hpsa.c 155.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 *    Disk Array driver for HP Smart Array SAS controllers
 *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46 47 48
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
49
#include <linux/atomic.h>
50
#include <linux/kthread.h>
51
#include <linux/jiffies.h>
52 53 54 55
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56
#define HPSA_DRIVER_VERSION "3.4.0-1"
57
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58
#define HPSA "hpsa"
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

/* How long to wait (in milliseconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
79 80 81 82
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
83 84 85 86 87 88 89 90

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
91 92
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
93
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
94 95 96 97 98 99 100
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
101 102 103 104 105 106 107
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1925},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
108 109 110 111 112 113 114 115 116 117 118 119 120
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
121
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
122
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
138 139
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
140 141 142 143 144 145 146
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
147 148 149 150 151 152 153
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
154 155 156 157 158 159 160 161 162 163 164 165
	{0x21BD103C, "Smart Array", &SA5_access},
	{0x21BE103C, "Smart Array", &SA5_access},
	{0x21BF103C, "Smart Array", &SA5_access},
	{0x21C0103C, "Smart Array", &SA5_access},
	{0x21C1103C, "Smart Array", &SA5_access},
	{0x21C2103C, "Smart Array", &SA5_access},
	{0x21C3103C, "Smart Array", &SA5_access},
	{0x21C4103C, "Smart Array", &SA5_access},
	{0x21C5103C, "Smart Array", &SA5_access},
	{0x21C7103C, "Smart Array", &SA5_access},
	{0x21C8103C, "Smart Array", &SA5_access},
	{0x21C9103C, "Smart Array", &SA5_access},
166 167 168 169 170
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

static int number_of_controllers;

171 172
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
173 174 175 176 177 178 179 180 181 182 183
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
static void start_io(struct ctlr_info *h);

#ifdef CONFIG_COMPAT
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
184
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
185
	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
186 187
	int cmd_type);

J
Jeff Garzik 已提交
188
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
189 190 191
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
192 193
static int hpsa_change_queue_depth(struct scsi_device *sdev,
	int qdepth, int reason);
194 195

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
196
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
197 198 199 200 201 202 203 204
static int hpsa_slave_alloc(struct scsi_device *sdev);
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
205 206
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
207
	int nsgs, int min_blocks, int *bucket_map);
208
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
209
static inline u32 next_command(struct ctlr_info *h, u8 q);
210 211 212 213 214 215 216 217
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
218
static inline void finish_cmd(struct CommandList *c);
219 220
#define BOARD_NOT_READY 0
#define BOARD_READY 1
221 222 223 224 225 226 227

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

228 229 230 231 232 233
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

234 235 236 237 238 239 240 241
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
		return 0;

	switch (c->err_info->SenseInfo[12]) {
	case STATE_CHANGED:
242
		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
243 244 245
			"detected, command retried\n", h->ctlr);
		break;
	case LUN_FAILED:
246
		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
247 248 249
			"detected, action required\n", h->ctlr);
		break;
	case REPORT_LUNS_CHANGED:
250
		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
M
Mike Miller 已提交
251
			"changed, action required\n", h->ctlr);
252
	/*
253 254
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
255 256 257
	 */
		break;
	case POWER_OR_RESET:
258
		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
259 260 261
			"or device reset detected\n", h->ctlr);
		break;
	case UNIT_ATTENTION_CLEARED:
262
		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
263 264 265
		    "cleared by another initiator\n", h->ctlr);
		break;
	default:
266
		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
267 268 269 270 271 272
			"unit attention detected\n", h->ctlr);
		break;
	}
	return 1;
}

273 274 275 276 277 278 279 280 281 282
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

283 284 285 286 287 288
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
289
	h = shost_to_hba(shost);
M
Mike Miller 已提交
290
	hpsa_scan_start(h->scsi_host);
291 292 293
	return count;
}

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

309 310 311 312 313 314 315 316 317
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
}

318 319 320 321 322 323 324 325
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
326
		h->transMethod & CFGTBL_Trans_Performant ?
327 328 329
			"performant" : "simple");
}

