core.c 191.3 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 *  kernel/sched/core.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36
#include <linux/highmem.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
37
#include <linux/capability.h>
L
Linus Torvalds 已提交
38 39
#include <linux/completion.h>
#include <linux/kernel_stat.h>
40
#include <linux/debug_locks.h>
41
#include <linux/perf_event.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
57
#include <linux/proc_fs.h>
L
Linus Torvalds 已提交
58
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/unistd.h>
J
Jens Axboe 已提交
66
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
67
#include <linux/hrtimer.h>
R
Reynes Philippe 已提交
68
#include <linux/tick.h>
P
Peter Zijlstra 已提交
69 70
#include <linux/debugfs.h>
#include <linux/ctype.h>
71
#include <linux/ftrace.h>
72
#include <linux/slab.h>
73
#include <linux/init_task.h>
A
Al Viro 已提交
74
#include <linux/binfmts.h>
75
#include <linux/context_tracking.h>
76
#include <linux/compiler.h>
L
Linus Torvalds 已提交
77

78
#include <asm/switch_to.h>
79
#include <asm/tlb.h>
80
#include <asm/irq_regs.h>
81
#include <asm/mutex.h>
G
Glauber Costa 已提交
82 83 84
#ifdef CONFIG_PARAVIRT
#include <asm/paravirt.h>
#endif
L
Linus Torvalds 已提交
85

86
#include "sched.h"
87
#include "../workqueue_internal.h"
88
#include "../smpboot.h"
89

90
#define CREATE_TRACE_POINTS
91
#include <trace/events/sched.h>
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
#ifdef smp_mb__before_atomic
void __smp_mb__before_atomic(void)
{
	smp_mb__before_atomic();
}
EXPORT_SYMBOL(__smp_mb__before_atomic);
#endif

#ifdef smp_mb__after_atomic
void __smp_mb__after_atomic(void)
{
	smp_mb__after_atomic();
}
EXPORT_SYMBOL(__smp_mb__after_atomic);
#endif

109
void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
110
{
111 112
	unsigned long delta;
	ktime_t soft, hard, now;
113

114 115 116 117 118 119
	for (;;) {
		if (hrtimer_active(period_timer))
			break;

		now = hrtimer_cb_get_time(period_timer);
		hrtimer_forward(period_timer, now, period);
120

121 122 123 124 125 126 127 128
		soft = hrtimer_get_softexpires(period_timer);
		hard = hrtimer_get_expires(period_timer);
		delta = ktime_to_ns(ktime_sub(hard, soft));
		__hrtimer_start_range_ns(period_timer, soft, delta,
					 HRTIMER_MODE_ABS_PINNED, 0);
	}
}

129 130
DEFINE_MUTEX(sched_domains_mutex);
DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
131

132
static void update_rq_clock_task(struct rq *rq, s64 delta);
133

134
void update_rq_clock(struct rq *rq)
135
{
136
	s64 delta;
137

138
	if (rq->skip_clock_update > 0)
139
		return;
140

141 142 143
	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
	rq->clock += delta;
	update_rq_clock_task(rq, delta);
144 145
}

I
Ingo Molnar 已提交
146 147 148
/*
 * Debugging: various feature bits
 */
P
Peter Zijlstra 已提交
149 150 151 152

#define SCHED_FEAT(name, enabled)	\
	(1UL << __SCHED_FEAT_##name) * enabled |

I
Ingo Molnar 已提交
153
const_debug unsigned int sysctl_sched_features =
154
#include "features.h"
P
Peter Zijlstra 已提交
155 156 157 158 159 160 161 162
	0;

#undef SCHED_FEAT

#ifdef CONFIG_SCHED_DEBUG
#define SCHED_FEAT(name, enabled)	\
	#name ,

163
static const char * const sched_feat_names[] = {
164
#include "features.h"
P
Peter Zijlstra 已提交
165 166 167 168
};

#undef SCHED_FEAT

L
Li Zefan 已提交
169
static int sched_feat_show(struct seq_file *m, void *v)
P
Peter Zijlstra 已提交
170 171 172
{
	int i;

173
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
L
Li Zefan 已提交
174 175 176
		if (!(sysctl_sched_features & (1UL << i)))
			seq_puts(m, "NO_");
		seq_printf(m, "%s ", sched_feat_names[i]);
P
Peter Zijlstra 已提交
177
	}
L
Li Zefan 已提交
178
	seq_puts(m, "\n");
P
Peter Zijlstra 已提交
179

L
Li Zefan 已提交
180
	return 0;
P
Peter Zijlstra 已提交
181 182
}

183 184
#ifdef HAVE_JUMP_LABEL

185 186
#define jump_label_key__true  STATIC_KEY_INIT_TRUE
#define jump_label_key__false STATIC_KEY_INIT_FALSE
187 188 189 190

#define SCHED_FEAT(name, enabled)	\
	jump_label_key__##enabled ,

191
struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
192 193 194 195 196 197 198
#include "features.h"
};

#undef SCHED_FEAT

static void sched_feat_disable(int i)
{
199 200
	if (static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_dec(&sched_feat_keys[i]);
201 202 203 204
}

static void sched_feat_enable(int i)
{
205 206
	if (!static_key_enabled(&sched_feat_keys[i]))
		static_key_slow_inc(&sched_feat_keys[i]);
207 208 209 210 211 212
}
#else
static void sched_feat_disable(int i) { };
static void sched_feat_enable(int i) { };
#endif /* HAVE_JUMP_LABEL */

213
static int sched_feat_set(char *cmp)
P
Peter Zijlstra 已提交
214 215
{
	int i;
216
	int neg = 0;
P
Peter Zijlstra 已提交
217

H
Hillf Danton 已提交
218
	if (strncmp(cmp, "NO_", 3) == 0) {
P
Peter Zijlstra 已提交
219 220 221 222
		neg = 1;
		cmp += 3;
	}

223
	for (i = 0; i < __SCHED_FEAT_NR; i++) {
224
		if (strcmp(cmp, sched_feat_names[i]) == 0) {
225
			if (neg) {
P
Peter Zijlstra 已提交
226
				sysctl_sched_features &= ~(1UL << i);
227 228
				sched_feat_disable(i);
			} else {
P
Peter Zijlstra 已提交
229
				sysctl_sched_features |= (1UL << i);
230 231
				sched_feat_enable(i);
			}
P
Peter Zijlstra 已提交
232 233 234 235
			break;
		}
	}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
	return i;
}

static ssize_t
sched_feat_write(struct file *filp, const char __user *ubuf,
		size_t cnt, loff_t *ppos)
{
	char buf[64];
	char *cmp;
	int i;

	if (cnt > 63)
		cnt = 63;

	if (copy_from_user(&buf, ubuf, cnt))
		return -EFAULT;

	buf[cnt] = 0;
	cmp = strstrip(buf);

	i = sched_feat_set(cmp);
257
	if (i == __SCHED_FEAT_NR)
P
Peter Zijlstra 已提交
258 259
		return -EINVAL;

260
	*ppos += cnt;
P
Peter Zijlstra 已提交
261 262 263 264

	return cnt;
}

L
Li Zefan 已提交
265 266 267 268 269
static int sched_feat_open(struct inode *inode, struct file *filp)
{
	return single_open(filp, sched_feat_show, NULL);
}

270
static const struct file_operations sched_feat_fops = {
L
Li Zefan 已提交
271 272 273 274 275
	.open		= sched_feat_open,
	.write		= sched_feat_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
P
Peter Zijlstra 已提交
276 277 278 279 280 281 282 283 284 285
};

static __init int sched_init_debug(void)
{
	debugfs_create_file("sched_features", 0644, NULL, NULL,
			&sched_feat_fops);

	return 0;
}
late_initcall(sched_init_debug);
286
#endif /* CONFIG_SCHED_DEBUG */
I
Ingo Molnar 已提交
287

288 289 290 291 292 293
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

294 295 296 297 298 299 300 301
/*
 * period over which we average the RT time consumption, measured
 * in ms.
 *
 * default: 1s
 */
const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;

P
Peter Zijlstra 已提交
302
/*
P
Peter Zijlstra 已提交
303
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
304 305
 * default: 1s
 */
P
Peter Zijlstra 已提交
306
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
307

308
__read_mostly int scheduler_running;
309

P
Peter Zijlstra 已提交
310 311 312 313 314
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
315

316
/*
317
 * __task_rq_lock - lock the rq @p resides on.
318
 */
319
static inline struct rq *__task_rq_lock(struct task_struct *p)
320 321
	__acquires(rq->lock)
{
322 323
	struct rq *rq;

324 325
	lockdep_assert_held(&p->pi_lock);

326
	for (;;) {
327
		rq = task_rq(p);
328
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
329
		if (likely(rq == task_rq(p)))
330
			return rq;
331
		raw_spin_unlock(&rq->lock);
332 333 334
	}
}

L
Linus Torvalds 已提交
335
/*
336
 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
L
Linus Torvalds 已提交
337
 */
338
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
339
	__acquires(p->pi_lock)
L
Linus Torvalds 已提交
340 341
	__acquires(rq->lock)
{
342
	struct rq *rq;
L
Linus Torvalds 已提交
343

344
	for (;;) {
345
		raw_spin_lock_irqsave(&p->pi_lock, *flags);
346
		rq = task_rq(p);
347
		raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
348
		if (likely(rq == task_rq(p)))
349
			return rq;
350 351
		raw_spin_unlock(&rq->lock);
		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
352 353 354
	}
}

A
Alexey Dobriyan 已提交
355
static void __task_rq_unlock(struct rq *rq)
356 357
	__releases(rq->lock)
{
358
	raw_spin_unlock(&rq->lock);
359 360
}

361 362
static inline void
task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
363
	__releases(rq->lock)
364
	__releases(p->pi_lock)
L
Linus Torvalds 已提交
365
{
366 367
	raw_spin_unlock(&rq->lock);
	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
L
Linus Torvalds 已提交
368 369 370
}

/*
371
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
372
 */
A
Alexey Dobriyan 已提交
373
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
374 375
	__acquires(rq->lock)
{
376
	struct rq *rq;
L
Linus Torvalds 已提交
377 378 379

	local_irq_disable();
	rq = this_rq();
380
	raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
381 382 383 384

	return rq;
}

P
Peter Zijlstra 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 */

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

406
	raw_spin_lock(&rq->lock);
407
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
408
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
409
	raw_spin_unlock(&rq->lock);
P
Peter Zijlstra 已提交
410 411 412 413

	return HRTIMER_NORESTART;
}

414
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
415 416 417 418 419 420 421 422 423

static int __hrtick_restart(struct rq *rq)
{
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = hrtimer_get_softexpires(timer);

	return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
}

424 425 426 427
/*
 * called from hardirq (IPI) context
 */
static void __hrtick_start(void *arg)
428
{
429
	struct rq *rq = arg;
430

431
	raw_spin_lock(&rq->lock);
P
Peter Zijlstra 已提交
432
	__hrtick_restart(rq);
433
	rq->hrtick_csd_pending = 0;
434
	raw_spin_unlock(&rq->lock);
435 436
}

437 438 439 440 441
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
442
void hrtick_start(struct rq *rq, u64 delay)
443
{
444 445
	struct hrtimer *timer = &rq->hrtick_timer;
	ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
446

447
	hrtimer_set_expires(timer, time);
448 449

	if (rq == this_rq()) {
P
Peter Zijlstra 已提交
450
		__hrtick_restart(rq);
451
	} else if (!rq->hrtick_csd_pending) {
452
		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
453 454
		rq->hrtick_csd_pending = 1;
	}
455 456 457 458 459 460 461 462 463 464 465 466 467 468
}

static int
hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
{
	int cpu = (int)(long)hcpu;

	switch (action) {
	case CPU_UP_CANCELED:
	case CPU_UP_CANCELED_FROZEN:
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
	case CPU_DEAD:
	case CPU_DEAD_FROZEN:
469
		hrtick_clear(cpu_rq(cpu));
470 471 472 473 474 475
		return NOTIFY_OK;
	}

	return NOTIFY_DONE;
}

476
static __init void init_hrtick(void)
477 478 479
{
	hotcpu_notifier(hotplug_hrtick, 0);
}
480 481 482 483 484 485
#else
/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
486
void hrtick_start(struct rq *rq, u64 delay)
487
{
488
	__hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
489
			HRTIMER_MODE_REL_PINNED, 0);
490
}
491

A
Andrew Morton 已提交
492
static inline void init_hrtick(void)
P
Peter Zijlstra 已提交
493 494
{
}
495
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
496

497
static void init_rq_hrtick(struct rq *rq)
P
Peter Zijlstra 已提交
498
{
499 500
#ifdef CONFIG_SMP
	rq->hrtick_csd_pending = 0;
P
Peter Zijlstra 已提交
501

502 503 504 505
	rq->hrtick_csd.flags = 0;
	rq->hrtick_csd.func = __hrtick_start;
	rq->hrtick_csd.info = rq;
#endif
P
Peter Zijlstra 已提交
506

507 508
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
P
Peter Zijlstra 已提交
509
}
A
Andrew Morton 已提交
510
#else	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
511 512 513 514 515 516 517 518
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

519 520 521
static inline void init_hrtick(void)
{
}
A
Andrew Morton 已提交
522
#endif	/* CONFIG_SCHED_HRTICK */
P
Peter Zijlstra 已提交
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537
/*
 * cmpxchg based fetch_or, macro so it works for different integer types
 */
#define fetch_or(ptr, val)						\
({	typeof(*(ptr)) __old, __val = *(ptr);				\
 	for (;;) {							\
 		__old = cmpxchg((ptr), __val, __val | (val));		\
 		if (__old == __val)					\
 			break;						\
 		__val = __old;						\
 	}								\
 	__old;								\
})

538
#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
539 540 541 542 543 544 545 546 547 548
/*
 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
 * this avoids any races wrt polling state changes and thereby avoids
 * spurious IPIs.
 */
static bool set_nr_and_not_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
}
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

/*
 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
 *
 * If this returns true, then the idle task promises to call
 * sched_ttwu_pending() and reschedule soon.
 */
static bool set_nr_if_polling(struct task_struct *p)
{
	struct thread_info *ti = task_thread_info(p);
	typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);

	for (;;) {
		if (!(val & _TIF_POLLING_NRFLAG))
			return false;
		if (val & _TIF_NEED_RESCHED)
			return true;
		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
		if (old == val)
			break;
		val = old;
	}
	return true;
}

574 575 576 577 578 579
#else
static bool set_nr_and_not_polling(struct task_struct *p)
{
	set_tsk_need_resched(p);
	return true;
}
580 581 582 583 584 585 586

#ifdef CONFIG_SMP
static bool set_nr_if_polling(struct task_struct *p)
{
	return false;
}
#endif
587 588
#endif

I
Ingo Molnar 已提交
589 590 591 592 593 594 595
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
596
void resched_task(struct task_struct *p)
I
Ingo Molnar 已提交
597 598 599
{
	int cpu;

600
	lockdep_assert_held(&task_rq(p)->lock);
I
Ingo Molnar 已提交
601

602
	if (test_tsk_need_resched(p))
I
Ingo Molnar 已提交
603 604 605
		return;

	cpu = task_cpu(p);
606

607
	if (cpu == smp_processor_id()) {
608
		set_tsk_need_resched(p);
609
		set_preempt_need_resched();
I
Ingo Molnar 已提交
610
		return;
611
	}
I
Ingo Molnar 已提交
612

613
	if (set_nr_and_not_polling(p))
I
Ingo Molnar 已提交
614
		smp_send_reschedule(cpu);
615 616
	else
		trace_sched_wake_idle_without_ipi(cpu);
I
Ingo Molnar 已提交
617 618
}

619
void resched_cpu(int cpu)
I
Ingo Molnar 已提交
620 621 622 623
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

624
	if (!raw_spin_trylock_irqsave(&rq->lock, flags))
I
Ingo Molnar 已提交
625 626
		return;
	resched_task(cpu_curr(cpu));
627
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
628
}
629

630
#ifdef CONFIG_SMP
631
#ifdef CONFIG_NO_HZ_COMMON
632 633 634 635 636 637 638 639
/*
 * In the semi idle case, use the nearest busy cpu for migrating timers
 * from an idle cpu.  This is good for power-savings.
 *
 * We don't do similar optimization for completely idle system, as
 * selecting an idle cpu will add more delays to the timers than intended
 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
 */
640
int get_nohz_timer_target(int pinned)
641 642 643 644 645
{
	int cpu = smp_processor_id();
	int i;
	struct sched_domain *sd;

646 647 648
	if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
		return cpu;

649
	rcu_read_lock();
650
	for_each_domain(cpu, sd) {
651 652 653 654 655 656
		for_each_cpu(i, sched_domain_span(sd)) {
			if (!idle_cpu(i)) {
				cpu = i;
				goto unlock;
			}
		}
657
	}
658 659
unlock:
	rcu_read_unlock();
660 661
	return cpu;
}
662 663 664 665 666 667 668 669 670 671
/*
 * When add_timer_on() enqueues a timer into the timer wheel of an
 * idle CPU then this timer might expire before the next timer event
 * which is scheduled to wake up that CPU. In case of a completely
 * idle system the next event might even be infinite time into the
 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
 * leaves the inner idle loop so the newly added timer is taken into
 * account when the CPU goes back to idle and evaluates the timer
 * wheel for the next timer event.
 */
672
static void wake_up_idle_cpu(int cpu)
673 674 675 676 677 678
{
	struct rq *rq = cpu_rq(cpu);

	if (cpu == smp_processor_id())
		return;

679
	if (set_nr_and_not_polling(rq->idle))
680
		smp_send_reschedule(cpu);
681 682
	else
		trace_sched_wake_idle_without_ipi(cpu);
683 684
}

685
static bool wake_up_full_nohz_cpu(int cpu)
686
{
687 688 689 690 691 692
	/*
	 * We just need the target to call irq_exit() and re-evaluate
	 * the next tick. The nohz full kick at least implies that.
	 * If needed we can still optimize that later with an
	 * empty IRQ.
	 */
693
	if (tick_nohz_full_cpu(cpu)) {
694 695
		if (cpu != smp_processor_id() ||
		    tick_nohz_tick_stopped())
696
			tick_nohz_full_kick_cpu(cpu);
697 698 699 700 701 702 703 704
		return true;
	}

	return false;
}

void wake_up_nohz_cpu(int cpu)
{
705
	if (!wake_up_full_nohz_cpu(cpu))
706 707 708
		wake_up_idle_cpu(cpu);
}

709
static inline bool got_nohz_idle_kick(void)
710
{
711
	int cpu = smp_processor_id();
712 713 714 715 716 717 718 719 720 721 722 723 724

	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
		return false;

	if (idle_cpu(cpu) && !need_resched())
		return true;

	/*
	 * We can't run Idle Load Balance on this CPU for this time so we
	 * cancel it and clear NOHZ_BALANCE_KICK
	 */
	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
	return false;
725 726
}

727
#else /* CONFIG_NO_HZ_COMMON */
728

729
static inline bool got_nohz_idle_kick(void)
P
Peter Zijlstra 已提交
730
{
731
	return false;
P
Peter Zijlstra 已提交
732 733
}

734
#endif /* CONFIG_NO_HZ_COMMON */
735

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
#ifdef CONFIG_NO_HZ_FULL
bool sched_can_stop_tick(void)
{
       struct rq *rq;

       rq = this_rq();

       /* Make sure rq->nr_running update is visible after the IPI */
       smp_rmb();

       /* More than one running task need preemption */
       if (rq->nr_running > 1)
               return false;

       return true;
}
#endif /* CONFIG_NO_HZ_FULL */
753

754
void sched_avg_update(struct rq *rq)
755
{
756 757
	s64 period = sched_avg_period();

758
	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
759 760 761 762 763 764
		/*
		 * Inline assembly required to prevent the compiler
		 * optimising this loop into a divmod call.
		 * See __iter_div_u64_rem() for another example of this.
		 */
		asm("" : "+rm" (rq->age_stamp));
765 766 767
		rq->age_stamp += period;
		rq->rt_avg /= 2;
	}
768 769
}

770
#endif /* CONFIG_SMP */
771

772 773
#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
774
/*
775 776 777 778
 * Iterate task_group tree rooted at *from, calling @down when first entering a
 * node and @up when leaving it for the final time.
 *
 * Caller must hold rcu_lock or sufficient equivalent.
779
 */
780
int walk_tg_tree_from(struct task_group *from,
781
			     tg_visitor down, tg_visitor up, void *data)
782 783
{
	struct task_group *parent, *child;
P
Peter Zijlstra 已提交
784
	int ret;
785

786 787
	parent = from;

788
down:
P
Peter Zijlstra 已提交
789 790
	ret = (*down)(parent, data);
	if (ret)
791
		goto out;
792 793 794 795 796 797 798
	list_for_each_entry_rcu(child, &parent->children, siblings) {
		parent = child;
		goto down;

up:
		continue;
	}
P
Peter Zijlstra 已提交
799
	ret = (*up)(parent, data);
800 801
	if (ret || parent == from)
		goto out;
802 803 804 805 806

	child = parent;
	parent = parent->parent;
	if (parent)
		goto up;
807
out:
P
Peter Zijlstra 已提交
808
	return ret;
809 810
}

811
int tg_nop(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
812
{
813
	return 0;
P
Peter Zijlstra 已提交
814
}
815 816
#endif

817 818
static void set_load_weight(struct task_struct *p)
{
N
Nikhil Rao 已提交
819 820 821
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

I
Ingo Molnar 已提交
822 823 824 825
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
826
		load->weight = scale_load(WEIGHT_IDLEPRIO);
N
Nikhil Rao 已提交
827
		load->inv_weight = WMULT_IDLEPRIO;
I
Ingo Molnar 已提交
828 829
		return;
	}
830

831
	load->weight = scale_load(prio_to_weight[prio]);
N
Nikhil Rao 已提交
832
	load->inv_weight = prio_to_wmult[prio];
833 834
}

835
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
836
{
837
	update_rq_clock(rq);
838
	sched_info_queued(rq, p);
839
	p->sched_class->enqueue_task(rq, p, flags);
840 841
}

842
static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
843
{
844
	update_rq_clock(rq);
845
	sched_info_dequeued(rq, p);
846
	p->sched_class->dequeue_task(rq, p, flags);
847 848
}

849
void activate_task(struct rq *rq, struct task_struct *p, int flags)
850 851 852 853
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible--;

854
	enqueue_task(rq, p, flags);
855 856
}

857
void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
858 859 860 861
{
	if (task_contributes_to_load(p))
		rq->nr_uninterruptible++;

862
	dequeue_task(rq, p, flags);
863 864
}

865
static void update_rq_clock_task(struct rq *rq, s64 delta)
866
{
867 868 869 870 871 872 873 874
/*
 * In theory, the compile should just see 0 here, and optimize out the call
 * to sched_rt_avg_update. But I don't trust it...
 */
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
	s64 steal = 0, irq_delta = 0;
#endif
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
875
	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896

	/*
	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
	 * this case when a previous update_rq_clock() happened inside a
	 * {soft,}irq region.
	 *
	 * When this happens, we stop ->clock_task and only update the
	 * prev_irq_time stamp to account for the part that fit, so that a next
	 * update will consume the rest. This ensures ->clock_task is
	 * monotonic.
	 *
	 * It does however cause some slight miss-attribution of {soft,}irq
	 * time, a more accurate solution would be to update the irq_time using
	 * the current rq->clock timestamp, except that would require using
	 * atomic ops.
	 */
	if (irq_delta > delta)
		irq_delta = delta;

	rq->prev_irq_time += irq_delta;
	delta -= irq_delta;
897 898
#endif
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
899
	if (static_key_false((&paravirt_steal_rq_enabled))) {
900 901 902 903 904 905 906 907 908 909 910
		steal = paravirt_steal_clock(cpu_of(rq));
		steal -= rq->prev_steal_time_rq;

		if (unlikely(steal > delta))
			steal = delta;

		rq->prev_steal_time_rq += steal;
		delta -= steal;
	}
#endif

911 912
	rq->clock_task += delta;

913
#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
914
	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
915 916
		sched_rt_avg_update(rq, irq_delta + steal);
#endif
917 918
}

919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
void sched_set_stop_task(int cpu, struct task_struct *stop)
{
	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
	struct task_struct *old_stop = cpu_rq(cpu)->stop;

	if (stop) {
		/*
		 * Make it appear like a SCHED_FIFO task, its something
		 * userspace knows about and won't get confused about.
		 *
		 * Also, it will make PI more or less work without too
		 * much confusion -- but then, stop work should not
		 * rely on PI working anyway.
		 */
		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);

		stop->sched_class = &stop_sched_class;
	}

	cpu_rq(cpu)->stop = stop;

	if (old_stop) {
		/*
		 * Reset it back to a normal scheduling class so that
		 * it can die in pieces.
		 */
		old_stop->sched_class = &rt_sched_class;
	}
}

949
/*
I
Ingo Molnar 已提交
950
 * __normal_prio - return the priority that is based on the static prio
951 952 953
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
954
	return p->static_prio;
955 956
}

957 958 959 960 961 962 963
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
964
static inline int normal_prio(struct task_struct *p)
965 966 967
{
	int prio;

968 969 970
	if (task_has_dl_policy(p))
		prio = MAX_DL_PRIO-1;
	else if (task_has_rt_policy(p))
971 972 973 974 975 976 977 978 979 980 981 982 983
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
984
static int effective_prio(struct task_struct *p)
985 986 987 988 989 990 991 992 993 994 995 996
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
997 998 999
/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
1000 1001
 *
 * Return: 1 if the task is currently executing. 0 otherwise.
L
Linus Torvalds 已提交
1002
 */
1003
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1004 1005 1006 1007
{
	return cpu_curr(task_cpu(p)) == p;
}

1008 1009
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
P
Peter Zijlstra 已提交
1010
				       int oldprio)
1011 1012 1013
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
P
Peter Zijlstra 已提交
1014 1015
			prev_class->switched_from(rq, p);
		p->sched_class->switched_to(rq, p);
1016
	} else if (oldprio != p->prio || dl_task(p))
P
Peter Zijlstra 已提交
1017
		p->sched_class->prio_changed(rq, p, oldprio);
1018 1019
}

1020
void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
{
	const struct sched_class *class;

	if (p->sched_class == rq->curr->sched_class) {
		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
	} else {
		for_each_class(class) {
			if (class == rq->curr->sched_class)
				break;
			if (class == p->sched_class) {
				resched_task(rq->curr);
				break;
			}
		}
	}

	/*
	 * A queue event has occurred, and we're going to schedule.  In
	 * this case, we can save a useless back to back clock update.
	 */
P
Peter Zijlstra 已提交
1041
	if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1042 1043 1044
		rq->skip_clock_update = 1;
}

L
Linus Torvalds 已提交
1045
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1046
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1047
{
1048 1049 1050 1051 1052
#ifdef CONFIG_SCHED_DEBUG
	/*
	 * We should never call set_task_cpu() on a blocked task,
	 * ttwu() will sort out the placement.
	 */
P
Peter Zijlstra 已提交
1053
	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1054
			!(task_preempt_count(p) & PREEMPT_ACTIVE));
1055 1056

#ifdef CONFIG_LOCKDEP
1057 1058 1059 1060 1061
	/*
	 * The caller should hold either p->pi_lock or rq->lock, when changing
	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
	 *
	 * sched_move_task() holds both and thus holding either pins the cgroup,
P
Peter Zijlstra 已提交
1062
	 * see task_group().
1063 1064 1065 1066
	 *
	 * Furthermore, all task_rq users should acquire both locks, see
	 * task_rq_lock().
	 */
1067 1068 1069
	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
				      lockdep_is_held(&task_rq(p)->lock)));
#endif
1070 1071
#endif

1072
	trace_sched_migrate_task(p, new_cpu);
1073

1074
	if (task_cpu(p) != new_cpu) {
1075 1076
		if (p->sched_class->migrate_task_rq)
			p->sched_class->migrate_task_rq(p, new_cpu);
1077
		p->se.nr_migrations++;
1078
		perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
1079
	}
I
Ingo Molnar 已提交
1080 1081

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1082 1083
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
static void __migrate_swap_task(struct task_struct *p, int cpu)
{
	if (p->on_rq) {
		struct rq *src_rq, *dst_rq;

		src_rq = task_rq(p);
		dst_rq = cpu_rq(cpu);

		deactivate_task(src_rq, p, 0);
		set_task_cpu(p, cpu);
		activate_task(dst_rq, p, 0);
		check_preempt_curr(dst_rq, p, 0);
	} else {
		/*
		 * Task isn't running anymore; make it appear like we migrated
		 * it before it went to sleep. This means on wakeup we make the
		 * previous cpu our targer instead of where it really is.
		 */
		p->wake_cpu = cpu;
	}
}

struct migration_swap_arg {
	struct task_struct *src_task, *dst_task;
	int src_cpu, dst_cpu;
};

static int migrate_swap_stop(void *data)
{
	struct migration_swap_arg *arg = data;
	struct rq *src_rq, *dst_rq;
	int ret = -EAGAIN;

	src_rq = cpu_rq(arg->src_cpu);
	dst_rq = cpu_rq(arg->dst_cpu);

