hpsa.c 225.3 KB
Newer Older
1 2
/*
 *    Disk Array driver for HP Smart Array SAS controllers
3
 *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46 47 48
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
49
#include <linux/atomic.h>
50
#include <linux/jiffies.h>
D
Don Brace 已提交
51
#include <linux/percpu-defs.h>
52
#include <linux/percpu.h>
D
Don Brace 已提交
53
#include <asm/unaligned.h>
54
#include <asm/div64.h>
55 56 57 58
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
59
#define HPSA_DRIVER_VERSION "3.4.4-1"
60
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
61
#define HPSA "hpsa"
62

63 64 65 66 67
/* How long to wait for CISS doorbell communication */
#define CLEAR_EVENT_WAIT_INTERVAL 20	/* ms for each msleep() call */
#define MODE_CHANGE_WAIT_INTERVAL 10	/* ms for each msleep() call */
#define MAX_CLEAR_EVENT_WAIT 30000	/* times 20 ms = 600 s */
#define MAX_MODE_CHANGE_WAIT 2000	/* times 10 ms = 20 s */
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
85 86 87 88
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
89 90 91 92 93 94 95 96

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
97 98
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
99
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
100 101 102 103 104 105 106
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
107 108 109 110 111 112
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
113 114 115 116 117 118 119 120 121 122
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
123
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
124 125 126
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
127 128 129 130 131
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
132 133 134 135 136
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
137
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
138
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
154 155
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
156
	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
157 158 159 160 161 162 163
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
164 165 166 167 168 169 170
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
171 172 173 174
	{0x21BD103C, "Smart Array P244br", &SA5_access},
	{0x21BE103C, "Smart Array P741m", &SA5_access},
	{0x21BF103C, "Smart HBA H240ar", &SA5_access},
	{0x21C0103C, "Smart Array P440ar", &SA5_access},
175
	{0x21C1103C, "Smart Array P840ar", &SA5_access},
176 177
	{0x21C2103C, "Smart Array P440", &SA5_access},
	{0x21C3103C, "Smart Array P441", &SA5_access},
178
	{0x21C4103C, "Smart Array", &SA5_access},
179 180 181 182
	{0x21C5103C, "Smart Array P841", &SA5_access},
	{0x21C6103C, "Smart HBA H244br", &SA5_access},
	{0x21C7103C, "Smart HBA H240", &SA5_access},
	{0x21C8103C, "Smart HBA H241", &SA5_access},
183
	{0x21C9103C, "Smart Array", &SA5_access},
184 185
	{0x21CA103C, "Smart Array P246br", &SA5_access},
	{0x21CB103C, "Smart Array P840", &SA5_access},
186 187
	{0x21CC103C, "Smart Array", &SA5_access},
	{0x21CD103C, "Smart Array", &SA5_access},
188
	{0x21CE103C, "Smart HBA", &SA5_access},
189 190 191 192 193
	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
194 195 196 197 198
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

static int number_of_controllers;

199 200
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
D
Don Brace 已提交
201
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
202 203

#ifdef CONFIG_COMPAT
D
Don Brace 已提交
204 205
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
	void __user *arg);
206 207 208 209
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
210
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
211
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
212
	int cmd_type);
213
static void hpsa_free_cmd_pool(struct ctlr_info *h);
214
#define VPD_PAGE (1 << 8)
215

J
Jeff Garzik 已提交
216
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
217 218 219
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
D
Don Brace 已提交
220
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
221 222

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
223
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
224
static int hpsa_slave_alloc(struct scsi_device *sdev);
225
static int hpsa_slave_configure(struct scsi_device *sdev);
226 227 228 229 230 231 232
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
233 234
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
D
Don Brace 已提交
235
	int nsgs, int min_blocks, u32 *bucket_map);
236
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
237
static inline u32 next_command(struct ctlr_info *h, u8 q);
238 239 240 241 242 243 244 245
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
246
static inline void finish_cmd(struct CommandList *c);
247
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
248 249
#define BOARD_NOT_READY 0
#define BOARD_READY 1
250
static void hpsa_drain_accel_commands(struct ctlr_info *h);
251
static void hpsa_flush_cache(struct ctlr_info *h);
252 253
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
254
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
255
static void hpsa_command_resubmit_worker(struct work_struct *work);
256 257
static u32 lockup_detected(struct ctlr_info *h);
static int detect_controller_lockup(struct ctlr_info *h);
258 259 260 261 262 263 264

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

265 266 267 268 269 270
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

271 272 273 274 275 276 277 278
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
		return 0;

	switch (c->err_info->SenseInfo[12]) {
	case STATE_CHANGED:
279
		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
280 281 282
			"detected, command retried\n", h->ctlr);
		break;
	case LUN_FAILED:
283 284
		dev_warn(&h->pdev->dev,
			HPSA "%d: LUN failure detected\n", h->ctlr);
285 286
		break;
	case REPORT_LUNS_CHANGED:
287 288
		dev_warn(&h->pdev->dev,
			HPSA "%d: report LUN data changed\n", h->ctlr);
289
	/*
290 291
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
292 293 294
	 */
		break;
	case POWER_OR_RESET:
295
		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
296 297 298
			"or device reset detected\n", h->ctlr);
		break;
	case UNIT_ATTENTION_CLEARED:
299
		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
300 301 302
		    "cleared by another initiator\n", h->ctlr);
		break;
	default:
303
		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
304 305 306 307 308 309
			"unit attention detected\n", h->ctlr);
		break;
	}
	return 1;
}

310 311 312 313 314 315 316 317 318 319
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int status, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &status) != 1)
		return -EINVAL;
	h = shost_to_hba(shost);
	h->acciopath_status = !!status;
	dev_warn(&h->pdev->dev,
		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
		h->acciopath_status ? "enabled" : "disabled");
	return count;
}

344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
static ssize_t host_store_raid_offload_debug(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int debug_level, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
		return -EINVAL;
	if (debug_level < 0)
		debug_level = 0;
	h = shost_to_hba(shost);
	h->raid_offload_debug = debug_level;
	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
		h->raid_offload_debug);
	return count;
}

369 370 371 372 373 374
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
375
	h = shost_to_hba(shost);
M
Mike Miller 已提交
376
	hpsa_scan_start(h->scsi_host);
377 378 379
	return count;
}

380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

395 396 397 398 399 400
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

401 402
	return snprintf(buf, 20, "%d\n",
			atomic_read(&h->commands_outstanding));
403 404
}

405 406 407 408 409 410 411 412
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
413
		h->transMethod & CFGTBL_Trans_Performant ?
414 415 416
			"performant" : "simple");
}

417 418 419 420 421 422 423 424 425 426 427
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
		(h->acciopath_status == 1) ?  "enabled" : "disabled");
}

428
/* List of controllers which cannot be hard reset on kexec with reset_devices */
429 430
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
S
Stephen Cameron 已提交
431
	0x324b103C, /* Smart Array P711m */
432 433 434 435 436 437 438 439 440 441
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
442
	0x40800E11, /* Smart Array 5i */
443 444
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
445 446 447 448 449 450
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
451 452
};

453 454
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
455
	0x40800E11, /* Smart Array 5i */
456 457 458 459 460 461
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
462 463 464 465 466 467 468 469 470 471 472
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

S
Stephen Cameron 已提交
473 474 475 476 477 478 479
static u32 needs_abort_tags_swizzled[] = {
	0x323D103C, /* Smart Array P700m */
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
};

static int board_id_in_array(u32 a[], int nelems, u32 board_id)
480 481 482
{
	int i;

S
Stephen Cameron 已提交
483 484 485 486
	for (i = 0; i < nelems; i++)
		if (a[i] == board_id)
			return 1;
	return 0;
487 488
}

S
Stephen Cameron 已提交
489
static int ctlr_is_hard_resettable(u32 board_id)
490
{
S
Stephen Cameron 已提交
491 492 493
	return !board_id_in_array(unresettable_controller,
			ARRAY_SIZE(unresettable_controller), board_id);
}
494

S
Stephen Cameron 已提交
495 496 497 498
static int ctlr_is_soft_resettable(u32 board_id)
{
	return !board_id_in_array(soft_unresettable_controller,
			ARRAY_SIZE(soft_unresettable_controller), board_id);
499 500
}

501 502 503 504 505 506
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

S
Stephen Cameron 已提交
507 508 509 510 511 512
static int ctlr_needs_abort_tags_swizzled(u32 board_id)
{
	return board_id_in_array(needs_abort_tags_swizzled,
			ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
}

513 514 515 516 517 518 519
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
520
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
521 522
}

523 524 525 526 527
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

528 529
static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
	"1(+0)ADM", "UNKNOWN"
530
};
531 532 533 534 535 536 537
#define HPSA_RAID_0	0
#define HPSA_RAID_4	1
#define HPSA_RAID_1	2	/* also used for RAID 10 */
#define HPSA_RAID_5	3	/* also used for RAID 50 */
#define HPSA_RAID_51	4
#define HPSA_RAID_6	5	/* also used for RAID 60 */
#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
538 539 540 541 542 543
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
544
	unsigned char rlevel;
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
568
	if (rlevel > RAID_UNKNOWN)
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "%d\n", offload_enabled);
}

648 649 650 651
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
652 653
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
654 655 656
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
		host_show_hp_ssd_smart_path_status,
		host_store_hp_ssd_smart_path_status);
657 658
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
			host_store_raid_offload_debug);
659 660 661 662 663 664
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
665 666
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
667 668 669 670 671

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
672
	&dev_attr_hp_ssd_smart_path_enabled,
673 674 675 676 677 678 679 680
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
681
	&dev_attr_resettable,
682
	&dev_attr_hp_ssd_smart_path_status,
683
	&dev_attr_raid_offload_debug,
684 685 686
	NULL,
};

687 688 689
#define HPSA_NRESERVED_CMDS	(HPSA_CMDS_RESERVED_FOR_ABORTS + \
		HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)

690 691
static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
692 693
	.name			= HPSA,
	.proc_name		= HPSA,
694 695 696
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
D
Don Brace 已提交
697
	.change_queue_depth	= hpsa_change_queue_depth,
698 699
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
700
	.eh_abort_handler	= hpsa_eh_abort_handler,
701 702 703
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
704
	.slave_configure	= hpsa_slave_configure,
705 706 707 708 709 710
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
711
	.max_sectors = 8192,
712
	.no_write_same = 1,
713 714
};

715
static inline u32 next_command(struct ctlr_info *h, u8 q)
716 717
{
	u32 a;
718
	struct reply_queue_buffer *rq = &h->reply_queue[q];
719

720 721 722
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

723
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
724
		return h->access.command_completed(h, q);
725

726 727 728
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
729
		atomic_dec(&h->commands_outstanding);
730 731 732 733
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
734 735 736
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
737 738 739 740
	}
	return a;
}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

767 768
/*
 * set_performant_mode: Modify the tag for cciss performant
769 770 771
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
772 773 774
#define DEFAULT_REPLY_QUEUE (-1)
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
					int reply_queue)
775
{
776
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
777
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
778 779 780
		if (unlikely(!h->msix_vector))
			return;
		if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
781
			c->Header.ReplyQueue =
782
				raw_smp_processor_id() % h->nreply_queues;
783 784
		else
			c->Header.ReplyQueue = reply_queue % h->nreply_queues;
785
	}
786 787
}

788
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
789 790
						struct CommandList *c,
						int reply_queue)
791 792 793
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

794 795
	/*
	 * Tell the controller to post the reply to the queue for this
796 797
	 * processor.  This seems to give the best I/O throughput.
	 */
798 799 800 801 802 803
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
	else
		cp->ReplyQueue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
804 805 806 807 808 809 810 811 812
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

static void set_ioaccel2_performant_mode(struct ctlr_info *h,
813 814
						struct CommandList *c,
						int reply_queue)
815 816 817
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

818 819
	/*
	 * Tell the controller to post the reply to the queue for this
820 821
	 * processor.  This seems to give the best I/O throughput.
	 */
822 823 824 825 826 827
	if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
		cp->reply_queue = smp_processor_id() % h->nreply_queues;
	else
		cp->reply_queue = reply_queue % h->nreply_queues;
	/*
	 * Set the bits in the address sent down to include:
828 829 830 831 832 833 834
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

864 865
static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c, int reply_queue)
866
{
867 868
	dial_down_lockup_detection_during_fw_flash(h, c);
	atomic_inc(&h->commands_outstanding);
869 870
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
871
		set_ioaccel1_performant_mode(h, c, reply_queue);
872
		writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
873 874
		break;
	case CMD_IOACCEL2:
875
		set_ioaccel2_performant_mode(h, c, reply_queue);
876
		writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
877 878
		break;
	default:
879
		set_performant_mode(h, c, reply_queue);
880
		h->access.submit_command(h, c);
881
	}
882 883
}

884 885 886 887 888 889
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
					struct CommandList *c)
{
	__enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
}

890 891 892 893 894 895 896 897 898 899 900 901 902 903
static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

904 905 906 907 908 909 910
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
911
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
912

913
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
914 915 916

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
917
			__set_bit(h->dev[i]->target, lun_taken);
918 919
	}

920 921 922 923 924 925
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
926 927 928 929
	}
	return !found;
}

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
static inline void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
	struct hpsa_scsi_dev_t *dev, char *description)
{
	dev_printk(level, &h->pdev->dev,
			"scsi %d:%d:%d:%d: %s %s %.8s %.16s RAID-%s SSDSmartPathCap%c En%c Exp=%d\n",
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
			description,
			scsi_device_type(dev->devtype),
			dev->vendor,
			dev->model,
			dev->raid_level > RAID_UNKNOWN ?
				"RAID-?" : raid_label[dev->raid_level],
			dev->offload_config ? '+' : '-',
			dev->offload_enabled ? '+' : '-',
			dev->expose_state);
}

947 948 949 950 951 952 953 954 955 956 957
/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

958
	if (n >= HPSA_MAX_DEVICES) {
959 960 961 962 963 964 965 966 967 968 969 970
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
D
Don Brace 已提交
971
	 * unit no, zero otherwise.
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
1012 1013
	device->offload_to_be_enabled = device->offload_enabled;
	device->offload_enabled = 0;
1014 1015
	added[*nadded] = device;
	(*nadded)++;
1016 1017
	hpsa_show_dev_msg(KERN_INFO, h, device,
		device->expose_state & HPSA_SCSI_ADD ? "added" : "masked");
1018 1019 1020
	return 0;
}

1021 1022 1023 1024 1025 1026 1027 1028 1029
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	/* Raid offload parameters changed.  Careful about the ordering. */
	if (new_entry->offload_config && new_entry->offload_enabled) {
		/*
		 * if drive is newly offload_enabled, we want to copy the
		 * raid map data first.  If previously offload_enabled and
		 * offload_config were set, raid map data had better be
		 * the same as it was before.  if raid map data is changed
		 * then it had better be the case that
		 * h->dev[entry]->offload_enabled is currently 0.
		 */
		h->dev[entry]->raid_map = new_entry->raid_map;
		h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	}
1044
	h->dev[entry]->offload_config = new_entry->offload_config;
1045
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1046
	h->dev[entry]->queue_depth = new_entry->queue_depth;
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056
	/*
	 * We can turn off ioaccel offload now, but need to delay turning
	 * it on until we can update h->dev[entry]->phys_disk[], but we
	 * can't do that until all the devices are updated.
	 */
	h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
	if (!new_entry->offload_enabled)
		h->dev[entry]->offload_enabled = 0;

1057
	hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1058 1059
}

1060 1061 1062 1063 1064 1065 1066
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
1067
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1068 1069
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

1080 1081
	new_entry->offload_to_be_enabled = new_entry->offload_enabled;
	new_entry->offload_enabled = 0;
1082 1083 1084
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
1085
	hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1086 1087
}

1088 1089 1090 1091 1092 1093 1094 1095
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

1096
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1097 1098 1099 1100 1101 1102 1103 1104

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
1105
	hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

1164 1165 1166 1167 1168 1169 1170 1171 1172
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
1173 1174 1175 1176
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_enabled != dev2->offload_enabled)
		return 1;
1177 1178
	if (dev1->queue_depth != dev2->queue_depth)
		return 1;
1179 1180 1181
	return 0;
}

1182 1183 1184
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1185 1186 1187 1188
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
1189 1190 1191 1192 1193 1194 1195 1196 1197
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
1198
#define DEVICE_UPDATED 3
1199
	for (i = 0; i < haystack_size; i++) {
1200 1201
		if (haystack[i] == NULL) /* previously removed. */
			continue;
1202 1203
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
1204 1205 1206
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
1207
				return DEVICE_SAME;
1208
			} else {
1209 1210 1211
				/* Keep offline devices offline */
				if (needle->volume_offline)
					return DEVICE_NOT_FOUND;
1212
				return DEVICE_CHANGED;
1213
			}
1214 1215 1216 1217 1218 1219
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
static void hpsa_monitor_offline_device(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	struct offline_device_entry *device;
	unsigned long flags;

	/* Check to see if device is already on the list */
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_entry(device, &h->offline_device_list, offline_list) {
		if (memcmp(device->scsi3addr, scsi3addr,
			sizeof(device->scsi3addr)) == 0) {
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
			return;
		}
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);

	/* Device is not on the list, add it. */
	device = kmalloc(sizeof(*device), GFP_KERNEL);
	if (!device) {
		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
		return;
	}
	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_add_tail(&device->offline_list, &h->offline_device_list);
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
}

/* Print a message explaining various offline volume states */
static void hpsa_show_volume_status(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *sd)
{
	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
	switch (sd->volume_offline) {
	case HPSA_LV_OK:
		break;
	case HPSA_LV_UNDERGOING_ERASE:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_RPI:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_RPI:
		dev_info(&h->pdev->dev,
				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
				h->scsi_host->host_no,
				sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_NO_KEY:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	}
}