330
/* List of controllers which cannot be hard reset on kexec with reset_devices */
331 332 333 334 335 336 337 338 339 340 341 342 343
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
344
	0x40800E11, /* Smart Array 5i */
345 346
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
347 348 349 350 351 352
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
353 354
};

355 356
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
357
	0x40800E11, /* Smart Array 5i */
358 359 360 361 362 363
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
364 365 366 367 368 369 370 371 372 373 374 375
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

static int ctlr_is_hard_resettable(u32 board_id)
376 377 378 379
{
	int i;

	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
380 381 382 383 384 385 386 387 388 389 390
		if (unresettable_controller[i] == board_id)
			return 0;
	return 1;
}

static int ctlr_is_soft_resettable(u32 board_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
		if (soft_unresettable_controller[i] == board_id)
391 392 393 394
			return 0;
	return 1;
}

395 396 397 398 399 400
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

401 402 403 404 405 406 407
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
408
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
409 410
}

411 412 413 414 415 416
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
417
	"1(ADM)", "UNKNOWN"
418 419 420 421 422 423 424
};
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
425
	unsigned char rlevel;
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
449
	if (rlevel > RAID_UNKNOWN)
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

507 508 509 510 511 512 513 514 515 516
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
517 518
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
519 520 521 522 523 524 525 526 527 528 529 530 531

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
532
	&dev_attr_resettable,
533 534 535 536 537
	NULL,
};

static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
538 539
	.name			= HPSA,
	.proc_name		= HPSA,
540 541 542 543 544 545
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
	.change_queue_depth	= hpsa_change_queue_depth,
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
546
	.eh_abort_handler	= hpsa_eh_abort_handler,
547 548 549 550 551 552 553 554 555
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
556
	.max_sectors = 8192,
557
	.no_write_same = 1,
558 559 560 561 562 563 564 565 566
};


/* Enqueuing and dequeuing functions for cmdlists. */
static inline void addQ(struct list_head *list, struct CommandList *c)
{
	list_add_tail(&c->list, list);
}

567
static inline u32 next_command(struct ctlr_info *h, u8 q)
568 569
{
	u32 a;
570
	struct reply_pool *rq = &h->reply_queue[q];
571
	unsigned long flags;
572

573 574 575
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

576
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
577
		return h->access.command_completed(h, q);
578

579 580 581
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
582
		spin_lock_irqsave(&h->lock, flags);
583
		h->commands_outstanding--;
584
		spin_unlock_irqrestore(&h->lock, flags);
585 586 587 588
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
589 590 591
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
592 593 594 595 596 597 598 599 600 601
	}
	return a;
}

/* set_performant_mode: Modify the tag for cciss performant
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
{
602
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
603
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
604
		if (likely(h->msix_vector > 0))
605
			c->Header.ReplyQueue =
606
				raw_smp_processor_id() % h->nreply_queues;
607
	}
608 609
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

639 640 641 642 643 644
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c)
{
	unsigned long flags;

	set_performant_mode(h, c);
645
	dial_down_lockup_detection_during_fw_flash(h, c);
646 647 648 649
	spin_lock_irqsave(&h->lock, flags);
	addQ(&h->reqQ, c);
	h->Qdepth++;
	spin_unlock_irqrestore(&h->lock, flags);
650
	start_io(h);
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
}

static inline void removeQ(struct CommandList *c)
{
	if (WARN_ON(list_empty(&c->list)))
		return;
	list_del_init(&c->list);
}

static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

674 675 676 677 678 679 680
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
681
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
682

683
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
684 685 686

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
687
			__set_bit(h->dev[i]->target, lun_taken);
688 689
	}

690 691 692 693 694 695
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	}
	return !found;
}

/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

711
	if (n >= HPSA_MAX_DEVICES) {
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
	 * unit no, zero otherise.
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
	added[*nadded] = device;
	(*nadded)++;

	/* initially, (before registering with scsi layer) we don't
	 * know our hostno and we don't want to print anything first
	 * time anyway (the scsi layer's inquiries will show that info)
	 */
	/* if (hostno != -1) */
		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
			scsi_device_type(device->devtype), hostno,
			device->bus, device->target, device->lun);
	return 0;
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
		new_entry->target, new_entry->lun);
}

793 794 795 796 797 798 799
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
800
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
801 802
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
803 804 805 806 807 808 809 810 811 812