1120 1121
	double_raw_lock(&arg->src_task->pi_lock,
			&arg->dst_task->pi_lock);
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
	double_rq_lock(src_rq, dst_rq);
	if (task_cpu(arg->dst_task) != arg->dst_cpu)
		goto unlock;

	if (task_cpu(arg->src_task) != arg->src_cpu)
		goto unlock;

	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
		goto unlock;

	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
		goto unlock;

	__migrate_swap_task(arg->src_task, arg->dst_cpu);
	__migrate_swap_task(arg->dst_task, arg->src_cpu);

	ret = 0;

unlock:
	double_rq_unlock(src_rq, dst_rq);
1142 1143
	raw_spin_unlock(&arg->dst_task->pi_lock);
	raw_spin_unlock(&arg->src_task->pi_lock);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

	return ret;
}

/*
 * Cross migrate two tasks
 */
int migrate_swap(struct task_struct *cur, struct task_struct *p)
{
	struct migration_swap_arg arg;
	int ret = -EINVAL;

	arg = (struct migration_swap_arg){
		.src_task = cur,
		.src_cpu = task_cpu(cur),
		.dst_task = p,
		.dst_cpu = task_cpu(p),
	};

	if (arg.src_cpu == arg.dst_cpu)
		goto out;

1166 1167 1168 1169
	/*
	 * These three tests are all lockless; this is OK since all of them
	 * will be re-checked with proper locks held further down the line.
	 */
1170 1171 1172 1173 1174 1175 1176 1177 1178
	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
		goto out;

	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
		goto out;

	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
		goto out;

1179
	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1180 1181 1182 1183 1184 1185
	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);

out:
	return ret;
}

1186
struct migration_arg {
1187
	struct task_struct *task;
L
Linus Torvalds 已提交
1188
	int dest_cpu;
1189
};
L
Linus Torvalds 已提交
1190

1191 1192
static int migration_cpu_stop(void *data);

L
Linus Torvalds 已提交
1193 1194 1195
/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
R
Roland McGrath 已提交
1196 1197 1198 1199 1200 1201 1202
 * If @match_state is nonzero, it's the @p->state value just checked and
 * not expected to change.  If it changes, i.e. @p might have woken up,
 * then return zero.  When we succeed in waiting for @p to be off its CPU,
 * we return a positive number (its total switch count).  If a second call
 * a short while later returns the same number, the caller can be sure that
 * @p has remained unscheduled the whole time.
 *
L
Linus Torvalds 已提交
1203 1204 1205 1206 1207 1208
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
R
Roland McGrath 已提交
1209
unsigned long wait_task_inactive(struct task_struct *p, long match_state)
L
Linus Torvalds 已提交
1210 1211
{
	unsigned long flags;
I
Ingo Molnar 已提交
1212
	int running, on_rq;
R
Roland McGrath 已提交
1213
	unsigned long ncsw;
1214
	struct rq *rq;
L
Linus Torvalds 已提交
1215

1216 1217 1218 1219 1220 1221 1222 1223
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1224

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
R
Roland McGrath 已提交
1236 1237 1238
		while (task_running(rq, p)) {
			if (match_state && unlikely(p->state != match_state))
				return 0;
1239
			cpu_relax();
R
Roland McGrath 已提交
1240
		}
1241

1242 1243 1244 1245 1246 1247
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
1248
		trace_sched_wait_task(p);
1249
		running = task_running(rq, p);
P
Peter Zijlstra 已提交
1250
		on_rq = p->on_rq;
R
Roland McGrath 已提交
1251
		ncsw = 0;
1252
		if (!match_state || p->state == match_state)
1253
			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1254
		task_rq_unlock(rq, p, &flags);
1255

R
Roland McGrath 已提交
1256 1257 1258 1259 1260 1261
		/*
		 * If it changed from the expected state, bail out now.
		 */
		if (unlikely(!ncsw))
			break;

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1272

1273 1274 1275 1276 1277
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
1278
		 * So if it was still runnable (but just not actively
1279 1280 1281 1282
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
1283 1284 1285 1286
			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);

			set_current_state(TASK_UNINTERRUPTIBLE);
			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1287 1288
			continue;
		}
1289

1290 1291 1292 1293 1294 1295 1296
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
R
Roland McGrath 已提交
1297 1298

	return ncsw;
L
Linus Torvalds 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
L
Lucas De Marchi 已提交
1308
 * NOTE: this function doesn't have to take the runqueue lock,
L
Linus Torvalds 已提交
1309 1310 1311 1312 1313
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1314
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1315 1316 1317 1318 1319 1320 1321 1322 1323
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}
R
Rusty Russell 已提交
1324
EXPORT_SYMBOL_GPL(kick_process);
N
Nick Piggin 已提交
1325
#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1326

1327
#ifdef CONFIG_SMP
1328
/*
1329
 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1330
 */
1331 1332
static int select_fallback_rq(int cpu, struct task_struct *p)
{
1333 1334
	int nid = cpu_to_node(cpu);
	const struct cpumask *nodemask = NULL;
1335 1336
	enum { cpuset, possible, fail } state = cpuset;
	int dest_cpu;
1337

1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
	/*
	 * If the node that the cpu is on has been offlined, cpu_to_node()
	 * will return -1. There is no cpu on the node, and we should
	 * select the cpu on the other node.
	 */
	if (nid != -1) {
		nodemask = cpumask_of_node(nid);

		/* Look for allowed, online CPU in same node. */
		for_each_cpu(dest_cpu, nodemask) {
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
				return dest_cpu;
		}
1355
	}
1356

1357 1358
	for (;;) {
		/* Any allowed, online CPU? */
1359
		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1360 1361 1362 1363 1364 1365
			if (!cpu_online(dest_cpu))
				continue;
			if (!cpu_active(dest_cpu))
				continue;
			goto out;
		}
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
		switch (state) {
		case cpuset:
			/* No more Mr. Nice Guy. */
			cpuset_cpus_allowed_fallback(p);
			state = possible;
			break;

		case possible:
			do_set_cpus_allowed(p, cpu_possible_mask);
			state = fail;
			break;

		case fail:
			BUG();
			break;
		}
	}

out:
	if (state != cpuset) {
		/*
		 * Don't tell them about moving exiting tasks or
		 * kernel threads (both mm NULL), since they never
		 * leave kernel.
		 */
		if (p->mm && printk_ratelimit()) {
1393
			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1394 1395
					task_pid_nr(p), p->comm, cpu);
		}
1396 1397 1398 1399 1400
	}

	return dest_cpu;
}

1401
/*
1402
 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1403
 */
1404
static inline
1405
int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1406
{
1407
	cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418

	/*
	 * In order not to call set_task_cpu() on a blocking task we need
	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
	 * cpu.
	 *
	 * Since this is common to all placement strategies, this lives here.
	 *
	 * [ this allows ->select_task() to simply return task_cpu(p) and
	 *   not worry about this generic constraint ]
	 */
1419
	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
P
Peter Zijlstra 已提交
1420
		     !cpu_online(cpu)))
1421
		cpu = select_fallback_rq(task_cpu(p), p);
1422 1423

	return cpu;
1424
}
1425 1426 1427 1428 1429 1430

static void update_avg(u64 *avg, u64 sample)
{
	s64 diff = sample - *avg;
	*avg += diff >> 3;
}
1431 1432
#endif

P
Peter Zijlstra 已提交
1433
static void
1434
ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
T
Tejun Heo 已提交
1435
{
P
Peter Zijlstra 已提交
1436
#ifdef CONFIG_SCHEDSTATS
1437 1438
	struct rq *rq = this_rq();

P
Peter Zijlstra 已提交
1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
#ifdef CONFIG_SMP
	int this_cpu = smp_processor_id();

	if (cpu == this_cpu) {
		schedstat_inc(rq, ttwu_local);
		schedstat_inc(p, se.statistics.nr_wakeups_local);
	} else {
		struct sched_domain *sd;

		schedstat_inc(p, se.statistics.nr_wakeups_remote);
1449
		rcu_read_lock();
P
Peter Zijlstra 已提交
1450 1451 1452 1453 1454 1455
		for_each_domain(this_cpu, sd) {
			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
1456
		rcu_read_unlock();
P
Peter Zijlstra 已提交
1457
	}
1458 1459 1460 1461

	if (wake_flags & WF_MIGRATED)
		schedstat_inc(p, se.statistics.nr_wakeups_migrate);

P
Peter Zijlstra 已提交
1462 1463 1464
#endif /* CONFIG_SMP */

	schedstat_inc(rq, ttwu_count);
T
Tejun Heo 已提交
1465
	schedstat_inc(p, se.statistics.nr_wakeups);
P
Peter Zijlstra 已提交
1466 1467

	if (wake_flags & WF_SYNC)
T
Tejun Heo 已提交
1468
		schedstat_inc(p, se.statistics.nr_wakeups_sync);
P
Peter Zijlstra 已提交
1469 1470 1471 1472 1473 1474

#endif /* CONFIG_SCHEDSTATS */
}

static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
{
T
Tejun Heo 已提交
1475
	activate_task(rq, p, en_flags);
P
Peter Zijlstra 已提交
1476
	p->on_rq = 1;
1477 1478 1479 1480

	/* if a worker is waking up, notify workqueue */
	if (p->flags & PF_WQ_WORKER)
		wq_worker_waking_up(p, cpu_of(rq));
T
Tejun Heo 已提交
1481 1482
}

1483 1484 1485
/*
 * Mark the task runnable and perform wakeup-preemption.
 */
1486
static void
1487
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
T
Tejun Heo 已提交
1488 1489
{
	check_preempt_curr(rq, p, wake_flags);
1490
	trace_sched_wakeup(p, true);
T
Tejun Heo 已提交
1491 1492 1493 1494 1495 1496

	p->state = TASK_RUNNING;
#ifdef CONFIG_SMP
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);

1497
	if (rq->idle_stamp) {
1498
		u64 delta = rq_clock(rq) - rq->idle_stamp;
1499
		u64 max = 2*rq->max_idle_balance_cost;
T
Tejun Heo 已提交
1500

1501 1502 1503
		update_avg(&rq->avg_idle, delta);

		if (rq->avg_idle > max)
T
Tejun Heo 已提交
1504
			rq->avg_idle = max;
1505

T
Tejun Heo 已提交
1506 1507 1508 1509 1510
		rq->idle_stamp = 0;
	}
#endif
}

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static void
ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
{
#ifdef CONFIG_SMP
	if (p->sched_contributes_to_load)
		rq->nr_uninterruptible--;
#endif

	ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
	ttwu_do_wakeup(rq, p, wake_flags);
}

/*
 * Called in case the task @p isn't fully descheduled from its runqueue,
 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
 * since all we need to do is flip p->state to TASK_RUNNING, since
 * the task is still ->on_rq.
 */
static int ttwu_remote(struct task_struct *p, int wake_flags)
{
	struct rq *rq;
	int ret = 0;

	rq = __task_rq_lock(p);
	if (p->on_rq) {
1536 1537
		/* check_preempt_curr() may use rq clock */
		update_rq_clock(rq);
1538 1539 1540 1541 1542 1543 1544 1545
		ttwu_do_wakeup(rq, p, wake_flags);
		ret = 1;
	}
	__task_rq_unlock(rq);

	return ret;
}

1546
#ifdef CONFIG_SMP
1547
void sched_ttwu_pending(void)
1548 1549
{
	struct rq *rq = this_rq();
P
Peter Zijlstra 已提交
1550 1551
	struct llist_node *llist = llist_del_all(&rq->wake_list);
	struct task_struct *p;
1552
	unsigned long flags;
1553

1554 1555 1556 1557
	if (!llist)
		return;

	raw_spin_lock_irqsave(&rq->lock, flags);
1558

P
Peter Zijlstra 已提交
1559 1560 1561
	while (llist) {
		p = llist_entry(llist, struct task_struct, wake_entry);
		llist = llist_next(llist);
1562 1563 1564
		ttwu_do_activate(rq, p, 0);
	}

1565
	raw_spin_unlock_irqrestore(&rq->lock, flags);
1566 1567 1568 1569
}

void scheduler_ipi(void)
{
1570 1571 1572 1573 1574
	/*
	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
	 * TIF_NEED_RESCHED remotely (for the first time) will also send
	 * this IPI.
	 */
1575
	preempt_fold_need_resched();
1576

1577
	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
		return;

	/*
	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
	 * traditionally all their work was done from the interrupt return
	 * path. Now that we actually do some work, we need to make sure
	 * we do call them.
	 *
	 * Some archs already do call them, luckily irq_enter/exit nest
	 * properly.
	 *
	 * Arguably we should visit all archs and update all handlers,
	 * however a fair share of IPIs are still resched only so this would
	 * somewhat pessimize the simple resched case.
	 */
	irq_enter();
P
Peter Zijlstra 已提交
1594
	sched_ttwu_pending();
1595 1596 1597 1598

	/*
	 * Check if someone kicked us for doing the nohz idle load balance.
	 */
1599
	if (unlikely(got_nohz_idle_kick())) {
1600
		this_rq()->idle_balance = 1;
1601
		raise_softirq_irqoff(SCHED_SOFTIRQ);
1602
	}
1603
	irq_exit();
1604 1605 1606 1607
}

static void ttwu_queue_remote(struct task_struct *p, int cpu)
{
1608 1609 1610 1611 1612 1613 1614 1615
	struct rq *rq = cpu_rq(cpu);

	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
		if (!set_nr_if_polling(rq->idle))
			smp_send_reschedule(cpu);
		else
			trace_sched_wake_idle_without_ipi(cpu);
	}
1616
}
1617

1618
bool cpus_share_cache(int this_cpu, int that_cpu)
1619 1620 1621
{
	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
}
1622
#endif /* CONFIG_SMP */
1623

1624 1625 1626 1627
static void ttwu_queue(struct task_struct *p, int cpu)
{
	struct rq *rq = cpu_rq(cpu);

1628
#if defined(CONFIG_SMP)
1629
	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1630
		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1631 1632 1633 1634 1635
		ttwu_queue_remote(p, cpu);
		return;
	}
#endif

1636 1637 1638
	raw_spin_lock(&rq->lock);
	ttwu_do_activate(rq, p, 0);
	raw_spin_unlock(&rq->lock);
T
Tejun Heo 已提交
1639 1640 1641
}

/**
L
Linus Torvalds 已提交
1642
 * try_to_wake_up - wake up a thread
T
Tejun Heo 已提交
1643
 * @p: the thread to be awakened
L
Linus Torvalds 已提交
1644
 * @state: the mask of task states that can be woken
T
Tejun Heo 已提交
1645
 * @wake_flags: wake modifier flags (WF_*)
L
Linus Torvalds 已提交
1646 1647 1648 1649 1650 1651 1652
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
1653
 * Return: %true if @p was woken up, %false if it was already running.
T
Tejun Heo 已提交
1654
 * or @state didn't match @p's state.
L
Linus Torvalds 已提交
1655
 */
1656 1657
static int
try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
L
Linus Torvalds 已提交
1658 1659
{
	unsigned long flags;
1660
	int cpu, success = 0;
P
Peter Zijlstra 已提交
1661

1662 1663 1664 1665 1666 1667 1668
	/*
	 * If we are going to wake up a thread waiting for CONDITION we
	 * need to ensure that CONDITION=1 done by the caller can not be
	 * reordered with p->state check below. This pairs with mb() in
	 * set_current_state() the waiting thread does.
	 */
	smp_mb__before_spinlock();
1669
	raw_spin_lock_irqsave(&p->pi_lock, flags);
P
Peter Zijlstra 已提交
1670
	if (!(p->state & state))
L
Linus Torvalds 已提交
1671 1672
		goto out;

1673
	success = 1; /* we're going to change ->state */
L
Linus Torvalds 已提交
1674 1675
	cpu = task_cpu(p);

1676 1677
	if (p->on_rq && ttwu_remote(p, wake_flags))
		goto stat;
L
Linus Torvalds 已提交
1678 1679

#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1680
	/*
1681 1682
	 * If the owning (remote) cpu is still in the middle of schedule() with
	 * this task as prev, wait until its done referencing the task.
P
Peter Zijlstra 已提交
1683
	 */
1684
	while (p->on_cpu)
1685
		cpu_relax();
1686
	/*
1687
	 * Pairs with the smp_wmb() in finish_lock_switch().
1688
	 */
1689
	smp_rmb();
L
Linus Torvalds 已提交
1690

1691
	p->sched_contributes_to_load = !!task_contributes_to_load(p);
P
Peter Zijlstra 已提交
1692
	p->state = TASK_WAKING;
1693

1694
	if (p->sched_class->task_waking)
1695
		p->sched_class->task_waking(p);
1696

1697
	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1698 1699
	if (task_cpu(p) != cpu) {
		wake_flags |= WF_MIGRATED;
1700
		set_task_cpu(p, cpu);
1701
	}
L
Linus Torvalds 已提交
1702 1703
#endif /* CONFIG_SMP */

1704 1705
	ttwu_queue(p, cpu);
stat:
1706
	ttwu_stat(p, cpu, wake_flags);
L
Linus Torvalds 已提交
1707
out:
1708
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
1709 1710 1711 1712

	return success;
}

T
Tejun Heo 已提交
1713 1714 1715 1716
/**
 * try_to_wake_up_local - try to wake up a local task with rq lock held
 * @p: the thread to be awakened
 *
1717
 * Put @p on the run-queue if it's not already there. The caller must
T
Tejun Heo 已提交
1718
 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1719
 * the current task.
T
Tejun Heo 已提交
1720 1721 1722 1723 1724
 */
static void try_to_wake_up_local(struct task_struct *p)
{
	struct rq *rq = task_rq(p);

1725 1726 1727 1728
	if (WARN_ON_ONCE(rq != this_rq()) ||
	    WARN_ON_ONCE(p == current))
		return;

T
Tejun Heo 已提交
1729 1730
	lockdep_assert_held(&rq->lock);

1731 1732 1733 1734 1735 1736
	if (!raw_spin_trylock(&p->pi_lock)) {
		raw_spin_unlock(&rq->lock);
		raw_spin_lock(&p->pi_lock);
		raw_spin_lock(&rq->lock);
	}

T
Tejun Heo 已提交
1737
	if (!(p->state & TASK_NORMAL))
1738
		goto out;
T
Tejun Heo 已提交
1739

P
Peter Zijlstra 已提交
1740
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1741 1742
		ttwu_activate(rq, p, ENQUEUE_WAKEUP);

1743
	ttwu_do_wakeup(rq, p, 0);
1744
	ttwu_stat(p, smp_processor_id(), 0);
1745 1746
out:
	raw_spin_unlock(&p->pi_lock);
T
Tejun Heo 已提交
1747 1748
}

1749 1750 1751 1752 1753
/**
 * wake_up_process - Wake up a specific process
 * @p: The process to be woken up.
 *
 * Attempt to wake up the nominated process and move it to the set of runnable
1754 1755 1756
 * processes.
 *
 * Return: 1 if the process was woken up, 0 if it was already running.
1757 1758 1759 1760
 *
 * It may be assumed that this function implies a write memory barrier before
 * changing the task state if and only if any tasks are woken up.
 */
1761
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1762
{
1763 1764
	WARN_ON(task_is_stopped_or_traced(p));
	return try_to_wake_up(p, TASK_NORMAL, 0);
L
Linus Torvalds 已提交
1765 1766 1767
}
EXPORT_SYMBOL(wake_up_process);

1768
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1769 1770 1771 1772 1773 1774 1775
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1776 1777 1778
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
1779
static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1780
{
P
Peter Zijlstra 已提交
1781 1782 1783
	p->on_rq			= 0;

	p->se.on_rq			= 0;
I
Ingo Molnar 已提交
1784 1785
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1786
	p->se.prev_sum_exec_runtime	= 0;
1787
	p->se.nr_migrations		= 0;
P
Peter Zijlstra 已提交
1788
	p->se.vruntime			= 0;
P
Peter Zijlstra 已提交
1789
	INIT_LIST_HEAD(&p->se.group_node);
I
Ingo Molnar 已提交
1790 1791

#ifdef CONFIG_SCHEDSTATS
1792
	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
I
Ingo Molnar 已提交
1793
#endif
N
Nick Piggin 已提交
1794

1795 1796 1797 1798
	RB_CLEAR_NODE(&p->dl.rb_node);
	hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	p->dl.dl_runtime = p->dl.runtime = 0;
	p->dl.dl_deadline = p->dl.deadline = 0;
1799
	p->dl.dl_period = 0;
1800 1801
	p->dl.flags = 0;

P
Peter Zijlstra 已提交
1802
	INIT_LIST_HEAD(&p->rt.run_list);
N
Nick Piggin 已提交
1803

1804 1805 1806
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif
1807 1808 1809

#ifdef CONFIG_NUMA_BALANCING
	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1810
		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1811 1812 1813
		p->mm->numa_scan_seq = 0;
	}

1814 1815 1816 1817 1818
	if (clone_flags & CLONE_VM)
		p->numa_preferred_nid = current->numa_preferred_nid;
	else
		p->numa_preferred_nid = -1;

1819 1820
	p->node_stamp = 0ULL;
	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1821
	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1822
	p->numa_work.next = &p->numa_work;
1823 1824
	p->numa_faults_memory = NULL;
	p->numa_faults_buffer_memory = NULL;
1825 1826
	p->last_task_numa_placement = 0;
	p->last_sum_exec_runtime = 0;
1827 1828 1829

	INIT_LIST_HEAD(&p->numa_entry);
	p->numa_group = NULL;
1830
#endif /* CONFIG_NUMA_BALANCING */
I
Ingo Molnar 已提交
1831 1832
}

1833
#ifdef CONFIG_NUMA_BALANCING
1834
#ifdef CONFIG_SCHED_DEBUG
1835 1836 1837 1838 1839 1840 1841
void set_numabalancing_state(bool enabled)
{
	if (enabled)
		sched_feat_set("NUMA");
	else
		sched_feat_set("NO_NUMA");
}
1842 1843 1844 1845 1846 1847
#else
__read_mostly bool numabalancing_enabled;

void set_numabalancing_state(bool enabled)
{
	numabalancing_enabled = enabled;
I
Ingo Molnar 已提交
1848
}
1849
#endif /* CONFIG_SCHED_DEBUG */
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

#ifdef CONFIG_PROC_SYSCTL
int sysctl_numa_balancing(struct ctl_table *table, int write,
			 void __user *buffer, size_t *lenp, loff_t *ppos)
{
	struct ctl_table t;
	int err;
	int state = numabalancing_enabled;

	if (write && !capable(CAP_SYS_ADMIN))
		return -EPERM;

	t = *table;
	t.data = &state;
	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
	if (err < 0)
		return err;
	if (write)
		set_numabalancing_state(state);
	return err;
}
#endif
#endif
I
Ingo Molnar 已提交
1873 1874 1875 1876

/*
 * fork()/clone()-time setup:
 */
1877
int sched_fork(unsigned long clone_flags, struct task_struct *p)
I
Ingo Molnar 已提交
1878
{
1879
	unsigned long flags;
I
Ingo Molnar 已提交
1880 1881
	int cpu = get_cpu();

1882
	__sched_fork(clone_flags, p);
1883
	/*
1884
	 * We mark the process as running here. This guarantees that
1885 1886 1887
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
1888
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1889

1890 1891 1892 1893 1894
	/*
	 * Make sure we do not leak PI boosting priority to the child.
	 */
	p->prio = current->normal_prio;

1895 1896 1897 1898
	/*
	 * Revert to default priority/policy on fork if requested.
	 */
	if (unlikely(p->sched_reset_on_fork)) {
1899
		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1900
			p->policy = SCHED_NORMAL;
1901
			p->static_prio = NICE_TO_PRIO(0);
1902 1903 1904 1905 1906 1907
			p->rt_priority = 0;
		} else if (PRIO_TO_NICE(p->static_prio) < 0)
			p->static_prio = NICE_TO_PRIO(0);

		p->prio = p->normal_prio = __normal_prio(p);
		set_load_weight(p);
1908

1909 1910 1911 1912 1913 1914
		/*
		 * We don't need the reset flag anymore after the fork. It has
		 * fulfilled its duty:
		 */
		p->sched_reset_on_fork = 0;
	}
1915

1916 1917 1918 1919 1920 1921
	if (dl_prio(p->prio)) {
		put_cpu();
		return -EAGAIN;
	} else if (rt_prio(p->prio)) {
		p->sched_class = &rt_sched_class;
	} else {
H
Hiroshi Shimamoto 已提交
1922
		p->sched_class = &fair_sched_class;
1923
	}
1924

P
Peter Zijlstra 已提交
1925 1926 1927
	if (p->sched_class->task_fork)
		p->sched_class->task_fork(p);

1928 1929 1930 1931 1932 1933 1934
	/*
	 * The child is not yet in the pid-hash so no cgroup attach races,
	 * and the cgroup is pinned to this child due to cgroup_fork()
	 * is ran before sched_fork().
	 *
	 * Silence PROVE_RCU.
	 */
1935
	raw_spin_lock_irqsave(&p->pi_lock, flags);
1936
	set_task_cpu(p, cpu);
1937
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1938

1939
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1940
	if (likely(sched_info_on()))
1941
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1942
#endif
P
Peter Zijlstra 已提交
1943 1944
#if defined(CONFIG_SMP)
	p->on_cpu = 0;
1945
#endif
1946
	init_task_preempt_count(p);
1947
#ifdef CONFIG_SMP
1948
	plist_node_init(&p->pushable_tasks, MAX_PRIO);
1949
	RB_CLEAR_NODE(&p->pushable_dl_tasks);
1950
#endif
1951

N
Nick Piggin 已提交
1952
	put_cpu();
1953
	return 0;
L
Linus Torvalds 已提交
1954 1955
}

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 20;

	/*
	 * Doing this here saves a lot of checks in all
	 * the calling paths, and returning zero seems
	 * safe for them anyway.
	 */
	if (period == 0)
		return 0;

	return div64_u64(runtime << 20, period);
}

#ifdef CONFIG_SMP
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->rd->dl_bw;
}

1978
static inline int dl_bw_cpus(int i)
1979
{
1980 1981 1982 1983 1984 1985 1986
	struct root_domain *rd = cpu_rq(i)->rd;
	int cpus = 0;

	for_each_cpu_and(i, rd->span, cpu_active_mask)
		cpus++;

	return cpus;
1987 1988 1989 1990 1991 1992 1993
}
#else
inline struct dl_bw *dl_bw_of(int i)
{
	return &cpu_rq(i)->dl.dl_bw;
}

1994
static inline int dl_bw_cpus(int i)
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
{
	return 1;
}
#endif

static inline
void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw -= tsk_bw;
}

static inline
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
{
	dl_b->total_bw += tsk_bw;
}

static inline
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
{
	return dl_b->bw != -1 &&
	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
}

/*
 * We must be sure that accepting a new task (or allowing changing the
 * parameters of an existing one) is consistent with the bandwidth
 * constraints. If yes, this function also accordingly updates the currently
 * allocated bandwidth to reflect the new situation.
 *
 * This function is called while holding p's rq->lock.
 */
static int dl_overflow(struct task_struct *p, int policy,
		       const struct sched_attr *attr)
{

	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2032
	u64 period = attr->sched_period ?: attr->sched_deadline;
2033 2034
	u64 runtime = attr->sched_runtime;
	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2035
	int cpus, err = -1;
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

	if (new_bw == p->dl.dl_bw)
		return 0;

	/*
	 * Either if a task, enters, leave, or stays -deadline but changes
	 * its parameters, we may need to update accordingly the total
	 * allocated bandwidth of the container.
	 */
	raw_spin_lock(&dl_b->lock);
2046
	cpus = dl_bw_cpus(task_cpu(p));
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	if (dl_policy(policy) && !task_has_dl_policy(p) &&
	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		__dl_add(dl_b, new_bw);
		err = 0;
	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
		__dl_clear(dl_b, p->dl.dl_bw);
		err = 0;
	}
	raw_spin_unlock(&dl_b->lock);

	return err;
}

extern void init_dl_bw(struct dl_bw *dl_b);

L
Linus Torvalds 已提交
2067 2068 2069 2070 2071 2072 2073
/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2074
void wake_up_new_task(struct task_struct *p)
L
Linus Torvalds 已提交
2075 2076
{
	unsigned long flags;
I
Ingo Molnar 已提交
2077
	struct rq *rq;
2078

2079
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2080 2081 2082 2083 2084 2085
#ifdef CONFIG_SMP
	/*
	 * Fork balancing, do it here and not earlier because:
	 *  - cpus_allowed can change in the fork path
	 *  - any previously selected cpu might disappear through hotplug
	 */
2086
	set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2087 2088
#endif

2089 2090
	/* Initialize new task's runnable average */
	init_task_runnable_average(p);
2091
	rq = __task_rq_lock(p);
P
Peter Zijlstra 已提交
2092
	activate_task(rq, p, 0);
P
Peter Zijlstra 已提交
2093
	p->on_rq = 1;
2094
	trace_sched_wakeup_new(p, true);
P
Peter Zijlstra 已提交
2095
	check_preempt_curr(rq, p, WF_FORK);
2096
#ifdef CONFIG_SMP
2097 2098
	if (p->sched_class->task_woken)
		p->sched_class->task_woken(rq, p);
2099
#endif
2100
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
2101 2102
}