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
/*
 * Figure the list of physical drive pointers for a logical drive with
 * raid offload configured.
 */
static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices,
				struct hpsa_scsi_dev_t *logical_drive)
{
	struct raid_map_data *map = &logical_drive->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int i, j;
	int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
	int nraid_map_entries = le16_to_cpu(map->row_cnt) *
				le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int nphys_disk = le16_to_cpu(map->layout_map_count) *
				total_disks_per_row;
	int qdepth;

	if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
		nraid_map_entries = RAID_MAP_MAX_ENTRIES;

	qdepth = 0;
	for (i = 0; i < nraid_map_entries; i++) {
		logical_drive->phys_disk[i] = NULL;
		if (!logical_drive->offload_config)
			continue;
		for (j = 0; j < ndevices; j++) {
			if (dev[j]->devtype != TYPE_DISK)
				continue;
			if (is_logical_dev_addr_mode(dev[j]->scsi3addr))
				continue;
			if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
				continue;

			logical_drive->phys_disk[i] = dev[j];
			if (i < nphys_disk)
				qdepth = min(h->nr_cmds, qdepth +
				    logical_drive->phys_disk[i]->queue_depth);
			break;
		}

		/*
		 * This can happen if a physical drive is removed and
		 * the logical drive is degraded.  In that case, the RAID
		 * map data will refer to a physical disk which isn't actually
		 * present.  And in that case offload_enabled should already
		 * be 0, but we'll turn it off here just in case
		 */
		if (!logical_drive->phys_disk[i]) {
			logical_drive->offload_enabled = 0;
1376 1377
			logical_drive->offload_to_be_enabled = 0;
			logical_drive->queue_depth = 8;
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
		}
	}
	if (nraid_map_entries)
		/*
		 * This is correct for reads, too high for full stripe writes,
		 * way too high for partial stripe writes
		 */
		logical_drive->queue_depth = qdepth;
	else
		logical_drive->queue_depth = h->nr_cmds;
}

static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
				struct hpsa_scsi_dev_t *dev[], int ndevices)
{
	int i;

	for (i = 0; i < ndevices; i++) {
		if (dev[i]->devtype != TYPE_DISK)
			continue;
		if (!is_logical_dev_addr_mode(dev[i]->scsi3addr))
			continue;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

		/*
		 * If offload is currently enabled, the RAID map and
		 * phys_disk[] assignment *better* not be changing
		 * and since it isn't changing, we do not need to
		 * update it.
		 */
		if (dev[i]->offload_enabled)
			continue;

1410 1411 1412 1413
		hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
	}
}

1414
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

1428 1429
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
1443 1444
	 * If minor device attributes change, just update
	 * the existing device structure.
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
1459 1460
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
1461 1462 1463 1464
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1465 1466
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
1478 1479 1480 1481 1482 1483 1484 1485

		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
		 * as the SCSI mid-layer does not handle such devices well.
		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
		 * at 160Hz, and prevents the system from coming up.
		 */
		if (sd[i]->volume_offline) {
			hpsa_show_volume_status(h, sd[i]);
1486
			hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1487 1488 1489
			continue;
		}

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
1506 1507 1508 1509 1510 1511 1512 1513
	hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);

	/* Now that h->dev[]->phys_disk[] is coherent, we can enable
	 * any logical drives that need it enabled.
	 */
	for (i = 0; i < h->ndevices; i++)
		h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;

1514 1515
	spin_unlock_irqrestore(&h->devlock, flags);

1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
	/* Monitor devices which are in one of several NOT READY states to be
	 * brought online later. This must be done without holding h->devlock,
	 * so don't touch h->dev[]
	 */
	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		if (sd[i]->volume_offline)
			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
	}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536
	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
		if (removed[i]->expose_state & HPSA_SCSI_ADD) {
			struct scsi_device *sdev =
				scsi_device_lookup(sh, removed[i]->bus,
					removed[i]->target, removed[i]->lun);
			if (sdev != NULL) {
				scsi_remove_device(sdev);
				scsi_device_put(sdev);
			} else {
				/*
				 * We don't expect to get here.
				 * future cmds to this device will get selection
				 * timeout as if the device was gone.
				 */
1550 1551
				hpsa_show_dev_msg(KERN_WARNING, h, removed[i],
					"didn't find device for removal.");
1552
			}
1553 1554 1555 1556 1557 1558 1559
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
1560 1561
		if (!(added[i]->expose_state & HPSA_SCSI_ADD))
			continue;
1562 1563 1564
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
1565 1566
		hpsa_show_dev_msg(KERN_WARNING, h, added[i],
					"addition failed, device not added.");
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1579
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
1606
	if (likely(sd)) {
1607
		atomic_set(&sd->ioaccel_cmds_out, 0);
1608 1609 1610
		sdev->hostdata = (sd->expose_state & HPSA_SCSI_ADD) ? sd : NULL;
	} else
		sdev->hostdata = NULL;
1611 1612 1613 1614
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/* configure scsi device based on internal per-device structure */
static int hpsa_slave_configure(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	int queue_depth;

	sd = sdev->hostdata;
	sdev->no_uld_attach = !sd || !(sd->expose_state & HPSA_ULD_ATTACH);

	if (sd)
		queue_depth = sd->queue_depth != 0 ?
			sd->queue_depth : sdev->host->can_queue;
	else
		queue_depth = sdev->host->can_queue;

	scsi_change_queue_depth(sdev, queue_depth);

	return 0;
}

1635 1636
static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1637
	/* nothing to do. */
1638 1639
}

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
1663 1664
	if (!h->cmd_sg_list) {
		dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
1665
		return -ENOMEM;
1666
	}
1667 1668 1669
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
1670 1671
		if (!h->cmd_sg_list[i]) {
			dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
1672
			goto clean;
1673
		}
1674 1675 1676 1677 1678 1679 1680 1681
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1682
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1683 1684 1685 1686
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;
1687
	u32 chain_len;
1688 1689 1690

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
1691 1692
	chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
	chain_len = sizeof(*chain_sg) *
D
Don Brace 已提交
1693
		(le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
1694 1695
	chain_sg->Len = cpu_to_le32(chain_len);
	temp64 = pci_map_single(h->pdev, chain_block, chain_len,
1696
				PCI_DMA_TODEVICE);
1697 1698
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
1699
		chain_sg->Addr = cpu_to_le64(0);
1700 1701
		return -1;
	}
1702
	chain_sg->Addr = cpu_to_le64(temp64);
1703
	return 0;
1704 1705 1706 1707 1708 1709 1710
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;

1711
	if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
1712 1713 1714
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1715 1716
	pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
			le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
1717 1718
}

1719 1720 1721 1722 1723 1724

/* Decode the various types of errors on ioaccel2 path.
 * Return 1 for any error that should generate a RAID path retry.
 * Return 0 for errors that don't require a RAID path retry.
 */
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1725 1726 1727 1728 1729
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2)
{
	int data_len;
1730
	int retry = 0;
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
			dev_warn(&h->pdev->dev,
				"%s: task complete with check condition.\n",
				"HP SSD Smart Path");
1741
			cmd->result |= SAM_STAT_CHECK_CONDITION;
1742
			if (c2->error_data.data_present !=
1743 1744 1745
					IOACCEL2_SENSE_DATA_PRESENT) {
				memset(cmd->sense_buffer, 0,
					SCSI_SENSE_BUFFERSIZE);
1746
				break;
1747
			}
1748 1749 1750 1751 1752 1753 1754 1755 1756
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
1757
			retry = 1;
1758 1759 1760 1761 1762
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
			dev_warn(&h->pdev->dev,
				"%s: task complete with BUSY status.\n",
				"HP SSD Smart Path");
1763
			retry = 1;
1764 1765 1766 1767 1768
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
			dev_warn(&h->pdev->dev,
				"%s: task complete with reservation conflict.\n",
				"HP SSD Smart Path");
1769
			retry = 1;
1770 1771 1772 1773 1774 1775 1776 1777 1778
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
			/* Make scsi midlayer do unlimited retries */
			cmd->result = DID_IMM_RETRY << 16;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
			dev_warn(&h->pdev->dev,
				"%s: task complete with aborted status.\n",
				"HP SSD Smart Path");
1779
			retry = 1;
1780 1781 1782 1783 1784
			break;
		default:
			dev_warn(&h->pdev->dev,
				"%s: task complete with unrecognized status: 0x%02x\n",
				"HP SSD Smart Path", c2->error_data.status);
1785
			retry = 1;
1786 1787 1788 1789 1790 1791 1792 1793
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
		/* don't expect to get here. */
		dev_warn(&h->pdev->dev,
			"unexpected delivery or target failure, status = 0x%02x\n",
			c2->error_data.status);
1794
		retry = 1;
1795 1796 1797 1798 1799 1800 1801
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1802
		retry = 1;
1803 1804 1805 1806 1807 1808 1809
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: Unrecognized server response: 0x%02x\n",
1810 1811 1812
			"HP SSD Smart Path",
			c2->error_data.serv_response);
		retry = 1;
1813 1814
		break;
	}
1815 1816

	return retry;	/* retry on raid path? */
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
}

static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
			c2->error_data.status == 0)) {
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return;
	}

	/* Any RAID offload error results in retry which will use
	 * the normal I/O path so the controller can handle whatever's
	 * wrong.
	 */
	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
1840 1841 1842 1843
		if (c2->error_data.status ==
			IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
			dev->offload_enabled = 0;
		goto retry_cmd;
1844
	}
1845 1846 1847 1848

	if (handle_ioaccel_mode2_error(h, c, cmd, c2))
		goto retry_cmd;

1849 1850
	cmd_free(h, c);
	cmd->scsi_done(cmd);
1851 1852 1853 1854 1855
	return;

retry_cmd:
	INIT_WORK(&c->work, hpsa_command_resubmit_worker);
	queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
1856 1857
}

1858
static void complete_scsi_command(struct CommandList *cp)
1859 1860 1861 1862
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
1863
	struct hpsa_scsi_dev_t *dev;
1864 1865 1866 1867

	unsigned char sense_key;
	unsigned char asc;      /* additional sense code */
	unsigned char ascq;     /* additional sense code qualifier */
1868
	unsigned long sense_data_size;
1869 1870

	ei = cp->err_info;
1871
	cmd = cp->scsi_cmd;
1872
	h = cp->h;
1873
	dev = cmd->device->hostdata;
1874 1875

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1876
	if ((cp->cmd_type == CMD_SCSI) &&
D
Don Brace 已提交
1877
		(le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
1878
		hpsa_unmap_sg_chain_block(h, cp);
1879 1880 1881

	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1882

1883 1884 1885
	if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
		atomic_dec(&cp->phys_disk->ioaccel_cmds_out);

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
	/*
	 * We check for lockup status here as it may be set for
	 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
	 * fail_all_oustanding_cmds()
	 */
	if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
		/* DID_NO_CONNECT will prevent a retry */
		cmd->result = DID_NO_CONNECT << 16;
		cmd_free(h, cp);
		cmd->scsi_done(cmd);
		return;
	}

1899 1900 1901
	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

1902
	cmd->result |= ei->ScsiStatus;
1903

1904 1905
	scsi_set_resid(cmd, ei->ResidualCnt);
	if (ei->CommandStatus == 0) {
1906 1907
		if (cp->cmd_type == CMD_IOACCEL1)
			atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
1908 1909 1910 1911 1912 1913
		cmd_free(h, cp);
		cmd->scsi_done(cmd);
		return;
	}

	/* copy the sense data */
1914 1915 1916 1917 1918 1919 1920 1921
	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
		sense_data_size = SCSI_SENSE_BUFFERSIZE;
	else
		sense_data_size = sizeof(ei->SenseInfo);
	if (ei->SenseLen < sense_data_size)
		sense_data_size = ei->SenseLen;

	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1922

1923 1924 1925 1926 1927
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
D
Don Brace 已提交
1928 1929 1930 1931
		cp->Header.SGList = scsi_sg_count(cmd);
		cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
		cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
			IOACCEL1_IOFLAGS_CDBLEN_MASK;
1932
		cp->Header.tag = c->tag;
1933 1934
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1935 1936 1937 1938 1939 1940 1941 1942

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
1943 1944 1945
			INIT_WORK(&cp->work, hpsa_command_resubmit_worker);
			queue_work_on(raw_smp_processor_id(),
					h->resubmit_wq, &cp->work);
1946 1947
			return;
		}
1948 1949
	}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
		if (ei->ScsiStatus) {
			/* Get sense key */
			sense_key = 0xf & ei->SenseInfo[2];
			/* Get additional sense code */
			asc = ei->SenseInfo[12];
			/* Get addition sense code qualifier */
			ascq = ei->SenseInfo[13];
		}
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1963
			if (sense_key == ABORTED_COMMAND) {
1964
				cmd->result |= DID_SOFT_ERROR << 16;
1965 1966
				break;
			}
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
			break;
		}
		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2002 2003
		dev_warn(&h->pdev->dev,
			"CDB %16phN data overrun\n", cp->Request.CDB);
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
2018
		cmd->result = DID_ERROR << 16;
2019 2020
		dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
				cp->Request.CDB);
2021 2022 2023
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
2024 2025
		dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
			cp->Request.CDB);
2026 2027 2028
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
2029 2030
		dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
			cp->Request.CDB);
2031 2032 2033
		break;
	case CMD_ABORTED:
		cmd->result = DID_ABORT << 16;
2034 2035
		dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
				cp->Request.CDB, ei->ScsiStatus);
2036 2037 2038
		break;
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
2039 2040
		dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
			cp->Request.CDB);
2041 2042
		break;
	case CMD_UNSOLICITED_ABORT:
2043
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2044 2045
		dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
			cp->Request.CDB);
2046 2047 2048
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
2049 2050
		dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
			cp->Request.CDB);
2051
		break;
2052 2053 2054 2055
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
2056 2057 2058 2059 2060 2061 2062 2063
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
2064 2065 2066 2067 2068 2069
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
	cmd_free(h, cp);
2070
	cmd->scsi_done(cmd);
2071 2072 2073 2074 2075 2076 2077
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;

2078 2079 2080 2081
	for (i = 0; i < sg_used; i++)
		pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
				le32_to_cpu(c->SG[i].Len),
				data_direction);
2082 2083
}

2084
static int hpsa_map_one(struct pci_dev *pdev,
2085 2086 2087 2088 2089
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
2090
	u64 addr64;
2091 2092 2093

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
2094
		cp->Header.SGTotal = cpu_to_le16(0);
2095
		return 0;
2096 2097
	}

2098
	addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2099
	if (dma_mapping_error(&pdev->dev, addr64)) {
2100
		/* Prevent subsequent unmap of something never mapped */
2101
		cp->Header.SGList = 0;
2102
		cp->Header.SGTotal = cpu_to_le16(0);
2103
		return -1;
2104
	}
2105 2106 2107 2108 2109
	cp->SG[0].Addr = cpu_to_le64(addr64);
	cp->SG[0].Len = cpu_to_le32(buflen);
	cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
	cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2110
	return 0;
2111 2112
}

2113 2114 2115 2116
#define NO_TIMEOUT ((unsigned long) -1)
#define DEFAULT_TIMEOUT 30000 /* milliseconds */
static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2117 2118 2119 2120
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
	__enqueue_cmd_and_start_io(h, c, reply_queue);
	if (timeout_msecs == NO_TIMEOUT) {
		/* TODO: get rid of this no-timeout thing */
		wait_for_completion_io(&wait);
		return IO_OK;
	}
	if (!wait_for_completion_io_timeout(&wait,
					msecs_to_jiffies(timeout_msecs))) {
		dev_warn(&h->pdev->dev, "Command timed out.\n");
		return -ETIMEDOUT;
	}
	return IO_OK;
}

static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
				   int reply_queue, unsigned long timeout_msecs)
{
	if (unlikely(lockup_detected(h))) {
		c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
		return IO_OK;
	}
	return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2143 2144
}

2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
static u32 lockup_detected(struct ctlr_info *h)
{
	int cpu;
	u32 rc, *lockup_detected;

	cpu = get_cpu();
	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
	rc = *lockup_detected;
	put_cpu();
	return rc;
}

2157
#define MAX_DRIVER_CMD_RETRIES 25
2158 2159
static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2160
{
2161
	int backoff_time = 10, retry_count = 0;
2162
	int rc;
2163 2164

	do {
2165
		memset(c->err_info, 0, sizeof(*c->err_info));
2166 2167 2168 2169
		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
						  timeout_msecs);
		if (rc)
			break;
2170
		retry_count++;
2171 2172 2173 2174 2175
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
2176
	} while ((check_for_unit_attention(h, c) ||
2177 2178
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
2179
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2180 2181 2182
	if (retry_count > MAX_DRIVER_CMD_RETRIES)
		rc = -EIO;
	return rc;
2183 2184
}

2185 2186
static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
				struct CommandList *c)
2187
{
2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
	const u8 *cdb = c->Request.CDB;
	const u8 *lun = c->Header.LUN.LunAddrBytes;

	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		txt, lun[0], lun[1], lun[2], lun[3],
		lun[4], lun[5], lun[6], lun[7],
		cdb[0], cdb[1], cdb[2], cdb[3],
		cdb[4], cdb[5], cdb[6], cdb[7],
		cdb[8], cdb[9], cdb[10], cdb[11],
		cdb[12], cdb[13], cdb[14], cdb[15]);
}

static void hpsa_scsi_interpret_error(struct ctlr_info *h,
			struct CommandList *cp)
{
	const struct ErrorInfo *ei = cp->err_info;
2205
	struct device *d = &cp->h->pdev->dev;
2206
	const u8 *sd = ei->SenseInfo;
2207 2208 2209