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

813 814 815 816 817 818 819 820
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
			new_entry->target, new_entry->lun);
}

821 822 823 824 825 826 827 828
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

829
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
		sd->lun);
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

899 900 901 902 903 904 905 906 907 908 909 910
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
	return 0;
}

911 912 913
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
914 915 916 917
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
918 919 920 921 922 923 924 925 926
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
927
#define DEVICE_UPDATED 3
928
	for (i = 0; i < haystack_size; i++) {
929 930
		if (haystack[i] == NULL) /* previously removed. */
			continue;
931 932
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
933 934 935
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
936
				return DEVICE_SAME;
937
			} else {
938
				return DEVICE_CHANGED;
939
			}
940 941 942 943 944 945
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

946
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
947 948 949 950 951 952 953 954 955 956 957 958 959
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

960 961
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
962 963 964 965 966 967 968 969 970 971 972 973 974

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
975 976
	 * If minor device attributes change, just update
	 * the existing device structure.
977 978 979 980 981 982 983 984 985 986 987 988 989 990
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
991 992
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
993 994 995 996
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
997 998
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
	spin_unlock_irqrestore(&h->devlock, flags);

	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
		struct scsi_device *sdev =
			scsi_device_lookup(sh, removed[i]->bus,
				removed[i]->target, removed[i]->lun);
		if (sdev != NULL) {
			scsi_remove_device(sdev);
			scsi_device_put(sdev);
		} else {
			/* We don't expect to get here.
			 * future cmds to this device will get selection
			 * timeout as if the device was gone.
			 */
			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
				" for removal.", hostno, removed[i]->bus,
				removed[i]->target, removed[i]->lun);
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
			"device not added.\n", hostno, added[i]->bus,
			added[i]->target, added[i]->lun);
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1077
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

/* link sdev->hostdata to our per-device structure. */
static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
	if (sd != NULL)
		sdev->hostdata = sd;
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1113
	/* nothing to do. */
1114 1115
}

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
	if (!h->cmd_sg_list)
		return -ENOMEM;
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
		if (!h->cmd_sg_list[i])
			goto clean;
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1154
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
	chain_sg->Ext = HPSA_SG_CHAIN;
	chain_sg->Len = sizeof(*chain_sg) *
		(c->Header.SGTotal - h->max_cmd_sg_entries);
	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
				PCI_DMA_TODEVICE);
1167 1168 1169 1170 1171 1172
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
		chain_sg->Addr.lower = 0;
		chain_sg->Addr.upper = 0;
		return -1;
	}
1173 1174
	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1175
	return 0;
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;
	union u64bit temp64;

	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	temp64.val32.lower = chain_sg->Addr.lower;
	temp64.val32.upper = chain_sg->Addr.upper;
	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
}

1193
static void complete_scsi_command(struct CommandList *cp)
1194 1195 1196 1197 1198 1199 1200 1201
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;

	unsigned char sense_key;
	unsigned char asc;      /* additional sense code */
	unsigned char ascq;     /* additional sense code qualifier */
1202
	unsigned long sense_data_size;
1203 1204 1205 1206 1207 1208

	ei = cp->err_info;
	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
	h = cp->h;

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1209 1210
	if ((cp->cmd_type == CMD_SCSI) &&
		(cp->Header.SGTotal > h->max_cmd_sg_entries))
1211
		hpsa_unmap_sg_chain_block(h, cp);
1212 1213 1214

	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1215
	cmd->result |= ei->ScsiStatus;
1216 1217

	/* copy the sense data whether we need to or not. */
1218 1219 1220 1221 1222 1223 1224 1225
	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
		sense_data_size = SCSI_SENSE_BUFFERSIZE;
	else
		sense_data_size = sizeof(ei->SenseInfo);
	if (ei->SenseLen < sense_data_size)
		sense_data_size = ei->SenseLen;

	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1226 1227 1228 1229
	scsi_set_resid(cmd, ei->ResidualCnt);

	if (ei->CommandStatus == 0) {
		cmd_free(h, cp);
1230
		cmd->scsi_done(cmd);
1231 1232 1233
		return;
	}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
		cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
		cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
		cp->Header.Tag.lower = c->Tag.lower;
		cp->Header.Tag.upper = c->Tag.upper;
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
	}

