
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7816
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7837 7838 7839 7840 7841
	/*
	 * Prevent race between setting of cfs_rq->runtime_enabled and
	 * unthrottle_offline_cfs_rqs().
	 */
	get_online_cpus();
7842 7843 7844 7845 7846
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7847
	runtime_enabled = quota != RUNTIME_INF;
7848
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7849 7850 7851 7852 7853 7854
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7855 7856 7857
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7858

P
Paul Turner 已提交
7859
	__refill_cfs_bandwidth_runtime(cfs_b);
7860 7861 7862
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
7863
		__start_cfs_bandwidth(cfs_b, true);
7864
	}
7865 7866
	raw_spin_unlock_irq(&cfs_b->lock);

7867
	for_each_online_cpu(i) {
7868
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7869
		struct rq *rq = cfs_rq->rq;
7870 7871

		raw_spin_lock_irq(&rq->lock);
7872
		cfs_rq->runtime_enabled = runtime_enabled;
7873
		cfs_rq->runtime_remaining = 0;
7874

7875
		if (cfs_rq->throttled)
7876
			unthrottle_cfs_rq(cfs_rq);
7877 7878
		raw_spin_unlock_irq(&rq->lock);
	}
7879 7880
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7881 7882
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7883
	put_online_cpus();
7884

7885
	return ret;
7886 7887 7888 7889 7890 7891
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7892
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7905
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7906 7907
		return -1;

7908
	quota_us = tg->cfs_bandwidth.quota;
7909 7910 7911 7912 7913 7914 7915 7916 7917 7918
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7919
	quota = tg->cfs_bandwidth.quota;
7920 7921 7922 7923 7924 7925 7926 7927

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7928
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7929 7930 7931 7932 7933
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7934 7935
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7936
{
7937
	return tg_get_cfs_quota(css_tg(css));
7938 7939
}

7940 7941
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7942
{
7943
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7944 7945
}

7946 7947
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7948
{
7949
	return tg_get_cfs_period(css_tg(css));
7950 7951
}

7952 7953
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7954
{
7955
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7956 7957
}

7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7990
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7991 7992 7993 7994 7995
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7996
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
8017
	int ret;
8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8029 8030 8031 8032 8033
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8034
}
8035

8036
static int cpu_stats_show(struct seq_file *sf, void *v)
8037
{
8038
	struct task_group *tg = css_tg(seq_css(sf));
8039
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8040

8041 8042 8043
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8044 8045 8046

	return 0;
}
8047
#endif /* CONFIG_CFS_BANDWIDTH */
8048
#endif /* CONFIG_FAIR_GROUP_SCHED */
8049

8050
#ifdef CONFIG_RT_GROUP_SCHED
8051 8052
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8053
{
8054
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8055 8056
}

8057 8058
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8059
{
8060
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8061
}
8062

8063 8064
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8065
{
8066
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8067 8068
}

8069 8070
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8071
{
8072
	return sched_group_rt_period(css_tg(css));
8073
}
8074
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8075

8076
static struct cftype cpu_files[] = {
8077
#ifdef CONFIG_FAIR_GROUP_SCHED
8078 8079
	{
		.name = "shares",
8080 8081
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8082
	},
8083
#endif
8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8095 8096
	{
		.name = "stat",
8097
		.seq_show = cpu_stats_show,
8098
	},
8099
#endif
8100
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8101
	{
P
Peter Zijlstra 已提交
8102
		.name = "rt_runtime_us",
8103 8104
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8105
	},
8106 8107
	{
		.name = "rt_period_us",
8108 8109
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8110
	},
8111
#endif
8112
	{ }	/* terminate */
8113 8114
};

8115
struct cgroup_subsys cpu_cgrp_subsys = {
8116 8117
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8118 8119
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8120 8121
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8122
	.exit		= cpu_cgroup_exit,
8123
	.legacy_cftypes	= cpu_files,
8124 8125 8126
	.early_init	= 1,
};

8127
#endif	/* CONFIG_CGROUP_SCHED */
8128

8129 8130 8131 8132 8133
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}