	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
2210 2211 2212 2213 2214 2215
		hpsa_print_cmd(h, "SCSI status", cp);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
				sd[2] & 0x0f, sd[12], sd[13]);
		else
			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2216 2217 2218 2219 2220 2221 2222 2223 2224
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2225
		hpsa_print_cmd(h, "overrun condition", cp);
2226 2227 2228 2229 2230
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
2231 2232
		hpsa_print_cmd(h, "invalid command", cp);
		dev_warn(d, "probably means device no longer present\n");
2233 2234 2235
		}
		break;
	case CMD_PROTOCOL_ERR:
2236
		hpsa_print_cmd(h, "protocol error", cp);
2237 2238
		break;
	case CMD_HARDWARE_ERR:
2239
		hpsa_print_cmd(h, "hardware error", cp);
2240 2241
		break;
	case CMD_CONNECTION_LOST:
2242
		hpsa_print_cmd(h, "connection lost", cp);
2243 2244
		break;
	case CMD_ABORTED:
2245
		hpsa_print_cmd(h, "aborted", cp);
2246 2247
		break;
	case CMD_ABORT_FAILED:
2248
		hpsa_print_cmd(h, "abort failed", cp);
2249 2250
		break;
	case CMD_UNSOLICITED_ABORT:
2251
		hpsa_print_cmd(h, "unsolicited abort", cp);
2252 2253
		break;
	case CMD_TIMEOUT:
2254
		hpsa_print_cmd(h, "timed out", cp);
2255
		break;
2256
	case CMD_UNABORTABLE:
2257
		hpsa_print_cmd(h, "unabortable", cp);
2258
		break;
2259 2260 2261
	case CMD_CTLR_LOCKUP:
		hpsa_print_cmd(h, "controller lockup detected", cp);
		break;
2262
	default:
2263 2264
		hpsa_print_cmd(h, "unknown status", cp);
		dev_warn(d, "Unknown command status %x\n",
2265 2266 2267 2268 2269
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2270
			u16 page, unsigned char *buf,
2271 2272 2273 2274 2275 2276
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2277
	c = cmd_alloc(h);
2278

2279
	if (c == NULL) {
2280
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2281
		return -ENOMEM;
2282 2283
	}

2284 2285 2286 2287 2288
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2289 2290 2291 2292
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2293 2294
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2295
		hpsa_scsi_interpret_error(h, c);
2296 2297
		rc = -1;
	}
2298
out:
2299
	cmd_free(h, c);
2300 2301 2302
	return rc;
}

2303 2304 2305 2306 2307 2308 2309 2310
static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
		unsigned char *scsi3addr, unsigned char page,
		struct bmic_controller_parameters *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2311
	c = cmd_alloc(h);
2312
	if (c == NULL) {			/* trouble... */
2313
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2314 2315 2316 2317 2318 2319 2320 2321
		return -ENOMEM;
	}

	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2322 2323 2324 2325
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
			PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2326 2327 2328 2329 2330 2331
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
2332
	cmd_free(h, c);
2333 2334 2335
	return rc;
	}

2336
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2337
	u8 reset_type, int reply_queue)
2338 2339 2340 2341 2342
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

2343
	c = cmd_alloc(h);
2344 2345

	if (c == NULL) {			/* trouble... */
2346
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2347
		return -ENOMEM;
2348 2349
	}

2350
	/* fill_cmd can't fail here, no data buffer to map. */
2351 2352 2353
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
			scsi3addr, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2354 2355 2356 2357 2358
	rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
	if (rc) {
		dev_warn(&h->pdev->dev, "Failed to send reset command\n");
		goto out;
	}
2359 2360 2361 2362
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
2363
		hpsa_scsi_interpret_error(h, c);
2364 2365
		rc = -1;
	}
2366
out:
2367
	cmd_free(h, c);
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2381
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2382 2383 2384 2385 2386 2387 2388 2389
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

2402 2403 2404 2405
	/* Show details only if debugging has been activated. */
	if (h->raid_offload_debug < 2)
		return;

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));
D
Don Brace 已提交
2430
	dev_info(&h->pdev->dev, "flags = 0x%x\n",
2431
			le16_to_cpu(map_buff->flags));
D
Don Brace 已提交
2432 2433 2434
	dev_info(&h->pdev->dev, "encrypytion = %s\n",
			le16_to_cpu(map_buff->flags) &
			RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
2435 2436
	dev_info(&h->pdev->dev, "dekindex = %u\n",
			le16_to_cpu(map_buff->dekindex));
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

2475
	c = cmd_alloc(h);
2476
	if (c == NULL) {
2477
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2478 2479 2480 2481 2482 2483
		return -ENOMEM;
	}
	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
2484 2485
		rc = -ENOMEM;
		goto out;
2486
	}
2487 2488 2489 2490
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2491 2492
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2493
		hpsa_scsi_interpret_error(h, c);
2494 2495
		rc = -1;
		goto out;
2496
	}
2497
	cmd_free(h, c);
2498 2499 2500 2501 2502 2503 2504 2505 2506

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
2507 2508 2509
out:
	cmd_free(h, c);
	return rc;
2510 2511
}

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
		unsigned char scsi3addr[], u16 bmic_device_index,
		struct bmic_identify_physical_device *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_alloc(h);
	rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
		0, RAID_CTLR_LUNID, TYPE_CMD);
	if (rc)
		goto out;

	c->Request.CDB[2] = bmic_device_index & 0xff;
	c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;

2529 2530
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
						NO_TIMEOUT);
2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_free(h, c);
	return rc;
}

2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
static int hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page)
{
	int rc;
	int i;
	int pages;
	unsigned char *buf, bufsize;

	buf = kzalloc(256, GFP_KERNEL);
	if (!buf)
		return 0;

	/* Get the size of the page list first */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_unsupported;
	pages = buf[3];
	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
		bufsize = pages + HPSA_VPD_HEADER_SZ;
	else
		bufsize = 255;

	/* Get the whole VPD page list */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, bufsize);
	if (rc != 0)
		goto exit_unsupported;

	pages = buf[3];
	for (i = 1; i <= pages; i++)
		if (buf[3 + i] == page)
			goto exit_supported;
exit_unsupported:
	kfree(buf);
	return 0;
exit_supported:
	kfree(buf);
	return 1;
}

2584 2585 2586 2587 2588 2589 2590 2591 2592
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;
2593
	this_device->offload_to_be_enabled = 0;
2594 2595 2596 2597

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2598 2599
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
		goto out;
2600
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2601
			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		this_device->offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		if (hpsa_get_raid_map(h, scsi3addr, this_device))
			this_device->offload_enabled = 0;
	}
2617
	this_device->offload_to_be_enabled = this_device->offload_enabled;
2618 2619 2620 2621 2622
out:
	kfree(buf);
	return;
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
2634
		return -ENOMEM;
2635
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2636 2637 2638 2639 2640 2641 2642
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
2643
		void *buf, int bufsize,
2644 2645 2646 2647 2648 2649 2650
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

2651
	c = cmd_alloc(h);
2652
	if (c == NULL) {			/* trouble... */
2653
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2654 2655
		return -1;
	}
2656 2657
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
2658 2659 2660 2661 2662
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2663 2664
	if (extended_response)
		c->Request.CDB[1] = extended_response;
2665 2666 2667 2668
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_FROMDEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
2669 2670 2671
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2672
		hpsa_scsi_interpret_error(h, c);
2673
		rc = -1;
2674
	} else {
2675 2676 2677
		struct ReportLUNdata *rld = buf;

		if (rld->extended_response_flag != extended_response) {
2678 2679 2680
			dev_err(&h->pdev->dev,
				"report luns requested format %u, got %u\n",
				extended_response,
2681
				rld->extended_response_flag);
2682 2683
			rc = -1;
		}
2684
	}
2685
out:
2686
	cmd_free(h, c);
2687 2688 2689 2690
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
2691
		struct ReportExtendedLUNdata *buf, int bufsize)
2692
{
2693 2694
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
						HPSA_REPORT_PHYS_EXTENDED);
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
/* Use VPD inquiry to get details of volume status */
static int hpsa_get_volume_status(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	int rc;
	int status;
	int size;
	unsigned char *buf;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return HPSA_VPD_LV_STATUS_UNSUPPORTED;

	/* Does controller have VPD for logical volume status? */
2725
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2726 2727 2728 2729 2730
		goto exit_failed;

	/* Get the size of the VPD return buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, HPSA_VPD_HEADER_SZ);
2731
	if (rc != 0)
2732 2733 2734 2735 2736 2737
		goto exit_failed;
	size = buf[3];

	/* Now get the whole VPD buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, size + HPSA_VPD_HEADER_SZ);
2738
	if (rc != 0)
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
		goto exit_failed;
	status = buf[4]; /* status byte */

	kfree(buf);
	return status;
exit_failed:
	kfree(buf);
	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
}

/* Determine offline status of a volume.
 * Return either:
 *  0 (not offline)
2752
 *  0xff (offline for unknown reasons)
2753 2754 2755
 *  # (integer code indicating one of several NOT READY states
 *     describing why a volume is to be kept offline)
 */
2756
static int hpsa_volume_offline(struct ctlr_info *h,
2757 2758 2759 2760
					unsigned char scsi3addr[])
{
	struct CommandList *c;
	unsigned char *sense, sense_key, asc, ascq;
2761
	int rc, ldstat = 0;
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
	u16 cmd_status;
	u8 scsi_status;
#define ASC_LUN_NOT_READY 0x04
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02

	c = cmd_alloc(h);
	if (!c)
		return 0;
	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
2772 2773 2774 2775 2776
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	if (rc) {
		cmd_free(h, c);
		return 0;
	}
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
	sense = c->err_info->SenseInfo;
	sense_key = sense[2];
	asc = sense[12];
	ascq = sense[13];
	cmd_status = c->err_info->CommandStatus;
	scsi_status = c->err_info->ScsiStatus;
	cmd_free(h, c);
	/* Is the volume 'not ready'? */
	if (cmd_status != CMD_TARGET_STATUS ||
		scsi_status != SAM_STAT_CHECK_CONDITION ||
		sense_key != NOT_READY ||
		asc != ASC_LUN_NOT_READY)  {
		return 0;
	}

	/* Determine the reason for not ready state */
	ldstat = hpsa_get_volume_status(h, scsi3addr);

	/* Keep volume offline in certain cases: */
	switch (ldstat) {
	case HPSA_LV_UNDERGOING_ERASE:
	case HPSA_LV_UNDERGOING_RPI:
	case HPSA_LV_PENDING_RPI:
	case HPSA_LV_ENCRYPTED_NO_KEY:
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
	case HPSA_LV_UNDERGOING_ENCRYPTION:
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		return ldstat;
	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
		/* If VPD status page isn't available,
		 * use ASC/ASCQ to determine state
		 */
		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
			return ldstat;
		break;
	default:
		break;
	}
	return 0;
}

S
Stephen Cameron 已提交
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
/*
 * Find out if a logical device supports aborts by simply trying one.
 * Smart Array may claim not to support aborts on logical drives, but
 * if a MSA2000 * is connected, the drives on that will be presented
 * by the Smart Array as logical drives, and aborts may be sent to
 * those devices successfully.  So the simplest way to find out is
 * to simply try an abort and see how the device responds.
 */
static int hpsa_device_supports_aborts(struct ctlr_info *h,
					unsigned char *scsi3addr)
{
	struct CommandList *c;
	struct ErrorInfo *ei;
	int rc = 0;

	u64 tag = (u64) -1; /* bogus tag */

	/* Assume that physical devices support aborts */
	if (!is_logical_dev_addr_mode(scsi3addr))
		return 1;

	c = cmd_alloc(h);
	if (!c)
		return -ENOMEM;
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
	(void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
	/* no unmap needed here because no data xfer. */
	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_INVALID:
		rc = 0;
		break;
	case CMD_UNABORTABLE:
	case CMD_ABORT_FAILED:
		rc = 1;
		break;
	default:
		rc = 0;
		break;
	}
	cmd_free(h, c);
	return rc;
}

2864
static int hpsa_update_device_info(struct ctlr_info *h,
2865 2866
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
2867
{
2868 2869 2870 2871 2872 2873

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

2874
	unsigned char *inq_buff;
2875
	unsigned char *obdr_sig;
2876

2877
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
2902
		is_logical_dev_addr_mode(scsi3addr)) {
2903 2904
		int volume_offline;

2905
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2906 2907
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2908 2909 2910 2911
		volume_offline = hpsa_volume_offline(h, scsi3addr);
		if (volume_offline < 0 || volume_offline > 0xff)
			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
		this_device->volume_offline = volume_offline & 0xff;
2912
	} else {
2913
		this_device->raid_level = RAID_UNKNOWN;
2914 2915
		this_device->offload_config = 0;
		this_device->offload_enabled = 0;
2916
		this_device->offload_to_be_enabled = 0;
2917
		this_device->volume_offline = 0;
2918
		this_device->queue_depth = h->nr_cmds;
2919
	}
2920

2921 2922 2923 2924 2925 2926 2927 2928 2929
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}
2930 2931 2932 2933 2934 2935 2936 2937
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

S
Stephen Cameron 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
			struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
{
	unsigned long flags;
	int rc, entry;
	/*
	 * See if this device supports aborts.  If we already know
	 * the device, we already know if it supports aborts, otherwise
	 * we have to find out if it supports aborts by trying one.
	 */
	spin_lock_irqsave(&h->devlock, flags);
	rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
	if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
		entry >= 0 && entry < h->ndevices) {
		dev->supports_aborts = h->dev[entry]->supports_aborts;
		spin_unlock_irqrestore(&h->devlock, flags);
	} else {
		spin_unlock_irqrestore(&h->devlock, flags);
		dev->supports_aborts =
				hpsa_device_supports_aborts(h, scsi3addr);
		if (dev->supports_aborts < 0)
			dev->supports_aborts = 0;
	}
}

2963
static unsigned char *ext_target_model[] = {
2964 2965 2966 2967
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
2968
	"P2000 G3 SAS",
2969
	"MSA 2040 SAS",
2970 2971 2972
	NULL,
};

2973
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2974 2975 2976
{
	int i;

2977 2978 2979
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
2980 2981 2982 2983 2984
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
2985
 * Puts non-external target logical volumes on bus 0, external target logical
2986 2987 2988 2989 2990 2991
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
2992
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2993
{
2994 2995 2996 2997
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
2998
		if (is_hba_lunid(lunaddrbytes))
2999
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
3000
		else
3001 3002 3003 3004 3005
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
3006 3007
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
3008 3009 3010 3011 3012 3013
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
3014
	}
3015
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
3016 3017 3018 3019
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
3020
 * For the external targets (arrays), we have to manually detect the enclosure
3021 3022 3023 3024 3025 3026 3027 3028
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
3029
static int add_ext_target_dev(struct ctlr_info *h,
3030
	struct hpsa_scsi_dev_t *tmpdevice,
3031
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
3032
	unsigned long lunzerobits[], int *n_ext_target_devs)
3033 3034 3035
{
	unsigned char scsi3addr[8];

3036
	if (test_bit(tmpdevice->target, lunzerobits))
3037 3038 3039 3040 3041
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

3042 3043
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
3044

3045
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
3046 3047
		return 0;

3048
	memset(scsi3addr, 0, 8);
3049
	scsi3addr[3] = tmpdevice->target;
3050 3051 3052
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

3053 3054 3055
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

3056
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
3057 3058
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
3059 3060 3061 3062
			"configuration.");
		return 0;
	}

3063
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
3064
		return 0;
3065
	(*n_ext_target_devs)++;
3066 3067
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
S
Stephen Cameron 已提交
3068
	hpsa_update_device_supports_aborts(h, this_device, scsi3addr);
3069
	set_bit(tmpdevice->target, lunzerobits);
3070 3071 3072
	return 1;
}

3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
/*
 * Get address of physical disk used for an ioaccel2 mode command:
 *	1. Extract ioaccel2 handle from the command.
 *	2. Find a matching ioaccel2 handle from list of physical disks.
 *	3. Return:
 *		1 and set scsi3addr to address of matching physical
 *		0 if no matching physical disk was found.
 */
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
{
3084 3085 3086
	struct io_accel2_cmd *c2 =
			&h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
	unsigned long flags;
3087 3088
	int i;

3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
	spin_lock_irqsave(&h->devlock, flags);
	for (i = 0; i < h->ndevices; i++)
		if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
			memcpy(scsi3addr, h->dev[i]->scsi3addr,
				sizeof(h->dev[i]->scsi3addr));
			spin_unlock_irqrestore(&h->devlock, flags);
			return 1;
		}
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
3099
}
3100

3101 3102 3103 3104 3105 3106 3107
/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
3108
	struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3109
	struct ReportLUNdata *logdev, u32 *nlogicals)
3110
{
3111
	if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3112 3113 3114
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
3115
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3116
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3117 3118
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
			HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3119 3120
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
3121
	if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3122 3123 3124
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
3125
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

D
Don Brace 已提交
3144 3145
static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
	int i, int nphysicals, int nlogicals,
3146
	struct ReportExtendedLUNdata *physdev_list,
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
3161 3162
		return &physdev_list->LUN[i -
				(raid_ctlr_position == 0)].lunid[0];
3163 3164 3165 3166 3167 3168 3169 3170

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

3171 3172 3173
static int hpsa_hba_mode_enabled(struct ctlr_info *h)
{
	int rc;
3174
	int hba_mode_enabled;
3175 3176 3177 3178 3179
	struct bmic_controller_parameters *ctlr_params;
	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
		GFP_KERNEL);

	if (!ctlr_params)
3180
		return -ENOMEM;
3181 3182
	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
		sizeof(struct bmic_controller_parameters));
3183
	if (rc) {
3184
		kfree(ctlr_params);
3185
		return rc;
3186
	}
3187 3188 3189 3190 3191

	hba_mode_enabled =
		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
	kfree(ctlr_params);
	return hba_mode_enabled;
3192 3193
}