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
		if (ei->ScsiStatus) {
			/* Get sense key */
			sense_key = 0xf & ei->SenseInfo[2];
			/* Get additional sense code */
			asc = ei->SenseInfo[12];
			/* Get addition sense code qualifier */
			ascq = ei->SenseInfo[13];
		}

		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1261
			if (check_for_unit_attention(h, cp))
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
				break;
			if (sense_key == ILLEGAL_REQUEST) {
				/*
				 * SCSI REPORT_LUNS is commonly unsupported on
				 * Smart Array.  Suppress noisy complaint.
				 */
				if (cp->Request.CDB[0] == REPORT_LUNS)
					break;

				/* If ASC/ASCQ indicate Logical Unit
				 * Not Supported condition,
				 */
				if ((asc == 0x25) && (ascq == 0x0)) {
					dev_warn(&h->pdev->dev, "cp %p "
						"has check condition\n", cp);
					break;
				}
			}

			if (sense_key == NOT_READY) {
				/* If Sense is Not Ready, Logical Unit
				 * Not ready, Manual Intervention
				 * required
				 */
				if ((asc == 0x04) && (ascq == 0x03)) {
					dev_warn(&h->pdev->dev, "cp %p "
						"has check condition: unit "
						"not ready, manual "
						"intervention required\n", cp);
					break;
				}
			}
1294 1295 1296 1297 1298 1299
			if (sense_key == ABORTED_COMMAND) {
				/* Aborted command is retryable */
				dev_warn(&h->pdev->dev, "cp %p "
					"has check condition: aborted command: "
					"ASC: 0x%x, ASCQ: 0x%x\n",
					cp, asc, ascq);
1300
				cmd->result |= DID_SOFT_ERROR << 16;
1301 1302
				break;
			}
1303
			/* Must be some other type of check condition */
1304
			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1305 1306 1307 1308
					"unknown type: "
					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
					"Returning result: 0x%x, "
					"cmd=[%02x %02x %02x %02x %02x "
1309
					"%02x %02x %02x %02x %02x %02x "
1310 1311 1312 1313 1314 1315 1316
					"%02x %02x %02x %02x %02x]\n",
					cp, sense_key, asc, ascq,
					cmd->result,
					cmd->cmnd[0], cmd->cmnd[1],
					cmd->cmnd[2], cmd->cmnd[3],
					cmd->cmnd[4], cmd->cmnd[5],
					cmd->cmnd[6], cmd->cmnd[7],
1317 1318 1319 1320
					cmd->cmnd[8], cmd->cmnd[9],
					cmd->cmnd[10], cmd->cmnd[11],
					cmd->cmnd[12], cmd->cmnd[13],
					cmd->cmnd[14], cmd->cmnd[15]);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
			break;
		}


		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
		dev_warn(&h->pdev->dev, "cp %p has"
			" completed with data overrun "
			"reported\n", cp);
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
1375
		cmd->result = DID_ERROR << 16;
1376
		dev_warn(&h->pdev->dev, "cp %p has "
1377
			"protocol error\n", cp);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
		break;
	case CMD_ABORTED:
		cmd->result = DID_ABORT << 16;
		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
				cp, ei->ScsiStatus);
		break;
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
		break;
	case CMD_UNSOLICITED_ABORT:
1397 1398
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1399 1400 1401 1402 1403 1404
			"abort\n", cp);
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
		break;
1405 1406 1407 1408
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
1409 1410 1411 1412 1413 1414
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
	cmd_free(h, cp);
1415
	cmd->scsi_done(cmd);
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;
	union u64bit addr64;

	for (i = 0; i < sg_used; i++) {
		addr64.val32.lower = c->SG[i].Addr.lower;
		addr64.val32.upper = c->SG[i].Addr.upper;
		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
			data_direction);
	}
}

1432
static int hpsa_map_one(struct pci_dev *pdev,
1433 1434 1435 1436 1437
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
1438
	u64 addr64;
1439 1440 1441 1442

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
		cp->Header.SGTotal = 0;
1443
		return 0;
1444 1445
	}