2103 2104 2105
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
2106
 * preempt_notifier_register - tell me when current is being preempted & rescheduled
R
Randy Dunlap 已提交
2107
 * @notifier: notifier struct to register
2108 2109 2110 2111 2112 2113 2114 2115 2116
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2117
 * @notifier: notifier struct to unregister
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;

2131
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2132 2133 2134 2135 2136 2137 2138 2139 2140
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;

2141
	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2142 2143 2144
		notifier->ops->sched_out(notifier, next);
}

2145
#else /* !CONFIG_PREEMPT_NOTIFIERS */
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

2157
#endif /* CONFIG_PREEMPT_NOTIFIERS */
2158

2159 2160 2161
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2162
 * @prev: the current task that is being switched out
2163 2164 2165 2166 2167 2168 2169 2170 2171
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2172 2173 2174
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2175
{
2176
	trace_sched_switch(prev, next);
2177
	sched_info_switch(rq, prev, next);
2178
	perf_event_task_sched_out(prev, next);
2179
	fire_sched_out_preempt_notifiers(prev, next);
2180 2181 2182 2183
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2184 2185
/**
 * finish_task_switch - clean up after a task-switch
2186
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2187 2188
 * @prev: the thread we just switched away from.
 *
2189 2190 2191 2192
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2193 2194
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2195
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2196 2197 2198
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2199
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2200 2201 2202
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2203
	long prev_state;
L
Linus Torvalds 已提交
2204 2205 2206 2207 2208

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2209
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2210 2211
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2212
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2213 2214 2215 2216 2217
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2218
	prev_state = prev->state;
2219
	vtime_task_switch(prev);
2220
	finish_arch_switch(prev);
2221
	perf_event_task_sched_in(prev, current);
2222
	finish_lock_switch(rq, prev);
2223
	finish_arch_post_lock_switch();
S
Steven Rostedt 已提交
2224

2225
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2226 2227
	if (mm)
		mmdrop(mm);
2228
	if (unlikely(prev_state == TASK_DEAD)) {
2229 2230 2231
		if (prev->sched_class->task_dead)
			prev->sched_class->task_dead(prev);

2232 2233 2234
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2235
		 */
2236
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2237
		put_task_struct(prev);
2238
	}
2239 2240

	tick_nohz_task_switch(current);
L
Linus Torvalds 已提交
2241 2242
}

2243 2244 2245 2246 2247 2248 2249 2250
#ifdef CONFIG_SMP

/* rq->lock is NOT held, but preemption is disabled */
static inline void post_schedule(struct rq *rq)
{
	if (rq->post_schedule) {
		unsigned long flags;

2251
		raw_spin_lock_irqsave(&rq->lock, flags);
2252 2253
		if (rq->curr->sched_class->post_schedule)
			rq->curr->sched_class->post_schedule(rq);
2254
		raw_spin_unlock_irqrestore(&rq->lock, flags);
2255 2256 2257 2258 2259 2260

		rq->post_schedule = 0;
	}
}

#else
2261

2262 2263
static inline void post_schedule(struct rq *rq)
{
L
Linus Torvalds 已提交
2264 2265
}

2266 2267
#endif

L
Linus Torvalds 已提交
2268 2269 2270 2271
/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2272
asmlinkage __visible void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2273 2274
	__releases(rq->lock)
{
2275 2276
	struct rq *rq = this_rq();

2277
	finish_task_switch(rq, prev);
2278

2279 2280 2281 2282 2283
	/*
	 * FIXME: do we need to worry about rq being invalidated by the
	 * task_switch?
	 */
	post_schedule(rq);
2284

2285 2286 2287 2288
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2289
	if (current->set_child_tid)
2290
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2291 2292 2293 2294 2295 2296
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2297
static inline void
2298
context_switch(struct rq *rq, struct task_struct *prev,
2299
	       struct task_struct *next)
L
Linus Torvalds 已提交
2300
{
I
Ingo Molnar 已提交
2301
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2302

2303
	prepare_task_switch(rq, prev, next);
2304

I
Ingo Molnar 已提交
2305 2306
	mm = next->mm;
	oldmm = prev->active_mm;
2307 2308 2309 2310 2311
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
2312
	arch_start_context_switch(prev);
2313

2314
	if (!mm) {
L
Linus Torvalds 已提交
2315 2316 2317 2318 2319 2320
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

2321
	if (!prev->mm) {
L
Linus Torvalds 已提交
2322 2323 2324
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2325 2326 2327 2328 2329 2330 2331
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2332
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2333
#endif
L
Linus Torvalds 已提交
2334

2335
	context_tracking_task_switch(prev, next);
L
Linus Torvalds 已提交
2336 2337 2338
	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2339 2340 2341 2342 2343 2344 2345
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2346 2347 2348
}

/*
2349
 * nr_running and nr_context_switches:
L
Linus Torvalds 已提交
2350 2351
 *
 * externally visible scheduler statistics: current number of runnable
2352
 * threads, total number of context switches performed since bootup.
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
2362
}
L
Linus Torvalds 已提交
2363 2364

unsigned long long nr_context_switches(void)
2365
{
2366 2367
	int i;
	unsigned long long sum = 0;
2368

2369
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2370
		sum += cpu_rq(i)->nr_switches;
2371

L
Linus Torvalds 已提交
2372 2373
	return sum;
}
2374

L
Linus Torvalds 已提交
2375 2376 2377
unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;
2378

2379
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2380
		sum += atomic_read(&cpu_rq(i)->nr_iowait);
2381

L
Linus Torvalds 已提交
2382 2383
	return sum;
}
2384

2385
unsigned long nr_iowait_cpu(int cpu)
2386
{
2387
	struct rq *this = cpu_rq(cpu);
2388 2389
	return atomic_read(&this->nr_iowait);
}
2390

I
Ingo Molnar 已提交
2391
#ifdef CONFIG_SMP
2392

2393
/*
P
Peter Zijlstra 已提交
2394 2395
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
2396
 */
P
Peter Zijlstra 已提交
2397
void sched_exec(void)
2398
{
P
Peter Zijlstra 已提交
2399
	struct task_struct *p = current;
L
Linus Torvalds 已提交
2400
	unsigned long flags;
2401
	int dest_cpu;
2402

2403
	raw_spin_lock_irqsave(&p->pi_lock, flags);
2404
	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2405 2406
	if (dest_cpu == smp_processor_id())
		goto unlock;
P
Peter Zijlstra 已提交
2407

2408
	if (likely(cpu_active(dest_cpu))) {
2409
		struct migration_arg arg = { p, dest_cpu };
2410

2411 2412
		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
2413 2414
		return;
	}
2415
unlock:
2416
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
2417
}
I
Ingo Molnar 已提交
2418

L
Linus Torvalds 已提交
2419 2420 2421
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);
2422
DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
L
Linus Torvalds 已提交
2423 2424

EXPORT_PER_CPU_SYMBOL(kstat);
2425
EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
L
Linus Torvalds 已提交
2426 2427

/*
2428
 * Return any ns on the sched_clock that have not yet been accounted in
2429
 * @p in case that task is currently running.
2430 2431
 *
 * Called with task_rq_lock() held on @rq.
L
Linus Torvalds 已提交
2432
 */
2433 2434 2435 2436 2437 2438
static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
{
	u64 ns = 0;

	if (task_current(rq, p)) {
		update_rq_clock(rq);
2439
		ns = rq_clock_task(rq) - p->se.exec_start;
2440 2441 2442 2443 2444 2445 2446
		if ((s64)ns < 0)
			ns = 0;
	}

	return ns;
}

2447
unsigned long long task_delta_exec(struct task_struct *p)
L
Linus Torvalds 已提交
2448 2449
{
	unsigned long flags;
2450
	struct rq *rq;
2451
	u64 ns = 0;
2452

2453
	rq = task_rq_lock(p, &flags);
2454
	ns = do_task_delta_exec(p, rq);
2455
	task_rq_unlock(rq, p, &flags);
2456

2457 2458
	return ns;
}
2459

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
/*
 * Return accounted runtime for the task.
 * In case the task is currently running, return the runtime plus current's
 * pending runtime that have not been accounted yet.
 */
unsigned long long task_sched_runtime(struct task_struct *p)
{
	unsigned long flags;
	struct rq *rq;
	u64 ns = 0;

2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
	/*
	 * 64-bit doesn't need locks to atomically read a 64bit value.
	 * So we have a optimization chance when the task's delta_exec is 0.
	 * Reading ->on_cpu is racy, but this is ok.
	 *
	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
	 * If we race with it entering cpu, unaccounted time is 0. This is
	 * indistinguishable from the read occurring a few cycles earlier.
	 */
	if (!p->on_cpu)
		return p->se.sum_exec_runtime;
#endif

2485 2486
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2487
	task_rq_unlock(rq, p, &flags);
2488 2489 2490

	return ns;
}
2491

2492 2493 2494 2495 2496 2497 2498 2499
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
2500
	struct task_struct *curr = rq->curr;
2501 2502

	sched_clock_tick();
I
Ingo Molnar 已提交
2503

2504
	raw_spin_lock(&rq->lock);
2505
	update_rq_clock(rq);
P
Peter Zijlstra 已提交
2506
	curr->sched_class->task_tick(rq, curr, 0);
2507
	update_cpu_load_active(rq);
2508
	raw_spin_unlock(&rq->lock);
2509

2510
	perf_event_task_tick();
2511

2512
#ifdef CONFIG_SMP
2513
	rq->idle_balance = idle_cpu(cpu);
2514
	trigger_load_balance(rq);
2515
#endif
2516
	rq_last_tick_reset(rq);
L
Linus Torvalds 已提交
2517 2518
}

2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
#ifdef CONFIG_NO_HZ_FULL
/**
 * scheduler_tick_max_deferment
 *
 * Keep at least one tick per second when a single
 * active task is running because the scheduler doesn't
 * yet completely support full dynticks environment.
 *
 * This makes sure that uptime, CFS vruntime, load
 * balancing, etc... continue to move forward, even
 * with a very low granularity.
2530 2531
 *
 * Return: Maximum deferment in nanoseconds.
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
 */
u64 scheduler_tick_max_deferment(void)
{
	struct rq *rq = this_rq();
	unsigned long next, now = ACCESS_ONCE(jiffies);

	next = rq->last_sched_tick + HZ;

	if (time_before_eq(next, now))
		return 0;

2543
	return jiffies_to_nsecs(next - now);
L
Linus Torvalds 已提交
2544
}
2545
#endif
L
Linus Torvalds 已提交
2546

2547
notrace unsigned long get_parent_ip(unsigned long addr)
2548 2549 2550 2551 2552 2553 2554 2555
{
	if (in_lock_functions(addr)) {
		addr = CALLER_ADDR2;
		if (in_lock_functions(addr))
			addr = CALLER_ADDR3;
	}
	return addr;
}
L
Linus Torvalds 已提交
2556

2557 2558 2559
#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
				defined(CONFIG_PREEMPT_TRACER))

2560
void preempt_count_add(int val)
L
Linus Torvalds 已提交
2561
{
2562
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2563 2564 2565
	/*
	 * Underflow?
	 */
2566 2567
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
2568
#endif
2569
	__preempt_count_add(val);
2570
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2571 2572 2573
	/*
	 * Spinlock count overflowing soon?
	 */
2574 2575
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
2576
#endif
2577 2578 2579 2580 2581 2582 2583
	if (preempt_count() == val) {
		unsigned long ip = get_parent_ip(CALLER_ADDR1);
#ifdef CONFIG_DEBUG_PREEMPT
		current->preempt_disable_ip = ip;
#endif
		trace_preempt_off(CALLER_ADDR0, ip);
	}
L
Linus Torvalds 已提交
2584
}
2585
EXPORT_SYMBOL(preempt_count_add);
2586
NOKPROBE_SYMBOL(preempt_count_add);
L
Linus Torvalds 已提交
2587

2588
void preempt_count_sub(int val)
L
Linus Torvalds 已提交
2589
{
2590
#ifdef CONFIG_DEBUG_PREEMPT
L
Linus Torvalds 已提交
2591 2592 2593
	/*
	 * Underflow?
	 */
2594
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2595
		return;
L
Linus Torvalds 已提交
2596 2597 2598
	/*
	 * Is the spinlock portion underflowing?
	 */
2599 2600 2601
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;
2602
#endif
2603

2604 2605
	if (preempt_count() == val)
		trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2606
	__preempt_count_sub(val);
L
Linus Torvalds 已提交
2607
}
2608
EXPORT_SYMBOL(preempt_count_sub);
2609
NOKPROBE_SYMBOL(preempt_count_sub);
L
Linus Torvalds 已提交
2610 2611 2612 2613

#endif

/*
I
Ingo Molnar 已提交
2614
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
2615
 */
I
Ingo Molnar 已提交
2616
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
2617
{
2618 2619 2620
	if (oops_in_progress)
		return;

P
Peter Zijlstra 已提交
2621 2622
	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());
2623

I
Ingo Molnar 已提交
2624
	debug_show_held_locks(prev);
2625
	print_modules();
I
Ingo Molnar 已提交
2626 2627
	if (irqs_disabled())
		print_irqtrace_events(prev);
2628 2629 2630 2631 2632 2633 2634
#ifdef CONFIG_DEBUG_PREEMPT
	if (in_atomic_preempt_off()) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
2635
	dump_stack();
2636
	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
I
Ingo Molnar 已提交
2637
}
L
Linus Torvalds 已提交
2638

I
Ingo Molnar 已提交
2639 2640 2641 2642 2643
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
2644
	/*
I
Ingo Molnar 已提交
2645
	 * Test if we are atomic. Since do_exit() needs to call into
2646 2647
	 * schedule() atomically, we ignore that path. Otherwise whine
	 * if we are scheduling when we should not.
L
Linus Torvalds 已提交
2648
	 */
2649
	if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
I
Ingo Molnar 已提交
2650
		__schedule_bug(prev);
2651
	rcu_sleep_check();
I
Ingo Molnar 已提交
2652

L
Linus Torvalds 已提交
2653 2654
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

2655
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
2656 2657 2658 2659 2660 2661
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
2662
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
2663
{
2664
	const struct sched_class *class = &fair_sched_class;
I
Ingo Molnar 已提交
2665
	struct task_struct *p;
L
Linus Torvalds 已提交
2666 2667

	/*
I
Ingo Molnar 已提交
2668 2669
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
2670
	 */
2671
	if (likely(prev->sched_class == class &&
2672
		   rq->nr_running == rq->cfs.h_nr_running)) {
2673
		p = fair_sched_class.pick_next_task(rq, prev);
2674 2675 2676 2677 2678 2679 2680 2681
		if (unlikely(p == RETRY_TASK))
			goto again;

		/* assumes fair_sched_class->next == idle_sched_class */
		if (unlikely(!p))
			p = idle_sched_class.pick_next_task(rq, prev);

		return p;
L
Linus Torvalds 已提交
2682 2683
	}

2684
again:
2685
	for_each_class(class) {
2686
		p = class->pick_next_task(rq, prev);
2687 2688 2689
		if (p) {
			if (unlikely(p == RETRY_TASK))
				goto again;
I
Ingo Molnar 已提交
2690
			return p;
2691
		}
I
Ingo Molnar 已提交
2692
	}
2693 2694

	BUG(); /* the idle class will always have a runnable task */
I
Ingo Molnar 已提交
2695
}
L
Linus Torvalds 已提交
2696

I
Ingo Molnar 已提交
2697
/*
2698
 * __schedule() is the main scheduler function.
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
 *
 * The main means of driving the scheduler and thus entering this function are:
 *
 *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
 *
 *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
 *      paths. For example, see arch/x86/entry_64.S.
 *
 *      To drive preemption between tasks, the scheduler sets the flag in timer
 *      interrupt handler scheduler_tick().
 *
 *   3. Wakeups don't really cause entry into schedule(). They add a
 *      task to the run-queue and that's it.
 *
 *      Now, if the new task added to the run-queue preempts the current
 *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
 *      called on the nearest possible occasion:
 *
 *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
 *
 *         - in syscall or exception context, at the next outmost
 *           preempt_enable(). (this might be as soon as the wake_up()'s
 *           spin_unlock()!)
 *
 *         - in IRQ context, return from interrupt-handler to
 *           preemptible context
 *
 *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
 *         then at the next:
 *
 *          - cond_resched() call
 *          - explicit schedule() call
 *          - return from syscall or exception to user-space
 *          - return from interrupt-handler to user-space
I
Ingo Molnar 已提交
2733
 */
2734
static void __sched __schedule(void)
I
Ingo Molnar 已提交
2735 2736
{
	struct task_struct *prev, *next;
2737
	unsigned long *switch_count;
I
Ingo Molnar 已提交
2738
	struct rq *rq;
2739
	int cpu;
I
Ingo Molnar 已提交
2740

2741 2742
need_resched:
	preempt_disable();
I
Ingo Molnar 已提交
2743 2744
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
2745
	rcu_note_context_switch(cpu);
I
Ingo Molnar 已提交
2746 2747 2748
	prev = rq->curr;

	schedule_debug(prev);
L
Linus Torvalds 已提交
2749

2750
	if (sched_feat(HRTICK))
M
Mike Galbraith 已提交
2751
		hrtick_clear(rq);
P
Peter Zijlstra 已提交
2752

2753 2754 2755 2756 2757 2758
	/*
	 * Make sure that signal_pending_state()->signal_pending() below
	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
	 * done by the caller to avoid the race with signal_wake_up().
	 */
	smp_mb__before_spinlock();
2759
	raw_spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
2760

2761
	switch_count = &prev->nivcsw;
L
Linus Torvalds 已提交
2762
	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
T
Tejun Heo 已提交
2763
		if (unlikely(signal_pending_state(prev->state, prev))) {
L
Linus Torvalds 已提交
2764
			prev->state = TASK_RUNNING;
T
Tejun Heo 已提交
2765
		} else {
2766 2767 2768
			deactivate_task(rq, prev, DEQUEUE_SLEEP);
			prev->on_rq = 0;

T
Tejun Heo 已提交
2769
			/*
2770 2771 2772
			 * If a worker went to sleep, notify and ask workqueue
			 * whether it wants to wake up a task to maintain
			 * concurrency.
T
Tejun Heo 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781
			 */
			if (prev->flags & PF_WQ_WORKER) {
				struct task_struct *to_wakeup;

				to_wakeup = wq_worker_sleeping(prev, cpu);
				if (to_wakeup)
					try_to_wake_up_local(to_wakeup);
			}
		}
I
Ingo Molnar 已提交
2782
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
2783 2784
	}

2785 2786 2787 2788
	if (prev->on_rq || rq->skip_clock_update < 0)
		update_rq_clock(rq);

	next = pick_next_task(rq, prev);
2789
	clear_tsk_need_resched(prev);
2790
	clear_preempt_need_resched();
2791
	rq->skip_clock_update = 0;
L
Linus Torvalds 已提交
2792 2793 2794 2795 2796 2797

	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
2798
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
2799
		/*
2800 2801 2802 2803
		 * The context switch have flipped the stack from under us
		 * and restored the local variables which were saved when
		 * this task called schedule() in the past. prev == current
		 * is still correct, but it can be moved to another cpu/rq.
P
Peter Zijlstra 已提交
2804 2805 2806
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
2807
	} else
2808
		raw_spin_unlock_irq(&rq->lock);
L
Linus Torvalds 已提交
2809

2810
	post_schedule(rq);
L
Linus Torvalds 已提交
2811

2812
	sched_preempt_enable_no_resched();
2813
	if (need_resched())
L
Linus Torvalds 已提交
2814 2815
		goto need_resched;
}
2816

2817 2818
static inline void sched_submit_work(struct task_struct *tsk)
{
2819
	if (!tsk->state || tsk_is_pi_blocked(tsk))
2820 2821 2822 2823 2824 2825 2826 2827 2828
		return;
	/*
	 * If we are going to sleep and we have plugged IO queued,
	 * make sure to submit it to avoid deadlocks.
	 */
	if (blk_needs_flush_plug(tsk))
		blk_schedule_flush_plug(tsk);
}

2829
asmlinkage __visible void __sched schedule(void)
2830
{
2831 2832 2833
	struct task_struct *tsk = current;

	sched_submit_work(tsk);
2834 2835
	__schedule();
}
L
Linus Torvalds 已提交
2836 2837
EXPORT_SYMBOL(schedule);

2838
#ifdef CONFIG_CONTEXT_TRACKING
2839
asmlinkage __visible void __sched schedule_user(void)
2840 2841 2842 2843 2844 2845 2846
{
	/*
	 * If we come here after a random call to set_need_resched(),
	 * or we have been woken up remotely but the IPI has not yet arrived,
	 * we haven't yet exited the RCU idle mode. Do it here manually until
	 * we find a better solution.
	 */
2847
	user_exit();
2848
	schedule();
2849
	user_enter();
2850 2851 2852
}
#endif

2853 2854 2855 2856 2857 2858 2859
/**
 * schedule_preempt_disabled - called with preemption disabled
 *
 * Returns with preemption disabled. Note: preempt_count must be 1
 */
void __sched schedule_preempt_disabled(void)
{
2860
	sched_preempt_enable_no_resched();
2861 2862 2863 2864
	schedule();
	preempt_disable();
}

L
Linus Torvalds 已提交
2865 2866
#ifdef CONFIG_PREEMPT
/*
2867
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
2868
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
2869 2870
 * occur there and call schedule directly.
 */
2871
asmlinkage __visible void __sched notrace preempt_schedule(void)
L
Linus Torvalds 已提交
2872 2873 2874
{
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
2875
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
2876
	 */
2877
	if (likely(!preemptible()))
L
Linus Torvalds 已提交
2878 2879
		return;

2880
	do {
2881
		__preempt_count_add(PREEMPT_ACTIVE);
2882
		__schedule();
2883
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2884

2885 2886 2887 2888 2889
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2890
	} while (need_resched());
L
Linus Torvalds 已提交
2891
}
2892
NOKPROBE_SYMBOL(preempt_schedule);
L
Linus Torvalds 已提交
2893
EXPORT_SYMBOL(preempt_schedule);
2894
#endif /* CONFIG_PREEMPT */
L
Linus Torvalds 已提交
2895 2896

/*
2897
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
2898 2899 2900 2901
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
2902
asmlinkage __visible void __sched preempt_schedule_irq(void)
L
Linus Torvalds 已提交
2903
{
2904
	enum ctx_state prev_state;
2905

2906
	/* Catch callers which need to be fixed */
2907
	BUG_ON(preempt_count() || !irqs_disabled());
L
Linus Torvalds 已提交
2908

2909 2910
	prev_state = exception_enter();

2911
	do {
2912
		__preempt_count_add(PREEMPT_ACTIVE);
2913
		local_irq_enable();
2914
		__schedule();
2915
		local_irq_disable();
2916
		__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
2917

2918 2919 2920 2921 2922
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
2923
	} while (need_resched());
2924 2925

	exception_exit(prev_state);
L
Linus Torvalds 已提交
2926 2927
}

P
Peter Zijlstra 已提交
2928
int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
I
Ingo Molnar 已提交
2929
			  void *key)
L
Linus Torvalds 已提交
2930
{
P
Peter Zijlstra 已提交
2931
	return try_to_wake_up(curr->private, mode, wake_flags);
L
Linus Torvalds 已提交
2932 2933 2934
}
EXPORT_SYMBOL(default_wake_function);

2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
2945 2946
 * Used by the rt_mutex code to implement priority inheritance
 * logic. Call site only calls if the priority of the task changed.
2947
 */
2948
void rt_mutex_setprio(struct task_struct *p, int prio)
2949
{
2950
	int oldprio, on_rq, running, enqueue_flag = 0;
2951
	struct rq *rq;
2952
	const struct sched_class *prev_class;
2953

2954
	BUG_ON(prio > MAX_PRIO);
2955

2956
	rq = __task_rq_lock(p);
2957

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
	/*
	 * Idle task boosting is a nono in general. There is one
	 * exception, when PREEMPT_RT and NOHZ is active:
	 *
	 * The idle task calls get_next_timer_interrupt() and holds
	 * the timer wheel base->lock on the CPU and another CPU wants
	 * to access the timer (probably to cancel it). We can safely
	 * ignore the boosting request, as the idle CPU runs this code
	 * with interrupts disabled and will complete the lock
	 * protected section without being interrupted. So there is no
	 * real need to boost.
	 */
	if (unlikely(p == rq->idle)) {
		WARN_ON(p != rq->curr);
		WARN_ON(p->pi_blocked_on);
		goto out_unlock;
	}

2976
	trace_sched_pi_setprio(p, prio);
2977
	p->pi_top_task = rt_mutex_get_top_task(p);
2978
	oldprio = p->prio;
2979
	prev_class = p->sched_class;
P
Peter Zijlstra 已提交
2980
	on_rq = p->on_rq;
2981
	running = task_current(rq, p);
2982
	if (on_rq)
2983
		dequeue_task(rq, p, 0);
2984 2985
	if (running)
		p->sched_class->put_prev_task(rq, p);
I
Ingo Molnar 已提交
2986

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003
	/*
	 * Boosting condition are:
	 * 1. -rt task is running and holds mutex A
	 *      --> -dl task blocks on mutex A
	 *
	 * 2. -dl task is running and holds mutex A
	 *      --> -dl task blocks on mutex A and could preempt the
	 *          running task
	 */
	if (dl_prio(prio)) {
		if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
			dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
			p->dl.dl_boosted = 1;
			p->dl.dl_throttled = 0;
			enqueue_flag = ENQUEUE_REPLENISH;
		} else
			p->dl.dl_boosted = 0;
3004
		p->sched_class = &dl_sched_class;
3005 3006 3007 3008 3009
	} else if (rt_prio(prio)) {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
		if (oldprio < prio)
			enqueue_flag = ENQUEUE_HEAD;
I
Ingo Molnar 已提交
3010
		p->sched_class = &rt_sched_class;
3011 3012 3013
	} else {
		if (dl_prio(oldprio))
			p->dl.dl_boosted = 0;
I
Ingo Molnar 已提交
3014
		p->sched_class = &fair_sched_class;
3015
	}
I
Ingo Molnar 已提交
3016

3017 3018
	p->prio = prio;

3019 3020
	if (running)
		p->sched_class->set_curr_task(rq);
P
Peter Zijlstra 已提交
3021
	if (on_rq)
3022
		enqueue_task(rq, p, enqueue_flag);
3023

P
Peter Zijlstra 已提交
3024
	check_class_changed(rq, p, prev_class, oldprio);
3025
out_unlock:
3026
	__task_rq_unlock(rq);
3027 3028
}
#endif
3029

3030
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
3031
{
I
Ingo Molnar 已提交
3032
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
3033
	unsigned long flags;
3034
	struct rq *rq;
L
Linus Torvalds 已提交
3035

3036
	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
L
Linus Torvalds 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
3047
	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
L
Linus Torvalds 已提交
3048
	 */
3049
	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
3050 3051 3052
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
P
Peter Zijlstra 已提交
3053
	on_rq = p->on_rq;
3054
	if (on_rq)
3055
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
3056 3057

	p->static_prio = NICE_TO_PRIO(nice);
3058
	set_load_weight(p);
3059 3060 3061
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
3062

I
Ingo Molnar 已提交
3063
	if (on_rq) {
3064
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
3065
		/*
3066 3067
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
3068
		 */
3069
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
3070 3071 3072
			resched_task(rq->curr);
	}
out_unlock:
3073
	task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3074 3075 3076
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
3077 3078 3079 3080 3081
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
3082
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
3083
{
3084
	/* convert nice value [19,-20] to rlimit style value [1,40] */
3085
	int nice_rlim = nice_to_rlimit(nice);
3086

3087
	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
M
Matt Mackall 已提交
3088 3089 3090
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
3091 3092 3093 3094 3095 3096 3097 3098 3099
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
3100
SYSCALL_DEFINE1(nice, int, increment)
L
Linus Torvalds 已提交
3101
{
3102
	long nice, retval;
L
Linus Torvalds 已提交
3103 3104 3105 3106 3107 3108

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
3109
	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3110
	nice = task_nice(current) + increment;
L
Linus Torvalds 已提交
3111

3112
	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
M
Matt Mackall 已提交
3113 3114 3115
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
3130
 * Return: The priority value as seen by users in /proc.
L
Linus Torvalds 已提交
3131 3132 3133
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
3134
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
3135 3136 3137 3138 3139 3140 3141
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
3142 3143
 *
 * Return: 1 if the CPU is currently idle. 0 otherwise.
L
Linus Torvalds 已提交
3144 3145 3146
 */
int idle_cpu(int cpu)
{
T
Thomas Gleixner 已提交
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	struct rq *rq = cpu_rq(cpu);

	if (rq->curr != rq->idle)
		return 0;

	if (rq->nr_running)
		return 0;

#ifdef CONFIG_SMP
	if (!llist_empty(&rq->wake_list))
		return 0;
#endif

	return 1;
L
Linus Torvalds 已提交
3161 3162 3163 3164 3165
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
3166 3167
 *
 * Return: The idle task for the cpu @cpu.
L
Linus Torvalds 已提交
3168
 */
3169
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
3170 3171 3172 3173 3174 3175 3176
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
3177 3178
 *
 * The task of @pid, if found. %NULL otherwise.
L
Linus Torvalds 已提交
3179
 */
A
Alexey Dobriyan 已提交
3180
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
3181
{
3182
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
3183 3184
}