3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
/* get physical drive ioaccel handle and queue depth */
static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
		struct hpsa_scsi_dev_t *dev,
		u8 *lunaddrbytes,
		struct bmic_identify_physical_device *id_phys)
{
	int rc;
	struct ext_report_lun_entry *rle =
		(struct ext_report_lun_entry *) lunaddrbytes;

	dev->ioaccel_handle = rle->ioaccel_handle;
	memset(id_phys, 0, sizeof(*id_phys));
	rc = hpsa_bmic_id_physical_device(h, lunaddrbytes,
			GET_BMIC_DRIVE_NUMBER(lunaddrbytes), id_phys,
			sizeof(*id_phys));
	if (!rc)
		/* Reserve space for FW operations */
#define DRIVE_CMDS_RESERVED_FOR_FW 2
#define DRIVE_QUEUE_DEPTH 7
		dev->queue_depth =
			le16_to_cpu(id_phys->current_queue_depth_limit) -
				DRIVE_CMDS_RESERVED_FOR_FW;
	else
		dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
	atomic_set(&dev->ioaccel_cmds_out, 0);
}

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
3233
	struct ReportExtendedLUNdata *physdev_list = NULL;
3234
	struct ReportLUNdata *logdev_list = NULL;
3235
	struct bmic_identify_physical_device *id_phys = NULL;
3236 3237 3238
	u32 nphysicals = 0;
	u32 nlogicals = 0;
	u32 ndev_allocated = 0;
3239 3240
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
3241
	int i, n_ext_target_devs, ndevs_to_allocate;
3242
	int raid_ctlr_position;
3243
	int rescan_hba_mode;
3244
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3245

3246
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3247 3248
	physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
	logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
3249
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
3250
	id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3251

3252 3253
	if (!currentsd || !physdev_list || !logdev_list ||
		!tmpdevice || !id_phys) {
3254 3255 3256 3257 3258
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

3259
	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3260 3261
	if (rescan_hba_mode < 0)
		goto out;
3262 3263 3264 3265 3266 3267 3268 3269

	if (!h->hba_mode_enabled && rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
	else if (h->hba_mode_enabled && !rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode disabled\n");

	h->hba_mode_enabled = rescan_hba_mode;

3270 3271
	if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
			logdev_list, &nlogicals))
3272 3273
		goto out;

3274 3275 3276
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
3277
	 */
3278
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3279 3280 3281

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
3282 3283 3284 3285 3286 3287 3288
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

3289 3290 3291 3292 3293 3294 3295 3296 3297
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

3298
	if (is_scsi_rev_5(h))
3299 3300 3301 3302
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

3303
	/* adjust our table of devices */
3304
	n_ext_target_devs = 0;
3305
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3306
		u8 *lunaddrbytes, is_OBDR = 0;
3307 3308

		/* Figure out where the LUN ID info is coming from */
3309 3310
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
3311 3312 3313 3314 3315 3316

		/* skip masked non-disk devices */
		if (MASKED_DEVICE(lunaddrbytes))
			if (i < nphysicals + (raid_ctlr_position == 0) &&
				NON_DISK_PHYS_DEV(lunaddrbytes))
				continue;
3317 3318

		/* Get device type, vendor, model, device id */
3319 3320
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
3321
			continue; /* skip it if we can't talk to it. */
3322
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
S
Stephen Cameron 已提交
3323
		hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
3324 3325 3326
		this_device = currentsd[ncurrent];

		/*
3327
		 * For external target devices, we have to insert a LUN 0 which
3328 3329 3330 3331 3332
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
3333
		if (add_ext_target_dev(h, tmpdevice, this_device,
3334
				lunaddrbytes, lunzerobits,
3335
				&n_ext_target_devs)) {
3336 3337 3338 3339 3340 3341
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
		/* do not expose masked devices */
		if (MASKED_DEVICE(lunaddrbytes) &&
			i < nphysicals + (raid_ctlr_position == 0)) {
			if (h->hba_mode_enabled)
				dev_warn(&h->pdev->dev,
					"Masked physical device detected\n");
			this_device->expose_state = HPSA_DO_NOT_EXPOSE;
		} else {
			this_device->expose_state =
					HPSA_SG_ATTACH | HPSA_ULD_ATTACH;
		}

3354
		switch (this_device->devtype) {
3355
		case TYPE_ROM:
3356 3357 3358 3359 3360 3361 3362
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
3363 3364
			if (is_OBDR)
				ncurrent++;
3365 3366
			break;
		case TYPE_DISK:
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379
			if (h->hba_mode_enabled) {
				/* never use raid mapper in HBA mode */
				this_device->offload_enabled = 0;
				ncurrent++;
				break;
			} else if (h->acciopath_status) {
				if (i >= nphysicals) {
					ncurrent++;
					break;
				}
			} else {
				if (i < nphysicals)
					break;
3380
				ncurrent++;
3381
				break;
3382
			}
3383 3384 3385 3386 3387
			if (h->transMethod & CFGTBL_Trans_io_accel1 ||
				h->transMethod & CFGTBL_Trans_io_accel2) {
				hpsa_get_ioaccel_drive_info(h, this_device,
							lunaddrbytes, id_phys);
				atomic_set(&this_device->ioaccel_cmds_out, 0);
3388 3389
				ncurrent++;
			}
3390 3391 3392 3393 3394
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
3395 3396 3397 3398
		case TYPE_ENCLOSURE:
			if (h->hba_mode_enabled)
				ncurrent++;
			break;
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
3412
		if (ncurrent >= HPSA_MAX_DEVICES)
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
3423
	kfree(id_phys);
3424 3425
}

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436
static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
				   struct scatterlist *sg)
{
	u64 addr64 = (u64) sg_dma_address(sg);
	unsigned int len = sg_dma_len(sg);

	desc->Addr = cpu_to_le64(addr64);
	desc->Len = cpu_to_le32(len);
	desc->Ext = 0;
}

3437 3438
/*
 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
3439 3440 3441
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
3442
static int hpsa_scatter_gather(struct ctlr_info *h,
3443 3444 3445 3446
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	struct scatterlist *sg;
3447 3448
	int use_sg, i, sg_index, chained;
	struct SGDescriptor *curr_sg;
3449

3450
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3451 3452 3453 3454 3455 3456 3457 3458

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

3459 3460 3461
	curr_sg = cp->SG;
	chained = 0;
	sg_index = 0;
3462
	scsi_for_each_sg(cmd, sg, use_sg, i) {
3463 3464 3465 3466 3467 3468
		if (i == h->max_cmd_sg_entries - 1 &&
			use_sg > h->max_cmd_sg_entries) {
			chained = 1;
			curr_sg = h->cmd_sg_list[cp->cmdindex];
			sg_index = 0;
		}
3469
		hpsa_set_sg_descriptor(curr_sg, sg);
3470 3471
		curr_sg++;
	}
3472 3473

	/* Back the pointer up to the last entry and mark it as "last". */
3474
	(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3475 3476 3477 3478 3479 3480

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
3481
		cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
3482 3483 3484 3485
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
3486
		return 0;
3487 3488 3489 3490
	}

sglist_finished:

3491
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
3492
	cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
3493 3494 3495
	return 0;
}

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
#define IO_ACCEL_INELIGIBLE (1)
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((u32) cdb[2]) << 8) | cdb[3];
			block_cnt = cdb[4];
		} else {
			BUG_ON(*cdb_len != 12);
			block = (((u32) cdb[2]) << 24) |
				(((u32) cdb[3]) << 16) |
				(((u32) cdb[4]) << 8) |
				cdb[5];
			block_cnt =
				(((u32) cdb[6]) << 24) |
				(((u32) cdb[7]) << 16) |
				(((u32) cdb[8]) << 8) |
				cdb[9];
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

3544
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3545
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3546
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

3558
	/* TODO: implement chaining support */
3559 3560
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3561
		return IO_ACCEL_INELIGIBLE;
3562
	}
3563

3564 3565
	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

3566 3567
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3568
		return IO_ACCEL_INELIGIBLE;
3569
	}
3570

3571 3572 3573 3574 3575 3576 3577 3578
	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
3579 3580
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3581
		return use_sg;
3582
	}
3583 3584 3585 3586 3587 3588 3589

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
3590 3591 3592
			curr_sg->Addr = cpu_to_le64(addr64);
			curr_sg->Len = cpu_to_le32(len);
			curr_sg->Ext = cpu_to_le32(0);
3593 3594
			curr_sg++;
		}
3595
		(--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

3617
	c->Header.SGList = use_sg;
3618
	/* Fill out the command structure to submit */
D
Don Brace 已提交
3619 3620 3621 3622 3623
	cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
	cp->transfer_len = cpu_to_le32(total_len);
	cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
	cp->control = cpu_to_le32(control);
3624 3625
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
3626
	/* Tag was already set at init time. */
3627
	enqueue_cmd_and_start_io(h, c);
3628 3629
	return 0;
}
3630

3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

3641 3642
	c->phys_disk = dev;

3643
	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
3644
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
3645 3646
}

3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
/*
 * Set encryption parameters for the ioaccel2 request
 */
static void set_encrypt_ioaccel2(struct ctlr_info *h,
	struct CommandList *c, struct io_accel2_cmd *cp)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	u64 first_block;

	/* Are we doing encryption on this device */
D
Don Brace 已提交
3659
	if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
		return;
	/* Set the data encryption key index. */
	cp->dekindex = map->dekindex;

	/* Set the encryption enable flag, encoded into direction field. */
	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;

	/* Set encryption tweak values based on logical block address
	 * If block size is 512, tweak value is LBA.
	 * For other block sizes, tweak is (LBA * block size)/ 512)
	 */
	switch (cmd->cmnd[0]) {
	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_6:
	case READ_6:
D
Don Brace 已提交
3675
		first_block = get_unaligned_be16(&cmd->cmnd[2]);
3676 3677 3678 3679 3680 3681
		break;
	case WRITE_10:
	case READ_10:
	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_12:
	case READ_12:
D
Don Brace 已提交
3682
		first_block = get_unaligned_be32(&cmd->cmnd[2]);
3683 3684 3685
		break;
	case WRITE_16:
	case READ_16:
D
Don Brace 已提交
3686
		first_block = get_unaligned_be64(&cmd->cmnd[2]);
3687 3688 3689
		break;
	default:
		dev_err(&h->pdev->dev,
D
Don Brace 已提交
3690 3691
			"ERROR: %s: size (0x%x) not supported for encryption\n",
			__func__, cmd->cmnd[0]);
3692 3693 3694
		BUG();
		break;
	}
D
Don Brace 已提交
3695 3696 3697 3698 3699 3700 3701

	if (le32_to_cpu(map->volume_blk_size) != 512)
		first_block = first_block *
				le32_to_cpu(map->volume_blk_size)/512;

	cp->tweak_lower = cpu_to_le32(first_block);
	cp->tweak_upper = cpu_to_le32(first_block >> 32);
3702 3703
}

3704 3705
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3706
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

3717 3718
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3719
		return IO_ACCEL_INELIGIBLE;
3720
	}
3721

3722 3723
	if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3724
		return IO_ACCEL_INELIGIBLE;
3725 3726
	}

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
3737 3738
	if (use_sg < 0) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
3739
		return use_sg;
3740
	}
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759

	if (use_sg) {
		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
		curr_sg = cp->sg;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
3760 3761
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3762 3763
			break;
		case DMA_FROM_DEVICE:
3764 3765
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_IN;
3766 3767
			break;
		case DMA_NONE:
3768 3769
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_NO_DATA;
3770 3771 3772 3773 3774 3775 3776 3777
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
3778 3779
		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
		cp->direction |= IOACCEL2_DIR_NO_DATA;
3780
	}
3781 3782 3783 3784

	/* Set encryption parameters, if necessary */
	set_encrypt_ioaccel2(h, c, cp);

D
Don Brace 已提交
3785
	cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
3786
	cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
3787 3788 3789 3790 3791 3792 3793 3794
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));

	/* fill in sg elements */
	cp->sg_count = (u8) use_sg;

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
3795
	cp->err_len = cpu_to_le32(sizeof(cp->error_data));
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805

	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
3806
	u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
3807
{
3808 3809 3810 3811 3812 3813
	/* Try to honor the device's queue depth */
	if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
					phys_disk->queue_depth) {
		atomic_dec(&phys_disk->ioaccel_cmds_out);
		return IO_ACCEL_INELIGIBLE;
	}
3814 3815
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
3816 3817
						cdb, cdb_len, scsi3addr,
						phys_disk);
3818 3819
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
3820 3821
						cdb, cdb_len, scsi3addr,
						phys_disk);
3822 3823
}

3824 3825 3826 3827 3828
static void raid_map_helper(struct raid_map_data *map,
		int offload_to_mirror, u32 *map_index, u32 *current_group)
{
	if (offload_to_mirror == 0)  {
		/* use physical disk in the first mirrored group. */
D
Don Brace 已提交
3829
		*map_index %= le16_to_cpu(map->data_disks_per_row);
3830 3831 3832 3833
		return;
	}
	do {
		/* determine mirror group that *map_index indicates */
D
Don Brace 已提交
3834 3835
		*current_group = *map_index /
			le16_to_cpu(map->data_disks_per_row);
3836 3837
		if (offload_to_mirror == *current_group)
			continue;
D
Don Brace 已提交
3838
		if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
3839
			/* select map index from next group */
D
Don Brace 已提交
3840
			*map_index += le16_to_cpu(map->data_disks_per_row);
3841 3842 3843
			(*current_group)++;
		} else {
			/* select map index from first group */
D
Don Brace 已提交
3844
			*map_index %= le16_to_cpu(map->data_disks_per_row);
3845 3846 3847 3848 3849
			*current_group = 0;
		}
	} while (offload_to_mirror != *current_group);
}

3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
3868 3869 3870 3871 3872 3873 3874 3875
	u64 r0_first_row, r0_last_row;
	u32 r5or6_blocks_per_row;
	u64 r5or6_first_row, r5or6_last_row;
	u32 r5or6_first_row_offset, r5or6_last_row_offset;
	u32 r5or6_first_column, r5or6_last_column;
	u32 total_disks_per_row;
	u32 stripesize;
	u32 first_group, last_group, current_group;
3876 3877 3878 3879 3880 3881
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
D
Don Brace 已提交
3882
	u16 strip_size;
3883 3884 3885
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif
3886
	int offload_to_mirror;
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
	case READ_6:
		first_block =
			(((u64) cmd->cmnd[2]) << 8) |
			cmd->cmnd[3];
		block_cnt = cmd->cmnd[4];
3897 3898
		if (block_cnt == 0)
			block_cnt = 256;
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953
		break;
	case WRITE_10:
		is_write = 1;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
D
Don Brace 已提交
3954 3955
	if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
		last_block < first_block)
3956 3957 3958
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
D
Don Brace 已提交
3959 3960 3961
	blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
				le16_to_cpu(map->strip_size);
	strip_size = le16_to_cpu(map->strip_size);
3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
D
Don Brace 已提交
3972
	(void) do_div(tmpdiv, strip_size);
3973 3974
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
D
Don Brace 已提交
3975
	(void) do_div(tmpdiv, strip_size);
3976 3977 3978 3979 3980 3981
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
D
Don Brace 已提交
3982 3983
	first_column = first_row_offset / strip_size;
	last_column = last_row_offset / strip_size;
3984 3985 3986 3987 3988 3989 3990
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
D
Don Brace 已提交
3991 3992
	total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
				le16_to_cpu(map->metadata_disks_per_row);
3993
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
3994
				le16_to_cpu(map->row_cnt);
3995 3996 3997 3998 3999 4000 4001 4002 4003
	map_index = (map_row * total_disks_per_row) + first_column;

	switch (dev->raid_level) {
	case HPSA_RAID_0:
		break; /* nothing special to do */
	case HPSA_RAID_1:
		/* Handles load balance across RAID 1 members.
		 * (2-drive R1 and R10 with even # of drives.)
		 * Appropriate for SSDs, not optimal for HDDs
4004
		 */
D
Don Brace 已提交
4005
		BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4006
		if (dev->offload_to_mirror)
D
Don Brace 已提交
4007
			map_index += le16_to_cpu(map->data_disks_per_row);
4008
		dev->offload_to_mirror = !dev->offload_to_mirror;
4009 4010 4011 4012 4013
		break;
	case HPSA_RAID_ADM:
		/* Handles N-way mirrors  (R1-ADM)
		 * and R10 with # of drives divisible by 3.)
		 */
D
Don Brace 已提交
4014
		BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4015 4016 4017 4018 4019 4020

		offload_to_mirror = dev->offload_to_mirror;
		raid_map_helper(map, offload_to_mirror,
				&map_index, &current_group);
		/* set mirror group to use next time */
		offload_to_mirror =
D
Don Brace 已提交
4021 4022
			(offload_to_mirror >=
			le16_to_cpu(map->layout_map_count) - 1)
4023 4024 4025 4026 4027 4028 4029 4030 4031
			? 0 : offload_to_mirror + 1;
		dev->offload_to_mirror = offload_to_mirror;
		/* Avoid direct use of dev->offload_to_mirror within this
		 * function since multiple threads might simultaneously
		 * increment it beyond the range of dev->layout_map_count -1.
		 */
		break;
	case HPSA_RAID_5:
	case HPSA_RAID_6:
D
Don Brace 已提交
4032
		if (le16_to_cpu(map->layout_map_count) <= 1)
4033 4034 4035 4036
			break;

		/* Verify first and last block are in same RAID group */
		r5or6_blocks_per_row =
D
Don Brace 已提交
4037 4038
			le16_to_cpu(map->strip_size) *
			le16_to_cpu(map->data_disks_per_row);
4039
		BUG_ON(r5or6_blocks_per_row == 0);
D
Don Brace 已提交
4040 4041
		stripesize = r5or6_blocks_per_row *
			le16_to_cpu(map->layout_map_count);
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_group = do_div(tmpdiv, stripesize);
		tmpdiv = first_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		first_group = tmpdiv;
		tmpdiv = last_block;
		last_group = do_div(tmpdiv, stripesize);
		tmpdiv = last_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		last_group = tmpdiv;
#else
		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
#endif
4057
		if (first_group != last_group)
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
			return IO_ACCEL_INELIGIBLE;