1446
	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1447
	if (dma_mapping_error(&pdev->dev, addr64)) {
1448
		/* Prevent subsequent unmap of something never mapped */
1449 1450
		cp->Header.SGList = 0;
		cp->Header.SGTotal = 0;
1451
		return -1;
1452
	}
1453
	cp->SG[0].Addr.lower =
1454
	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1455
	cp->SG[0].Addr.upper =
1456
	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1457
	cp->SG[0].Len = buflen;
1458
	cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */
1459 1460
	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1461
	return 0;
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
}

static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c)
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
	enqueue_cmd_and_start_io(h, c);
	wait_for_completion(&wait);
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
	struct CommandList *c)
{
	unsigned long flags;

	/* If controller lockup detected, fake a hardware error. */
	spin_lock_irqsave(&h->lock, flags);
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
	} else {
		spin_unlock_irqrestore(&h->lock, flags);
		hpsa_scsi_do_simple_cmd_core(h, c);
	}
}

1490
#define MAX_DRIVER_CMD_RETRIES 25
1491 1492 1493
static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction)
{
1494
	int backoff_time = 10, retry_count = 0;
1495 1496

	do {
1497
		memset(c->err_info, 0, sizeof(*c->err_info));
1498 1499
		hpsa_scsi_do_simple_cmd_core(h, c);
		retry_count++;
1500 1501 1502 1503 1504
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
1505
	} while ((check_for_unit_attention(h, c) ||
1506 1507
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
}

static void hpsa_scsi_interpret_error(struct CommandList *cp)
{
	struct ErrorInfo *ei;
	struct device *d = &cp->h->pdev->dev;

	ei = cp->err_info;
	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
		dev_warn(d, "cmd %p has completed with errors\n", cp);
		dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
				ei->ScsiStatus);
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
			dev_info(d, "UNDERRUN\n");
		break;
	case CMD_DATA_OVERRUN:
		dev_warn(d, "cp %p has completed with data overrun\n", cp);
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
		dev_warn(d, "cp %p is reported invalid (probably means "
			"target device no longer present)\n", cp);
		/* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
		print_cmd(cp);  */
		}
		break;
	case CMD_PROTOCOL_ERR:
		dev_warn(d, "cp %p has protocol error \n", cp);
		break;
	case CMD_HARDWARE_ERR:
		/* cmd->result = DID_ERROR << 16; */
		dev_warn(d, "cp %p had hardware error\n", cp);
		break;
	case CMD_CONNECTION_LOST:
		dev_warn(d, "cp %p had connection lost\n", cp);
		break;
	case CMD_ABORTED:
		dev_warn(d, "cp %p was aborted\n", cp);
		break;
	case CMD_ABORT_FAILED:
		dev_warn(d, "cp %p reports abort failed\n", cp);
		break;
	case CMD_UNSOLICITED_ABORT:
		dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
		break;
	case CMD_TIMEOUT:
		dev_warn(d, "cp %p timed out\n", cp);
		break;
1566 1567 1568
	case CMD_UNABORTABLE:
		dev_warn(d, "Command unabortable\n");
		break;
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	default:
		dev_warn(d, "cp %p returned unknown status %x\n", cp,
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
			unsigned char page, unsigned char *buf,
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);

	if (c == NULL) {			/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1587
		return -ENOMEM;
1588 1589
	}

1590 1591 1592 1593 1594
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
1595 1596 1597 1598 1599 1600
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(c);
		rc = -1;
	}
1601
out:
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	cmd_special_free(h, c);
	return rc;
}

static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);

	if (c == NULL) {			/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1616
		return -ENOMEM;
1617 1618
	}

1619 1620 1621
	/* fill_cmd can't fail here, no data buffer to map. */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
			NULL, 0, 0, scsi3addr, TYPE_MSG);
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	hpsa_scsi_do_simple_cmd_core(h, c);
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
		hpsa_scsi_interpret_error(c);
		rc = -1;
	}
	cmd_special_free(h, c);
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return -1;
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
		struct ReportLUNdata *buf, int bufsize,
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -1;
	}
1686 1687
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
1688 1689 1690 1691 1692
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
1693 1694 1695 1696 1697 1698 1699 1700 1701
	if (extended_response)
		c->Request.CDB[1] = extended_response;
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(c);
		rc = -1;
	}
1702
out:
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	cmd_special_free(h, c);
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf,
		int bufsize, int extended_response)
{
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

static int hpsa_update_device_info(struct ctlr_info *h,
1729 1730
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
1731
{
1732 1733 1734 1735 1736 1737