3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
/*
 * This function initializes the sched_dl_entity of a newly becoming
 * SCHED_DEADLINE task.
 *
 * Only the static values are considered here, the actual runtime and the
 * absolute deadline will be properly calculated when the task is enqueued
 * for the first time with its new policy.
 */
static void
__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	init_dl_task_timer(dl_se);
	dl_se->dl_runtime = attr->sched_runtime;
	dl_se->dl_deadline = attr->sched_deadline;
3201
	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3202
	dl_se->flags = attr->sched_flags;
3203
	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3204 3205
	dl_se->dl_throttled = 0;
	dl_se->dl_new = 1;
3206
	dl_se->dl_yielded = 0;
3207 3208
}

3209 3210
static void __setscheduler_params(struct task_struct *p,
		const struct sched_attr *attr)
L
Linus Torvalds 已提交
3211
{
3212 3213
	int policy = attr->sched_policy;

3214 3215 3216
	if (policy == -1) /* setparam */
		policy = p->policy;

L
Linus Torvalds 已提交
3217
	p->policy = policy;
3218

3219 3220
	if (dl_policy(policy))
		__setparam_dl(p, attr);
3221
	else if (fair_policy(policy))
3222 3223
		p->static_prio = NICE_TO_PRIO(attr->sched_nice);

3224 3225 3226 3227 3228 3229
	/*
	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
	 * !rt_policy. Always setting this ensures that things like
	 * getparam()/getattr() don't report silly values for !rt tasks.
	 */
	p->rt_priority = attr->sched_priority;
3230
	p->normal_prio = normal_prio(p);
3231 3232
	set_load_weight(p);
}
3233

3234 3235 3236 3237 3238
/* Actually do priority change: must hold pi & rq lock. */
static void __setscheduler(struct rq *rq, struct task_struct *p,
			   const struct sched_attr *attr)
{
	__setscheduler_params(p, attr);
3239

3240 3241 3242 3243 3244 3245
	/*
	 * If we get here, there was no pi waiters boosting the
	 * task. It is safe to use the normal prio.
	 */
	p->prio = normal_prio(p);

3246 3247 3248
	if (dl_prio(p->prio))
		p->sched_class = &dl_sched_class;
	else if (rt_prio(p->prio))
3249 3250 3251
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
3252
}
3253 3254 3255 3256 3257 3258 3259 3260 3261

static void
__getparam_dl(struct task_struct *p, struct sched_attr *attr)
{
	struct sched_dl_entity *dl_se = &p->dl;

	attr->sched_priority = p->rt_priority;
	attr->sched_runtime = dl_se->dl_runtime;
	attr->sched_deadline = dl_se->dl_deadline;
3262
	attr->sched_period = dl_se->dl_period;
3263 3264 3265 3266 3267 3268
	attr->sched_flags = dl_se->flags;
}

/*
 * This function validates the new parameters of a -deadline task.
 * We ask for the deadline not being zero, and greater or equal
3269
 * than the runtime, as well as the period of being zero or
3270
 * greater than deadline. Furthermore, we have to be sure that
3271 3272 3273 3274
 * user parameters are above the internal resolution of 1us (we
 * check sched_runtime only since it is always the smaller one) and
 * below 2^63 ns (we have to check both sched_deadline and
 * sched_period, as the latter can be zero).
3275 3276 3277 3278
 */
static bool
__checkparam_dl(const struct sched_attr *attr)
{
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
	/* deadline != 0 */
	if (attr->sched_deadline == 0)
		return false;

	/*
	 * Since we truncate DL_SCALE bits, make sure we're at least
	 * that big.
	 */
	if (attr->sched_runtime < (1ULL << DL_SCALE))
		return false;

	/*
	 * Since we use the MSB for wrap-around and sign issues, make
	 * sure it's not set (mind that period can be equal to zero).
	 */
	if (attr->sched_deadline & (1ULL << 63) ||
	    attr->sched_period & (1ULL << 63))
		return false;

	/* runtime <= deadline <= period (if period != 0) */
	if ((attr->sched_period != 0 &&
	     attr->sched_period < attr->sched_deadline) ||
	    attr->sched_deadline < attr->sched_runtime)
		return false;

	return true;
3305 3306
}

3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
/*
 * check the target process has a UID that matches the current process's
 */
static bool check_same_owner(struct task_struct *p)
{
	const struct cred *cred = current_cred(), *pcred;
	bool match;

	rcu_read_lock();
	pcred = __task_cred(p);
3317 3318
	match = (uid_eq(cred->euid, pcred->euid) ||
		 uid_eq(cred->euid, pcred->uid));
3319 3320 3321 3322
	rcu_read_unlock();
	return match;
}

3323 3324 3325
static int __sched_setscheduler(struct task_struct *p,
				const struct sched_attr *attr,
				bool user)
L
Linus Torvalds 已提交
3326
{
3327 3328
	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
		      MAX_RT_PRIO - 1 - attr->sched_priority;
3329
	int retval, oldprio, oldpolicy = -1, on_rq, running;
3330
	int policy = attr->sched_policy;
L
Linus Torvalds 已提交
3331
	unsigned long flags;
3332
	const struct sched_class *prev_class;
3333
	struct rq *rq;
3334
	int reset_on_fork;
L
Linus Torvalds 已提交
3335

3336 3337
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
3338 3339
recheck:
	/* double check policy once rq lock held */
3340 3341
	if (policy < 0) {
		reset_on_fork = p->sched_reset_on_fork;
L
Linus Torvalds 已提交
3342
		policy = oldpolicy = p->policy;
3343
	} else {
3344
		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3345

3346 3347
		if (policy != SCHED_DEADLINE &&
				policy != SCHED_FIFO && policy != SCHED_RR &&
3348 3349 3350 3351 3352
				policy != SCHED_NORMAL && policy != SCHED_BATCH &&
				policy != SCHED_IDLE)
			return -EINVAL;
	}

3353 3354 3355
	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
		return -EINVAL;

L
Linus Torvalds 已提交
3356 3357
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
3358 3359
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
3360
	 */
3361
	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3362
	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
3363
		return -EINVAL;
3364 3365
	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
	    (rt_policy(policy) != (attr->sched_priority != 0)))
L
Linus Torvalds 已提交
3366 3367
		return -EINVAL;

3368 3369 3370
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
3371
	if (user && !capable(CAP_SYS_NICE)) {
3372
		if (fair_policy(policy)) {
3373
			if (attr->sched_nice < task_nice(p) &&
3374
			    !can_nice(p, attr->sched_nice))
3375 3376 3377
				return -EPERM;
		}

3378
		if (rt_policy(policy)) {
3379 3380
			unsigned long rlim_rtprio =
					task_rlimit(p, RLIMIT_RTPRIO);
3381 3382 3383 3384 3385 3386

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
3387 3388
			if (attr->sched_priority > p->rt_priority &&
			    attr->sched_priority > rlim_rtprio)
3389 3390
				return -EPERM;
		}
3391

3392 3393 3394 3395 3396 3397 3398 3399 3400
		 /*
		  * Can't set/change SCHED_DEADLINE policy at all for now
		  * (safest behavior); in the future we would like to allow
		  * unprivileged DL tasks to increase their relative deadline
		  * or reduce their runtime (both ways reducing utilization)
		  */
		if (dl_policy(policy))
			return -EPERM;

I
Ingo Molnar 已提交
3401
		/*
3402 3403
		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
I
Ingo Molnar 已提交
3404
		 */
3405
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3406
			if (!can_nice(p, task_nice(p)))
3407 3408
				return -EPERM;
		}
3409

3410
		/* can't change other user's priorities */
3411
		if (!check_same_owner(p))
3412
			return -EPERM;
3413 3414 3415 3416

		/* Normal users shall not reset the sched_reset_on_fork flag */
		if (p->sched_reset_on_fork && !reset_on_fork)
			return -EPERM;
3417
	}
L
Linus Torvalds 已提交
3418

3419
	if (user) {
3420
		retval = security_task_setscheduler(p);
3421 3422 3423 3424
		if (retval)
			return retval;
	}

3425 3426 3427
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
3428
	 *
L
Lucas De Marchi 已提交
3429
	 * To be able to change p->policy safely, the appropriate
L
Linus Torvalds 已提交
3430 3431
	 * runqueue lock must be held.
	 */
3432
	rq = task_rq_lock(p, &flags);
3433

3434 3435 3436 3437
	/*
	 * Changing the policy of the stop threads its a very bad idea
	 */
	if (p == rq->stop) {
3438
		task_rq_unlock(rq, p, &flags);
3439 3440 3441
		return -EINVAL;
	}

3442
	/*
3443 3444
	 * If not changing anything there's no need to proceed further,
	 * but store a possible modification of reset_on_fork.
3445
	 */
3446
	if (unlikely(policy == p->policy)) {
3447
		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3448 3449 3450
			goto change;
		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
			goto change;
3451 3452
		if (dl_policy(policy))
			goto change;
3453

3454
		p->sched_reset_on_fork = reset_on_fork;
3455
		task_rq_unlock(rq, p, &flags);
3456 3457
		return 0;
	}
3458
change:
3459

3460
	if (user) {
3461
#ifdef CONFIG_RT_GROUP_SCHED
3462 3463 3464 3465 3466
		/*
		 * Do not allow realtime tasks into groups that have no runtime
		 * assigned.
		 */
		if (rt_bandwidth_enabled() && rt_policy(policy) &&
3467 3468
				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
				!task_group_is_autogroup(task_group(p))) {
3469
			task_rq_unlock(rq, p, &flags);
3470 3471 3472
			return -EPERM;
		}
#endif
3473 3474 3475 3476 3477 3478 3479 3480 3481
#ifdef CONFIG_SMP
		if (dl_bandwidth_enabled() && dl_policy(policy)) {
			cpumask_t *span = rq->rd->span;

			/*
			 * Don't allow tasks with an affinity mask smaller than
			 * the entire root_domain to become SCHED_DEADLINE. We
			 * will also fail if there's no bandwidth available.
			 */
3482 3483
			if (!cpumask_subset(span, &p->cpus_allowed) ||
			    rq->rd->dl_bw.bw == 0) {
3484 3485 3486 3487 3488 3489
				task_rq_unlock(rq, p, &flags);
				return -EPERM;
			}
		}
#endif
	}
3490

L
Linus Torvalds 已提交
3491 3492 3493
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
3494
		task_rq_unlock(rq, p, &flags);
L
Linus Torvalds 已提交
3495 3496
		goto recheck;
	}
3497 3498 3499 3500 3501 3502

	/*
	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
	 * is available.
	 */
3503
	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3504 3505 3506 3507
		task_rq_unlock(rq, p, &flags);
		return -EBUSY;
	}

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
	p->sched_reset_on_fork = reset_on_fork;
	oldprio = p->prio;

	/*
	 * Special case for priority boosted tasks.
	 *
	 * If the new priority is lower or equal (user space view)
	 * than the current (boosted) priority, we just store the new
	 * normal parameters and do not touch the scheduler class and
	 * the runqueue. This will be done when the task deboost
	 * itself.
	 */
	if (rt_mutex_check_prio(p, newprio)) {
		__setscheduler_params(p, attr);
		task_rq_unlock(rq, p, &flags);
		return 0;
	}

P
Peter Zijlstra 已提交
3526
	on_rq = p->on_rq;
3527
	running = task_current(rq, p);
3528
	if (on_rq)
3529
		dequeue_task(rq, p, 0);
3530 3531
	if (running)
		p->sched_class->put_prev_task(rq, p);
3532

3533
	prev_class = p->sched_class;
3534
	__setscheduler(rq, p, attr);
3535

3536 3537
	if (running)
		p->sched_class->set_curr_task(rq);
3538 3539 3540 3541 3542 3543 3544
	if (on_rq) {
		/*
		 * We enqueue to tail when the priority of a task is
		 * increased (user space view).
		 */
		enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
	}
3545

P
Peter Zijlstra 已提交
3546
	check_class_changed(rq, p, prev_class, oldprio);
3547
	task_rq_unlock(rq, p, &flags);
3548

3549 3550
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
3551 3552
	return 0;
}
3553

3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
static int _sched_setscheduler(struct task_struct *p, int policy,
			       const struct sched_param *param, bool check)
{
	struct sched_attr attr = {
		.sched_policy   = policy,
		.sched_priority = param->sched_priority,
		.sched_nice	= PRIO_TO_NICE(p->static_prio),
	};

	/*
	 * Fixup the legacy SCHED_RESET_ON_FORK hack
	 */
	if (policy & SCHED_RESET_ON_FORK) {
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
		policy &= ~SCHED_RESET_ON_FORK;
		attr.sched_policy = policy;
	}

	return __sched_setscheduler(p, &attr, check);
}
3574 3575 3576 3577 3578 3579
/**
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
3580 3581
 * Return: 0 on success. An error code otherwise.
 *
3582 3583 3584
 * NOTE that the task may be already dead.
 */
int sched_setscheduler(struct task_struct *p, int policy,
3585
		       const struct sched_param *param)
3586
{
3587
	return _sched_setscheduler(p, policy, param, true);
3588
}
L
Linus Torvalds 已提交
3589 3590
EXPORT_SYMBOL_GPL(sched_setscheduler);

3591 3592 3593 3594 3595 3596
int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
{
	return __sched_setscheduler(p, attr, true);
}
EXPORT_SYMBOL_GPL(sched_setattr);

3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
/**
 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 *
 * Just like sched_setscheduler, only don't bother checking if the
 * current context has permission.  For example, this is needed in
 * stop_machine(): we create temporary high priority worker threads,
 * but our caller might not have that capability.
3607 3608
 *
 * Return: 0 on success. An error code otherwise.
3609 3610
 */
int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3611
			       const struct sched_param *param)
3612
{
3613
	return _sched_setscheduler(p, policy, param, false);
3614 3615
}

I
Ingo Molnar 已提交
3616 3617
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
3618 3619 3620
{
	struct sched_param lparam;
	struct task_struct *p;
3621
	int retval;
L
Linus Torvalds 已提交
3622 3623 3624 3625 3626

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
3627 3628 3629

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
3630
	p = find_process_by_pid(pid);
3631 3632 3633
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
3634

L
Linus Torvalds 已提交
3635 3636 3637
	return retval;
}

3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
/*
 * Mimics kernel/events/core.c perf_copy_attr().
 */
static int sched_copy_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr)
{
	u32 size;
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = SCHED_ATTR_SIZE_VER0;

	if (size < SCHED_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
	 */
	if (size > sizeof(*attr)) {
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;

		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;

		for (; addr < end; addr++) {
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
		size = sizeof(*attr);
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * XXX: do we want to be lenient like existing syscalls; or do we want
	 * to be strict and return an error on out-of-bounds values?
	 */
3700
	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3701

3702
	return 0;
3703 3704 3705

err_size:
	put_user(sizeof(*attr), &uattr->size);
3706
	return -E2BIG;
3707 3708
}

L
Linus Torvalds 已提交
3709 3710 3711 3712 3713
/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
3714 3715
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3716
 */
3717 3718
SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
		struct sched_param __user *, param)
L
Linus Torvalds 已提交
3719
{
3720 3721 3722 3723
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
3724 3725 3726 3727 3728 3729 3730
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
3731 3732
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
3733
 */
3734
SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3735 3736 3737 3738
{
	return do_sched_setscheduler(pid, -1, param);
}

3739 3740 3741
/**
 * sys_sched_setattr - same as above, but with extended sched_attr
 * @pid: the pid in question.
J
Juri Lelli 已提交
3742
 * @uattr: structure containing the extended parameters.
3743
 * @flags: for future extension.
3744
 */
3745 3746
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
			       unsigned int, flags)
3747 3748 3749 3750 3751
{
	struct sched_attr attr;
	struct task_struct *p;
	int retval;

3752
	if (!uattr || pid < 0 || flags)
3753 3754
		return -EINVAL;

3755 3756 3757
	retval = sched_copy_attr(uattr, &attr);
	if (retval)
		return retval;
3758

3759
	if ((int)attr.sched_policy < 0)
3760
		return -EINVAL;
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771

	rcu_read_lock();
	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (p != NULL)
		retval = sched_setattr(p, &attr);
	rcu_read_unlock();

	return retval;
}

L
Linus Torvalds 已提交
3772 3773 3774
/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
3775 3776 3777
 *
 * Return: On success, the policy of the thread. Otherwise, a negative error
 * code.
L
Linus Torvalds 已提交
3778
 */
3779
SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
L
Linus Torvalds 已提交
3780
{
3781
	struct task_struct *p;
3782
	int retval;
L
Linus Torvalds 已提交
3783 3784

	if (pid < 0)
3785
		return -EINVAL;
L
Linus Torvalds 已提交
3786 3787

	retval = -ESRCH;
3788
	rcu_read_lock();
L
Linus Torvalds 已提交
3789 3790 3791 3792
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
3793 3794
			retval = p->policy
				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
L
Linus Torvalds 已提交
3795
	}
3796
	rcu_read_unlock();
L
Linus Torvalds 已提交
3797 3798 3799 3800
	return retval;
}

/**
3801
 * sys_sched_getparam - get the RT priority of a thread
L
Linus Torvalds 已提交
3802 3803
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
3804 3805 3806
 *
 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
 * code.
L
Linus Torvalds 已提交
3807
 */
3808
SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
L
Linus Torvalds 已提交
3809
{
3810
	struct sched_param lp = { .sched_priority = 0 };
3811
	struct task_struct *p;
3812
	int retval;
L
Linus Torvalds 已提交
3813 3814

	if (!param || pid < 0)
3815
		return -EINVAL;
L
Linus Torvalds 已提交
3816

3817
	rcu_read_lock();
L
Linus Torvalds 已提交
3818 3819 3820 3821 3822 3823 3824 3825 3826
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

3827 3828
	if (task_has_rt_policy(p))
		lp.sched_priority = p->rt_priority;
3829
	rcu_read_unlock();
L
Linus Torvalds 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
3839
	rcu_read_unlock();
L
Linus Torvalds 已提交
3840 3841 3842
	return retval;
}

3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
static int sched_read_attr(struct sched_attr __user *uattr,
			   struct sched_attr *attr,
			   unsigned int usize)
{
	int ret;

	if (!access_ok(VERIFY_WRITE, uattr, usize))
		return -EFAULT;

	/*
	 * If we're handed a smaller struct than we know of,
	 * ensure all the unknown bits are 0 - i.e. old
	 * user-space does not get uncomplete information.
	 */
	if (usize < sizeof(*attr)) {
		unsigned char *addr;
		unsigned char *end;

		addr = (void *)attr + usize;
		end  = (void *)attr + sizeof(*attr);

		for (; addr < end; addr++) {
			if (*addr)
3866
				return -EFBIG;
3867 3868 3869 3870 3871
		}

		attr->size = usize;
	}

3872
	ret = copy_to_user(uattr, attr, attr->size);
3873 3874 3875
	if (ret)
		return -EFAULT;

3876
	return 0;
3877 3878 3879
}

/**
3880
 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3881
 * @pid: the pid in question.
J
Juri Lelli 已提交
3882
 * @uattr: structure containing the extended parameters.
3883
 * @size: sizeof(attr) for fwd/bwd comp.
3884
 * @flags: for future extension.
3885
 */
3886 3887
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
		unsigned int, size, unsigned int, flags)
3888 3889 3890 3891 3892 3893 3894 3895
{
	struct sched_attr attr = {
		.size = sizeof(struct sched_attr),
	};
	struct task_struct *p;
	int retval;

	if (!uattr || pid < 0 || size > PAGE_SIZE ||
3896
	    size < SCHED_ATTR_SIZE_VER0 || flags)
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
		return -EINVAL;

	rcu_read_lock();
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	attr.sched_policy = p->policy;
3910 3911
	if (p->sched_reset_on_fork)
		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3912 3913 3914
	if (task_has_dl_policy(p))
		__getparam_dl(p, &attr);
	else if (task_has_rt_policy(p))
3915 3916
		attr.sched_priority = p->rt_priority;
	else
3917
		attr.sched_nice = task_nice(p);
3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928

	rcu_read_unlock();

	retval = sched_read_attr(uattr, &attr, size);
	return retval;

out_unlock:
	rcu_read_unlock();
	return retval;
}

3929
long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
L
Linus Torvalds 已提交
3930
{
3931
	cpumask_var_t cpus_allowed, new_mask;
3932 3933
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
3934

3935
	rcu_read_lock();
L
Linus Torvalds 已提交
3936 3937 3938

	p = find_process_by_pid(pid);
	if (!p) {
3939
		rcu_read_unlock();
L
Linus Torvalds 已提交
3940 3941 3942
		return -ESRCH;
	}

3943
	/* Prevent p going away */
L
Linus Torvalds 已提交
3944
	get_task_struct(p);
3945
	rcu_read_unlock();
L
Linus Torvalds 已提交
3946

3947 3948 3949 3950
	if (p->flags & PF_NO_SETAFFINITY) {
		retval = -EINVAL;
		goto out_put_task;
	}
3951 3952 3953 3954 3955 3956 3957 3958
	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_put_task;
	}
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
		retval = -ENOMEM;
		goto out_free_cpus_allowed;
	}
L
Linus Torvalds 已提交
3959
	retval = -EPERM;
E
Eric W. Biederman 已提交
3960 3961 3962 3963 3964 3965 3966 3967
	if (!check_same_owner(p)) {
		rcu_read_lock();
		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
			rcu_read_unlock();
			goto out_unlock;
		}
		rcu_read_unlock();
	}
L
Linus Torvalds 已提交
3968

3969
	retval = security_task_setscheduler(p);
3970 3971 3972
	if (retval)
		goto out_unlock;

3973 3974 3975 3976

	cpuset_cpus_allowed(p, cpus_allowed);
	cpumask_and(new_mask, in_mask, cpus_allowed);

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
	/*
	 * Since bandwidth control happens on root_domain basis,
	 * if admission test is enabled, we only admit -deadline
	 * tasks allowed to run on all the CPUs in the task's
	 * root_domain.
	 */
#ifdef CONFIG_SMP
	if (task_has_dl_policy(p)) {
		const struct cpumask *span = task_rq(p)->rd->span;

3987
		if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
3988 3989 3990 3991 3992
			retval = -EBUSY;
			goto out_unlock;
		}
	}
#endif
P
Peter Zijlstra 已提交
3993
again:
3994
	retval = set_cpus_allowed_ptr(p, new_mask);
L
Linus Torvalds 已提交
3995

P
Paul Menage 已提交
3996
	if (!retval) {
3997 3998
		cpuset_cpus_allowed(p, cpus_allowed);
		if (!cpumask_subset(new_mask, cpus_allowed)) {
P
Paul Menage 已提交
3999 4000 4001 4002 4003
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
4004
			cpumask_copy(new_mask, cpus_allowed);
P
Paul Menage 已提交
4005 4006 4007
			goto again;
		}
	}
L
Linus Torvalds 已提交
4008
out_unlock:
4009 4010 4011 4012
	free_cpumask_var(new_mask);
out_free_cpus_allowed:
	free_cpumask_var(cpus_allowed);
out_put_task:
L
Linus Torvalds 已提交
4013 4014 4015 4016 4017
	put_task_struct(p);
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4018
			     struct cpumask *new_mask)
L
Linus Torvalds 已提交
4019
{
4020 4021 4022 4023 4024
	if (len < cpumask_size())
		cpumask_clear(new_mask);
	else if (len > cpumask_size())
		len = cpumask_size();

L
Linus Torvalds 已提交
4025 4026 4027 4028 4029 4030 4031 4032
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
4033 4034
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4035
 */
4036 4037
SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4038
{
4039
	cpumask_var_t new_mask;
L
Linus Torvalds 已提交
4040 4041
	int retval;

4042 4043
	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4044

4045 4046 4047 4048 4049
	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
	if (retval == 0)
		retval = sched_setaffinity(pid, new_mask);
	free_cpumask_var(new_mask);
	return retval;
L
Linus Torvalds 已提交
4050 4051
}

4052
long sched_getaffinity(pid_t pid, struct cpumask *mask)
L
Linus Torvalds 已提交
4053
{
4054
	struct task_struct *p;
4055
	unsigned long flags;
L
Linus Torvalds 已提交
4056 4057
	int retval;

4058
	rcu_read_lock();
L
Linus Torvalds 已提交
4059 4060 4061 4062 4063 4064

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4065 4066 4067 4068
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4069
	raw_spin_lock_irqsave(&p->pi_lock, flags);
4070
	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4071
	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4072 4073

out_unlock:
4074
	rcu_read_unlock();
L
Linus Torvalds 已提交
4075

4076
	return retval;
L
Linus Torvalds 已提交
4077 4078 4079 4080 4081 4082 4083
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4084 4085
 *
 * Return: 0 on success. An error code otherwise.
L
Linus Torvalds 已提交
4086
 */
4087 4088
SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
		unsigned long __user *, user_mask_ptr)
L
Linus Torvalds 已提交
4089 4090
{
	int ret;
4091
	cpumask_var_t mask;
L
Linus Torvalds 已提交
4092

A
Anton Blanchard 已提交
4093
	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4094 4095
		return -EINVAL;
	if (len & (sizeof(unsigned long)-1))
L
Linus Torvalds 已提交
4096 4097
		return -EINVAL;

4098 4099
	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
		return -ENOMEM;
L
Linus Torvalds 已提交
4100

4101 4102
	ret = sched_getaffinity(pid, mask);
	if (ret == 0) {
4103
		size_t retlen = min_t(size_t, len, cpumask_size());
4104 4105

		if (copy_to_user(user_mask_ptr, mask, retlen))
4106 4107
			ret = -EFAULT;
		else
4108
			ret = retlen;
4109 4110
	}
	free_cpumask_var(mask);
L
Linus Torvalds 已提交
4111

4112
	return ret;
L
Linus Torvalds 已提交
4113 4114 4115 4116 4117
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4118 4119
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
4120 4121
 *
 * Return: 0.
L
Linus Torvalds 已提交
4122
 */
4123
SYSCALL_DEFINE0(sched_yield)
L
Linus Torvalds 已提交
4124
{
4125
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4126

4127
	schedstat_inc(rq, yld_count);
4128
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4129 4130 4131 4132 4133 4134

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4135
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4136
	do_raw_spin_unlock(&rq->lock);
4137
	sched_preempt_enable_no_resched();
L
Linus Torvalds 已提交
4138 4139 4140 4141 4142 4143

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4144
static void __cond_resched(void)
L
Linus Torvalds 已提交
4145
{
4146
	__preempt_count_add(PREEMPT_ACTIVE);
4147
	__schedule();
4148
	__preempt_count_sub(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4149 4150
}

4151
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4152
{
4153
	rcu_cond_resched();
P
Peter Zijlstra 已提交
4154
	if (should_resched()) {
L
Linus Torvalds 已提交
4155 4156 4157 4158 4159
		__cond_resched();
		return 1;
	}
	return 0;
}
4160
EXPORT_SYMBOL(_cond_resched);
L
Linus Torvalds 已提交
4161 4162

/*
4163
 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
L
Linus Torvalds 已提交
4164 4165
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4166
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4167 4168 4169
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
4170
int __cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4171
{
4172
	bool need_rcu_resched = rcu_should_resched();
P
Peter Zijlstra 已提交
4173
	int resched = should_resched();
J
Jan Kara 已提交
4174 4175
	int ret = 0;

4176 4177
	lockdep_assert_held(lock);

4178
	if (spin_needbreak(lock) || resched || need_rcu_resched) {
L
Linus Torvalds 已提交
4179
		spin_unlock(lock);
P
Peter Zijlstra 已提交
4180
		if (resched)
N
Nick Piggin 已提交
4181
			__cond_resched();
4182 4183
		else if (unlikely(need_rcu_resched))
			rcu_resched();
N
Nick Piggin 已提交
4184 4185
		else
			cpu_relax();
J
Jan Kara 已提交
4186
		ret = 1;
L
Linus Torvalds 已提交
4187 4188
		spin_lock(lock);
	}
J
Jan Kara 已提交
4189
	return ret;
L
Linus Torvalds 已提交
4190
}
4191
EXPORT_SYMBOL(__cond_resched_lock);
L
Linus Torvalds 已提交
4192

4193
int __sched __cond_resched_softirq(void)
L
Linus Torvalds 已提交
4194 4195 4196
{
	BUG_ON(!in_softirq());

4197
	rcu_cond_resched();  /* BH disabled OK, just recording QSes. */
P
Peter Zijlstra 已提交
4198
	if (should_resched()) {
4199
		local_bh_enable();
L
Linus Torvalds 已提交
4200 4201 4202 4203 4204 4205
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
4206
EXPORT_SYMBOL(__cond_resched_softirq);
L
Linus Torvalds 已提交
4207 4208 4209 4210

/**
 * yield - yield the current processor to other threads.
 *
P
Peter Zijlstra 已提交
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
 * Do not ever use this function, there's a 99% chance you're doing it wrong.
 *
 * The scheduler is at all times free to pick the calling task as the most
 * eligible task to run, if removing the yield() call from your code breaks
 * it, its already broken.
 *
 * Typical broken usage is:
 *
 * while (!event)
 * 	yield();
 *
 * where one assumes that yield() will let 'the other' process run that will
 * make event true. If the current task is a SCHED_FIFO task that will never
 * happen. Never use yield() as a progress guarantee!!
 *
 * If you want to use yield() to wait for something, use wait_event().
 * If you want to use yield() to be 'nice' for others, use cond_resched().
 * If you still want to use yield(), do not!
L
Linus Torvalds 已提交
4229 4230 4231 4232 4233 4234 4235 4236
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