		/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		(void) do_div(tmpdiv, stripesize);
		first_row = r5or6_first_row = r0_first_row = tmpdiv;
		tmpdiv = last_block;
		(void) do_div(tmpdiv, stripesize);
		r5or6_last_row = r0_last_row = tmpdiv;
#else
		first_row = r5or6_first_row = r0_first_row =
						first_block / stripesize;
		r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
		if (r5or6_first_row != r5or6_last_row)
			return IO_ACCEL_INELIGIBLE;


		/* Verify request is in a single column */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = first_row_offset;
		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
		r5or6_first_row_offset = first_row_offset;
		tmpdiv = last_block;
		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = r5or6_last_row_offset;
		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
		tmpdiv = r5or6_first_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		first_column = r5or6_first_column = tmpdiv;
		tmpdiv = r5or6_last_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		r5or6_last_column = tmpdiv;
#else
		first_row_offset = r5or6_first_row_offset =
			(u32)((first_block % stripesize) %
						r5or6_blocks_per_row);

		r5or6_last_row_offset =
			(u32)((last_block % stripesize) %
						r5or6_blocks_per_row);

		first_column = r5or6_first_column =
D
Don Brace 已提交
4104
			r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4105
		r5or6_last_column =
D
Don Brace 已提交
4106
			r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4107 4108 4109 4110 4111 4112
#endif
		if (r5or6_first_column != r5or6_last_column)
			return IO_ACCEL_INELIGIBLE;

		/* Request is eligible */
		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
D
Don Brace 已提交
4113
			le16_to_cpu(map->row_cnt);
4114 4115

		map_index = (first_group *
D
Don Brace 已提交
4116
			(le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4117 4118 4119 4120
			(map_row * total_disks_per_row) + first_column;
		break;
	default:
		return IO_ACCEL_INELIGIBLE;
4121
	}
4122

4123 4124 4125
	if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
		return IO_ACCEL_INELIGIBLE;

4126 4127
	c->phys_disk = dev->phys_disk[map_index];

4128
	disk_handle = dd[map_index].ioaccel_handle;
D
Don Brace 已提交
4129 4130 4131 4132
	disk_block = le64_to_cpu(map->disk_starting_blk) +
			first_row * le16_to_cpu(map->strip_size) +
			(first_row_offset - first_column *
			le16_to_cpu(map->strip_size));
4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
4175 4176
						dev->scsi3addr,
						dev->phys_disk[map_index]);
4177 4178
}

4179 4180 4181 4182 4183
/*
 * Submit commands down the "normal" RAID stack path
 * All callers to hpsa_ciss_submit must check lockup_detected
 * beforehand, before (opt.) and after calling cmd_alloc
 */
4184 4185 4186
static int hpsa_ciss_submit(struct ctlr_info *h,
	struct CommandList *c, struct scsi_cmnd *cmd,
	unsigned char scsi3addr[])
4187 4188 4189 4190 4191 4192
{
	cmd->host_scribble = (unsigned char *) c;
	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4193
	c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
4194 4195 4196 4197 4198 4199 4200 4201 4202 4203

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
4204 4205
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
4206 4207
		break;
	case DMA_FROM_DEVICE:
4208 4209
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
4210 4211
		break;
	case DMA_NONE:
4212 4213
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
4214 4215 4216 4217 4218 4219 4220
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

4221 4222
		c->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

4240
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4241 4242 4243 4244 4245 4246 4247 4248
		cmd_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
static void hpsa_command_resubmit_worker(struct work_struct *work)
{
	struct scsi_cmnd *cmd;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *c =
			container_of(work, struct CommandList, work);

	cmd = c->scsi_cmd;
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		cmd->scsi_done(cmd);
		return;
	}
	if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
		/*
		 * If we get here, it means dma mapping failed. Try
		 * again via scsi mid layer, which will then get
		 * SCSI_MLQUEUE_HOST_BUSY.
		 */
		cmd->result = DID_IMM_RETRY << 16;
		cmd->scsi_done(cmd);
	}
}

4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
/* Running in struct Scsi_Host->host_lock less mode */
static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
	int rc = 0;

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		cmd->scsi_done(cmd);
		return 0;
	}
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));

	if (unlikely(lockup_detected(h))) {
4294
		cmd->result = DID_NO_CONNECT << 16;
4295 4296 4297 4298 4299 4300 4301 4302
		cmd->scsi_done(cmd);
		return 0;
	}
	c = cmd_alloc(h);
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
		return SCSI_MLQUEUE_HOST_BUSY;
	}
4303
	if (unlikely(lockup_detected(h))) {
4304
		cmd->result = DID_NO_CONNECT << 16;
4305 4306 4307 4308
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return 0;
	}
4309

4310 4311
	/*
	 * Call alternate submit routine for I/O accelerated commands.
4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342
	 * Retries always go down the normal I/O path.
	 */
	if (likely(cmd->retries == 0 &&
		cmd->request->cmd_type == REQ_TYPE_FS &&
		h->acciopath_status)) {

		cmd->host_scribble = (unsigned char *) c;
		c->cmd_type = CMD_SCSI;
		c->scsi_cmd = cmd;

		if (dev->offload_enabled) {
			rc = hpsa_scsi_ioaccel_raid_map(h, c);
			if (rc == 0)
				return 0; /* Sent on ioaccel path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		} else if (dev->ioaccel_handle) {
			rc = hpsa_scsi_ioaccel_direct_map(h, c);
			if (rc == 0)
				return 0; /* Sent on direct map path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		}
	}
	return hpsa_ciss_submit(h, c, cmd, scsi3addr);
}

4343
static void hpsa_scan_complete(struct ctlr_info *h)
4344 4345 4346
{
	unsigned long flags;

4347 4348 4349 4350
	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1;
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
4351 4352
}

4353 4354 4355 4356 4357
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

4358 4359 4360 4361 4362 4363 4364 4365
	/*
	 * Don't let rescans be initiated on a controller known to be locked
	 * up.  If the controller locks up *during* a rescan, that thread is
	 * probably hosed, but at least we can prevent new rescan threads from
	 * piling up on a locked up controller.
	 */
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4366

4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382
	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

4383 4384
	if (unlikely(lockup_detected(h)))
		return hpsa_scan_complete(h);
4385

4386 4387
	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

4388
	hpsa_scan_complete(h);
4389 4390
}

D
Don Brace 已提交
4391 4392
static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
4393 4394 4395 4396
	struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;

	if (!logical_drive)
		return -ENODEV;
D
Don Brace 已提交
4397 4398 4399

	if (qdepth < 1)
		qdepth = 1;
4400 4401 4402 4403
	else if (qdepth > logical_drive->queue_depth)
		qdepth = logical_drive->queue_depth;

	return scsi_change_queue_depth(sdev, qdepth);
D
Don Brace 已提交
4404 4405
}

4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

4419 4420 4421 4422 4423 4424 4425 4426 4427 4428
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
	/* we are being forcibly unloaded, and may not refuse. */
	scsi_remove_host(h->scsi_host);
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
}

static int hpsa_register_scsi(struct ctlr_info *h)
{
4429 4430
	struct Scsi_Host *sh;
	int error;
4431

4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
	if (sh == NULL)
		goto fail;

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
4443
	sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
4444
	sh->cmd_per_lun = sh->can_queue;
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464
	sh->sg_tablesize = h->maxsgentries;
	h->scsi_host = sh;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
	error = scsi_add_host(sh, &h->pdev->dev);
	if (error)
		goto fail_host_put;
	scsi_scan_host(sh);
	return 0;

 fail_host_put:
	dev_err(&h->pdev->dev, "%s: scsi_add_host"
		" failed for controller %d\n", __func__, h->ctlr);
	scsi_host_put(sh);
	return error;
 fail:
	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
		" failed for controller %d\n", __func__, h->ctlr);
	return -ENOMEM;
4465 4466 4467 4468 4469
}

static int wait_for_device_to_become_ready(struct ctlr_info *h,
	unsigned char lunaddr[])
{
4470
	int rc;
4471 4472 4473 4474
	int count = 0;
	int waittime = 1; /* seconds */
	struct CommandList *c;

4475
	c = cmd_alloc(h);
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
	if (!c) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"wait_for_device_to_become_ready.\n");
		return IO_ERROR;
	}

	/* Send test unit ready until device ready, or give up. */
	while (count < HPSA_TUR_RETRY_LIMIT) {

		/* Wait for a bit.  do this first, because if we send
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
		count++;
4490
		rc = 0; /* Device ready. */
4491 4492 4493 4494 4495

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
			waittime = waittime * 2;

4496 4497 4498
		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
		(void) fill_cmd(c, TEST_UNIT_READY, h,
				NULL, 0, 0, lunaddr, TYPE_CMD);
4499 4500 4501 4502
		rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
						NO_TIMEOUT);
		if (rc)
			goto do_it_again;
4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
		/* no unmap needed here because no data xfer. */

		if (c->err_info->CommandStatus == CMD_SUCCESS)
			break;

		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
			break;
4513
do_it_again:
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
		dev_warn(&h->pdev->dev, "waiting %d secs "
			"for device to become ready.\n", waittime);
		rc = 1; /* device not ready. */
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

4524
	cmd_free(h, c);
4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
4541 4542 4543 4544

	if (lockup_detected(h))
		return FAILED;

4545 4546 4547 4548 4549 4550
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571

	/* if controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
		dev_warn(&h->pdev->dev,
			"scsi %d:%d:%d:%d RESET FAILED, lockup detected\n",
			h->scsi_host->host_no, dev->bus, dev->target,
			dev->lun);
		return FAILED;
	}

	/* this reset request might be the result of a lockup; check */
	if (detect_controller_lockup(h)) {
		dev_warn(&h->pdev->dev,
			 "scsi %d:%d:%d:%d RESET FAILED, new lockup detected\n",
			 h->scsi_host->host_no, dev->bus, dev->target,
			 dev->lun);
		return FAILED;
	}

	hpsa_show_dev_msg(KERN_WARNING, h, dev, "resetting");

4572
	/* send a reset to the SCSI LUN which the command was sent to */
4573 4574
	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN,
			     DEFAULT_REPLY_QUEUE);
4575 4576 4577
	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
		return SUCCESS;

4578 4579 4580
	dev_warn(&h->pdev->dev,
		"scsi %d:%d:%d:%d reset failed\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4581 4582 4583
	return FAILED;
}

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

4599
static void hpsa_get_tag(struct ctlr_info *h,
D
Don Brace 已提交
4600
	struct CommandList *c, __le32 *taglower, __le32 *tagupper)
4601
{
D
Don Brace 已提交
4602
	u64 tag;
4603 4604 4605
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
D
Don Brace 已提交
4606 4607 4608
		tag = le64_to_cpu(cm1->tag);
		*tagupper = cpu_to_le32(tag >> 32);
		*taglower = cpu_to_le32(tag);
4609 4610 4611 4612 4613
		return;
	}
	if (c->cmd_type == CMD_IOACCEL2) {
		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
			&h->ioaccel2_cmd_pool[c->cmdindex];
4614 4615 4616
		/* upper tag not used in ioaccel2 mode */
		memset(tagupper, 0, sizeof(*tagupper));
		*taglower = cm2->Tag;
4617
		return;
4618
	}
D
Don Brace 已提交
4619 4620 4621
	tag = le64_to_cpu(c->Header.tag);
	*tagupper = cpu_to_le32(tag >> 32);
	*taglower = cpu_to_le32(tag);
4622 4623
}

4624
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
S
Stephen Cameron 已提交
4625
	struct CommandList *abort, int reply_queue)
4626 4627 4628 4629
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
D
Don Brace 已提交
4630
	__le32 tagupper, taglower;
4631

4632
	c = cmd_alloc(h);
4633
	if (c == NULL) {	/* trouble... */
4634
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
4635 4636 4637
		return -ENOMEM;
	}

4638
	/* fill_cmd can't fail here, no buffer to map */
S
Stephen Cameron 已提交
4639
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
4640
		0, 0, scsi3addr, TYPE_MSG);
S
Stephen Cameron 已提交
4641
	if (h->needs_abort_tags_swizzled)
4642
		swizzle_abort_tag(&c->Request.CDB[4]);
4643
	(void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
4644
	hpsa_get_tag(h, abort, &taglower, &tagupper);
4645
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
4646
		__func__, tagupper, taglower);
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4658
			__func__, tagupper, taglower);
4659
		hpsa_scsi_interpret_error(h, c);
4660 4661 4662
		rc = -1;
		break;
	}
4663
	cmd_free(h, c);
4664 4665
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
		__func__, tagupper, taglower);
4666 4667 4668
	return rc;
}

4669 4670 4671 4672 4673 4674 4675 4676
/* ioaccel2 path firmware cannot handle abort task requests.
 * Change abort requests to physical target reset, and send to the
 * address of the physical disk used for the ioaccel 2 command.
 * Return 0 on success (IO_OK)
 *	 -1 on failure
 */

static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
4677
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
4678 4679 4680 4681 4682 4683 4684 4685
{
	int rc = IO_OK;
	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
	unsigned char *psa = &phys_scsi3addr[0];

	/* Get a pointer to the hpsa logical device. */
4686
	scmd = abort->scsi_cmd;
4687 4688 4689 4690 4691 4692 4693
	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
	if (dev == NULL) {
		dev_warn(&h->pdev->dev,
			"Cannot abort: no device pointer for command.\n");
			return -1; /* not abortable */
	}

4694 4695
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
4696
			"scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4697
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
4698
			"Reset as abort",
4699 4700 4701
			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);

4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714
	if (!dev->offload_enabled) {
		dev_warn(&h->pdev->dev,
			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
		return -1; /* not abortable */
	}

	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
		return -1; /* not abortable */
	}

	/* send the reset */
4715 4716 4717 4718 4719
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
4720
	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746
	if (rc != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return rc; /* failed to reset */
	}

	/* wait for device to recover */
	if (wait_for_device_to_become_ready(h, psa) != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return -1;  /* failed to recover */
	}

	/* device recovered */
	dev_info(&h->pdev->dev,
		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		psa[0], psa[1], psa[2], psa[3],
		psa[4], psa[5], psa[6], psa[7]);

	return rc; /* success */
}

4747
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
4748
	unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
4749
{
4750 4751 4752 4753 4754 4755
	/* ioccelerator mode 2 commands should be aborted via the
	 * accelerated path, since RAID path is unaware of these commands,
	 * but underlying firmware can't handle abort TMF.
	 * Change abort to physical device reset.
	 */
	if (abort->cmd_type == CMD_IOACCEL2)
4756 4757
		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
							abort, reply_queue);
S
Stephen Cameron 已提交
4758
	return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
4759
}
4760

4761 4762 4763 4764 4765 4766 4767
/* Find out which reply queue a command was meant to return on */
static int hpsa_extract_reply_queue(struct ctlr_info *h,
					struct CommandList *c)
{
	if (c->cmd_type == CMD_IOACCEL2)
		return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
	return c->Header.ReplyQueue;
4768 4769
}

S
Stephen Cameron 已提交
4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
/*
 * Limit concurrency of abort commands to prevent
 * over-subscription of commands
 */
static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
{
#define ABORT_CMD_WAIT_MSECS 5000
	return !wait_event_timeout(h->abort_cmd_wait_queue,
			atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
			msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
}

4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

	int i, rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
D
Don Brace 已提交
4796
	__le32 tagupper, taglower;
4797 4798 4799 4800
	int refcount, reply_queue;

	if (sc == NULL)
		return FAILED;
4801

S
Stephen Cameron 已提交
4802 4803 4804
	if (sc->device == NULL)
		return FAILED;

4805 4806
	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
S
Stephen Cameron 已提交
4807
	if (h == NULL)
4808 4809
		return FAILED;

4810 4811 4812 4813 4814
	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
4815
		return FAILED;
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830
	}

	/* If controller locked up, we can guarantee command won't complete */
	if (lockup_detected(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, lockup detected");
		return FAILED;
	}

	/* This is a good time to check if controller lockup has occurred */
	if (detect_controller_lockup(h)) {
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"ABORT FAILED, new lockup detected");
		return FAILED;
	}
4831

4832 4833 4834 4835 4836 4837
	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
4838
	ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s",
4839
		h->scsi_host->host_no, sc->device->channel,
4840 4841
		sc->device->id, sc->device->lun,
		"Aborting command");
4842 4843 4844 4845

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
4846 4847 4848 4849 4850 4851 4852
		/* This can happen if the command already completed. */
		return SUCCESS;
	}
	refcount = atomic_inc_return(&abort->refcount);
	if (refcount == 1) { /* Command is done already. */
		cmd_free(h, abort);
		return SUCCESS;
4853
	}
S
Stephen Cameron 已提交
4854 4855 4856 4857 4858 4859 4860 4861

	/* Don't bother trying the abort if we know it won't work. */
	if (abort->cmd_type != CMD_IOACCEL2 &&
		abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
		cmd_free(h, abort);
		return FAILED;
	}

4862
	hpsa_get_tag(h, abort, &taglower, &tagupper);
4863
	reply_queue = hpsa_extract_reply_queue(h, abort);
4864
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4865
	as  = abort->scsi_cmd;
4866 4867 4868 4869
	if (as != NULL)
		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
			as->cmnd[0], as->serial_number);
	dev_dbg(&h->pdev->dev, "%s\n", msg);
4870
	hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
4871 4872 4873 4874 4875
	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
S
Stephen Cameron 已提交
4876 4877 4878 4879 4880 4881
	if (wait_for_available_abort_cmd(h)) {
		dev_warn(&h->pdev->dev,
			"Timed out waiting for an abort command to become available.\n");
		cmd_free(h, abort);
		return FAILED;
	}
4882
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
S
Stephen Cameron 已提交
4883 4884
	atomic_inc(&h->abort_cmds_available);
	wake_up_all(&h->abort_cmd_wait_queue);
4885
	if (rc != 0) {
4886 4887
		hpsa_show_dev_msg(KERN_WARNING, h, dev,
					"FAILED to abort command");
4888
		cmd_free(h, abort);
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899
		return FAILED;
	}
	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);