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

1738
	unsigned char *inq_buff;
1739
	unsigned char *obdr_sig;
1740

1741
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
		is_logical_dev_addr_mode(scsi3addr))
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
	else
		this_device->raid_level = RAID_UNKNOWN;

1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}

1781 1782 1783 1784 1785 1786 1787 1788
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

1789
static unsigned char *ext_target_model[] = {
1790 1791 1792 1793
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
1794
	"P2000 G3 SAS",
1795
	"MSA 2040 SAS",
1796 1797 1798
	NULL,
};

1799
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1800 1801 1802
{
	int i;

1803 1804 1805
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
1806 1807 1808 1809 1810
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
1811
 * Puts non-external target logical volumes on bus 0, external target logical
1812 1813 1814 1815 1816 1817
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
1818
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1819
{
1820 1821 1822 1823
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
1824
		if (is_hba_lunid(lunaddrbytes))
1825
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1826
		else
1827 1828 1829 1830 1831
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
1832 1833
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
1834 1835 1836 1837 1838 1839
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
1840
	}
1841
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1842 1843 1844 1845
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
1846
 * For the external targets (arrays), we have to manually detect the enclosure
1847 1848 1849 1850 1851 1852 1853 1854
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
1855
static int add_ext_target_dev(struct ctlr_info *h,
1856
	struct hpsa_scsi_dev_t *tmpdevice,
1857
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1858
	unsigned long lunzerobits[], int *n_ext_target_devs)
1859 1860 1861
{
	unsigned char scsi3addr[8];

1862
	if (test_bit(tmpdevice->target, lunzerobits))
1863 1864 1865 1866 1867
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

1868 1869
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
1870

1871
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1872 1873
		return 0;

1874
	memset(scsi3addr, 0, 8);
1875
	scsi3addr[3] = tmpdevice->target;
1876 1877 1878
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

1879 1880 1881
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

1882
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1883 1884
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
1885 1886 1887 1888
			"configuration.");
		return 0;
	}

1889
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1890
		return 0;
1891
	(*n_ext_target_devs)++;
1892 1893 1894
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
	set_bit(tmpdevice->target, lunzerobits);
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	return 1;
}

/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
	int reportlunsize,
1906 1907
	struct ReportLUNdata *physdev, u32 *nphysicals,
	struct ReportLUNdata *logdev, u32 *nlogicals)
1908
{
1909 1910
	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize,
					HPSA_REPORT_PHYS_EXTENDED)) {
1911 1912 1913
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
1914
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals - HPSA_MAX_PHYS_LUN);
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
1925
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

1944
u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1945 1946
	int nphysicals, int nlogicals,
	struct ReportExtendedLUNdata *physdev_list,
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
		return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
1982
	struct ReportExtendedLUNdata *physdev_list = NULL;
1983
	struct ReportLUNdata *logdev_list = NULL;
1984 1985 1986
	u32 nphysicals = 0;
	u32 nlogicals = 0;
	u32 ndev_allocated = 0;
1987 1988 1989
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1990
	int i, n_ext_target_devs, ndevs_to_allocate;
1991
	int raid_ctlr_position;
1992
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1993

1994
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1995 1996 1997 1998
	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);

1999
	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
2000 2001 2002 2003 2004
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

2005 2006
	if (hpsa_gather_lun_info(h, reportlunsize,
			(struct ReportLUNdata *) physdev_list, &nphysicals,
2007 2008 2009
			logdev_list, &nlogicals))
		goto out;

2010 2011 2012
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
2013
	 */
2014
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2015 2016 2017

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
2018 2019 2020 2021 2022 2023 2024
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

2025 2026 2027 2028 2029 2030 2031 2032 2033
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

2034 2035 2036 2037 2038
	if (unlikely(is_scsi_rev_5(h)))
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