4237 4238 4239 4240
/**
 * yield_to - yield the current processor to another thread in
 * your thread group, or accelerate that thread toward the
 * processor it's on.
R
Randy Dunlap 已提交
4241 4242
 * @p: target task
 * @preempt: whether task preemption is allowed or not
4243 4244 4245 4246
 *
 * It's the caller's job to ensure that the target task struct
 * can't go away on us before we can do any checks.
 *
4247
 * Return:
4248 4249 4250
 *	true (>0) if we indeed boosted the target task.
 *	false (0) if we failed to boost the target.
 *	-ESRCH if there's no task to yield to.
4251
 */
4252
int __sched yield_to(struct task_struct *p, bool preempt)
4253 4254 4255 4256
{
	struct task_struct *curr = current;
	struct rq *rq, *p_rq;
	unsigned long flags;
4257
	int yielded = 0;
4258 4259 4260 4261 4262 4263

	local_irq_save(flags);
	rq = this_rq();

again:
	p_rq = task_rq(p);
4264 4265 4266 4267 4268 4269 4270 4271 4272
	/*
	 * If we're the only runnable task on the rq and target rq also
	 * has only one task, there's absolutely no point in yielding.
	 */
	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
		yielded = -ESRCH;
		goto out_irq;
	}

4273
	double_rq_lock(rq, p_rq);
4274
	if (task_rq(p) != p_rq) {
4275 4276 4277 4278 4279
		double_rq_unlock(rq, p_rq);
		goto again;
	}

	if (!curr->sched_class->yield_to_task)
4280
		goto out_unlock;
4281 4282

	if (curr->sched_class != p->sched_class)
4283
		goto out_unlock;
4284 4285

	if (task_running(p_rq, p) || p->state)
4286
		goto out_unlock;
4287 4288

	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4289
	if (yielded) {
4290
		schedstat_inc(rq, yld_count);
4291 4292 4293 4294 4295 4296 4297
		/*
		 * Make p's CPU reschedule; pick_next_entity takes care of
		 * fairness.
		 */
		if (preempt && rq != p_rq)
			resched_task(p_rq->curr);
	}
4298

4299
out_unlock:
4300
	double_rq_unlock(rq, p_rq);
4301
out_irq:
4302 4303
	local_irq_restore(flags);

4304
	if (yielded > 0)
4305 4306 4307 4308 4309 4310
		schedule();

	return yielded;
}
EXPORT_SYMBOL_GPL(yield_to);

L
Linus Torvalds 已提交
4311
/*
I
Ingo Molnar 已提交
4312
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
4313 4314 4315 4316
 * that process accounting knows that this is a task in IO wait state.
 */
void __sched io_schedule(void)
{
4317
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4318

4319
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4320
	atomic_inc(&rq->nr_iowait);
4321
	blk_flush_plug(current);
4322
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4323
	schedule();
4324
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4325
	atomic_dec(&rq->nr_iowait);
4326
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
4332
	struct rq *rq = raw_rq();
L
Linus Torvalds 已提交
4333 4334
	long ret;

4335
	delayacct_blkio_start();
L
Linus Torvalds 已提交
4336
	atomic_inc(&rq->nr_iowait);
4337
	blk_flush_plug(current);
4338
	current->in_iowait = 1;
L
Linus Torvalds 已提交
4339
	ret = schedule_timeout(timeout);
4340
	current->in_iowait = 0;
L
Linus Torvalds 已提交
4341
	atomic_dec(&rq->nr_iowait);
4342
	delayacct_blkio_end();
L
Linus Torvalds 已提交
4343 4344 4345 4346 4347 4348 4349
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
4350 4351 4352
 * Return: On success, this syscall returns the maximum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4353
 */
4354
SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
L
Linus Torvalds 已提交
4355 4356 4357 4358 4359 4360 4361 4362
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
4363
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4364
	case SCHED_NORMAL:
4365
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4366
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4367 4368 4369 4370 4371 4372 4373 4374 4375 4376
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
4377 4378 4379
 * Return: On success, this syscall returns the minimum
 * rt_priority that can be used by a given scheduling class.
 * On failure, a negative error code is returned.
L
Linus Torvalds 已提交
4380
 */
4381
SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
L
Linus Torvalds 已提交
4382 4383 4384 4385 4386 4387 4388 4389
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
4390
	case SCHED_DEADLINE:
L
Linus Torvalds 已提交
4391
	case SCHED_NORMAL:
4392
	case SCHED_BATCH:
I
Ingo Molnar 已提交
4393
	case SCHED_IDLE:
L
Linus Torvalds 已提交
4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
4406 4407 4408
 *
 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
 * an error code.
L
Linus Torvalds 已提交
4409
 */
4410
SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4411
		struct timespec __user *, interval)
L
Linus Torvalds 已提交
4412
{
4413
	struct task_struct *p;
D
Dmitry Adamushko 已提交
4414
	unsigned int time_slice;
4415 4416
	unsigned long flags;
	struct rq *rq;
4417
	int retval;
L
Linus Torvalds 已提交
4418 4419 4420
	struct timespec t;

	if (pid < 0)
4421
		return -EINVAL;
L
Linus Torvalds 已提交
4422 4423

	retval = -ESRCH;
4424
	rcu_read_lock();
L
Linus Torvalds 已提交
4425 4426 4427 4428 4429 4430 4431 4432
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4433
	rq = task_rq_lock(p, &flags);
4434 4435 4436
	time_slice = 0;
	if (p->sched_class->get_rr_interval)
		time_slice = p->sched_class->get_rr_interval(rq, p);
4437
	task_rq_unlock(rq, p, &flags);
D
Dmitry Adamushko 已提交
4438

4439
	rcu_read_unlock();
D
Dmitry Adamushko 已提交
4440
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
4441 4442
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
4443

L
Linus Torvalds 已提交
4444
out_unlock:
4445
	rcu_read_unlock();
L
Linus Torvalds 已提交
4446 4447 4448
	return retval;
}

4449
static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4450

4451
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
4452 4453
{
	unsigned long free = 0;
4454
	int ppid;
4455
	unsigned state;
L
Linus Torvalds 已提交
4456 4457

	state = p->state ? __ffs(p->state) + 1 : 0;
4458
	printk(KERN_INFO "%-15.15s %c", p->comm,
4459
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4460
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
4461
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4462
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
4463
	else
P
Peter Zijlstra 已提交
4464
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4465 4466
#else
	if (state == TASK_RUNNING)
P
Peter Zijlstra 已提交
4467
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
4468
	else
P
Peter Zijlstra 已提交
4469
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
4470 4471
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
4472
	free = stack_not_used(p);
L
Linus Torvalds 已提交
4473
#endif
4474 4475 4476
	rcu_read_lock();
	ppid = task_pid_nr(rcu_dereference(p->real_parent));
	rcu_read_unlock();
P
Peter Zijlstra 已提交
4477
	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4478
		task_pid_nr(p), ppid,
4479
		(unsigned long)task_thread_info(p)->flags);
L
Linus Torvalds 已提交
4480

4481
	print_worker_info(KERN_INFO, p);
4482
	show_stack(p, NULL);
L
Linus Torvalds 已提交
4483 4484
}

I
Ingo Molnar 已提交
4485
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
4486
{
4487
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
4488

4489
#if BITS_PER_LONG == 32
P
Peter Zijlstra 已提交
4490 4491
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
4492
#else
P
Peter Zijlstra 已提交
4493 4494
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
4495
#endif
4496
	rcu_read_lock();
L
Linus Torvalds 已提交
4497 4498 4499
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
L
Lucas De Marchi 已提交
4500
		 * console might take a lot of time:
L
Linus Torvalds 已提交
4501 4502
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
4503
		if (!state_filter || (p->state & state_filter))
4504
			sched_show_task(p);
L
Linus Torvalds 已提交
4505 4506
	} while_each_thread(g, p);

4507 4508
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
4509 4510 4511
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
4512
	rcu_read_unlock();
I
Ingo Molnar 已提交
4513 4514 4515
	/*
	 * Only show locks if all tasks are dumped:
	 */
4516
	if (!state_filter)
I
Ingo Molnar 已提交
4517
		debug_show_all_locks();
L
Linus Torvalds 已提交
4518 4519
}

4520
void init_idle_bootup_task(struct task_struct *idle)
I
Ingo Molnar 已提交
4521
{
I
Ingo Molnar 已提交
4522
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
4523 4524
}

4525 4526 4527 4528 4529 4530 4531 4532
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
4533
void init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
4534
{
4535
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
4536 4537
	unsigned long flags;

4538
	raw_spin_lock_irqsave(&rq->lock, flags);
4539

4540
	__sched_fork(0, idle);
4541
	idle->state = TASK_RUNNING;
I
Ingo Molnar 已提交
4542 4543
	idle->se.exec_start = sched_clock();

4544
	do_set_cpus_allowed(idle, cpumask_of(cpu));
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
	/*
	 * We're having a chicken and egg problem, even though we are
	 * holding rq->lock, the cpu isn't yet set to this cpu so the
	 * lockdep check in task_group() will fail.
	 *
	 * Similar case to sched_fork(). / Alternatively we could
	 * use task_rq_lock() here and obtain the other rq->lock.
	 *
	 * Silence PROVE_RCU
	 */
	rcu_read_lock();
I
Ingo Molnar 已提交
4556
	__set_task_cpu(idle, cpu);
4557
	rcu_read_unlock();
L
Linus Torvalds 已提交
4558 4559

	rq->curr = rq->idle = idle;
4560
	idle->on_rq = 1;
P
Peter Zijlstra 已提交
4561 4562
#if defined(CONFIG_SMP)
	idle->on_cpu = 1;
4563
#endif
4564
	raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
4565 4566

	/* Set the preempt count _outside_ the spinlocks! */
4567
	init_idle_preempt_count(idle, cpu);
4568

I
Ingo Molnar 已提交
4569 4570 4571 4572
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
4573
	ftrace_graph_init_idle_task(idle, cpu);
4574
	vtime_init_idle(idle, cpu);
4575 4576 4577
#if defined(CONFIG_SMP)
	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
#endif
I
Ingo Molnar 已提交
4578 4579
}

L
Linus Torvalds 已提交
4580
#ifdef CONFIG_SMP
4581 4582 4583 4584
void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
{
	if (p->sched_class && p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, new_mask);
4585 4586

	cpumask_copy(&p->cpus_allowed, new_mask);
4587
	p->nr_cpus_allowed = cpumask_weight(new_mask);
4588 4589
}

L
Linus Torvalds 已提交
4590 4591 4592
/*
 * This is how migration works:
 *
4593 4594 4595 4596 4597 4598
 * 1) we invoke migration_cpu_stop() on the target CPU using
 *    stop_one_cpu().
 * 2) stopper starts to run (implicitly forcing the migrated thread
 *    off the CPU)
 * 3) it checks whether the migrated task is still in the wrong runqueue.
 * 4) if it's in the wrong runqueue then the migration thread removes
L
Linus Torvalds 已提交
4599
 *    it and puts it into the right queue.
4600 4601
 * 5) stopper completes and stop_one_cpu() returns and the migration
 *    is done.
L
Linus Torvalds 已提交
4602 4603 4604 4605 4606 4607 4608 4609
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
4610
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
4611 4612
 * call is not atomic; no spinlocks may be held.
 */
4613
int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
L
Linus Torvalds 已提交
4614 4615
{
	unsigned long flags;
4616
	struct rq *rq;
4617
	unsigned int dest_cpu;
4618
	int ret = 0;
L
Linus Torvalds 已提交
4619 4620

	rq = task_rq_lock(p, &flags);
4621

4622 4623 4624
	if (cpumask_equal(&p->cpus_allowed, new_mask))
		goto out;

4625
	if (!cpumask_intersects(new_mask, cpu_active_mask)) {
L
Linus Torvalds 已提交
4626 4627 4628 4629
		ret = -EINVAL;
		goto out;
	}

4630
	do_set_cpus_allowed(p, new_mask);
4631

L
Linus Torvalds 已提交
4632
	/* Can the task run on the task's current CPU? If so, we're done */
4633
	if (cpumask_test_cpu(task_cpu(p), new_mask))
L
Linus Torvalds 已提交
4634 4635
		goto out;

4636
	dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4637
	if (p->on_rq) {
4638
		struct migration_arg arg = { p, dest_cpu };
L
Linus Torvalds 已提交
4639
		/* Need help from migration thread: drop lock and wait. */
4640
		task_rq_unlock(rq, p, &flags);
4641
		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
L
Linus Torvalds 已提交
4642 4643 4644 4645
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
4646
	task_rq_unlock(rq, p, &flags);
4647

L
Linus Torvalds 已提交
4648 4649
	return ret;
}
4650
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
L
Linus Torvalds 已提交
4651 4652

/*
I
Ingo Molnar 已提交
4653
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
4654 4655 4656 4657 4658 4659
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
4660 4661
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
4662
 */
4663
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
4664
{
4665
	struct rq *rq_dest, *rq_src;
4666
	int ret = 0;
L
Linus Torvalds 已提交
4667

4668
	if (unlikely(!cpu_active(dest_cpu)))
4669
		return ret;
L
Linus Torvalds 已提交
4670 4671 4672 4673

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

4674
	raw_spin_lock(&p->pi_lock);
L
Linus Torvalds 已提交
4675 4676 4677
	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
L
Linus Torvalds 已提交
4678
		goto done;
L
Linus Torvalds 已提交
4679
	/* Affinity changed (again). */
4680
	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
L
Linus Torvalds 已提交
4681
		goto fail;
L
Linus Torvalds 已提交
4682

4683 4684 4685 4686
	/*
	 * If we're not on a rq, the next wake-up will ensure we're
	 * placed properly.
	 */
P
Peter Zijlstra 已提交
4687
	if (p->on_rq) {
4688
		dequeue_task(rq_src, p, 0);
4689
		set_task_cpu(p, dest_cpu);
4690
		enqueue_task(rq_dest, p, 0);
4691
		check_preempt_curr(rq_dest, p, 0);
L
Linus Torvalds 已提交
4692
	}
L
Linus Torvalds 已提交
4693
done:
4694
	ret = 1;
L
Linus Torvalds 已提交
4695
fail:
L
Linus Torvalds 已提交
4696
	double_rq_unlock(rq_src, rq_dest);
4697
	raw_spin_unlock(&p->pi_lock);
4698
	return ret;
L
Linus Torvalds 已提交
4699 4700
}

4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
#ifdef CONFIG_NUMA_BALANCING
/* Migrate current task p to target_cpu */
int migrate_task_to(struct task_struct *p, int target_cpu)
{
	struct migration_arg arg = { p, target_cpu };
	int curr_cpu = task_cpu(p);

	if (curr_cpu == target_cpu)
		return 0;

	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
		return -EINVAL;

	/* TODO: This is not properly updating schedstats */

4716
	trace_sched_move_numa(p, curr_cpu, target_cpu);
4717 4718
	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
}
4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746

/*
 * Requeue a task on a given node and accurately track the number of NUMA
 * tasks on the runqueues
 */
void sched_setnuma(struct task_struct *p, int nid)
{
	struct rq *rq;
	unsigned long flags;
	bool on_rq, running;

	rq = task_rq_lock(p, &flags);
	on_rq = p->on_rq;
	running = task_current(rq, p);

	if (on_rq)
		dequeue_task(rq, p, 0);
	if (running)
		p->sched_class->put_prev_task(rq, p);

	p->numa_preferred_nid = nid;

	if (running)
		p->sched_class->set_curr_task(rq);
	if (on_rq)
		enqueue_task(rq, p, 0);
	task_rq_unlock(rq, p, &flags);
}
4747 4748
#endif

L
Linus Torvalds 已提交
4749
/*
4750 4751 4752
 * migration_cpu_stop - this will be executed by a highprio stopper thread
 * and performs thread migration by bumping thread off CPU then
 * 'pushing' onto another runqueue.
L
Linus Torvalds 已提交
4753
 */
4754
static int migration_cpu_stop(void *data)
L
Linus Torvalds 已提交
4755
{
4756
	struct migration_arg *arg = data;
4757

4758 4759 4760 4761
	/*
	 * The original target cpu might have gone down and we might
	 * be on another cpu but it doesn't matter.
	 */
4762
	local_irq_disable();
4763
	__migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4764
	local_irq_enable();
L
Linus Torvalds 已提交
4765
	return 0;
4766 4767
}

L
Linus Torvalds 已提交
4768
#ifdef CONFIG_HOTPLUG_CPU
4769

4770
/*
4771 4772
 * Ensures that the idle task is using init_mm right before its cpu goes
 * offline.
4773
 */
4774
void idle_task_exit(void)
L
Linus Torvalds 已提交
4775
{
4776
	struct mm_struct *mm = current->active_mm;
4777

4778
	BUG_ON(cpu_online(smp_processor_id()));
4779

4780
	if (mm != &init_mm) {
4781
		switch_mm(mm, &init_mm, current);
4782 4783
		finish_arch_post_lock_switch();
	}
4784
	mmdrop(mm);
L
Linus Torvalds 已提交
4785 4786 4787
}

/*
4788 4789 4790 4791 4792
 * Since this CPU is going 'away' for a while, fold any nr_active delta
 * we might have. Assumes we're called after migrate_tasks() so that the
 * nr_active count is stable.
 *
 * Also see the comment "Global load-average calculations".
L
Linus Torvalds 已提交
4793
 */
4794
static void calc_load_migrate(struct rq *rq)
L
Linus Torvalds 已提交
4795
{
4796 4797 4798
	long delta = calc_load_fold_active(rq);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);
L
Linus Torvalds 已提交
4799 4800
}

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
{
}

static const struct sched_class fake_sched_class = {
	.put_prev_task = put_prev_task_fake,
};

static struct task_struct fake_task = {
	/*
	 * Avoid pull_{rt,dl}_task()
	 */
	.prio = MAX_PRIO + 1,
	.sched_class = &fake_sched_class,
};

4817
/*
4818 4819 4820 4821 4822 4823
 * Migrate all tasks from the rq, sleeping tasks will be migrated by
 * try_to_wake_up()->select_task_rq().
 *
 * Called with rq->lock held even though we'er in stop_machine() and
 * there's no concurrency possible, we hold the required locks anyway
 * because of lock validation efforts.
L
Linus Torvalds 已提交
4824
 */
4825
static void migrate_tasks(unsigned int dead_cpu)
L
Linus Torvalds 已提交
4826
{
4827
	struct rq *rq = cpu_rq(dead_cpu);
4828 4829
	struct task_struct *next, *stop = rq->stop;
	int dest_cpu;
L
Linus Torvalds 已提交
4830 4831

	/*
4832 4833 4834 4835 4836 4837 4838
	 * Fudge the rq selection such that the below task selection loop
	 * doesn't get stuck on the currently eligible stop task.
	 *
	 * We're currently inside stop_machine() and the rq is either stuck
	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
	 * either way we should never end up calling schedule() until we're
	 * done here.
L
Linus Torvalds 已提交
4839
	 */
4840
	rq->stop = NULL;
4841

4842 4843 4844 4845 4846 4847 4848
	/*
	 * put_prev_task() and pick_next_task() sched
	 * class method both need to have an up-to-date
	 * value of rq->clock[_task]
	 */
	update_rq_clock(rq);

I
Ingo Molnar 已提交
4849
	for ( ; ; ) {
4850 4851 4852 4853 4854
		/*
		 * There's this thread running, bail when that's the only
		 * remaining thread.
		 */
		if (rq->nr_running == 1)
I
Ingo Molnar 已提交
4855
			break;
4856

4857
		next = pick_next_task(rq, &fake_task);
4858
		BUG_ON(!next);
D
Dmitry Adamushko 已提交
4859
		next->sched_class->put_prev_task(rq, next);
4860

4861 4862 4863 4864 4865 4866 4867
		/* Find suitable destination for @next, with force if needed. */
		dest_cpu = select_fallback_rq(dead_cpu, next);
		raw_spin_unlock(&rq->lock);

		__migrate_task(next, dead_cpu, dest_cpu);

		raw_spin_lock(&rq->lock);
L
Linus Torvalds 已提交
4868
	}
4869

4870
	rq->stop = stop;
4871
}
4872

L
Linus Torvalds 已提交
4873 4874
#endif /* CONFIG_HOTPLUG_CPU */

4875 4876 4877
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
4878 4879
	{
		.procname	= "sched_domain",
4880
		.mode		= 0555,
4881
	},
4882
	{}
4883 4884 4885
};

static struct ctl_table sd_ctl_root[] = {
4886 4887
	{
		.procname	= "kernel",
4888
		.mode		= 0555,
4889 4890
		.child		= sd_ctl_dir,
	},
4891
	{}
4892 4893 4894 4895 4896
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
4897
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4898 4899 4900 4901

	return entry;
}

4902 4903
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
4904
	struct ctl_table *entry;
4905

4906 4907 4908
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
4909
	 * will always be set. In the lowest directory the names are
4910 4911 4912
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
4913 4914
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
4915 4916 4917
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
4918 4919 4920 4921 4922

	kfree(*tablep);
	*tablep = NULL;
}

4923
static int min_load_idx = 0;
4924
static int max_load_idx = CPU_LOAD_IDX_MAX-1;
4925

4926
static void
4927
set_table_entry(struct ctl_table *entry,
4928
		const char *procname, void *data, int maxlen,
4929 4930
		umode_t mode, proc_handler *proc_handler,
		bool load_idx)
4931 4932 4933 4934 4935 4936
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
4937 4938 4939 4940 4941

	if (load_idx) {
		entry->extra1 = &min_load_idx;
		entry->extra2 = &max_load_idx;
	}
4942 4943 4944 4945 4946
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
4947
	struct ctl_table *table = sd_alloc_ctl_entry(14);
4948

4949 4950 4951
	if (table == NULL)
		return NULL;

4952
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
4953
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4954
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
4955
		sizeof(long), 0644, proc_doulongvec_minmax, false);
4956
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4957
		sizeof(int), 0644, proc_dointvec_minmax, true);
4958
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4959
		sizeof(int), 0644, proc_dointvec_minmax, true);
4960
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4961
		sizeof(int), 0644, proc_dointvec_minmax, true);
4962
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4963
		sizeof(int), 0644, proc_dointvec_minmax, true);
4964
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4965
		sizeof(int), 0644, proc_dointvec_minmax, true);
4966
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4967
		sizeof(int), 0644, proc_dointvec_minmax, false);
4968
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4969
		sizeof(int), 0644, proc_dointvec_minmax, false);
4970
	set_table_entry(&table[9], "cache_nice_tries",
4971
		&sd->cache_nice_tries,
4972
		sizeof(int), 0644, proc_dointvec_minmax, false);
4973
	set_table_entry(&table[10], "flags", &sd->flags,
4974
		sizeof(int), 0644, proc_dointvec_minmax, false);
4975 4976 4977 4978
	set_table_entry(&table[11], "max_newidle_lb_cost",
		&sd->max_newidle_lb_cost,
		sizeof(long), 0644, proc_doulongvec_minmax, false);
	set_table_entry(&table[12], "name", sd->name,
4979
		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4980
	/* &table[13] is terminator */
4981 4982 4983 4984

	return table;
}

4985
static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4986 4987 4988 4989 4990 4991 4992 4993 4994
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
4995 4996
	if (table == NULL)
		return NULL;
4997 4998 4999 5000 5001

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5002
		entry->mode = 0555;
5003 5004 5005 5006 5007 5008 5009 5010
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5011
static void register_sched_domain_sysctl(void)
5012
{
5013
	int i, cpu_num = num_possible_cpus();
5014 5015 5016
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5017 5018 5019
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5020 5021 5022
	if (entry == NULL)
		return;

5023
	for_each_possible_cpu(i) {
5024 5025
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5026
		entry->mode = 0555;
5027
		entry->child = sd_alloc_ctl_cpu_table(i);
5028
		entry++;
5029
	}
5030 5031

	WARN_ON(sd_sysctl_header);
5032 5033
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5034

5035
/* may be called multiple times per register */
5036 5037
static void unregister_sched_domain_sysctl(void)
{
5038 5039
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5040
	sd_sysctl_header = NULL;
5041 5042
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5043
}
5044
#else
5045 5046 5047 5048
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5049 5050 5051 5052
{
}
#endif

5053 5054 5055 5056 5057
static void set_rq_online(struct rq *rq)
{
	if (!rq->online) {
		const struct sched_class *class;

5058
		cpumask_set_cpu(rq->cpu, rq->rd->online);
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
		rq->online = 1;

		for_each_class(class) {
			if (class->rq_online)
				class->rq_online(rq);
		}
	}
}

static void set_rq_offline(struct rq *rq)
{
	if (rq->online) {
		const struct sched_class *class;

		for_each_class(class) {
			if (class->rq_offline)
				class->rq_offline(rq);
		}

5078
		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5079 5080 5081 5082
		rq->online = 0;
	}
}

L
Linus Torvalds 已提交
5083 5084 5085 5086
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5087
static int
5088
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5089
{
5090
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5091
	unsigned long flags;
5092
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5093

5094
	switch (action & ~CPU_TASKS_FROZEN) {
5095

L
Linus Torvalds 已提交
5096
	case CPU_UP_PREPARE:
5097
		rq->calc_load_update = calc_load_update;
L
Linus Torvalds 已提交
5098
		break;
5099

L
Linus Torvalds 已提交
5100
	case CPU_ONLINE:
5101
		/* Update our root-domain */
5102
		raw_spin_lock_irqsave(&rq->lock, flags);
5103
		if (rq->rd) {
5104
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5105 5106

			set_rq_online(rq);
5107
		}
5108
		raw_spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5109
		break;
5110

L
Linus Torvalds 已提交
5111
#ifdef CONFIG_HOTPLUG_CPU
5112
	case CPU_DYING:
5113
		sched_ttwu_pending();
G
Gregory Haskins 已提交
5114
		/* Update our root-domain */
5115
		raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5116
		if (rq->rd) {
5117
			BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5118
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5119
		}
5120 5121
		migrate_tasks(cpu);
		BUG_ON(rq->nr_running != 1); /* the migration thread */
5122
		raw_spin_unlock_irqrestore(&rq->lock, flags);
5123
		break;
5124

5125
	case CPU_DEAD:
5126
		calc_load_migrate(rq);
G
Gregory Haskins 已提交
5127
		break;
L
Linus Torvalds 已提交
5128 5129
#endif
	}
5130 5131 5132

	update_max_interval();

L
Linus Torvalds 已提交
5133 5134 5135
	return NOTIFY_OK;
}

5136 5137 5138
/*
 * Register at high priority so that task migration (migrate_all_tasks)
 * happens before everything else.  This has to be lower priority than
5139
 * the notifier in the perf_event subsystem, though.
L
Linus Torvalds 已提交
5140
 */
5141
static struct notifier_block migration_notifier = {
L
Linus Torvalds 已提交
5142
	.notifier_call = migration_call,
5143
	.priority = CPU_PRI_MIGRATION,
L
Linus Torvalds 已提交
5144 5145
};

5146 5147 5148 5149 5150 5151 5152
static void __cpuinit set_cpu_rq_start_time(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
	rq->age_stamp = sched_clock_cpu(cpu);
}

5153
static int sched_cpu_active(struct notifier_block *nfb,
5154 5155 5156
				      unsigned long action, void *hcpu)
{
	switch (action & ~CPU_TASKS_FROZEN) {
5157 5158 5159
	case CPU_STARTING:
		set_cpu_rq_start_time();
		return NOTIFY_OK;
5160 5161 5162 5163 5164 5165 5166 5167
	case CPU_DOWN_FAILED:
		set_cpu_active((long)hcpu, true);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

5168
static int sched_cpu_inactive(struct notifier_block *nfb,
5169 5170
					unsigned long action, void *hcpu)
{
5171 5172 5173
	unsigned long flags;
	long cpu = (long)hcpu;

5174 5175
	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_DOWN_PREPARE:
5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191
		set_cpu_active(cpu, false);

		/* explicitly allow suspend */
		if (!(action & CPU_TASKS_FROZEN)) {
			struct dl_bw *dl_b = dl_bw_of(cpu);
			bool overflow;
			int cpus;

			raw_spin_lock_irqsave(&dl_b->lock, flags);
			cpus = dl_bw_cpus(cpu);
			overflow = __dl_overflow(dl_b, cpus, 0, 0);
			raw_spin_unlock_irqrestore(&dl_b->lock, flags);

			if (overflow)
				return notifier_from_errno(-EBUSY);
		}
5192 5193
		return NOTIFY_OK;
	}
5194 5195

	return NOTIFY_DONE;
5196 5197
}

5198
static int __init migration_init(void)
L
Linus Torvalds 已提交
5199 5200
{
	void *cpu = (void *)(long)smp_processor_id();
5201
	int err;
5202

5203
	/* Initialize migration for the boot CPU */
5204 5205
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5206 5207
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
5208

5209 5210 5211 5212
	/* Register cpu active notifiers */
	cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
	cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);

5213
	return 0;
L
Linus Torvalds 已提交
5214
}
5215
early_initcall(migration_init);
L
Linus Torvalds 已提交
5216 5217 5218
#endif