	/* If the abort(s) above completed and actually aborted the
	 * command, then the command to be aborted should already be
	 * completed.  If not, wait around a bit more to see if they
	 * manage to complete normally.
	 */
#define ABORT_COMPLETE_WAIT_SECS 30
	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
4900 4901 4902
		refcount = atomic_read(&abort->refcount);
		if (refcount < 2) {
			cmd_free(h, abort);
4903
			return SUCCESS;
4904 4905 4906
		} else {
			msleep(100);
		}
4907 4908 4909
	}
	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
		msg, ABORT_COMPLETE_WAIT_SECS);
4910
	cmd_free(h, abort);
4911 4912 4913
	return FAILED;
}

4914 4915 4916 4917 4918 4919
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
 */
4920

4921 4922 4923 4924 4925 4926
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	int i;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;
4927
	int refcount;
4928
	unsigned long offset;
4929

4930 4931
	/*
	 * There is some *extremely* small but non-zero chance that that
4932 4933 4934 4935 4936 4937 4938 4939 4940
	 * multiple threads could get in here, and one thread could
	 * be scanning through the list of bits looking for a free
	 * one, but the free ones are always behind him, and other
	 * threads sneak in behind him and eat them before he can
	 * get to them, so that while there is always a free one, a
	 * very unlucky thread might be starved anyway, never able to
	 * beat the other threads.  In reality, this happens so
	 * infrequently as to be indistinguishable from never.
	 */
4941

4942
	offset = h->last_allocation; /* benignly racy */
4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959
	for (;;) {
		i = find_next_zero_bit(h->cmd_pool_bits, h->nr_cmds, offset);
		if (unlikely(i == h->nr_cmds)) {
			offset = 0;
			continue;
		}
		c = h->cmd_pool + i;
		refcount = atomic_inc_return(&c->refcount);
		if (unlikely(refcount > 1)) {
			cmd_free(h, c); /* already in use */
			offset = (i + 1) % h->nr_cmds;
			continue;
		}
		set_bit(i & (BITS_PER_LONG - 1),
			h->cmd_pool_bits + (i / BITS_PER_LONG));
		break; /* it's ours now. */
	}
4960
	h->last_allocation = i; /* benignly racy */
4961 4962 4963 4964

	/* Zero out all of commandlist except the last field, refcount */
	memset(c, 0, offsetof(struct CommandList, refcount));
	c->Header.tag = cpu_to_le64((u64) (i << DIRECT_LOOKUP_SHIFT));
4965
	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(*c);
4966 4967 4968 4969 4970 4971 4972
	c->err_info = h->errinfo_pool + i;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + i * sizeof(*c->err_info);

	c->cmdindex = i;

4973 4974
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
4975 4976
	c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
	c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
4977 4978 4979 4980 4981 4982 4983

	c->h = h;
	return c;
}

static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
4984 4985
	if (atomic_dec_and_test(&c->refcount)) {
		int i;
4986

4987 4988 4989 4990
		i = c - h->cmd_pool;
		clear_bit(i & (BITS_PER_LONG - 1),
			  h->cmd_pool_bits + (i / BITS_PER_LONG));
	}
4991 4992 4993 4994
}

#ifdef CONFIG_COMPAT

D
Don Brace 已提交
4995 4996
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
	void __user *arg)
4997 4998 4999 5000 5001 5002 5003 5004
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5005
	memset(&arg64, 0, sizeof(arg64));
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5021
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
5022 5023 5024 5025 5026 5027 5028 5029 5030 5031
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
D
Don Brace 已提交
5032
	int cmd, void __user *arg)
5033 5034 5035 5036 5037 5038 5039 5040 5041
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

5042
	memset(&arg64, 0, sizeof(arg64));
5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
5059
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
5060 5061 5062 5063 5064 5065 5066 5067
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
5068

D
Don Brace 已提交
5069
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
5143
	u64 temp64;
5144
	int rc = 0;
5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
			return -EFAULT;
5160
		if (iocommand.Request.Type.Direction & XFER_WRITE) {
5161 5162 5163
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
5164 5165
				rc = -EFAULT;
				goto out_kfree;
5166 5167 5168
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
5169
		}
5170
	}
5171
	c = cmd_alloc(h);
5172
	if (c == NULL) {
5173 5174
		rc = -ENOMEM;
		goto out_kfree;
5175 5176 5177 5178 5179 5180 5181
	}
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
5182
		c->Header.SGTotal = cpu_to_le16(1);
5183 5184
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
5185
		c->Header.SGTotal = cpu_to_le16(0);
5186 5187 5188 5189 5190 5191 5192 5193 5194
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
5195
		temp64 = pci_map_single(h->pdev, buff,
5196
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
5197 5198 5199
		if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
			c->SG[0].Addr = cpu_to_le64(0);
			c->SG[0].Len = cpu_to_le32(0);
5200 5201 5202
			rc = -ENOMEM;
			goto out;
		}
5203 5204 5205
		c->SG[0].Addr = cpu_to_le64(temp64);
		c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
		c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
5206
	}
5207
	rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5208 5209
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5210
	check_ioctl_unit_attention(h, c);
5211 5212 5213 5214
	if (rc) {
		rc = -EIO;
		goto out;
	}
5215 5216 5217 5218 5219

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5220 5221
		rc = -EFAULT;
		goto out;
5222
	}
5223
	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5224
		iocommand.buf_size > 0) {
5225 5226
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5227 5228
			rc = -EFAULT;
			goto out;
5229 5230
		}
	}
5231
out:
5232
	cmd_free(h, c);
5233 5234 5235
out_kfree:
	kfree(buff);
	return rc;
5236 5237 5238 5239 5240 5241 5242 5243
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
5244
	u64 temp64;
5245 5246
	BYTE sg_used = 0;
	int status = 0;
5247 5248
	u32 left;
	u32 sz;
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
5275
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5276 5277 5278
		status = -EINVAL;
		goto cleanup1;
	}
5279
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5280 5281 5282 5283
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
5284
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
5299
		if (ioc->Request.Type.Direction & XFER_WRITE) {
5300
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5301
				status = -EFAULT;
5302 5303 5304 5305 5306 5307 5308 5309
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
5310
	c = cmd_alloc(h);
5311 5312 5313 5314 5315 5316
	if (c == NULL) {
		status = -ENOMEM;
		goto cleanup1;
	}
	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
5317 5318
	c->Header.SGList = (u8) sg_used;
	c->Header.SGTotal = cpu_to_le16(sg_used);
5319 5320 5321 5322 5323
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
5324
			temp64 = pci_map_single(h->pdev, buff[i],
5325
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5326 5327 5328 5329
			if (dma_mapping_error(&h->pdev->dev,
							(dma_addr_t) temp64)) {
				c->SG[i].Addr = cpu_to_le64(0);
				c->SG[i].Len = cpu_to_le32(0);
5330 5331 5332
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
5333
				goto cleanup0;
5334
			}
5335 5336 5337
			c->SG[i].Addr = cpu_to_le64(temp64);
			c->SG[i].Len = cpu_to_le32(buff_size[i]);
			c->SG[i].Ext = cpu_to_le32(0);
5338
		}
5339
		c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
5340
	}
5341
	status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
5342 5343
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5344
	check_ioctl_unit_attention(h, c);
5345 5346 5347 5348 5349
	if (status) {
		status = -EIO;
		goto cleanup0;
	}

5350 5351 5352 5353
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
5354
		goto cleanup0;
5355
	}
5356
	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
D
Don Brace 已提交
5357 5358
		int i;

5359 5360 5361 5362 5363
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
5364
				goto cleanup0;
5365 5366 5367 5368 5369
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
5370
cleanup0:
5371
	cmd_free(h, c);
5372 5373
cleanup1:
	if (buff) {
D
Don Brace 已提交
5374 5375
		int i;

5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
5392

5393 5394 5395
/*
 * ioctl
 */
D
Don Brace 已提交
5396
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5397 5398 5399
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
5400
	int rc;
5401 5402 5403 5404 5405 5406 5407

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
5408
		hpsa_scan_start(h->scsi_host);
5409 5410 5411 5412 5413 5414
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
5415
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5416 5417
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
5418
		atomic_inc(&h->passthru_cmds_avail);
5419
		return rc;
5420
	case CCISS_BIG_PASSTHRU:
5421
		if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
5422 5423
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
5424
		atomic_inc(&h->passthru_cmds_avail);
5425
		return rc;
5426 5427 5428 5429 5430
	default:
		return -ENOTTY;
	}
}

5431 5432
static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
				u8 reset_type)
5433 5434 5435 5436 5437 5438
{
	struct CommandList *c;

	c = cmd_alloc(h);
	if (!c)
		return -ENOMEM;
5439 5440
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
	return 0;
}

5452
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5453
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5454 5455 5456
	int cmd_type)
{
	int pci_dir = XFER_NONE;
S
Stephen Cameron 已提交
5457
	u64 tag; /* for commands to be aborted */
5458 5459 5460 5461 5462

	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
5463
		c->Header.SGTotal = cpu_to_le16(1);
5464 5465
	} else {
		c->Header.SGList = 0;
5466
		c->Header.SGTotal = cpu_to_le16(0);
5467 5468 5469 5470 5471 5472 5473
	}
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
5474
			if (page_code & VPD_PAGE) {
5475
				c->Request.CDB[1] = 0x01;
5476
				c->Request.CDB[2] = (page_code & 0xff);
5477 5478
			}
			c->Request.CDBLen = 6;
5479 5480
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
5491 5492
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5493 5494 5495 5496 5497 5498 5499 5500 5501
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
5502 5503 5504
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
5505 5506 5507
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5508 5509
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
5510 5511 5512
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
5513 5514
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5515 5516
			c->Request.Timeout = 0;
			break;
5517 5518
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
5519 5520
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5521 5522 5523 5524 5525 5526 5527 5528
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
5529 5530
		case BMIC_SENSE_CONTROLLER_PARAMETERS:
			c->Request.CDBLen = 10;
5531 5532
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
5533 5534 5535 5536 5537 5538
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			break;
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548
		case BMIC_IDENTIFY_PHYSICAL_DEVICE:
			c->Request.CDBLen = 10;
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0XFF;
			break;
5549 5550 5551
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
5552
			return -1;
5553 5554 5555 5556 5557 5558
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
5559 5560
			c->Request.type_attr_dir =
				TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
5561
			c->Request.Timeout = 0; /* Don't time out */
5562 5563
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
5564
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5565 5566 5567 5568 5569 5570
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
5571 5572
			break;
		case  HPSA_ABORT_MSG:
S
Stephen Cameron 已提交
5573
			memcpy(&tag, buff, sizeof(tag));
D
Don Brace 已提交
5574
			dev_dbg(&h->pdev->dev,
S
Stephen Cameron 已提交
5575 5576
				"Abort Tag:0x%016llx using rqst Tag:0x%016llx",
				tag, c->Header.tag);
5577
			c->Request.CDBLen = 16;
5578 5579 5580
			c->Request.type_attr_dir =
					TYPE_ATTR_DIR(cmd_type,
						ATTR_SIMPLE, XFER_WRITE);
5581 5582 5583 5584 5585 5586
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
S
Stephen Cameron 已提交
5587
			memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
5588 5589 5590 5591
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

5603
	switch (GET_DIR(c->Request.type_attr_dir)) {
5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
5616 5617 5618
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
5619 5620 5621 5622 5623 5624 5625 5626 5627
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
5628 5629
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
5630 5631 5632 5633

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

5634
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5635
{
5636
	return h->access.command_completed(h, q);
5637 5638
}

5639
static inline bool interrupt_pending(struct ctlr_info *h)
5640 5641 5642 5643 5644 5645
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
5646 5647
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
5648 5649
}

5650 5651
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
5652 5653 5654 5655 5656 5657 5658 5659
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

5660
static inline void finish_cmd(struct CommandList *c)
5661
{
5662
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5663 5664
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
5665
		complete_scsi_command(c);
5666 5667
	else if (c->cmd_type == CMD_IOCTL_PEND)
		complete(c->waiting);
5668 5669
}

5670 5671

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5672
{
5673 5674
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
5675
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5676 5677
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
5678 5679
}

5680
/* process completion of an indexed ("direct lookup") command */
5681
static inline void process_indexed_cmd(struct ctlr_info *h,
5682 5683 5684 5685 5686
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

5687
	tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
5688 5689 5690 5691
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
5692 5693
}

5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

5713 5714 5715 5716 5717 5718
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
5719
{
5720 5721 5722 5723 5724 5725 5726
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
5727 5728 5729 5730 5731 5732 5733
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
5734
	h->last_intr_timestamp = get_jiffies_64();
5735
	while (interrupt_pending(h)) {
5736
		raw_tag = get_next_completion(h, q);
5737
		while (raw_tag != FIFO_EMPTY)
5738
			raw_tag = next_command(h, q);
5739 5740 5741 5742
	}
	return IRQ_HANDLED;
}

5743
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5744
{
5745
	struct ctlr_info *h = queue_to_hba(queue);
5746
	u32 raw_tag;
5747
	u8 q = *(u8 *) queue;
5748 5749 5750 5751

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

5752
	h->last_intr_timestamp = get_jiffies_64();
5753
	raw_tag = get_next_completion(h, q);
5754
	while (raw_tag != FIFO_EMPTY)
5755
		raw_tag = next_command(h, q);
5756 5757 5758
	return IRQ_HANDLED;
}

5759
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5760
{
5761
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5762
	u32 raw_tag;
5763
	u8 q = *(u8 *) queue;
5764 5765 5766

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
5767
	h->last_intr_timestamp = get_jiffies_64();
5768
	while (interrupt_pending(h)) {
5769
		raw_tag = get_next_completion(h, q);
5770
		while (raw_tag != FIFO_EMPTY) {
5771
			process_indexed_cmd(h, raw_tag);
5772
			raw_tag = next_command(h, q);
5773 5774 5775 5776 5777
		}
	}
	return IRQ_HANDLED;
}

5778
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5779
{
5780
	struct ctlr_info *h = queue_to_hba(queue);
5781
	u32 raw_tag;
5782
	u8 q = *(u8 *) queue;
5783

5784
	h->last_intr_timestamp = get_jiffies_64();
5785
	raw_tag = get_next_completion(h, q);
5786
	while (raw_tag != FIFO_EMPTY) {
5787
		process_indexed_cmd(h, raw_tag);
5788
		raw_tag = next_command(h, q);
5789 5790 5791 5792
	}
	return IRQ_HANDLED;
}

5793 5794 5795 5796
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
5797 5798
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
5799 5800 5801 5802 5803 5804 5805 5806 5807 5808
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
D
Don Brace 已提交
5809 5810
	__le32 paddr32;
	u32 tag;
5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
5825
		return err;
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
D
Don Brace 已提交
5838
	paddr32 = cpu_to_le32(paddr64);
5839 5840 5841

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
5842
	cmd->CommandHeader.SGTotal = cpu_to_le16(0);
D
Don Brace 已提交
5843
	cmd->CommandHeader.tag = cpu_to_le64(paddr64);
5844 5845 5846
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
5847 5848
	cmd->Request.type_attr_dir =
			TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
5849 5850 5851 5852
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
5853
	cmd->ErrorDescriptor.Addr =
D
Don Brace 已提交
5854
			cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
5855
	cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
5856

D
Don Brace 已提交
5857
	writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
5858 5859 5860

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
D
Don Brace 已提交
5861
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

5892
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
D
Don Brace 已提交
5893
	void __iomem *vaddr, u32 use_doorbell)
5894 5895 5896 5897 5898 5899 5900 5901
{

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5902
		writel(use_doorbell, vaddr + SA5_DOORBELL);
5903

5904
		/* PMC hardware guys tell us we need a 10 second delay after
5905 5906 5907 5908
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
5909
		msleep(10000);
5910 5911 5912 5913 5914 5915 5916 5917 5918
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */
5919 5920 5921

		int rc = 0;

5922
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
5923

5924
		/* enter the D3hot power management state */
5925 5926 5927
		rc = pci_set_power_state(pdev, PCI_D3hot);
		if (rc)
			return rc;
5928 5929 5930 5931

		msleep(500);

		/* enter the D0 power management state */
5932 5933 5934
		rc = pci_set_power_state(pdev, PCI_D0);
		if (rc)
			return rc;
5935 5936 5937 5938 5939 5940 5941

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
5942 5943 5944 5945
	}
	return 0;
}

5946
static void init_driver_version(char *driver_version, int len)
5947 5948
{
	memset(driver_version, 0, len);
5949
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5950 5951
}

5952
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

5968 5969
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
5970 5971 5972 5973 5974 5975 5976
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

5977
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
5997
/* This does a hard reset of the controller using PCI power management
5998
 * states or the using the doorbell register.
5999
 */
6000
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
6001
{
6002 6003 6004 6005 6006
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
6007
	u32 misc_fw_support;
6008
	int rc;
6009
	struct CfgTable __iomem *cfgtable;
6010
	u32 use_doorbell;
6011
	u16 command_register;
6012

6013 6014
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
6015 6016 6017 6018 6019 6020
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
6021 6022 6023
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
6024
	 */
6025

6026 6027
	if (!ctlr_is_resettable(board_id)) {
		dev_warn(&pdev->dev, "Controller not resettable\n");
6028 6029
		return -ENODEV;
	}
6030 6031 6032 6033

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
6034

6035 6036 6037
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	pci_save_state(pdev);
6038

6039 6040 6041 6042 6043 6044 6045
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
6046

6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
6058 6059
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
6060
		goto unmap_cfgtable;
6061

6062 6063 6064
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
6065
	misc_fw_support = readl(&cfgtable->misc_fw_support);
6066 6067 6068 6069 6070 6071
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
6072 6073
			dev_warn(&pdev->dev,
				"Soft reset not supported. Firmware update is required.\n");
6074
			rc = -ENOTSUPP; /* try soft reset */
6075 6076 6077
			goto unmap_cfgtable;
		}
	}
6078

6079 6080 6081
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
6082

6083 6084
	pci_restore_state(pdev);
	pci_write_config_word(pdev, 4, command_register);
6085

6086 6087 6088 6089
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

6090 6091 6092
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
6093
			"Failed waiting for board to become ready after hard reset\n");
6094 6095 6096
		goto unmap_cfgtable;
	}

6097 6098 6099 6100
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
6101 6102 6103
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
6104
	} else {
6105
		dev_info(&pdev->dev, "board ready after hard reset.\n");
6106 6107 6108 6109 6110 6111 6112 6113
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
6114 6115 6116 6117 6118 6119 6120
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
D
Don Brace 已提交
6121
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6122
{
6123
#ifdef HPSA_DEBUG
6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
6144
	dev_info(dev, "   Max outstanding commands = %d\n",
6145 6146 6147 6148 6149 6150 6151 6152 6153
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
6154
}
6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

/* If MSI/MSI-X is supported by the kernel we will try to enable it on
6192
 * controllers that are capable. If not, we use legacy INTx mode.
6193 6194
 */

6195
static void hpsa_interrupt_mode(struct ctlr_info *h)
6196 6197
{
#ifdef CONFIG_PCI_MSI
6198 6199 6200 6201 6202 6203 6204
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
6205 6206

	/* Some boards advertise MSI but don't really support it */
6207 6208
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6209
		goto default_int_mode;
6210
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
6211
		dev_info(&h->pdev->dev, "MSI-X capable controller\n");
6212
		h->msix_vector = MAX_REPLY_QUEUES;
6213 6214
		if (h->msix_vector > num_online_cpus())
			h->msix_vector = num_online_cpus();
6215 6216 6217 6218 6219 6220 6221
		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
					    1, h->msix_vector);
		if (err < 0) {
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
			h->msix_vector = 0;
			goto single_msi_mode;
		} else if (err < h->msix_vector) {
6222
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6223 6224
			       "available\n", err);
		}
6225 6226 6227 6228
		h->msix_vector = err;
		for (i = 0; i < h->msix_vector; i++)
			h->intr[i] = hpsa_msix_entries[i].vector;
		return;
6229
	}
6230
single_msi_mode:
6231
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
6232
		dev_info(&h->pdev->dev, "MSI capable controller\n");
6233
		if (!pci_enable_msi(h->pdev))
6234 6235
			h->msi_vector = 1;
		else
6236
			dev_warn(&h->pdev->dev, "MSI init failed\n");
6237 6238 6239 6240
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
6241
	h->intr[h->intr_mode] = h->pdev->irq;
6242 6243
}

6244
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

6258 6259 6260
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
6261 6262 6263 6264 6265 6266 6267
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

6268 6269
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
6270 6271 6272 6273
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6274
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6275
			/* addressing mode bits already removed */
6276 6277
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6278 6279 6280
				*memory_bar);
			return 0;
		}
6281
	dev_warn(&pdev->dev, "no memory BAR found\n");
6282 6283 6284
	return -ENODEV;
}

6285 6286
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
6287
{
6288
	int i, iterations;
6289
	u32 scratchpad;
6290 6291 6292 6293
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6294

6295 6296 6297 6298 6299 6300 6301 6302 6303
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
6304 6305
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
6306
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6307 6308 6309
	return -ENODEV;
}

6310 6311 6312
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

6325
static int hpsa_find_cfgtables(struct ctlr_info *h)
6326
{
6327 6328 6329
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
6330
	u32 trans_offset;
6331
	int rc;
6332

6333 6334 6335 6336
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
6337
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6338
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6339 6340
	if (!h->cfgtable) {
		dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
6341
		return -ENOMEM;
6342
	}
6343 6344 6345
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
6346
	/* Find performant mode table. */
6347
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6348 6349 6350 6351 6352 6353 6354 6355
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
	if (!h->transtable)
		return -ENOMEM;
	return 0;
}

6356
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6357
{
6358 6359 6360 6361
#define MIN_MAX_COMMANDS 16
	BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);

	h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
6362 6363 6364 6365 6366

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

6367 6368 6369 6370 6371 6372
	if (h->max_commands < MIN_MAX_COMMANDS) {
		dev_warn(&h->pdev->dev,
			"Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
			h->max_commands,
			MIN_MAX_COMMANDS);
		h->max_commands = MIN_MAX_COMMANDS;
6373 6374 6375
	}
}

6376 6377 6378 6379 6380 6381 6382 6383 6384
/* If the controller reports that the total max sg entries is greater than 512,
 * then we know that chained SG blocks work.  (Original smart arrays did not
 * support chained SG blocks and would return zero for max sg entries.)
 */
static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
{
	return h->maxsgentries > 512;
}

6385 6386 6387 6388
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
6389
static void hpsa_find_board_params(struct ctlr_info *h)
6390
{
6391
	hpsa_get_max_perf_mode_cmds(h);
6392
	h->nr_cmds = h->max_commands;
6393
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6394
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6395 6396
	if (hpsa_supports_chained_sg_blocks(h)) {
		/* Limit in-command s/g elements to 32 save dma'able memory. */
6397
		h->max_cmd_sg_entries = 32;
6398
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6399 6400
		h->maxsgentries--; /* save one for chain pointer */
	} else {
6401 6402 6403 6404 6405 6406
		/*
		 * Original smart arrays supported at most 31 s/g entries
		 * embedded inline in the command (trying to use more
		 * would lock up the controller)
		 */
		h->max_cmd_sg_entries = 31;
6407
		h->maxsgentries = 31; /* default to traditional values */
6408
		h->chainsize = 0;
6409
	}
6410 6411 6412

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6413 6414 6415 6416
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6417 6418
}

6419 6420
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
6421
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6422
		dev_err(&h->pdev->dev, "not a valid CISS config table\n");
6423 6424 6425 6426 6427
		return false;
	}
	return true;
}

6428
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6429
{
6430
	u32 driver_support;
6431

6432
	driver_support = readl(&(h->cfgtable->driver_support));
A
Arnd Bergmann 已提交
6433 6434
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
#ifdef CONFIG_X86
6435
	driver_support |= ENABLE_SCSI_PREFETCH;
6436
#endif
6437 6438
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
6439 6440
}

6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

6455
static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
6456 6457 6458 6459 6460
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
6461
	for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
6462 6463 6464 6465
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
6466
			goto done;
6467
		/* delay and try again */
6468
		msleep(CLEAR_EVENT_WAIT_INTERVAL);
6469
	}
6470 6471 6472
	return -ENODEV;
done:
	return 0;
6473 6474
}

6475
static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6476 6477
{
	int i;
6478 6479
	u32 doorbell_value;
	unsigned long flags;
6480 6481 6482 6483 6484

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
6485
	for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
6486 6487
		if (h->remove_in_progress)
			goto done;
6488 6489 6490
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
6491
		if (!(doorbell_value & CFGTBL_ChangeReq))
6492
			goto done;
6493
		/* delay and try again */
6494
		msleep(MODE_CHANGE_WAIT_INTERVAL);
6495
	}
6496 6497 6498
	return -ENODEV;
done:
	return 0;
6499 6500
}

6501
/* return -ENODEV or other reason on error, 0 on success */
6502
static int hpsa_enter_simple_mode(struct ctlr_info *h)
6503 6504 6505 6506 6507 6508 6509 6510
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6511

6512 6513
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6514
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6515
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
6516 6517
	if (hpsa_wait_for_mode_change_ack(h))
		goto error;
6518
	print_cfg_table(&h->pdev->dev, h->cfgtable);
6519 6520
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
6521
	h->transMethod = CFGTBL_Trans_Simple;
6522
	return 0;
6523
error:
6524
	dev_err(&h->pdev->dev, "failed to enter simple mode\n");
6525
	return -ENODEV;
6526 6527
}

6528
static int hpsa_pci_init(struct ctlr_info *h)
6529
{
6530
	int prod_index, err;
6531

6532 6533
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
6534
		return prod_index;
6535 6536
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
6537

S
Stephen Cameron 已提交
6538 6539 6540
	h->needs_abort_tags_swizzled =
		ctlr_needs_abort_tags_swizzled(h->board_id);

M
Matthew Garrett 已提交
6541 6542 6543
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

6544
	err = pci_enable_device(h->pdev);
6545
	if (err) {
6546
		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6547 6548 6549
		return err;
	}

6550
	err = pci_request_regions(h->pdev, HPSA);
6551
	if (err) {
6552 6553
		dev_err(&h->pdev->dev,
			"cannot obtain PCI resources, aborting\n");
6554 6555
		return err;
	}
6556 6557 6558

	pci_set_master(h->pdev);

6559
	hpsa_interrupt_mode(h);
6560
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6561
	if (err)
6562 6563
		goto err_out_free_res;
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6564 6565 6566 6567
	if (!h->vaddr) {
		err = -ENOMEM;
		goto err_out_free_res;
	}
6568
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6569
	if (err)
6570
		goto err_out_free_res;
6571 6572
	err = hpsa_find_cfgtables(h);
	if (err)
6573
		goto err_out_free_res;
6574
	hpsa_find_board_params(h);
6575

6576
	if (!hpsa_CISS_signature_present(h)) {
6577 6578 6579
		err = -ENODEV;
		goto err_out_free_res;
	}
6580
	hpsa_set_driver_support_bits(h);
6581
	hpsa_p600_dma_prefetch_quirk(h);
6582 6583
	err = hpsa_enter_simple_mode(h);
	if (err)
6584 6585 6586 6587
		goto err_out_free_res;
	return 0;

err_out_free_res:
6588 6589 6590 6591 6592 6593
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	if (h->vaddr)
		iounmap(h->vaddr);
6594
	pci_disable_device(h->pdev);
6595
	pci_release_regions(h->pdev);
6596 6597 6598
	return err;
}

6599
static void hpsa_hba_inquiry(struct ctlr_info *h)
6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

6615
static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
6616
{
6617
	int rc, i;
6618
	void __iomem *vaddr;
6619 6620 6621 6622

	if (!reset_devices)
		return 0;

6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638
	/* kdump kernel is loading, we don't know in which state is
	 * the pci interface. The dev->enable_cnt is equal zero
	 * so we call enable+disable, wait a while and switch it on.
	 */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
		return -ENODEV;
	}
	pci_disable_device(pdev);
	msleep(260);			/* a randomly chosen number */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		return -ENODEV;
	}
6639

6640
	pci_set_master(pdev);
6641

6642 6643 6644 6645 6646 6647 6648 6649
	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL) {
		rc = -ENOMEM;
		goto out_disable;
	}
	writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
	iounmap(vaddr);

6650
	/* Reset the controller with a PCI power-cycle or via doorbell */
6651
	rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
6652

6653 6654
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
6655 6656
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
6657
	 */
6658
	if (rc)
6659
		goto out_disable;
6660 6661

	/* Now try to get the controller to respond to a no-op */
6662
	dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
6663 6664 6665 6666 6667 6668 6669
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
6670 6671 6672 6673 6674

out_disable:

	pci_disable_device(pdev);
	return rc;
6675 6676
}

6677
static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
6692
		goto clean_up;
6693 6694
	}
	return 0;
6695 6696 6697
clean_up:
	hpsa_free_cmd_pool(h);
	return -ENOMEM;
6698 6699 6700 6701 6702 6703 6704 6705 6706
}

static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
	if (h->cmd_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct CommandList),
			    h->cmd_pool, h->cmd_pool_dhandle);
6707 6708 6709 6710
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6711 6712 6713 6714 6715
	if (h->errinfo_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct ErrorInfo),
			    h->errinfo_pool,
			    h->errinfo_pool_dhandle);
6716 6717 6718 6719
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(struct io_accel1_cmd),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6720 6721
}

6722 6723
static void hpsa_irq_affinity_hints(struct ctlr_info *h)
{
6724
	int i, cpu;
6725 6726 6727

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < h->msix_vector; i++) {
6728
		irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
6729 6730 6731 6732
		cpu = cpumask_next(cpu, cpu_online_mask);
	}
}

6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749
/* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
static void hpsa_free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
		return;
	}

	for (i = 0; i < h->msix_vector; i++) {
		irq_set_affinity_hint(h->intr[i], NULL);
		free_irq(h->intr[i], &h->q[i]);
	}
6750 6751
	for (; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = 0;
6752 6753
}

6754 6755
/* returns 0 on success; cleans up and returns -Enn on error */
static int hpsa_request_irqs(struct ctlr_info *h,
6756 6757 6758
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
6759
	int rc, i;
6760

6761 6762 6763 6764 6765 6766 6767
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

6768
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6769
		/* If performant mode and MSI-X, use multiple reply queues */
6770
		for (i = 0; i < h->msix_vector; i++) {
6771 6772 6773
			rc = request_irq(h->intr[i], msixhandler,
					0, h->devname,
					&h->q[i]);
6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788
			if (rc) {
				int j;

				dev_err(&h->pdev->dev,
					"failed to get irq %d for %s\n",
				       h->intr[i], h->devname);
				for (j = 0; j < i; j++) {
					free_irq(h->intr[j], &h->q[j]);
					h->q[j] = 0;
				}
				for (; j < MAX_REPLY_QUEUES; j++)
					h->q[j] = 0;
				return rc;
			}
		}
6789
		hpsa_irq_affinity_hints(h);
6790 6791
	} else {
		/* Use single reply pool */
6792
		if (h->msix_vector > 0 || h->msi_vector) {
6793 6794 6795 6796 6797 6798 6799 6800 6801
			rc = request_irq(h->intr[h->intr_mode],
				msixhandler, 0, h->devname,
				&h->q[h->intr_mode]);
		} else {
			rc = request_irq(h->intr[h->intr_mode],
				intxhandler, IRQF_SHARED, h->devname,
				&h->q[h->intr_mode]);
		}
	}
6802 6803 6804 6805 6806 6807 6808 6809
	if (rc) {
		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
		       h->intr[h->intr_mode], h->devname);
		return -ENODEV;
	}
	return 0;
}

6810
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833
{
	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
		HPSA_RESET_TYPE_CONTROLLER)) {
		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
		return -EIO;
	}

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

6834
static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6835
{
6836
	hpsa_free_irqs(h);
6837
#ifdef CONFIG_PCI_MSI
6838 6839 6840 6841 6842 6843 6844
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
	}
6845
#endif /* CONFIG_PCI_MSI */
6846 6847
}

6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
static void hpsa_free_reply_queues(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nreply_queues; i++) {
		if (!h->reply_queue[i].head)
			continue;
		pci_free_consistent(h->pdev, h->reply_queue_size,
			h->reply_queue[i].head, h->reply_queue[i].busaddr);
		h->reply_queue[i].head = NULL;
		h->reply_queue[i].busaddr = 0;
	}
}

6862 6863 6864
static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
	hpsa_free_irqs_and_disable_msix(h);
6865 6866
	hpsa_free_sg_chain_blocks(h);
	hpsa_free_cmd_pool(h);
6867
	kfree(h->ioaccel1_blockFetchTable);
6868
	kfree(h->blockFetchTable);
6869
	hpsa_free_reply_queues(h);
6870 6871 6872 6873 6874 6875
	if (h->vaddr)
		iounmap(h->vaddr);
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
6876
	pci_disable_device(h->pdev);
6877 6878 6879 6880
	pci_release_regions(h->pdev);
	kfree(h);
}

6881
/* Called when controller lockup detected. */
6882
static void fail_all_outstanding_cmds(struct ctlr_info *h)
6883
{
6884 6885
	int i, refcount;
	struct CommandList *c;
6886
	int failcount = 0;
6887

6888
	flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
6889 6890
	for (i = 0; i < h->nr_cmds; i++) {
		c = h->cmd_pool + i;
6891 6892
		refcount = atomic_inc_return(&c->refcount);
		if (refcount > 1) {
6893
			c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
6894
			finish_cmd(c);
6895
			failcount++;
6896 6897
		}
		cmd_free(h, c);
6898
	}
6899 6900
	dev_warn(&h->pdev->dev,
		"failed %d commands in fail_all\n", failcount);
6901 6902
}

6903 6904
static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
{
6905
	int cpu;
6906

6907
	for_each_online_cpu(cpu) {
6908 6909 6910 6911 6912 6913 6914
		u32 *lockup_detected;
		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
		*lockup_detected = value;
	}
	wmb(); /* be sure the per-cpu variables are out to memory */
}

6915 6916 6917
static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;
6918
	u32 lockup_detected;
6919 6920 6921

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
6922 6923 6924 6925
	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	if (!lockup_detected) {
		/* no heartbeat, but controller gave us a zero. */
		dev_warn(&h->pdev->dev,
6926 6927
			"lockup detected after %d but scratchpad register is zero\n",
			h->heartbeat_sample_interval / HZ);
6928 6929 6930
		lockup_detected = 0xffffffff;
	}
	set_lockup_detected_for_all_cpus(h, lockup_detected);
6931
	spin_unlock_irqrestore(&h->lock, flags);
6932 6933
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
			lockup_detected, h->heartbeat_sample_interval / HZ);
6934
	pci_disable_device(h->pdev);
6935
	fail_all_outstanding_cmds(h);
6936 6937
}

6938
static int detect_controller_lockup(struct ctlr_info *h)
6939 6940 6941 6942 6943 6944 6945 6946
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
6947
				(h->heartbeat_sample_interval), now))
6948
		return false;
6949 6950 6951 6952 6953 6954 6955

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
6956
				(h->heartbeat_sample_interval), now))
6957
		return false;
6958 6959 6960 6961 6962 6963 6964

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
6965
		return true;
6966 6967 6968 6969 6970
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
6971
	return false;
6972 6973
}