#ifdef CONFIG_SMP
5219

5220 5221
static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */

5222
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5223

5224
static __read_mostly int sched_debug_enabled;
5225

5226
static int __init sched_debug_setup(char *str)
5227
{
5228
	sched_debug_enabled = 1;
5229 5230 5231

	return 0;
}
5232 5233 5234 5235 5236 5237
early_param("sched_debug", sched_debug_setup);

static inline bool sched_debug(void)
{
	return sched_debug_enabled;
}
5238

5239
static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5240
				  struct cpumask *groupmask)
L
Linus Torvalds 已提交
5241
{
I
Ingo Molnar 已提交
5242
	struct sched_group *group = sd->groups;
5243
	char str[256];
L
Linus Torvalds 已提交
5244

R
Rusty Russell 已提交
5245
	cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5246
	cpumask_clear(groupmask);
I
Ingo Molnar 已提交
5247 5248 5249 5250

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
P
Peter Zijlstra 已提交
5251
		printk("does not load-balance\n");
I
Ingo Molnar 已提交
5252
		if (sd->parent)
P
Peter Zijlstra 已提交
5253 5254
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
I
Ingo Molnar 已提交
5255
		return -1;
N
Nick Piggin 已提交
5256 5257
	}

P
Peter Zijlstra 已提交
5258
	printk(KERN_CONT "span %s level %s\n", str, sd->name);
I
Ingo Molnar 已提交
5259

5260
	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
P
Peter Zijlstra 已提交
5261 5262
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
I
Ingo Molnar 已提交
5263
	}
5264
	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5265 5266
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
I
Ingo Molnar 已提交
5267
	}
L
Linus Torvalds 已提交
5268

I
Ingo Molnar 已提交
5269
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5270
	do {
I
Ingo Molnar 已提交
5271
		if (!group) {
P
Peter Zijlstra 已提交
5272 5273
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5274 5275 5276
			break;
		}

5277
		/*
5278 5279
		 * Even though we initialize ->capacity to something semi-sane,
		 * we leave capacity_orig unset. This allows us to detect if
5280 5281
		 * domain iteration is still funny without causing /0 traps.
		 */
5282
		if (!group->sgc->capacity_orig) {
P
Peter Zijlstra 已提交
5283
			printk(KERN_CONT "\n");
5284
			printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
I
Ingo Molnar 已提交
5285 5286
			break;
		}
L
Linus Torvalds 已提交
5287

5288
		if (!cpumask_weight(sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5289 5290
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
I
Ingo Molnar 已提交
5291 5292
			break;
		}
L
Linus Torvalds 已提交
5293

5294 5295
		if (!(sd->flags & SD_OVERLAP) &&
		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
P
Peter Zijlstra 已提交
5296 5297
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
I
Ingo Molnar 已提交
5298 5299
			break;
		}
L
Linus Torvalds 已提交
5300

5301
		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
L
Linus Torvalds 已提交
5302

R
Rusty Russell 已提交
5303
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5304

P
Peter Zijlstra 已提交
5305
		printk(KERN_CONT " %s", str);
5306
		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5307 5308
			printk(KERN_CONT " (cpu_capacity = %d)",
				group->sgc->capacity);
5309
		}
L
Linus Torvalds 已提交
5310

I
Ingo Molnar 已提交
5311 5312
		group = group->next;
	} while (group != sd->groups);
P
Peter Zijlstra 已提交
5313
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
5314

5315
	if (!cpumask_equal(sched_domain_span(sd), groupmask))
P
Peter Zijlstra 已提交
5316
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
5317

5318 5319
	if (sd->parent &&
	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
P
Peter Zijlstra 已提交
5320 5321
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
I
Ingo Molnar 已提交
5322 5323
	return 0;
}
L
Linus Torvalds 已提交
5324

I
Ingo Molnar 已提交
5325 5326 5327
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
5328

5329
	if (!sched_debug_enabled)
5330 5331
		return;

I
Ingo Molnar 已提交
5332 5333 5334 5335
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
5336

I
Ingo Molnar 已提交
5337 5338 5339
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
5340
		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
I
Ingo Molnar 已提交
5341
			break;
L
Linus Torvalds 已提交
5342 5343
		level++;
		sd = sd->parent;
5344
		if (!sd)
I
Ingo Molnar 已提交
5345 5346
			break;
	}
L
Linus Torvalds 已提交
5347
}
5348
#else /* !CONFIG_SCHED_DEBUG */
5349
# define sched_domain_debug(sd, cpu) do { } while (0)
5350 5351 5352 5353
static inline bool sched_debug(void)
{
	return false;
}
5354
#endif /* CONFIG_SCHED_DEBUG */
L
Linus Torvalds 已提交
5355

5356
static int sd_degenerate(struct sched_domain *sd)
5357
{
5358
	if (cpumask_weight(sched_domain_span(sd)) == 1)
5359 5360 5361 5362 5363 5364
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
5365
			 SD_BALANCE_EXEC |
5366
			 SD_SHARE_CPUCAPACITY |
5367 5368
			 SD_SHARE_PKG_RESOURCES |
			 SD_SHARE_POWERDOMAIN)) {
5369 5370 5371 5372 5373
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
5374
	if (sd->flags & (SD_WAKE_AFFINE))
5375 5376 5377 5378 5379
		return 0;

	return 1;
}

5380 5381
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5382 5383 5384 5385 5386 5387
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

5388
	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5389 5390 5391 5392 5393 5394 5395
		return 0;

	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
5396
				SD_BALANCE_EXEC |
5397
				SD_SHARE_CPUCAPACITY |
5398
				SD_SHARE_PKG_RESOURCES |
5399 5400
				SD_PREFER_SIBLING |
				SD_SHARE_POWERDOMAIN);
5401 5402
		if (nr_node_ids == 1)
			pflags &= ~SD_SERIALIZE;
5403 5404 5405 5406 5407 5408 5409
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

5410
static void free_rootdomain(struct rcu_head *rcu)
5411
{
5412
	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5413

5414
	cpupri_cleanup(&rd->cpupri);
5415
	cpudl_cleanup(&rd->cpudl);
5416
	free_cpumask_var(rd->dlo_mask);
5417 5418 5419 5420 5421 5422
	free_cpumask_var(rd->rto_mask);
	free_cpumask_var(rd->online);
	free_cpumask_var(rd->span);
	kfree(rd);
}

G
Gregory Haskins 已提交
5423 5424
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
I
Ingo Molnar 已提交
5425
	struct root_domain *old_rd = NULL;
G
Gregory Haskins 已提交
5426 5427
	unsigned long flags;

5428
	raw_spin_lock_irqsave(&rq->lock, flags);
G
Gregory Haskins 已提交
5429 5430

	if (rq->rd) {
I
Ingo Molnar 已提交
5431
		old_rd = rq->rd;
G
Gregory Haskins 已提交
5432

5433
		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5434
			set_rq_offline(rq);
G
Gregory Haskins 已提交
5435

5436
		cpumask_clear_cpu(rq->cpu, old_rd->span);
5437

I
Ingo Molnar 已提交
5438
		/*
5439
		 * If we dont want to free the old_rd yet then
I
Ingo Molnar 已提交
5440 5441 5442 5443 5444
		 * set old_rd to NULL to skip the freeing later
		 * in this function:
		 */
		if (!atomic_dec_and_test(&old_rd->refcount))
			old_rd = NULL;
G
Gregory Haskins 已提交
5445 5446 5447 5448 5449
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

5450
	cpumask_set_cpu(rq->cpu, rd->span);
5451
	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5452
		set_rq_online(rq);
G
Gregory Haskins 已提交
5453

5454
	raw_spin_unlock_irqrestore(&rq->lock, flags);
I
Ingo Molnar 已提交
5455 5456

	if (old_rd)
5457
		call_rcu_sched(&old_rd->rcu, free_rootdomain);
G
Gregory Haskins 已提交
5458 5459
}

5460
static int init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
5461 5462 5463
{
	memset(rd, 0, sizeof(*rd));

5464
	if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5465
		goto out;
5466
	if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5467
		goto free_span;
5468
	if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5469
		goto free_online;
5470 5471
	if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
		goto free_dlo_mask;
5472

5473
	init_dl_bw(&rd->dl_bw);
5474 5475
	if (cpudl_init(&rd->cpudl) != 0)
		goto free_dlo_mask;
5476

5477
	if (cpupri_init(&rd->cpupri) != 0)
5478
		goto free_rto_mask;
5479
	return 0;
5480

5481 5482
free_rto_mask:
	free_cpumask_var(rd->rto_mask);
5483 5484
free_dlo_mask:
	free_cpumask_var(rd->dlo_mask);
5485 5486 5487 5488
free_online:
	free_cpumask_var(rd->online);
free_span:
	free_cpumask_var(rd->span);
5489
out:
5490
	return -ENOMEM;
G
Gregory Haskins 已提交
5491 5492
}

5493 5494 5495 5496 5497 5498
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
struct root_domain def_root_domain;

G
Gregory Haskins 已提交
5499 5500
static void init_defrootdomain(void)
{
5501
	init_rootdomain(&def_root_domain);
5502

G
Gregory Haskins 已提交
5503 5504 5505
	atomic_set(&def_root_domain.refcount, 1);
}

5506
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
5507 5508 5509 5510 5511 5512 5513
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

5514
	if (init_rootdomain(rd) != 0) {
5515 5516 5517
		kfree(rd);
		return NULL;
	}
G
Gregory Haskins 已提交
5518 5519 5520 5521

	return rd;
}

5522
static void free_sched_groups(struct sched_group *sg, int free_sgc)
5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
{
	struct sched_group *tmp, *first;

	if (!sg)
		return;

	first = sg;
	do {
		tmp = sg->next;

5533 5534
		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
			kfree(sg->sgc);
5535 5536 5537 5538 5539 5540

		kfree(sg);
		sg = tmp;
	} while (sg != first);
}

5541 5542 5543
static void free_sched_domain(struct rcu_head *rcu)
{
	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5544 5545 5546 5547 5548 5549 5550 5551

	/*
	 * If its an overlapping domain it has private groups, iterate and
	 * nuke them all.
	 */
	if (sd->flags & SD_OVERLAP) {
		free_sched_groups(sd->groups, 1);
	} else if (atomic_dec_and_test(&sd->groups->ref)) {
5552
		kfree(sd->groups->sgc);
5553
		kfree(sd->groups);
5554
	}
5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568
	kfree(sd);
}

static void destroy_sched_domain(struct sched_domain *sd, int cpu)
{
	call_rcu(&sd->rcu, free_sched_domain);
}

static void destroy_sched_domains(struct sched_domain *sd, int cpu)
{
	for (; sd; sd = sd->parent)
		destroy_sched_domain(sd, cpu);
}

5569 5570 5571 5572 5573 5574 5575
/*
 * Keep a special pointer to the highest sched_domain that has
 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
 * allows us to avoid some pointer chasing select_idle_sibling().
 *
 * Also keep a unique ID per domain (we use the first cpu number in
 * the cpumask of the domain), this allows us to quickly tell if
5576
 * two cpus are in the same cache domain, see cpus_share_cache().
5577 5578
 */
DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5579
DEFINE_PER_CPU(int, sd_llc_size);
5580
DEFINE_PER_CPU(int, sd_llc_id);
5581
DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5582 5583
DEFINE_PER_CPU(struct sched_domain *, sd_busy);
DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5584 5585 5586 5587

static void update_top_cache_domain(int cpu)
{
	struct sched_domain *sd;
5588
	struct sched_domain *busy_sd = NULL;
5589
	int id = cpu;
5590
	int size = 1;
5591 5592

	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5593
	if (sd) {
5594
		id = cpumask_first(sched_domain_span(sd));
5595
		size = cpumask_weight(sched_domain_span(sd));
5596
		busy_sd = sd->parent; /* sd_busy */
5597
	}
5598
	rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5599 5600

	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5601
	per_cpu(sd_llc_size, cpu) = size;
5602
	per_cpu(sd_llc_id, cpu) = id;
5603 5604 5605

	sd = lowest_flag_domain(cpu, SD_NUMA);
	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5606 5607 5608

	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5609 5610
}

L
Linus Torvalds 已提交
5611
/*
I
Ingo Molnar 已提交
5612
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
5613 5614
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
5615 5616
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
5617
{
5618
	struct rq *rq = cpu_rq(cpu);
5619 5620 5621
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
5622
	for (tmp = sd; tmp; ) {
5623 5624 5625
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
5626

5627
		if (sd_parent_degenerate(tmp, parent)) {
5628
			tmp->parent = parent->parent;
5629 5630
			if (parent->parent)
				parent->parent->child = tmp;
5631 5632 5633 5634 5635 5636 5637
			/*
			 * Transfer SD_PREFER_SIBLING down in case of a
			 * degenerate parent; the spans match for this
			 * so the property transfers.
			 */
			if (parent->flags & SD_PREFER_SIBLING)
				tmp->flags |= SD_PREFER_SIBLING;
5638
			destroy_sched_domain(parent, cpu);
5639 5640
		} else
			tmp = tmp->parent;
5641 5642
	}

5643
	if (sd && sd_degenerate(sd)) {
5644
		tmp = sd;
5645
		sd = sd->parent;
5646
		destroy_sched_domain(tmp, cpu);
5647 5648 5649
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
5650

5651
	sched_domain_debug(sd, cpu);
L
Linus Torvalds 已提交
5652

G
Gregory Haskins 已提交
5653
	rq_attach_root(rq, rd);
5654
	tmp = rq->sd;
N
Nick Piggin 已提交
5655
	rcu_assign_pointer(rq->sd, sd);
5656
	destroy_sched_domains(tmp, cpu);
5657 5658

	update_top_cache_domain(cpu);
L
Linus Torvalds 已提交
5659 5660 5661
}

/* cpus with isolated domains */
5662
static cpumask_var_t cpu_isolated_map;
L
Linus Torvalds 已提交
5663 5664 5665 5666

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
R
Rusty Russell 已提交
5667
	alloc_bootmem_cpumask_var(&cpu_isolated_map);
R
Rusty Russell 已提交
5668
	cpulist_parse(str, cpu_isolated_map);
L
Linus Torvalds 已提交
5669 5670 5671
	return 1;
}

I
Ingo Molnar 已提交
5672
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
5673

5674
struct s_data {
5675
	struct sched_domain ** __percpu sd;
5676 5677 5678
	struct root_domain	*rd;
};

5679 5680
enum s_alloc {
	sa_rootdomain,
5681
	sa_sd,
5682
	sa_sd_storage,
5683 5684 5685
	sa_none,
};

P
Peter Zijlstra 已提交
5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
/*
 * Build an iteration mask that can exclude certain CPUs from the upwards
 * domain traversal.
 *
 * Asymmetric node setups can result in situations where the domain tree is of
 * unequal depth, make sure to skip domains that already cover the entire
 * range.
 *
 * In that case build_sched_domains() will have terminated the iteration early
 * and our sibling sd spans will be empty. Domains should always include the
 * cpu they're built on, so check that.
 *
 */
static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
{
	const struct cpumask *span = sched_domain_span(sd);
	struct sd_data *sdd = sd->private;
	struct sched_domain *sibling;
	int i;

	for_each_cpu(i, span) {
		sibling = *per_cpu_ptr(sdd->sd, i);
		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
			continue;

		cpumask_set_cpu(i, sched_group_mask(sg));
	}
}

/*
 * Return the canonical balance cpu for this group, this is the first cpu
 * of this group that's also in the iteration mask.
 */
int group_balance_cpu(struct sched_group *sg)
{
	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
}

5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
static int
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
{
	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
	const struct cpumask *span = sched_domain_span(sd);
	struct cpumask *covered = sched_domains_tmpmask;
	struct sd_data *sdd = sd->private;
	struct sched_domain *child;
	int i;

	cpumask_clear(covered);

	for_each_cpu(i, span) {
		struct cpumask *sg_span;

		if (cpumask_test_cpu(i, covered))
			continue;

P
Peter Zijlstra 已提交
5742 5743 5744 5745 5746 5747
		child = *per_cpu_ptr(sdd->sd, i);

		/* See the comment near build_group_mask(). */
		if (!cpumask_test_cpu(i, sched_domain_span(child)))
			continue;

5748
		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5749
				GFP_KERNEL, cpu_to_node(cpu));
5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762

		if (!sg)
			goto fail;

		sg_span = sched_group_cpus(sg);
		if (child->child) {
			child = child->child;
			cpumask_copy(sg_span, sched_domain_span(child));
		} else
			cpumask_set_cpu(i, sg_span);

		cpumask_or(covered, covered, sg_span);

5763 5764
		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
		if (atomic_inc_return(&sg->sgc->ref) == 1)
P
Peter Zijlstra 已提交
5765 5766
			build_group_mask(sd, sg);

5767
		/*
5768
		 * Initialize sgc->capacity such that even if we mess up the
5769 5770 5771
		 * domains and no possible iteration will get us here, we won't
		 * die on a /0 trap.
		 */
5772
		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5773
		sg->sgc->capacity_orig = sg->sgc->capacity;
5774

P
Peter Zijlstra 已提交
5775 5776 5777 5778 5779
		/*
		 * Make sure the first group of this domain contains the
		 * canonical balance cpu. Otherwise the sched_domain iteration
		 * breaks. See update_sg_lb_stats().
		 */
P
Peter Zijlstra 已提交
5780
		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
P
Peter Zijlstra 已提交
5781
		    group_balance_cpu(sg) == cpu)
5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800
			groups = sg;

		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
		last->next = first;
	}
	sd->groups = groups;

	return 0;

fail:
	free_sched_groups(first, 0);

	return -ENOMEM;
}

5801
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
L
Linus Torvalds 已提交
5802
{
5803 5804
	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
	struct sched_domain *child = sd->child;
L
Linus Torvalds 已提交
5805

5806 5807
	if (child)
		cpu = cpumask_first(sched_domain_span(child));
5808

5809
	if (sg) {
5810
		*sg = *per_cpu_ptr(sdd->sg, cpu);
5811 5812
		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5813
	}
5814 5815

	return cpu;
5816 5817
}

5818
/*
5819 5820
 * build_sched_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
5821
 * and ->cpu_capacity to 0.
5822 5823
 *
 * Assumes the sched_domain tree is fully constructed
5824
 */
5825 5826
static int
build_sched_groups(struct sched_domain *sd, int cpu)
L
Linus Torvalds 已提交
5827
{
5828 5829 5830
	struct sched_group *first = NULL, *last = NULL;
	struct sd_data *sdd = sd->private;
	const struct cpumask *span = sched_domain_span(sd);
5831
	struct cpumask *covered;
5832
	int i;
5833

5834 5835 5836
	get_group(cpu, sdd, &sd->groups);
	atomic_inc(&sd->groups->ref);

5837
	if (cpu != cpumask_first(span))
5838 5839
		return 0;

5840 5841 5842
	lockdep_assert_held(&sched_domains_mutex);
	covered = sched_domains_tmpmask;

5843
	cpumask_clear(covered);
5844

5845 5846
	for_each_cpu(i, span) {
		struct sched_group *sg;
5847
		int group, j;
5848

5849 5850
		if (cpumask_test_cpu(i, covered))
			continue;
5851

5852
		group = get_group(i, sdd, &sg);
P
Peter Zijlstra 已提交
5853
		cpumask_setall(sched_group_mask(sg));
5854

5855 5856 5857
		for_each_cpu(j, span) {
			if (get_group(j, sdd, NULL) != group)
				continue;
5858

5859 5860 5861
			cpumask_set_cpu(j, covered);
			cpumask_set_cpu(j, sched_group_cpus(sg));
		}
5862

5863 5864 5865 5866 5867 5868 5869
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
5870 5871

	return 0;
5872
}
5873

5874
/*
5875
 * Initialize sched groups cpu_capacity.
5876
 *
5877
 * cpu_capacity indicates the capacity of sched group, which is used while
5878
 * distributing the load between different sched groups in a sched domain.
5879 5880 5881 5882
 * Typically cpu_capacity for all the groups in a sched domain will be same
 * unless there are asymmetries in the topology. If there are asymmetries,
 * group having more cpu_capacity will pickup more load compared to the
 * group having less cpu_capacity.
5883
 */
5884
static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
5885
{
5886
	struct sched_group *sg = sd->groups;
5887

5888
	WARN_ON(!sg);
5889 5890 5891 5892 5893

	do {
		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
		sg = sg->next;
	} while (sg != sd->groups);
5894

P
Peter Zijlstra 已提交
5895
	if (cpu != group_balance_cpu(sg))
5896
		return;
5897

5898 5899
	update_group_capacity(sd, cpu);
	atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
5900 5901
}

5902 5903 5904 5905 5906
/*
 * Initializers for schedule domains
 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
 */

5907
static int default_relax_domain_level = -1;
5908
int sched_domain_level_max;
5909 5910 5911

static int __init setup_relax_domain_level(char *str)
{
5912 5913
	if (kstrtoint(str, 0, &default_relax_domain_level))
		pr_warn("Unable to set relax_domain_level\n");
5914

5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932
	return 1;
}
__setup("relax_domain_level=", setup_relax_domain_level);

static void set_domain_attribute(struct sched_domain *sd,
				 struct sched_domain_attr *attr)
{
	int request;

	if (!attr || attr->relax_domain_level < 0) {
		if (default_relax_domain_level < 0)
			return;
		else
			request = default_relax_domain_level;
	} else
		request = attr->relax_domain_level;
	if (request < sd->level) {
		/* turn off idle balance on this domain */
5933
		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5934 5935
	} else {
		/* turn on idle balance on this domain */
5936
		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5937 5938 5939
	}
}

5940 5941 5942
static void __sdt_free(const struct cpumask *cpu_map);
static int __sdt_alloc(const struct cpumask *cpu_map);

5943 5944 5945 5946 5947
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
				 const struct cpumask *cpu_map)
{
	switch (what) {
	case sa_rootdomain:
5948 5949
		if (!atomic_read(&d->rd->refcount))
			free_rootdomain(&d->rd->rcu); /* fall through */
5950 5951
	case sa_sd:
		free_percpu(d->sd); /* fall through */
5952
	case sa_sd_storage:
5953
		__sdt_free(cpu_map); /* fall through */
5954 5955 5956 5957
	case sa_none:
		break;
	}
}
5958

5959 5960 5961
static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
5962 5963
	memset(d, 0, sizeof(*d));

5964 5965
	if (__sdt_alloc(cpu_map))
		return sa_sd_storage;
5966 5967 5968
	d->sd = alloc_percpu(struct sched_domain *);
	if (!d->sd)
		return sa_sd_storage;
5969
	d->rd = alloc_rootdomain();
5970
	if (!d->rd)
5971
		return sa_sd;
5972 5973
	return sa_rootdomain;
}
G
Gregory Haskins 已提交
5974

5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986
/*
 * NULL the sd_data elements we've used to build the sched_domain and
 * sched_group structure so that the subsequent __free_domain_allocs()
 * will not free the data we're using.
 */
static void claim_allocations(int cpu, struct sched_domain *sd)
{
	struct sd_data *sdd = sd->private;

	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
	*per_cpu_ptr(sdd->sd, cpu) = NULL;

5987
	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5988
		*per_cpu_ptr(sdd->sg, cpu) = NULL;
5989

5990 5991
	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
5992 5993
}

5994 5995 5996 5997 5998
#ifdef CONFIG_NUMA
static int sched_domains_numa_levels;
static int *sched_domains_numa_distance;
static struct cpumask ***sched_domains_numa_masks;
static int sched_domains_curr_level;
5999
#endif
6000

6001 6002 6003
/*
 * SD_flags allowed in topology descriptions.
 *
6004
 * SD_SHARE_CPUCAPACITY      - describes SMT topologies
6005 6006
 * SD_SHARE_PKG_RESOURCES - describes shared caches
 * SD_NUMA                - describes NUMA topologies
6007
 * SD_SHARE_POWERDOMAIN   - describes shared power domain
6008 6009 6010 6011 6012
 *
 * Odd one out:
 * SD_ASYM_PACKING        - describes SMT quirks
 */
#define TOPOLOGY_SD_FLAGS		\
6013
	(SD_SHARE_CPUCAPACITY |		\
6014 6015
	 SD_SHARE_PKG_RESOURCES |	\
	 SD_NUMA |			\
6016 6017
	 SD_ASYM_PACKING |		\
	 SD_SHARE_POWERDOMAIN)
6018 6019

static struct sched_domain *
6020
sd_init(struct sched_domain_topology_level *tl, int cpu)
6021 6022
{
	struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038
	int sd_weight, sd_flags = 0;

#ifdef CONFIG_NUMA
	/*
	 * Ugly hack to pass state to sd_numa_mask()...
	 */
	sched_domains_curr_level = tl->numa_level;
#endif

	sd_weight = cpumask_weight(tl->mask(cpu));

	if (tl->sd_flags)
		sd_flags = (*tl->sd_flags)();
	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
			"wrong sd_flags in topology description\n"))
		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6039 6040 6041 6042 6043

	*sd = (struct sched_domain){
		.min_interval		= sd_weight,
		.max_interval		= 2*sd_weight,
		.busy_factor		= 32,
6044
		.imbalance_pct		= 125,
6045 6046 6047 6048

		.cache_nice_tries	= 0,
		.busy_idx		= 0,
		.idle_idx		= 0,
6049 6050 6051 6052 6053 6054
		.newidle_idx		= 0,
		.wake_idx		= 0,
		.forkexec_idx		= 0,

		.flags			= 1*SD_LOAD_BALANCE
					| 1*SD_BALANCE_NEWIDLE
6055 6056
					| 1*SD_BALANCE_EXEC
					| 1*SD_BALANCE_FORK
6057
					| 0*SD_BALANCE_WAKE
6058
					| 1*SD_WAKE_AFFINE
6059
					| 0*SD_SHARE_CPUCAPACITY
6060
					| 0*SD_SHARE_PKG_RESOURCES
6061
					| 0*SD_SERIALIZE
6062
					| 0*SD_PREFER_SIBLING
6063 6064
					| 0*SD_NUMA
					| sd_flags
6065
					,
6066

6067 6068
		.last_balance		= jiffies,
		.balance_interval	= sd_weight,
6069
		.smt_gain		= 0,
6070 6071
		.max_newidle_lb_cost	= 0,
		.next_decay_max_lb_cost	= jiffies,
6072 6073 6074
#ifdef CONFIG_SCHED_DEBUG
		.name			= tl->name,
#endif
6075 6076 6077
	};

	/*
6078
	 * Convert topological properties into behaviour.
6079
	 */
6080

6081
	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
		sd->imbalance_pct = 110;
		sd->smt_gain = 1178; /* ~15% */

	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
		sd->imbalance_pct = 117;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;

#ifdef CONFIG_NUMA
	} else if (sd->flags & SD_NUMA) {
		sd->cache_nice_tries = 2;
		sd->busy_idx = 3;
		sd->idle_idx = 2;

		sd->flags |= SD_SERIALIZE;
		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
			sd->flags &= ~(SD_BALANCE_EXEC |
				       SD_BALANCE_FORK |
				       SD_WAKE_AFFINE);
		}

#endif
	} else {
		sd->flags |= SD_PREFER_SIBLING;
		sd->cache_nice_tries = 1;
		sd->busy_idx = 2;
		sd->idle_idx = 1;
	}

	sd->private = &tl->data;
6112 6113 6114 6115

	return sd;
}

6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
/*
 * Topology list, bottom-up.
 */
static struct sched_domain_topology_level default_topology[] = {
#ifdef CONFIG_SCHED_SMT
	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
#endif
#ifdef CONFIG_SCHED_MC
	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
#endif
	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
	{ NULL, },
};

struct sched_domain_topology_level *sched_domain_topology = default_topology;

#define for_each_sd_topology(tl)			\
	for (tl = sched_domain_topology; tl->mask; tl++)

void set_sched_topology(struct sched_domain_topology_level *tl)
{
	sched_domain_topology = tl;
}

#ifdef CONFIG_NUMA

6142 6143 6144 6145 6146
static const struct cpumask *sd_numa_mask(int cpu)
{
	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
}

6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
static void sched_numa_warn(const char *str)
{
	static int done = false;
	int i,j;

	if (done)
		return;

	done = true;

	printk(KERN_WARNING "ERROR: %s\n\n", str);

	for (i = 0; i < nr_node_ids; i++) {
		printk(KERN_WARNING "  ");
		for (j = 0; j < nr_node_ids; j++)
			printk(KERN_CONT "%02d ", node_distance(i,j));
		printk(KERN_CONT "\n");
	}
	printk(KERN_WARNING "\n");
}

static bool find_numa_distance(int distance)
{
	int i;

	if (distance == node_distance(0, 0))
		return true;

	for (i = 0; i < sched_domains_numa_levels; i++) {
		if (sched_domains_numa_distance[i] == distance)
			return true;
	}

	return false;
}

6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
static void sched_init_numa(void)
{
	int next_distance, curr_distance = node_distance(0, 0);
	struct sched_domain_topology_level *tl;
	int level = 0;
	int i, j, k;

	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
	if (!sched_domains_numa_distance)
		return;

	/*
	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
	 * unique distances in the node_distance() table.
	 *
	 * Assumes node_distance(0,j) includes all distances in
	 * node_distance(i,j) in order to avoid cubic time.
	 */
	next_distance = curr_distance;
	for (i = 0; i < nr_node_ids; i++) {
		for (j = 0; j < nr_node_ids; j++) {
6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227
			for (k = 0; k < nr_node_ids; k++) {
				int distance = node_distance(i, k);

				if (distance > curr_distance &&
				    (distance < next_distance ||
				     next_distance == curr_distance))
					next_distance = distance;

				/*
				 * While not a strong assumption it would be nice to know
				 * about cases where if node A is connected to B, B is not
				 * equally connected to A.
				 */
				if (sched_debug() && node_distance(k, i) != distance)
					sched_numa_warn("Node-distance not symmetric");

				if (sched_debug() && i && !find_numa_distance(distance))
					sched_numa_warn("Node-0 not representative");
			}
			if (next_distance != curr_distance) {
				sched_domains_numa_distance[level++] = next_distance;
				sched_domains_numa_levels = level;
				curr_distance = next_distance;
			} else break;
6228
		}
6229 6230 6231 6232 6233 6234

		/*
		 * In case of sched_debug() we verify the above assumption.
		 */
		if (!sched_debug())
			break;
6235 6236 6237 6238 6239
	}
	/*
	 * 'level' contains the number of unique distances, excluding the
	 * identity distance node_distance(i,i).
	 *
V
Viresh Kumar 已提交
6240
	 * The sched_domains_numa_distance[] array includes the actual distance
6241 6242 6243
	 * numbers.
	 */

6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254
	/*
	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
	 * the array will contain less then 'level' members. This could be
	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
	 * in other functions.
	 *
	 * We reset it to 'level' at the end of this function.
	 */
	sched_domains_numa_levels = 0;

6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269
	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
	if (!sched_domains_numa_masks)
		return;

	/*
	 * Now for each level, construct a mask per node which contains all
	 * cpus of nodes that are that many hops away from us.
	 */
	for (i = 0; i < level; i++) {
		sched_domains_numa_masks[i] =
			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
		if (!sched_domains_numa_masks[i])
			return;

		for (j = 0; j < nr_node_ids; j++) {
6270
			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6271 6272 6273 6274 6275 6276
			if (!mask)
				return;

			sched_domains_numa_masks[i][j] = mask;

			for (k = 0; k < nr_node_ids; k++) {
6277
				if (node_distance(j, k) > sched_domains_numa_distance[i])
6278 6279 6280 6281 6282 6283 6284
					continue;

				cpumask_or(mask, mask, cpumask_of_node(k));
			}
		}
	}

6285 6286 6287
	/* Compute default topology size */
	for (i = 0; sched_domain_topology[i].mask; i++);

6288
	tl = kzalloc((i + level + 1) *
6289 6290 6291 6292 6293 6294 6295
			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
	if (!tl)
		return;

	/*
	 * Copy the default topology bits..
	 */
6296 6297
	for (i = 0; sched_domain_topology[i].mask; i++)
		tl[i] = sched_domain_topology[i];
6298 6299 6300 6301 6302 6303 6304

	/*
	 * .. and append 'j' levels of NUMA goodness.
	 */
	for (j = 0; j < level; i++, j++) {
		tl[i] = (struct sched_domain_topology_level){
			.mask = sd_numa_mask,
6305
			.sd_flags = cpu_numa_flags,
6306 6307
			.flags = SDTL_OVERLAP,
			.numa_level = j,
6308
			SD_INIT_NAME(NUMA)
6309 6310 6311 6312
		};
	}

	sched_domain_topology = tl;
6313 6314

	sched_domains_numa_levels = level;
6315
}
6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362

static void sched_domains_numa_masks_set(int cpu)
{
	int i, j;
	int node = cpu_to_node(cpu);

	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++) {
			if (node_distance(j, node) <= sched_domains_numa_distance[i])
				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
		}
	}
}

static void sched_domains_numa_masks_clear(int cpu)
{
	int i, j;
	for (i = 0; i < sched_domains_numa_levels; i++) {
		for (j = 0; j < nr_node_ids; j++)
			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
	}
}

/*
 * Update sched_domains_numa_masks[level][node] array when new cpus
 * are onlined.
 */
static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	int cpu = (long)hcpu;

	switch (action & ~CPU_TASKS_FROZEN) {
	case CPU_ONLINE:
		sched_domains_numa_masks_set(cpu);
		break;

	case CPU_DEAD:
		sched_domains_numa_masks_clear(cpu);
		break;

	default:
		return NOTIFY_DONE;
	}

	return NOTIFY_OK;
6363 6364 6365 6366 6367
}
#else
static inline void sched_init_numa(void)
{
}
6368 6369 6370 6371 6372 6373 6374

static int sched_domains_numa_masks_update(struct notifier_block *nfb,
					   unsigned long action,
					   void *hcpu)
{
	return 0;
}
6375 6376
#endif /* CONFIG_NUMA */

6377 6378 6379 6380 6381
static int __sdt_alloc(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6382
	for_each_sd_topology(tl) {
6383 6384 6385 6386 6387 6388 6389 6390 6391 6392
		struct sd_data *sdd = &tl->data;

		sdd->sd = alloc_percpu(struct sched_domain *);
		if (!sdd->sd)
			return -ENOMEM;

		sdd->sg = alloc_percpu(struct sched_group *);
		if (!sdd->sg)
			return -ENOMEM;

6393 6394
		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
		if (!sdd->sgc)
6395 6396
			return -ENOMEM;

6397 6398 6399
		for_each_cpu(j, cpu_map) {
			struct sched_domain *sd;
			struct sched_group *sg;
6400
			struct sched_group_capacity *sgc;
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413

		       	sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sd)
				return -ENOMEM;

			*per_cpu_ptr(sdd->sd, j) = sd;

			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
					GFP_KERNEL, cpu_to_node(j));
			if (!sg)
				return -ENOMEM;

6414 6415
			sg->next = sg;

6416
			*per_cpu_ptr(sdd->sg, j) = sg;
6417

6418
			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6419
					GFP_KERNEL, cpu_to_node(j));
6420
			if (!sgc)
6421 6422
				return -ENOMEM;

6423
			*per_cpu_ptr(sdd->sgc, j) = sgc;
6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
		}
	}

	return 0;
}

static void __sdt_free(const struct cpumask *cpu_map)
{
	struct sched_domain_topology_level *tl;
	int j;

6435
	for_each_sd_topology(tl) {
6436 6437 6438
		struct sd_data *sdd = &tl->data;

		for_each_cpu(j, cpu_map) {
6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449
			struct sched_domain *sd;

			if (sdd->sd) {
				sd = *per_cpu_ptr(sdd->sd, j);
				if (sd && (sd->flags & SD_OVERLAP))
					free_sched_groups(sd->groups, 0);
				kfree(*per_cpu_ptr(sdd->sd, j));
			}

			if (sdd->sg)
				kfree(*per_cpu_ptr(sdd->sg, j));
6450 6451
			if (sdd->sgc)
				kfree(*per_cpu_ptr(sdd->sgc, j));
6452 6453
		}
		free_percpu(sdd->sd);
6454
		sdd->sd = NULL;
6455
		free_percpu(sdd->sg);
6456
		sdd->sg = NULL;
6457 6458
		free_percpu(sdd->sgc);
		sdd->sgc = NULL;
6459 6460 6461
	}
}

6462
struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6463 6464
		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
		struct sched_domain *child, int cpu)
6465
{
6466
	struct sched_domain *sd = sd_init(tl, cpu);
6467
	if (!sd)
6468
		return child;
6469 6470

	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6471 6472 6473
	if (child) {
		sd->level = child->level + 1;
		sched_domain_level_max = max(sched_domain_level_max, sd->level);
6474
		child->parent = sd;
6475
		sd->child = child;
6476
	}
6477
	set_domain_attribute(sd, attr);
6478 6479 6480 6481

	return sd;
}

6482 6483 6484 6485
/*
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
6486 6487
static int build_sched_domains(const struct cpumask *cpu_map,
			       struct sched_domain_attr *attr)
6488
{
6489
	enum s_alloc alloc_state;
6490
	struct sched_domain *sd;
6491
	struct s_data d;
6492
	int i, ret = -ENOMEM;
6493

6494 6495 6496
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
	if (alloc_state != sa_rootdomain)
		goto error;
6497

6498
	/* Set up domains for cpus specified by the cpu_map. */
6499
	for_each_cpu(i, cpu_map) {
6500 6501
		struct sched_domain_topology_level *tl;

6502
		sd = NULL;
6503
		for_each_sd_topology(tl) {
6504
			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6505 6506
			if (tl == sched_domain_topology)
				*per_cpu_ptr(d.sd, i) = sd;
6507 6508
			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
				sd->flags |= SD_OVERLAP;
6509 6510
			if (cpumask_equal(cpu_map, sched_domain_span(sd)))
				break;
6511
		}
6512 6513 6514 6515 6516 6517
	}

	/* Build the groups for the domains */
	for_each_cpu(i, cpu_map) {
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			sd->span_weight = cpumask_weight(sched_domain_span(sd));
6518 6519 6520 6521 6522 6523 6524
			if (sd->flags & SD_OVERLAP) {
				if (build_overlap_sched_groups(sd, i))
					goto error;
			} else {
				if (build_sched_groups(sd, i))
					goto error;
			}
6525
		}
6526
	}
6527

6528
	/* Calculate CPU capacity for physical packages and nodes */
6529 6530 6531
	for (i = nr_cpumask_bits-1; i >= 0; i--) {
		if (!cpumask_test_cpu(i, cpu_map))
			continue;
6532

6533 6534
		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
			claim_allocations(i, sd);
6535
			init_sched_groups_capacity(i, sd);
6536
		}
6537
	}
6538

L
Linus Torvalds 已提交
6539
	/* Attach the domains */
6540
	rcu_read_lock();
6541
	for_each_cpu(i, cpu_map) {
6542
		sd = *per_cpu_ptr(d.sd, i);
6543
		cpu_attach_domain(sd, d.rd, i);
L
Linus Torvalds 已提交
6544
	}
6545
	rcu_read_unlock();
6546

6547
	ret = 0;
6548
error:
6549
	__free_domain_allocs(&d, alloc_state, cpu_map);
6550
	return ret;
L
Linus Torvalds 已提交
6551
}
P
Paul Jackson 已提交
6552

6553
static cpumask_var_t *doms_cur;	/* current sched domains */
P
Paul Jackson 已提交
6554
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
I
Ingo Molnar 已提交
6555 6556
static struct sched_domain_attr *dattr_cur;
				/* attribues of custom domains in 'doms_cur' */
P
Paul Jackson 已提交
6557 6558 6559

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
6560 6561
 * cpumask) fails, then fallback to a single sched domain,
 * as determined by the single cpumask fallback_doms.
P
Paul Jackson 已提交
6562
 */
6563
static cpumask_var_t fallback_doms;
P
Paul Jackson 已提交
6564

6565 6566 6567 6568 6569
/*
 * arch_update_cpu_topology lets virtualized architectures update the
 * cpu core maps. It is supposed to return 1 if the topology changed
 * or 0 if it stayed the same.
 */
6570
int __weak arch_update_cpu_topology(void)
6571
{
6572
	return 0;
6573 6574
}

6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
{
	int i;
	cpumask_var_t *doms;

	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
	if (!doms)
		return NULL;
	for (i = 0; i < ndoms; i++) {
		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
			free_sched_domains(doms, i);
			return NULL;
		}
	}
	return doms;
}

void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
{
	unsigned int i;
	for (i = 0; i < ndoms; i++)
		free_cpumask_var(doms[i]);
	kfree(doms);
}

6600
/*
I
Ingo Molnar 已提交
6601
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6602 6603
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6604
 */
6605
static int init_sched_domains(const struct cpumask *cpu_map)
6606
{
6607 6608
	int err;

6609
	arch_update_cpu_topology();
P
Paul Jackson 已提交
6610
	ndoms_cur = 1;
6611
	doms_cur = alloc_sched_domains(ndoms_cur);
P
Paul Jackson 已提交
6612
	if (!doms_cur)
6613 6614
		doms_cur = &fallback_doms;
	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6615
	err = build_sched_domains(doms_cur[0], NULL);
6616
	register_sched_domain_sysctl();
6617 6618

	return err;
6619 6620 6621 6622 6623 6624
}

/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6625
static void detach_destroy_domains(const struct cpumask *cpu_map)
6626 6627 6628
{
	int i;

6629
	rcu_read_lock();
6630
	for_each_cpu(i, cpu_map)
G
Gregory Haskins 已提交
6631
		cpu_attach_domain(NULL, &def_root_domain, i);
6632
	rcu_read_unlock();
6633 6634
}

6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
/* handle null as "default" */
static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
			struct sched_domain_attr *new, int idx_new)
{
	struct sched_domain_attr tmp;

	/* fast path */
	if (!new && !cur)
		return 1;

	tmp = SD_ATTR_INIT;
	return !memcmp(cur ? (cur + idx_cur) : &tmp,
			new ? (new + idx_new) : &tmp,
			sizeof(struct sched_domain_attr));
}

P
Paul Jackson 已提交
6651 6652
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6653
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6654 6655 6656
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
6657
 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6658 6659 6660
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6661 6662 6663
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
6664 6665 6666 6667 6668 6669
 * The passed in 'doms_new' should be allocated using
 * alloc_sched_domains.  This routine takes ownership of it and will
 * free_sched_domains it when done with it. If the caller failed the
 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms', it also forces the domains to be rebuilt.
P
Paul Jackson 已提交
6670
 *
6671
 * If doms_new == NULL it will be replaced with cpu_online_mask.
6672 6673
 * ndoms_new == 0 is a special case for destroying existing domains,
 * and it will not create the default domain.
6674
 *
P
Paul Jackson 已提交
6675 6676
 * Call with hotplug lock held
 */
6677
void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6678
			     struct sched_domain_attr *dattr_new)
P
Paul Jackson 已提交
6679
{
6680
	int i, j, n;
6681
	int new_topology;
P
Paul Jackson 已提交
6682

6683
	mutex_lock(&sched_domains_mutex);
6684

6685 6686 6687
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

6688 6689 6690
	/* Let architecture update cpu core mappings. */
	new_topology = arch_update_cpu_topology();

6691
	n = doms_new ? ndoms_new : 0;
P
Paul Jackson 已提交
6692 6693 6694

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
6695
		for (j = 0; j < n && !new_topology; j++) {
6696
			if (cpumask_equal(doms_cur[i], doms_new[j])
6697
			    && dattrs_equal(dattr_cur, i, dattr_new, j))
P
Paul Jackson 已提交
6698 6699 6700
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
6701
		detach_destroy_domains(doms_cur[i]);
P
Paul Jackson 已提交
6702 6703 6704 6705
match1:
		;
	}

6706
	n = ndoms_cur;
6707
	if (doms_new == NULL) {
6708
		n = 0;
6709
		doms_new = &fallback_doms;
6710
		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6711
		WARN_ON_ONCE(dattr_new);
6712 6713
	}

P
Paul Jackson 已提交
6714 6715
	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
6716
		for (j = 0; j < n && !new_topology; j++) {
6717
			if (cpumask_equal(doms_new[i], doms_cur[j])
6718
			    && dattrs_equal(dattr_new, i, dattr_cur, j))
P
Paul Jackson 已提交
6719 6720 6721
				goto match2;
		}
		/* no match - add a new doms_new */
6722
		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
P
Paul Jackson 已提交
6723 6724 6725 6726 6727
match2:
		;
	}

	/* Remember the new sched domains */
6728 6729
	if (doms_cur != &fallback_doms)
		free_sched_domains(doms_cur, ndoms_cur);
6730
	kfree(dattr_cur);	/* kfree(NULL) is safe */
P
Paul Jackson 已提交
6731
	doms_cur = doms_new;
6732
	dattr_cur = dattr_new;
P
Paul Jackson 已提交
6733
	ndoms_cur = ndoms_new;
6734 6735

	register_sched_domain_sysctl();
6736

6737
	mutex_unlock(&sched_domains_mutex);
P
Paul Jackson 已提交
6738 6739
}

6740 6741
static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */

L
Linus Torvalds 已提交
6742
/*
6743 6744 6745
 * Update cpusets according to cpu_active mask.  If cpusets are
 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
 * around partition_sched_domains().
6746 6747 6748
 *
 * If we come here as part of a suspend/resume, don't touch cpusets because we
 * want to restore it back to its original state upon resume anyway.
L
Linus Torvalds 已提交
6749
 */
6750 6751
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
			     void *hcpu)
6752
{
6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774
	switch (action) {
	case CPU_ONLINE_FROZEN:
	case CPU_DOWN_FAILED_FROZEN:

		/*
		 * num_cpus_frozen tracks how many CPUs are involved in suspend
		 * resume sequence. As long as this is not the last online
		 * operation in the resume sequence, just build a single sched
		 * domain, ignoring cpusets.
		 */
		num_cpus_frozen--;
		if (likely(num_cpus_frozen)) {
			partition_sched_domains(1, NULL, NULL);
			break;
		}

		/*
		 * This is the last CPU online operation. So fall through and
		 * restore the original sched domains by considering the
		 * cpuset configurations.
		 */

6775
	case CPU_ONLINE:
6776
	case CPU_DOWN_FAILED:
6777
		cpuset_update_active_cpus(true);
6778
		break;
6779 6780 6781
	default:
		return NOTIFY_DONE;
	}
6782
	return NOTIFY_OK;
6783
}
6784

6785 6786
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
			       void *hcpu)
6787
{
6788
	switch (action) {
6789
	case CPU_DOWN_PREPARE:
6790
		cpuset_update_active_cpus(false);
6791 6792 6793 6794 6795
		break;
	case CPU_DOWN_PREPARE_FROZEN:
		num_cpus_frozen++;
		partition_sched_domains(1, NULL, NULL);
		break;
6796 6797 6798
	default:
		return NOTIFY_DONE;
	}
6799
	return NOTIFY_OK;
6800 6801
}

L
Linus Torvalds 已提交
6802 6803
void __init sched_init_smp(void)
{
6804 6805 6806
	cpumask_var_t non_isolated_cpus;

	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6807
	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6808

6809 6810
	sched_init_numa();

6811 6812 6813 6814 6815
	/*
	 * There's no userspace yet to cause hotplug operations; hence all the
	 * cpu masks are stable and all blatant races in the below code cannot
	 * happen.
	 */
6816
	mutex_lock(&sched_domains_mutex);
6817
	init_sched_domains(cpu_active_mask);
6818 6819 6820
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
	if (cpumask_empty(non_isolated_cpus))
		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6821
	mutex_unlock(&sched_domains_mutex);
6822

6823
	hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6824 6825
	hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
	hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6826

6827
	init_hrtick();
6828 6829

	/* Move init over to a non-isolated CPU */
6830
	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6831
		BUG();
I
Ingo Molnar 已提交
6832
	sched_init_granularity();
6833
	free_cpumask_var(non_isolated_cpus);
6834

6835
	init_sched_rt_class();
6836
	init_sched_dl_class();
L
Linus Torvalds 已提交
6837 6838 6839 6840
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
6841
	sched_init_granularity();
L
Linus Torvalds 已提交
6842 6843 6844
}
#endif /* CONFIG_SMP */

6845 6846
const_debug unsigned int sysctl_timer_migration = 1;

L
Linus Torvalds 已提交
6847 6848 6849 6850 6851 6852 6853
int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

6854
#ifdef CONFIG_CGROUP_SCHED
6855 6856 6857 6858
/*
 * Default task group.
 * Every task in system belongs to this group at bootup.
 */
6859
struct task_group root_task_group;
6860
LIST_HEAD(task_groups);
6861
#endif
P
Peter Zijlstra 已提交
6862

6863
DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
P
Peter Zijlstra 已提交
6864

L
Linus Torvalds 已提交
6865 6866
void __init sched_init(void)
{
I
Ingo Molnar 已提交
6867
	int i, j;
6868 6869 6870 6871 6872 6873 6874
	unsigned long alloc_size = 0, ptr;

#ifdef CONFIG_FAIR_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
#endif
#ifdef CONFIG_RT_GROUP_SCHED
	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6875
#endif
6876
#ifdef CONFIG_CPUMASK_OFFSTACK
6877
	alloc_size += num_possible_cpus() * cpumask_size();
6878 6879
#endif
	if (alloc_size) {
6880
		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6881 6882

#ifdef CONFIG_FAIR_GROUP_SCHED
6883
		root_task_group.se = (struct sched_entity **)ptr;
6884 6885
		ptr += nr_cpu_ids * sizeof(void **);

6886
		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6887
		ptr += nr_cpu_ids * sizeof(void **);
6888

6889
#endif /* CONFIG_FAIR_GROUP_SCHED */
6890
#ifdef CONFIG_RT_GROUP_SCHED
6891
		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6892 6893
		ptr += nr_cpu_ids * sizeof(void **);

6894
		root_task_group.rt_rq = (struct rt_rq **)ptr;
6895 6896
		ptr += nr_cpu_ids * sizeof(void **);

6897
#endif /* CONFIG_RT_GROUP_SCHED */
6898 6899
#ifdef CONFIG_CPUMASK_OFFSTACK
		for_each_possible_cpu(i) {
6900
			per_cpu(load_balance_mask, i) = (void *)ptr;
6901 6902 6903
			ptr += cpumask_size();
		}
#endif /* CONFIG_CPUMASK_OFFSTACK */
6904
	}
I
Ingo Molnar 已提交
6905

6906 6907 6908
	init_rt_bandwidth(&def_rt_bandwidth,
			global_rt_period(), global_rt_runtime());
	init_dl_bandwidth(&def_dl_bandwidth,
6909
			global_rt_period(), global_rt_runtime());
6910

G
Gregory Haskins 已提交
6911 6912 6913 6914
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

6915
#ifdef CONFIG_RT_GROUP_SCHED
6916
	init_rt_bandwidth(&root_task_group.rt_bandwidth,
6917
			global_rt_period(), global_rt_runtime());
6918
#endif /* CONFIG_RT_GROUP_SCHED */
6919

D
Dhaval Giani 已提交
6920
#ifdef CONFIG_CGROUP_SCHED
6921 6922
	list_add(&root_task_group.list, &task_groups);
	INIT_LIST_HEAD(&root_task_group.children);
6923
	INIT_LIST_HEAD(&root_task_group.siblings);
6924
	autogroup_init(&init_task);
6925

D
Dhaval Giani 已提交
6926
#endif /* CONFIG_CGROUP_SCHED */
P
Peter Zijlstra 已提交
6927

6928
	for_each_possible_cpu(i) {
6929
		struct rq *rq;
L
Linus Torvalds 已提交
6930 6931

		rq = cpu_rq(i);
6932
		raw_spin_lock_init(&rq->lock);
N
Nick Piggin 已提交
6933
		rq->nr_running = 0;
6934 6935
		rq->calc_load_active = 0;
		rq->calc_load_update = jiffies + LOAD_FREQ;
6936
		init_cfs_rq(&rq->cfs);
P
Peter Zijlstra 已提交
6937
		init_rt_rq(&rq->rt, rq);
6938
		init_dl_rq(&rq->dl, rq);
I
Ingo Molnar 已提交
6939
#ifdef CONFIG_FAIR_GROUP_SCHED
6940
		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
P
Peter Zijlstra 已提交
6941
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
D
Dhaval Giani 已提交
6942
		/*
6943
		 * How much cpu bandwidth does root_task_group get?
D
Dhaval Giani 已提交
6944 6945 6946 6947
		 *
		 * In case of task-groups formed thr' the cgroup filesystem, it
		 * gets 100% of the cpu resources in the system. This overall
		 * system cpu resource is divided among the tasks of
6948
		 * root_task_group and its child task-groups in a fair manner,
D
Dhaval Giani 已提交
6949 6950 6951
		 * based on each entity's (task or task-group's) weight
		 * (se->load.weight).
		 *
6952
		 * In other words, if root_task_group has 10 tasks of weight
D
Dhaval Giani 已提交
6953 6954 6955
		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
		 * then A0's share of the cpu resource is:
		 *
6956
		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
D
Dhaval Giani 已提交
6957
		 *
6958 6959
		 * We achieve this by letting root_task_group's tasks sit
		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
D
Dhaval Giani 已提交
6960
		 */
6961
		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6962
		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
D
Dhaval Giani 已提交
6963 6964 6965
#endif /* CONFIG_FAIR_GROUP_SCHED */

		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6966
#ifdef CONFIG_RT_GROUP_SCHED
6967
		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
I
Ingo Molnar 已提交
6968
#endif
L
Linus Torvalds 已提交
6969

I
Ingo Molnar 已提交
6970 6971
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
6972 6973 6974

		rq->last_load_update_tick = jiffies;

L
Linus Torvalds 已提交
6975
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
6976
		rq->sd = NULL;
G
Gregory Haskins 已提交
6977
		rq->rd = NULL;
6978
		rq->cpu_capacity = SCHED_CAPACITY_SCALE;
6979
		rq->post_schedule = 0;
L
Linus Torvalds 已提交
6980
		rq->active_balance = 0;
I
Ingo Molnar 已提交
6981
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
6982
		rq->push_cpu = 0;
6983
		rq->cpu = i;
6984
		rq->online = 0;
6985 6986
		rq->idle_stamp = 0;
		rq->avg_idle = 2*sysctl_sched_migration_cost;
6987
		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6988 6989 6990

		INIT_LIST_HEAD(&rq->cfs_tasks);

6991
		rq_attach_root(rq, &def_root_domain);
6992
#ifdef CONFIG_NO_HZ_COMMON
6993
		rq->nohz_flags = 0;
6994
#endif
6995 6996 6997
#ifdef CONFIG_NO_HZ_FULL
		rq->last_sched_tick = 0;
#endif
L
Linus Torvalds 已提交
6998
#endif
P
Peter Zijlstra 已提交
6999
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7000 7001 7002
		atomic_set(&rq->nr_iowait, 0);
	}

7003
	set_load_weight(&init_task);
7004

7005 7006 7007 7008
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

L
Linus Torvalds 已提交
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
7022 7023 7024

	calc_load_update = jiffies + LOAD_FREQ;

I
Ingo Molnar 已提交
7025 7026 7027 7028
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
7029

7030
#ifdef CONFIG_SMP
7031
	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
R
Rusty Russell 已提交
7032 7033 7034
	/* May be allocated at isolcpus cmdline parse time */
	if (cpu_isolated_map == NULL)
		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7035
	idle_thread_set_boot_cpu();
7036
	set_cpu_rq_start_time();
7037 7038
#endif
	init_sched_fair_class();
7039

7040
	scheduler_running = 1;
L
Linus Torvalds 已提交
7041 7042
}

7043
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7044 7045
static inline int preempt_count_equals(int preempt_offset)
{
7046
	int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7047

A
Arnd Bergmann 已提交
7048
	return (nested == preempt_offset);
7049 7050
}

7051
void __might_sleep(const char *file, int line, int preempt_offset)
L
Linus Torvalds 已提交
7052 7053 7054
{
	static unsigned long prev_jiffy;	/* ratelimiting */

7055
	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7056 7057
	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
	     !is_idle_task(current)) ||
7058
	    system_state != SYSTEM_RUNNING || oops_in_progress)
I
Ingo Molnar 已提交
7059 7060 7061 7062 7063
		return;
	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
		return;
	prev_jiffy = jiffies;

P
Peter Zijlstra 已提交
7064 7065 7066 7067 7068 7069 7070
	printk(KERN_ERR
		"BUG: sleeping function called from invalid context at %s:%d\n",
			file, line);
	printk(KERN_ERR
		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
			in_atomic(), irqs_disabled(),
			current->pid, current->comm);
I
Ingo Molnar 已提交
7071 7072 7073 7074

	debug_show_held_locks(current);
	if (irqs_disabled())
		print_irqtrace_events(current);
7075 7076 7077 7078 7079 7080 7081
#ifdef CONFIG_DEBUG_PREEMPT
	if (!preempt_count_equals(preempt_offset)) {
		pr_err("Preemption disabled at:");
		print_ip_sym(current->preempt_disable_ip);
		pr_cont("\n");
	}
#endif
I
Ingo Molnar 已提交
7082
	dump_stack();
L
Linus Torvalds 已提交
7083 7084 7085 7086 7087
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7088 7089
static void normalize_task(struct rq *rq, struct task_struct *p)
{
P
Peter Zijlstra 已提交
7090
	const struct sched_class *prev_class = p->sched_class;
7091 7092 7093
	struct sched_attr attr = {
		.sched_policy = SCHED_NORMAL,
	};
P
Peter Zijlstra 已提交
7094
	int old_prio = p->prio;
7095
	int on_rq;
7096

P
Peter Zijlstra 已提交
7097
	on_rq = p->on_rq;
7098
	if (on_rq)
7099
		dequeue_task(rq, p, 0);
7100
	__setscheduler(rq, p, &attr);
7101
	if (on_rq) {
7102
		enqueue_task(rq, p, 0);
7103 7104
		resched_task(rq->curr);
	}
P
Peter Zijlstra 已提交
7105 7106

	check_class_changed(rq, p, prev_class, old_prio);
7107 7108
}

L
Linus Torvalds 已提交
7109 7110
void normalize_rt_tasks(void)
{
7111
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7112
	unsigned long flags;
7113
	struct rq *rq;
L
Linus Torvalds 已提交
7114