6974
static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6975 6976 6977 6978
{
	int i;
	char *event_type;

6979 6980 6981
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
		return;

6982
	/* Ask the controller to clear the events we're handling. */
6983 6984
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		for (i = 0; i < h->ndevices; i++)
			h->dev[i]->offload_enabled = 0;
6996
		hpsa_drain_accel_commands(h);
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
#if 0
		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_mode_change_ack(h);
#endif
	}
7017
	return;
7018 7019 7020 7021
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
7022 7023
 * we should rescan the controller for devices.
 * Also check flag for driver-initiated rescan.
7024
 */
7025
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
7026 7027
{
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
7028
		return 0;
7029 7030

	h->events = readl(&(h->cfgtable->event_notify));
7031 7032
	return h->events & RESCAN_REQUIRED_EVENT_BITS;
}
7033

7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
/*
 * Check if any of the offline devices have become ready
 */
static int hpsa_offline_devices_ready(struct ctlr_info *h)
{
	unsigned long flags;
	struct offline_device_entry *d;
	struct list_head *this, *tmp;

	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_safe(this, tmp, &h->offline_device_list) {
		d = list_entry(this, struct offline_device_entry,
				offline_list);
		spin_unlock_irqrestore(&h->offline_device_lock, flags);
7048 7049 7050 7051
		if (!hpsa_volume_offline(h, d->scsi3addr)) {
			spin_lock_irqsave(&h->offline_device_lock, flags);
			list_del(&d->offline_list);
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
7052
			return 1;
7053
		}
7054 7055 7056 7057
		spin_lock_irqsave(&h->offline_device_lock, flags);
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
	return 0;
7058 7059
}

7060
static void hpsa_rescan_ctlr_worker(struct work_struct *work)
7061 7062
{
	unsigned long flags;
7063
	struct ctlr_info *h = container_of(to_delayed_work(work),
7064 7065 7066 7067
					struct ctlr_info, rescan_ctlr_work);


	if (h->remove_in_progress)
7068
		return;
7069 7070 7071 7072 7073 7074 7075

	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
		scsi_host_get(h->scsi_host);
		hpsa_ack_ctlr_events(h);
		hpsa_scan_start(h->scsi_host);
		scsi_host_put(h->scsi_host);
	}
7076
	spin_lock_irqsave(&h->lock, flags);
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090
	if (!h->remove_in_progress)
		queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void hpsa_monitor_ctlr_worker(struct work_struct *work)
{
	unsigned long flags;
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);

	detect_controller_lockup(h);
	if (lockup_detected(h))
7091
		return;
7092 7093 7094 7095

	spin_lock_irqsave(&h->lock, flags);
	if (!h->remove_in_progress)
		schedule_delayed_work(&h->monitor_ctlr_work,
7096 7097
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
7098 7099
}

7100 7101 7102 7103 7104
static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
						char *name)
{
	struct workqueue_struct *wq = NULL;

7105
	wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
7106 7107 7108 7109 7110 7111
	if (!wq)
		dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);

	return wq;
}

7112
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
7113
{
7114
	int dac, rc;
7115
	struct ctlr_info *h;
7116 7117
	int try_soft_reset = 0;
	unsigned long flags;
7118
	u32 board_id;
7119 7120 7121 7122

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

7123 7124 7125 7126 7127 7128 7129
	rc = hpsa_lookup_board_id(pdev, &board_id);
	if (rc < 0) {
		dev_warn(&pdev->dev, "Board ID not found\n");
		return rc;
	}

	rc = hpsa_init_reset_devices(pdev, board_id);
7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
7143

7144 7145 7146 7147 7148
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
7149 7150
	h = kzalloc(sizeof(*h), GFP_KERNEL);
	if (!h)
7151
		return -ENOMEM;
7152

7153
	h->pdev = pdev;
7154
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
7155
	INIT_LIST_HEAD(&h->offline_device_list);
7156
	spin_lock_init(&h->lock);
7157
	spin_lock_init(&h->offline_device_lock);
7158
	spin_lock_init(&h->scan_lock);
7159
	atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
S
Stephen Cameron 已提交
7160
	atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
7161

7162 7163 7164 7165 7166 7167 7168
	h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
	if (!h->rescan_ctlr_wq) {
		rc = -ENOMEM;
		goto clean1;
	}

	h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
7169 7170 7171 7172
	if (!h->resubmit_wq) {
		rc = -ENOMEM;
		goto clean1;
	}
7173

7174 7175
	/* Allocate and clear per-cpu variable lockup_detected */
	h->lockup_detected = alloc_percpu(u32);
7176 7177
	if (!h->lockup_detected) {
		rc = -ENOMEM;
7178
		goto clean1;
7179
	}
7180 7181
	set_lockup_detected_for_all_cpus(h, 0);

7182
	rc = hpsa_pci_init(h);
7183
	if (rc != 0)
7184 7185
		goto clean1;

7186
	sprintf(h->devname, HPSA "%d", number_of_controllers);
7187 7188 7189 7190
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
7191 7192
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
7193
		dac = 1;
7194 7195 7196 7197 7198 7199 7200 7201
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
			goto clean1;
		}
7202 7203 7204 7205
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7206

7207
	if (hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
7208
		goto clean2;
7209 7210
	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
	       h->devname, pdev->device,
7211
	       h->intr[h->intr_mode], dac ? "" : " not");
7212 7213 7214
	rc = hpsa_allocate_cmd_pool(h);
	if (rc)
		goto clean2_and_free_irqs;
7215 7216
	if (hpsa_allocate_sg_chain_blocks(h))
		goto clean4;
7217
	init_waitqueue_head(&h->scan_wait_queue);
S
Stephen Cameron 已提交
7218
	init_waitqueue_head(&h->abort_cmd_wait_queue);
7219
	h->scan_finished = 1; /* no scan currently in progress */
7220 7221

	pci_set_drvdata(pdev, h);
7222
	h->ndevices = 0;
7223
	h->hba_mode_enabled = 0;
7224 7225
	h->scsi_host = NULL;
	spin_lock_init(&h->devlock);
7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243
	hpsa_put_ctlr_into_performant_mode(h);

	/* At this point, the controller is ready to take commands.
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
7244
		hpsa_free_irqs(h);
7245
		rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
7246 7247
					hpsa_intx_discard_completions);
		if (rc) {
7248 7249
			dev_warn(&h->pdev->dev,
				"Failed to request_irq after soft reset.\n");
7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
			goto clean4;
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
			goto clean4;

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
			/* don't go to clean4, we already unallocated */
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
7282

7283 7284
		/* Enable Accelerated IO path at driver layer */
		h->acciopath_status = 1;
7285

7286

7287 7288 7289
	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

7290
	hpsa_hba_inquiry(h);
7291
	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7292 7293 7294 7295 7296 7297

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
7298 7299 7300
	INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
	queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
				h->heartbeat_sample_interval);
7301
	return 0;
7302 7303

clean4:
7304
	hpsa_free_sg_chain_blocks(h);
7305
	hpsa_free_cmd_pool(h);
7306
clean2_and_free_irqs:
7307
	hpsa_free_irqs(h);
7308 7309
clean2:
clean1:
7310 7311
	if (h->resubmit_wq)
		destroy_workqueue(h->resubmit_wq);
7312 7313
	if (h->rescan_ctlr_wq)
		destroy_workqueue(h->rescan_ctlr_wq);
7314 7315
	if (h->lockup_detected)
		free_percpu(h->lockup_detected);
7316
	kfree(h);
7317
	return rc;
7318 7319 7320 7321 7322 7323
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
7324
	int rc;
7325 7326

	/* Don't bother trying to flush the cache if locked up */
7327
	/* FIXME not necessary if do_simple_cmd does the check */
7328
	if (unlikely(lockup_detected(h)))
7329
		return;
7330 7331 7332 7333
	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

7334
	c = cmd_alloc(h);
7335
	if (!c) {
7336
		dev_warn(&h->pdev->dev, "cmd_alloc returned NULL!\n");
7337 7338
		goto out_of_memory;
	}
7339 7340 7341 7342
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
7343 7344 7345 7346
	rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
					PCI_DMA_TODEVICE, NO_TIMEOUT);
	if (rc)
		goto out;
7347
	if (c->err_info->CommandStatus != 0)
7348
out:
7349 7350
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
7351
	cmd_free(h, c);
7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366
out_of_memory:
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7367
	hpsa_free_irqs_and_disable_msix(h);
7368 7369
}

7370
static void hpsa_free_device_info(struct ctlr_info *h)
7371 7372 7373 7374 7375 7376 7377
{
	int i;

	for (i = 0; i < h->ndevices; i++)
		kfree(h->dev[i]);
}

7378
static void hpsa_remove_one(struct pci_dev *pdev)
7379 7380
{
	struct ctlr_info *h;
7381
	unsigned long flags;
7382 7383

	if (pci_get_drvdata(pdev) == NULL) {
7384
		dev_err(&pdev->dev, "unable to remove device\n");
7385 7386 7387
		return;
	}
	h = pci_get_drvdata(pdev);
7388 7389 7390 7391 7392

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	spin_unlock_irqrestore(&h->lock, flags);
7393 7394 7395 7396
	cancel_delayed_work_sync(&h->monitor_ctlr_work);
	cancel_delayed_work_sync(&h->rescan_ctlr_work);
	destroy_workqueue(h->rescan_ctlr_wq);
	destroy_workqueue(h->resubmit_wq);
7397 7398 7399
	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
	hpsa_shutdown(pdev);
	iounmap(h->vaddr);
7400 7401
	iounmap(h->transtable);
	iounmap(h->cfgtable);
7402
	hpsa_free_device_info(h);
7403
	hpsa_free_sg_chain_blocks(h);
7404 7405 7406 7407 7408 7409
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct CommandList),
		h->cmd_pool, h->cmd_pool_dhandle);
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct ErrorInfo),
		h->errinfo_pool, h->errinfo_pool_dhandle);
7410
	hpsa_free_reply_queues(h);
7411
	kfree(h->cmd_pool_bits);
7412
	kfree(h->blockFetchTable);
7413
	kfree(h->ioaccel1_blockFetchTable);
7414
	kfree(h->ioaccel2_blockFetchTable);
7415
	kfree(h->hba_inquiry_data);
7416
	pci_disable_device(pdev);
7417
	pci_release_regions(pdev);
7418
	free_percpu(h->lockup_detected);
7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433
	kfree(h);
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
7434
	.name = HPSA,
7435
	.probe = hpsa_init_one,
7436
	.remove = hpsa_remove_one,
7437 7438 7439 7440 7441 7442
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
D
Don Brace 已提交
7456
	int nsgs, int min_blocks, u32 *bucket_map)
7457 7458 7459 7460 7461 7462
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
7463
		size = i + min_blocks;
7464 7465
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
7466
		for (j = 0; j < num_buckets; j++) {
7467 7468 7469 7470 7471 7472 7473 7474 7475 7476
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

7477 7478
/* return -ENODEV or other reason on error, 0 on success */
static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7479
{
7480 7481
	int i;
	unsigned long register_value;
7482 7483
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
7484 7485 7486
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
7487
	struct access_method access = SA5_performant_access;
7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
7499
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7500 7501 7502 7503 7504 7505
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
7506
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7507 7508 7509 7510 7511 7512 7513 7514 7515 7516
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7517
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7518 7519 7520 7521 7522 7523
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

7524 7525 7526 7527 7528 7529 7530
	/* If the controller supports either ioaccel method then
	 * we can also use the RAID stack submit path that does not
	 * perform the superfluous readl() after each command submission.
	 */
	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
		access = SA5_performant_access_no_read;

7531
	/* Controller spec: zero out this buffer. */
7532 7533
	for (i = 0; i < h->nreply_queues; i++)
		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7534

7535 7536
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
7537
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7538 7539 7540 7541 7542
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
7543
	writel(h->nreply_queues, &h->transtable->RepQCount);
7544 7545
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
7546 7547 7548

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
7549
		writel(h->reply_queue[i].busaddr,
7550 7551 7552
			&h->transtable->RepQAddr[i].lower);
	}

7553
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7554 7555 7556 7557 7558 7559 7560 7561
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7562 7563 7564 7565 7566 7567
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
			access = SA5_ioaccel_mode2_access;
			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
		}
7568
	}
7569
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7570 7571 7572 7573 7574
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - doorbell timeout\n");
		return -ENODEV;
	}
7575 7576
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
7577 7578
		dev_err(&h->pdev->dev,
			"performant mode problem - transport not active\n");
7579
		return -ENODEV;
7580
	}
7581
	/* Change the access methods to the performant access methods */
7582 7583 7584
	h->access = access;
	h->transMethod = transMethod;

7585 7586
	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
7587
		return 0;
7588

7589 7590 7591 7592 7593 7594 7595 7596 7597 7598
	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);
7599

7600
		/* initialize all reply queue entries to unused */
7601 7602 7603 7604
		for (i = 0; i < h->nreply_queues; i++)
			memset(h->reply_queue[i].head,
				(u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_queue_size);
7605

7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616
		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
D
Don Brace 已提交
7617 7618
			cp->host_context_flags =
				cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
7619 7620
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
7621
			cp->tag =
7622
				cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
7623 7624
			cp->host_addr =
				cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648
					(i * sizeof(struct io_accel1_cmd)));
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;
		int rc;

		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
			&cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7649
	}
7650
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7651 7652 7653 7654 7655 7656
	if (hpsa_wait_for_mode_change_ack(h)) {
		dev_err(&h->pdev->dev,
			"performant mode problem - enabling ioaccel mode\n");
		return -ENODEV;
	}
	return 0;
7657 7658 7659 7660
}

static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
{
7661 7662 7663 7664 7665
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
7678
		kmalloc(((h->ioaccel_maxsg + 1) *
7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
	kfree(h->ioaccel1_blockFetchTable);
	return 1;
7696 7697
}

7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734
static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
{
	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&(h->ioaccel2_cmd_pool_dhandle));

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
		(h->ioaccel2_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
	kfree(h->ioaccel2_blockFetchTable);
	return 1;
}

7735
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7736 7737
{
	u32 trans_support;
7738 7739
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
7740
	int i;
7741

7742 7743 7744
	if (hpsa_simple_mode)
		return;

7745 7746 7747 7748
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
		return;

7749 7750 7751 7752 7753 7754
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
			goto clean_up;
7755 7756 7757 7758 7759 7760 7761
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
				transMethod |= CFGTBL_Trans_io_accel2 |
				CFGTBL_Trans_enable_directed_msix;
		if (ioaccel2_alloc_cmds_and_bft(h))
			goto clean_up;
		}
7762 7763
	}

7764
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7765
	hpsa_get_max_perf_mode_cmds(h);
7766
	/* Performant mode ring buffer and supporting data structures */
7767
	h->reply_queue_size = h->max_commands * sizeof(u64);
7768

7769
	for (i = 0; i < h->nreply_queues; i++) {
7770 7771 7772 7773 7774
		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
						h->reply_queue_size,
						&(h->reply_queue[i].busaddr));
		if (!h->reply_queue[i].head)
			goto clean_up;
7775 7776 7777 7778 7779
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

7780
	/* Need a block fetch table for performant mode */
7781
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7782
				sizeof(u32)), GFP_KERNEL);
7783
	if (!h->blockFetchTable)
7784 7785
		goto clean_up;

7786
	hpsa_enter_performant_mode(h, trans_support);
7787 7788 7789
	return;

clean_up:
7790
	hpsa_free_reply_queues(h);
7791 7792 7793
	kfree(h->blockFetchTable);
}

7794
static int is_accelerated_cmd(struct CommandList *c)
7795
{
7796 7797 7798 7799 7800 7801
	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
}

static void hpsa_drain_accel_commands(struct ctlr_info *h)
{
	struct CommandList *c = NULL;
7802
	int i, accel_cmds_out;
7803
	int refcount;
7804

7805
	do { /* wait for all outstanding ioaccel commands to drain out */
7806
		accel_cmds_out = 0;
7807 7808
		for (i = 0; i < h->nr_cmds; i++) {
			c = h->cmd_pool + i;
7809 7810 7811 7812
			refcount = atomic_inc_return(&c->refcount);
			if (refcount > 1) /* Command is allocated */
				accel_cmds_out += is_accelerated_cmd(c);
			cmd_free(h, c);
7813
		}
7814
		if (accel_cmds_out <= 0)
7815
			break;
7816 7817 7818 7819
		msleep(100);
	} while (1);
}

7820 7821 7822 7823 7824 7825
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
7826
	return pci_register_driver(&hpsa_pci_driver);
7827 7828 7829 7830 7831 7832 7833
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

7834 7835
static void __attribute__((unused)) verify_offsets(void)
{
7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)

	VERIFY_OFFSET(structure_size, 0);
	VERIFY_OFFSET(volume_blk_size, 4);
	VERIFY_OFFSET(volume_blk_cnt, 8);
	VERIFY_OFFSET(phys_blk_shift, 16);
	VERIFY_OFFSET(parity_rotation_shift, 17);
	VERIFY_OFFSET(strip_size, 18);
	VERIFY_OFFSET(disk_starting_blk, 20);
	VERIFY_OFFSET(disk_blk_cnt, 28);
	VERIFY_OFFSET(data_disks_per_row, 36);
	VERIFY_OFFSET(metadata_disks_per_row, 38);
	VERIFY_OFFSET(row_cnt, 40);
	VERIFY_OFFSET(layout_map_count, 42);
	VERIFY_OFFSET(flags, 44);
	VERIFY_OFFSET(dekindex, 46);
	/* VERIFY_OFFSET(reserved, 48 */
	VERIFY_OFFSET(data, 64);

#undef VERIFY_OFFSET

7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
7905
	VERIFY_OFFSET(tag, 0x68);
7906 7907 7908 7909 7910 7911
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

7912 7913
module_init(hpsa_init);
module_exit(hpsa_cleanup);