7115
	read_lock_irqsave(&tasklist_lock, flags);
7116
	do_each_thread(g, p) {
7117 7118 7119 7120 7121 7122
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7123 7124
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
7125 7126 7127
		p->se.statistics.wait_start	= 0;
		p->se.statistics.sleep_start	= 0;
		p->se.statistics.block_start	= 0;
I
Ingo Molnar 已提交
7128
#endif
I
Ingo Molnar 已提交
7129

7130
		if (!dl_task(p) && !rt_task(p)) {
I
Ingo Molnar 已提交
7131 7132 7133 7134
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
7135
			if (task_nice(p) < 0 && p->mm)
I
Ingo Molnar 已提交
7136
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7137
			continue;
I
Ingo Molnar 已提交
7138
		}
L
Linus Torvalds 已提交
7139

7140
		raw_spin_lock(&p->pi_lock);
7141
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7142

7143
		normalize_task(rq, p);
7144

7145
		__task_rq_unlock(rq);
7146
		raw_spin_unlock(&p->pi_lock);
7147 7148
	} while_each_thread(g, p);

7149
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7150 7151 7152
}

#endif /* CONFIG_MAGIC_SYSRQ */
7153

7154
#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7155
/*
7156
 * These functions are only useful for the IA64 MCA handling, or kdb.
7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7170 7171
 *
 * Return: The current task for @cpu.
7172
 */
7173
struct task_struct *curr_task(int cpu)
7174 7175 7176 7177
{
	return cpu_curr(cpu);
}

7178 7179 7180
#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */

#ifdef CONFIG_IA64
7181 7182 7183 7184 7185 7186
/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7187 7188
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7189 7190 7191 7192 7193 7194 7195
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7196
void set_curr_task(int cpu, struct task_struct *p)
7197 7198 7199 7200 7201
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7202

D
Dhaval Giani 已提交
7203
#ifdef CONFIG_CGROUP_SCHED
7204 7205 7206
/* task_group_lock serializes the addition/removal of task groups */
static DEFINE_SPINLOCK(task_group_lock);

7207 7208 7209 7210
static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
7211
	autogroup_free(tg);
7212 7213 7214 7215
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
7216
struct task_group *sched_create_group(struct task_group *parent)
7217 7218 7219 7220 7221 7222 7223
{
	struct task_group *tg;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

7224
	if (!alloc_fair_sched_group(tg, parent))
7225 7226
		goto err;

7227
	if (!alloc_rt_sched_group(tg, parent))
7228 7229
		goto err;

7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240
	return tg;

err:
	free_sched_group(tg);
	return ERR_PTR(-ENOMEM);
}

void sched_online_group(struct task_group *tg, struct task_group *parent)
{
	unsigned long flags;

7241
	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7242
	list_add_rcu(&tg->list, &task_groups);
P
Peter Zijlstra 已提交
7243 7244 7245 7246 7247

	WARN_ON(!parent); /* root should already exist */

	tg->parent = parent;
	INIT_LIST_HEAD(&tg->children);
7248
	list_add_rcu(&tg->siblings, &parent->children);
7249
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7250 7251
}

7252
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7253
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7254 7255
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7256
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7257 7258
}

7259
/* Destroy runqueue etc associated with a task group */
7260
void sched_destroy_group(struct task_group *tg)
7261 7262 7263 7264 7265 7266
{
	/* wait for possible concurrent references to cfs_rqs complete */
	call_rcu(&tg->rcu, free_sched_group_rcu);
}

void sched_offline_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7267
{
7268
	unsigned long flags;
7269
	int i;
S
Srivatsa Vaddagiri 已提交
7270

7271 7272
	/* end participation in shares distribution */
	for_each_possible_cpu(i)
7273
		unregister_fair_sched_group(tg, i);
7274 7275

	spin_lock_irqsave(&task_group_lock, flags);
P
Peter Zijlstra 已提交
7276
	list_del_rcu(&tg->list);
P
Peter Zijlstra 已提交
7277
	list_del_rcu(&tg->siblings);
7278
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7279 7280
}

7281
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7282 7283 7284
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7285 7286
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7287
{
P
Peter Zijlstra 已提交
7288
	struct task_group *tg;
S
Srivatsa Vaddagiri 已提交
7289 7290 7291 7292 7293 7294
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

7295
	running = task_current(rq, tsk);
P
Peter Zijlstra 已提交
7296
	on_rq = tsk->on_rq;
S
Srivatsa Vaddagiri 已提交
7297

7298
	if (on_rq)
S
Srivatsa Vaddagiri 已提交
7299
		dequeue_task(rq, tsk, 0);
7300 7301
	if (unlikely(running))
		tsk->sched_class->put_prev_task(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7302

7303
	tg = container_of(task_css_check(tsk, cpu_cgrp_id,
P
Peter Zijlstra 已提交
7304 7305 7306 7307 7308
				lockdep_is_held(&tsk->sighand->siglock)),
			  struct task_group, css);
	tg = autogroup_task_group(tsk, tg);
	tsk->sched_task_group = tg;

P
Peter Zijlstra 已提交
7309
#ifdef CONFIG_FAIR_GROUP_SCHED
7310 7311 7312
	if (tsk->sched_class->task_move_group)
		tsk->sched_class->task_move_group(tsk, on_rq);
	else
P
Peter Zijlstra 已提交
7313
#endif
7314
		set_task_rq(tsk, task_cpu(tsk));
P
Peter Zijlstra 已提交
7315

7316 7317 7318
	if (unlikely(running))
		tsk->sched_class->set_curr_task(rq);
	if (on_rq)
7319
		enqueue_task(rq, tsk, 0);
S
Srivatsa Vaddagiri 已提交
7320

7321
	task_rq_unlock(rq, tsk, &flags);
S
Srivatsa Vaddagiri 已提交
7322
}
D
Dhaval Giani 已提交
7323
#endif /* CONFIG_CGROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
7324

7325 7326 7327 7328 7329
#ifdef CONFIG_RT_GROUP_SCHED
/*
 * Ensure that the real time constraints are schedulable.
 */
static DEFINE_MUTEX(rt_constraints_mutex);
P
Peter Zijlstra 已提交
7330

P
Peter Zijlstra 已提交
7331 7332
/* Must be called with tasklist_lock held */
static inline int tg_has_rt_tasks(struct task_group *tg)
7333
{
P
Peter Zijlstra 已提交
7334
	struct task_struct *g, *p;
7335

P
Peter Zijlstra 已提交
7336
	do_each_thread(g, p) {
7337
		if (rt_task(p) && task_rq(p)->rt.tg == tg)
P
Peter Zijlstra 已提交
7338 7339
			return 1;
	} while_each_thread(g, p);
7340

P
Peter Zijlstra 已提交
7341 7342
	return 0;
}
7343

P
Peter Zijlstra 已提交
7344 7345 7346 7347 7348
struct rt_schedulable_data {
	struct task_group *tg;
	u64 rt_period;
	u64 rt_runtime;
};
7349

7350
static int tg_rt_schedulable(struct task_group *tg, void *data)
P
Peter Zijlstra 已提交
7351 7352 7353 7354 7355
{
	struct rt_schedulable_data *d = data;
	struct task_group *child;
	unsigned long total, sum = 0;
	u64 period, runtime;
7356

P
Peter Zijlstra 已提交
7357 7358
	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	runtime = tg->rt_bandwidth.rt_runtime;
7359

P
Peter Zijlstra 已提交
7360 7361 7362
	if (tg == d->tg) {
		period = d->rt_period;
		runtime = d->rt_runtime;
7363 7364
	}

7365 7366 7367 7368 7369
	/*
	 * Cannot have more runtime than the period.
	 */
	if (runtime > period && runtime != RUNTIME_INF)
		return -EINVAL;
P
Peter Zijlstra 已提交
7370

7371 7372 7373
	/*
	 * Ensure we don't starve existing RT tasks.
	 */
P
Peter Zijlstra 已提交
7374 7375
	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
		return -EBUSY;
P
Peter Zijlstra 已提交
7376

P
Peter Zijlstra 已提交
7377
	total = to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7378

7379 7380 7381 7382 7383
	/*
	 * Nobody can have more than the global setting allows.
	 */
	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
		return -EINVAL;
P
Peter Zijlstra 已提交
7384

7385 7386 7387
	/*
	 * The sum of our children's runtime should not exceed our own.
	 */
P
Peter Zijlstra 已提交
7388 7389 7390
	list_for_each_entry_rcu(child, &tg->children, siblings) {
		period = ktime_to_ns(child->rt_bandwidth.rt_period);
		runtime = child->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7391

P
Peter Zijlstra 已提交
7392 7393 7394 7395
		if (child == d->tg) {
			period = d->rt_period;
			runtime = d->rt_runtime;
		}
P
Peter Zijlstra 已提交
7396

P
Peter Zijlstra 已提交
7397
		sum += to_ratio(period, runtime);
P
Peter Zijlstra 已提交
7398
	}
P
Peter Zijlstra 已提交
7399

P
Peter Zijlstra 已提交
7400 7401 7402 7403
	if (sum > total)
		return -EINVAL;

	return 0;
P
Peter Zijlstra 已提交
7404 7405
}

P
Peter Zijlstra 已提交
7406
static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7407
{
7408 7409
	int ret;

P
Peter Zijlstra 已提交
7410 7411 7412 7413 7414 7415
	struct rt_schedulable_data data = {
		.tg = tg,
		.rt_period = period,
		.rt_runtime = runtime,
	};

7416 7417 7418 7419 7420
	rcu_read_lock();
	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
	rcu_read_unlock();

	return ret;
7421 7422
}

7423
static int tg_set_rt_bandwidth(struct task_group *tg,
7424
		u64 rt_period, u64 rt_runtime)
P
Peter Zijlstra 已提交
7425
{
P
Peter Zijlstra 已提交
7426
	int i, err = 0;
P
Peter Zijlstra 已提交
7427 7428

	mutex_lock(&rt_constraints_mutex);
7429
	read_lock(&tasklist_lock);
P
Peter Zijlstra 已提交
7430 7431
	err = __rt_schedulable(tg, rt_period, rt_runtime);
	if (err)
P
Peter Zijlstra 已提交
7432
		goto unlock;
P
Peter Zijlstra 已提交
7433

7434
	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7435 7436
	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
	tg->rt_bandwidth.rt_runtime = rt_runtime;
P
Peter Zijlstra 已提交
7437 7438 7439 7440

	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = tg->rt_rq[i];

7441
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7442
		rt_rq->rt_runtime = rt_runtime;
7443
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7444
	}
7445
	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
P
Peter Zijlstra 已提交
7446
unlock:
7447
	read_unlock(&tasklist_lock);
P
Peter Zijlstra 已提交
7448 7449 7450
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7451 7452
}

7453
static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7454 7455 7456 7457 7458 7459 7460 7461
{
	u64 rt_runtime, rt_period;

	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us < 0)
		rt_runtime = RUNTIME_INF;

7462
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7463 7464
}

7465
static long sched_group_rt_runtime(struct task_group *tg)
P
Peter Zijlstra 已提交
7466 7467 7468
{
	u64 rt_runtime_us;

7469
	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
7470 7471
		return -1;

7472
	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
P
Peter Zijlstra 已提交
7473 7474 7475
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7476

7477
static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7478 7479 7480 7481 7482 7483
{
	u64 rt_runtime, rt_period;

	rt_period = (u64)rt_period_us * NSEC_PER_USEC;
	rt_runtime = tg->rt_bandwidth.rt_runtime;

7484 7485 7486
	if (rt_period == 0)
		return -EINVAL;

7487
	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7488 7489
}

7490
static long sched_group_rt_period(struct task_group *tg)
7491 7492 7493 7494 7495 7496 7497
{
	u64 rt_period_us;

	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
	do_div(rt_period_us, NSEC_PER_USEC);
	return rt_period_us;
}
7498
#endif /* CONFIG_RT_GROUP_SCHED */
7499

7500
#ifdef CONFIG_RT_GROUP_SCHED
7501 7502 7503 7504 7505
static int sched_rt_global_constraints(void)
{
	int ret = 0;

	mutex_lock(&rt_constraints_mutex);
P
Peter Zijlstra 已提交
7506
	read_lock(&tasklist_lock);
7507
	ret = __rt_schedulable(NULL, 0, 0);
P
Peter Zijlstra 已提交
7508
	read_unlock(&tasklist_lock);
7509 7510 7511 7512
	mutex_unlock(&rt_constraints_mutex);

	return ret;
}
7513

7514
static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7515 7516 7517 7518 7519 7520 7521 7522
{
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
		return 0;

	return 1;
}

7523
#else /* !CONFIG_RT_GROUP_SCHED */
7524 7525
static int sched_rt_global_constraints(void)
{
P
Peter Zijlstra 已提交
7526
	unsigned long flags;
7527
	int i, ret = 0;
7528

7529
	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7530 7531 7532
	for_each_possible_cpu(i) {
		struct rt_rq *rt_rq = &cpu_rq(i)->rt;

7533
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7534
		rt_rq->rt_runtime = global_rt_runtime();
7535
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
7536
	}
7537
	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
P
Peter Zijlstra 已提交
7538

7539
	return ret;
7540
}
7541
#endif /* CONFIG_RT_GROUP_SCHED */
7542

7543 7544
static int sched_dl_global_constraints(void)
{
7545 7546
	u64 runtime = global_rt_runtime();
	u64 period = global_rt_period();
7547
	u64 new_bw = to_ratio(period, runtime);
7548
	int cpu, ret = 0;
7549
	unsigned long flags;
7550 7551 7552 7553 7554 7555 7556 7557 7558 7559

	/*
	 * Here we want to check the bandwidth not being set to some
	 * value smaller than the currently allocated bandwidth in
	 * any of the root_domains.
	 *
	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
	 * cycling on root_domains... Discussion on different/better
	 * solutions is welcome!
	 */
7560 7561
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);
7562

7563
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7564 7565
		if (new_bw < dl_b->total_bw)
			ret = -EBUSY;
7566
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7567 7568 7569

		if (ret)
			break;
7570 7571
	}

7572
	return ret;
7573 7574
}

7575
static void sched_dl_do_global(void)
7576
{
7577 7578
	u64 new_bw = -1;
	int cpu;
7579
	unsigned long flags;
7580

7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592
	def_dl_bandwidth.dl_period = global_rt_period();
	def_dl_bandwidth.dl_runtime = global_rt_runtime();

	if (global_rt_runtime() != RUNTIME_INF)
		new_bw = to_ratio(global_rt_period(), global_rt_runtime());

	/*
	 * FIXME: As above...
	 */
	for_each_possible_cpu(cpu) {
		struct dl_bw *dl_b = dl_bw_of(cpu);

7593
		raw_spin_lock_irqsave(&dl_b->lock, flags);
7594
		dl_b->bw = new_bw;
7595
		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7596
	}
7597 7598 7599 7600 7601 7602 7603
}

static int sched_rt_global_validate(void)
{
	if (sysctl_sched_rt_period <= 0)
		return -EINVAL;

7604 7605
	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7606 7607 7608 7609 7610 7611 7612 7613 7614
		return -EINVAL;

	return 0;
}

static void sched_rt_do_global(void)
{
	def_rt_bandwidth.rt_runtime = global_rt_runtime();
	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7615 7616
}

7617
int sched_rt_handler(struct ctl_table *table, int write,
7618
		void __user *buffer, size_t *lenp,
7619 7620 7621 7622
		loff_t *ppos)
{
	int old_period, old_runtime;
	static DEFINE_MUTEX(mutex);
7623
	int ret;
7624 7625 7626 7627 7628

	mutex_lock(&mutex);
	old_period = sysctl_sched_rt_period;
	old_runtime = sysctl_sched_rt_runtime;

7629
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7630 7631

	if (!ret && write) {
7632 7633 7634 7635
		ret = sched_rt_global_validate();
		if (ret)
			goto undo;

7636
		ret = sched_rt_global_constraints();
7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650
		if (ret)
			goto undo;

		ret = sched_dl_global_constraints();
		if (ret)
			goto undo;

		sched_rt_do_global();
		sched_dl_do_global();
	}
	if (0) {
undo:
		sysctl_sched_rt_period = old_period;
		sysctl_sched_rt_runtime = old_runtime;
7651 7652 7653 7654 7655
	}
	mutex_unlock(&mutex);

	return ret;
}
7656

7657
int sched_rr_handler(struct ctl_table *table, int write,
7658 7659 7660 7661 7662 7663 7664 7665
		void __user *buffer, size_t *lenp,
		loff_t *ppos)
{
	int ret;
	static DEFINE_MUTEX(mutex);

	mutex_lock(&mutex);
	ret = proc_dointvec(table, write, buffer, lenp, ppos);
7666 7667
	/* make sure that internally we keep jiffies */
	/* also, writing zero resets timeslice to default */
7668
	if (!ret && write) {
7669 7670
		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7671 7672 7673 7674 7675
	}
	mutex_unlock(&mutex);
	return ret;
}

7676
#ifdef CONFIG_CGROUP_SCHED
7677

7678
static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7679
{
7680
	return css ? container_of(css, struct task_group, css) : NULL;
7681 7682
}

7683 7684
static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7685
{
7686 7687
	struct task_group *parent = css_tg(parent_css);
	struct task_group *tg;
7688

7689
	if (!parent) {
7690
		/* This is early initialization for the top cgroup */
7691
		return &root_task_group.css;
7692 7693
	}

7694
	tg = sched_create_group(parent);
7695 7696 7697 7698 7699 7700
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	return &tg->css;
}

7701
static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7702
{
7703
	struct task_group *tg = css_tg(css);
T
Tejun Heo 已提交
7704
	struct task_group *parent = css_tg(css->parent);
7705

T
Tejun Heo 已提交
7706 7707
	if (parent)
		sched_online_group(tg, parent);
7708 7709 7710
	return 0;
}

7711
static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7712
{
7713
	struct task_group *tg = css_tg(css);
7714 7715 7716 7717

	sched_destroy_group(tg);
}

7718
static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
7719
{
7720
	struct task_group *tg = css_tg(css);
7721 7722 7723 7724

	sched_offline_group(tg);
}

7725
static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
7726
				 struct cgroup_taskset *tset)
7727
{
7728 7729
	struct task_struct *task;

7730
	cgroup_taskset_for_each(task, tset) {
7731
#ifdef CONFIG_RT_GROUP_SCHED
7732
		if (!sched_rt_can_attach(css_tg(css), task))
7733
			return -EINVAL;
7734
#else
7735 7736 7737
		/* We don't support RT-tasks being in separate groups */
		if (task->sched_class != &fair_sched_class)
			return -EINVAL;
7738
#endif
7739
	}
7740 7741
	return 0;
}
7742

7743
static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
7744
			      struct cgroup_taskset *tset)
7745
{
7746 7747
	struct task_struct *task;

7748
	cgroup_taskset_for_each(task, tset)
7749
		sched_move_task(task);
7750 7751
}

7752 7753 7754
static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
			    struct cgroup_subsys_state *old_css,
			    struct task_struct *task)
7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766
{
	/*
	 * cgroup_exit() is called in the copy_process() failure path.
	 * Ignore this case since the task hasn't ran yet, this avoids
	 * trying to poke a half freed task state from generic code.
	 */
	if (!(task->flags & PF_EXITING))
		return;

	sched_move_task(task);
}

7767
#ifdef CONFIG_FAIR_GROUP_SCHED
7768 7769
static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
				struct cftype *cftype, u64 shareval)
7770
{
7771
	return sched_group_set_shares(css_tg(css), scale_load(shareval));
7772 7773
}

7774 7775
static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
			       struct cftype *cft)
7776
{
7777
	struct task_group *tg = css_tg(css);
7778

7779
	return (u64) scale_load_down(tg->shares);
7780
}
7781 7782

#ifdef CONFIG_CFS_BANDWIDTH
7783 7784
static DEFINE_MUTEX(cfs_constraints_mutex);

7785 7786 7787
const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */

7788 7789
static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);

7790 7791
static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
{
7792
	int i, ret = 0, runtime_enabled, runtime_was_enabled;
7793
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813

	if (tg == &root_task_group)
		return -EINVAL;

	/*
	 * Ensure we have at some amount of bandwidth every period.  This is
	 * to prevent reaching a state of large arrears when throttled via
	 * entity_tick() resulting in prolonged exit starvation.
	 */
	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
		return -EINVAL;

	/*
	 * Likewise, bound things on the otherside by preventing insane quota
	 * periods.  This also allows us to normalize in computing quota
	 * feasibility.
	 */
	if (period > max_cfs_quota_period)
		return -EINVAL;

7814 7815 7816 7817 7818
	mutex_lock(&cfs_constraints_mutex);
	ret = __cfs_schedulable(tg, period, quota);
	if (ret)
		goto out_unlock;

7819
	runtime_enabled = quota != RUNTIME_INF;
7820
	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7821 7822 7823 7824 7825 7826
	/*
	 * If we need to toggle cfs_bandwidth_used, off->on must occur
	 * before making related changes, and on->off must occur afterwards
	 */
	if (runtime_enabled && !runtime_was_enabled)
		cfs_bandwidth_usage_inc();
7827 7828 7829
	raw_spin_lock_irq(&cfs_b->lock);
	cfs_b->period = ns_to_ktime(period);
	cfs_b->quota = quota;
7830

P
Paul Turner 已提交
7831
	__refill_cfs_bandwidth_runtime(cfs_b);
7832 7833 7834
	/* restart the period timer (if active) to handle new period expiry */
	if (runtime_enabled && cfs_b->timer_active) {
		/* force a reprogram */
7835
		__start_cfs_bandwidth(cfs_b, true);
7836
	}
7837 7838 7839 7840
	raw_spin_unlock_irq(&cfs_b->lock);

	for_each_possible_cpu(i) {
		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7841
		struct rq *rq = cfs_rq->rq;
7842 7843

		raw_spin_lock_irq(&rq->lock);
7844
		cfs_rq->runtime_enabled = runtime_enabled;
7845
		cfs_rq->runtime_remaining = 0;
7846

7847
		if (cfs_rq->throttled)
7848
			unthrottle_cfs_rq(cfs_rq);
7849 7850
		raw_spin_unlock_irq(&rq->lock);
	}
7851 7852
	if (runtime_was_enabled && !runtime_enabled)
		cfs_bandwidth_usage_dec();
7853 7854
out_unlock:
	mutex_unlock(&cfs_constraints_mutex);
7855

7856
	return ret;
7857 7858 7859 7860 7861 7862
}

int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
{
	u64 quota, period;

7863
	period = ktime_to_ns(tg->cfs_bandwidth.period);
7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875
	if (cfs_quota_us < 0)
		quota = RUNTIME_INF;
	else
		quota = (u64)cfs_quota_us * NSEC_PER_USEC;

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_quota(struct task_group *tg)
{
	u64 quota_us;

7876
	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7877 7878
		return -1;

7879
	quota_us = tg->cfs_bandwidth.quota;
7880 7881 7882 7883 7884 7885 7886 7887 7888 7889
	do_div(quota_us, NSEC_PER_USEC);

	return quota_us;
}

int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
{
	u64 quota, period;

	period = (u64)cfs_period_us * NSEC_PER_USEC;
7890
	quota = tg->cfs_bandwidth.quota;
7891 7892 7893 7894 7895 7896 7897 7898

	return tg_set_cfs_bandwidth(tg, period, quota);
}

long tg_get_cfs_period(struct task_group *tg)
{
	u64 cfs_period_us;

7899
	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7900 7901 7902 7903 7904
	do_div(cfs_period_us, NSEC_PER_USEC);

	return cfs_period_us;
}

7905 7906
static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
				  struct cftype *cft)
7907
{
7908
	return tg_get_cfs_quota(css_tg(css));
7909 7910
}

7911 7912
static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
				   struct cftype *cftype, s64 cfs_quota_us)
7913
{
7914
	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7915 7916
}

7917 7918
static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
				   struct cftype *cft)
7919
{
7920
	return tg_get_cfs_period(css_tg(css));
7921 7922
}

7923 7924
static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 cfs_period_us)
7925
{
7926
	return tg_set_cfs_period(css_tg(css), cfs_period_us);
7927 7928
}

7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960
struct cfs_schedulable_data {
	struct task_group *tg;
	u64 period, quota;
};

/*
 * normalize group quota/period to be quota/max_period
 * note: units are usecs
 */
static u64 normalize_cfs_quota(struct task_group *tg,
			       struct cfs_schedulable_data *d)
{
	u64 quota, period;

	if (tg == d->tg) {
		period = d->period;
		quota = d->quota;
	} else {
		period = tg_get_cfs_period(tg);
		quota = tg_get_cfs_quota(tg);
	}

	/* note: these should typically be equivalent */
	if (quota == RUNTIME_INF || quota == -1)
		return RUNTIME_INF;

	return to_ratio(period, quota);
}

static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
{
	struct cfs_schedulable_data *d = data;
7961
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7962 7963 7964 7965 7966
	s64 quota = 0, parent_quota = -1;

	if (!tg->parent) {
		quota = RUNTIME_INF;
	} else {
7967
		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987

		quota = normalize_cfs_quota(tg, d);
		parent_quota = parent_b->hierarchal_quota;

		/*
		 * ensure max(child_quota) <= parent_quota, inherit when no
		 * limit is set
		 */
		if (quota == RUNTIME_INF)
			quota = parent_quota;
		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
			return -EINVAL;
	}
	cfs_b->hierarchal_quota = quota;

	return 0;
}

static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
{
7988
	int ret;
7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999
	struct cfs_schedulable_data data = {
		.tg = tg,
		.period = period,
		.quota = quota,
	};

	if (quota != RUNTIME_INF) {
		do_div(data.period, NSEC_PER_USEC);
		do_div(data.quota, NSEC_PER_USEC);
	}

8000 8001 8002 8003 8004
	rcu_read_lock();
	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
	rcu_read_unlock();

	return ret;
8005
}
8006

8007
static int cpu_stats_show(struct seq_file *sf, void *v)
8008
{
8009
	struct task_group *tg = css_tg(seq_css(sf));
8010
	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8011

8012 8013 8014
	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8015 8016 8017

	return 0;
}
8018
#endif /* CONFIG_CFS_BANDWIDTH */
8019
#endif /* CONFIG_FAIR_GROUP_SCHED */
8020

8021
#ifdef CONFIG_RT_GROUP_SCHED
8022 8023
static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
				struct cftype *cft, s64 val)
P
Peter Zijlstra 已提交
8024
{
8025
	return sched_group_set_rt_runtime(css_tg(css), val);
P
Peter Zijlstra 已提交
8026 8027
}

8028 8029
static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
			       struct cftype *cft)
P
Peter Zijlstra 已提交
8030
{
8031
	return sched_group_rt_runtime(css_tg(css));
P
Peter Zijlstra 已提交
8032
}
8033

8034 8035
static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
				    struct cftype *cftype, u64 rt_period_us)
8036
{
8037
	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8038 8039
}

8040 8041
static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
				   struct cftype *cft)
8042
{
8043
	return sched_group_rt_period(css_tg(css));
8044
}
8045
#endif /* CONFIG_RT_GROUP_SCHED */
P
Peter Zijlstra 已提交
8046

8047
static struct cftype cpu_files[] = {
8048
#ifdef CONFIG_FAIR_GROUP_SCHED
8049 8050
	{
		.name = "shares",
8051 8052
		.read_u64 = cpu_shares_read_u64,
		.write_u64 = cpu_shares_write_u64,
8053
	},
8054
#endif
8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065
#ifdef CONFIG_CFS_BANDWIDTH
	{
		.name = "cfs_quota_us",
		.read_s64 = cpu_cfs_quota_read_s64,
		.write_s64 = cpu_cfs_quota_write_s64,
	},
	{
		.name = "cfs_period_us",
		.read_u64 = cpu_cfs_period_read_u64,
		.write_u64 = cpu_cfs_period_write_u64,
	},
8066 8067
	{
		.name = "stat",
8068
		.seq_show = cpu_stats_show,
8069
	},
8070
#endif
8071
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8072
	{
P
Peter Zijlstra 已提交
8073
		.name = "rt_runtime_us",
8074 8075
		.read_s64 = cpu_rt_runtime_read,
		.write_s64 = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8076
	},
8077 8078
	{
		.name = "rt_period_us",
8079 8080
		.read_u64 = cpu_rt_period_read_uint,
		.write_u64 = cpu_rt_period_write_uint,
8081
	},
8082
#endif
8083
	{ }	/* terminate */
8084 8085
};

8086
struct cgroup_subsys cpu_cgrp_subsys = {
8087 8088
	.css_alloc	= cpu_cgroup_css_alloc,
	.css_free	= cpu_cgroup_css_free,
8089 8090
	.css_online	= cpu_cgroup_css_online,
	.css_offline	= cpu_cgroup_css_offline,
8091 8092
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
8093
	.exit		= cpu_cgroup_exit,
8094
	.base_cftypes	= cpu_files,
8095 8096 8097
	.early_init	= 1,
};

8098
#endif	/* CONFIG_CGROUP_SCHED */
8099

8100 8101 8102 8103 8104
void dump_cpu_task(int cpu)
{
	pr_info("Task dump for CPU %d:\n", cpu);
	sched_show_task(cpu_curr(cpu));
}