2039
	/* adjust our table of devices */
2040
	n_ext_target_devs = 0;
2041
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2042
		u8 *lunaddrbytes, is_OBDR = 0;
2043 2044

		/* Figure out where the LUN ID info is coming from */
2045 2046
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
2047
		/* skip masked physical devices. */
2048 2049
		if (lunaddrbytes[3] & 0xC0 &&
			i < nphysicals + (raid_ctlr_position == 0))
2050 2051 2052
			continue;

		/* Get device type, vendor, model, device id */
2053 2054
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
2055
			continue; /* skip it if we can't talk to it. */
2056
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2057 2058 2059
		this_device = currentsd[ncurrent];

		/*
2060
		 * For external target devices, we have to insert a LUN 0 which
2061 2062 2063 2064 2065
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
2066
		if (add_ext_target_dev(h, tmpdevice, this_device,
2067
				lunaddrbytes, lunzerobits,
2068
				&n_ext_target_devs)) {
2069 2070 2071 2072 2073 2074 2075
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

		switch (this_device->devtype) {
2076
		case TYPE_ROM:
2077 2078 2079 2080 2081 2082 2083
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
2084 2085
			if (is_OBDR)
				ncurrent++;
2086 2087 2088 2089
			break;
		case TYPE_DISK:
			if (i < nphysicals)
				break;
2090 2091 2092
			memcpy(&this_device->ioaccel_handle,
				&lunaddrbytes[20],
				sizeof(this_device->ioaccel_handle));
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
			ncurrent++;
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
2112
		if (ncurrent >= HPSA_MAX_DEVICES)
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
}

/* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
2129
static int hpsa_scatter_gather(struct ctlr_info *h,
2130 2131 2132 2133 2134
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	unsigned int len;
	struct scatterlist *sg;
2135
	u64 addr64;
2136 2137
	int use_sg, i, sg_index, chained;
	struct SGDescriptor *curr_sg;
2138

2139
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2140 2141 2142 2143 2144 2145 2146 2147

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

2148 2149 2150
	curr_sg = cp->SG;
	chained = 0;
	sg_index = 0;
2151
	scsi_for_each_sg(cmd, sg, use_sg, i) {
2152 2153 2154 2155 2156 2157
		if (i == h->max_cmd_sg_entries - 1 &&
			use_sg > h->max_cmd_sg_entries) {
			chained = 1;
			curr_sg = h->cmd_sg_list[cp->cmdindex];
			sg_index = 0;
		}
2158
		addr64 = (u64) sg_dma_address(sg);
2159
		len  = sg_dma_len(sg);
2160 2161 2162
		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
		curr_sg->Len = len;
2163
		curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST;
2164 2165 2166 2167 2168 2169 2170 2171 2172
		curr_sg++;
	}

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
		cp->Header.SGTotal = (u16) (use_sg + 1);
2173 2174 2175 2176
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
2177
		return 0;
2178 2179 2180 2181
	}

sglist_finished:

2182 2183
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2184 2185 2186
	return 0;
}

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
/*
 * Queue a command to the I/O accelerator path.
 * This method does not currently support S/G chaining.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
					struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
			curr_sg->Addr.upper =
				(u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
			curr_sg->Len = len;

			if (i == (scsi_sg_count(cmd) - 1))
				curr_sg->Ext = HPSA_SG_LAST;
			else
				curr_sg->Ext = 0;  /* we are not chaining */
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

	/* Fill out the command structure to submit */
	cp->dev_handle = dev->ioaccel_handle;
	cp->transfer_len = total_len;
	cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
			(cmd->cmd_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
	cp->control = control;
	memcpy(cp->CDB, cmd->cmnd, cmd->cmd_len);
	memcpy(cp->CISS_LUN, dev->scsi3addr, 8);

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;

	/* Set the bits in the address sent down to include:
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[use_sg] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;

	/* execute command (bypassing cmd queue if possible) */
	if (unlikely(h->access.fifo_full(h)))
		enqueue_cmd_and_start_io(h, c);
	else
		h->access.submit_command(h, c);
	return 0;
}
2285

J
Jeff Garzik 已提交
2286
static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
	void (*done)(struct scsi_cmnd *))
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
	unsigned long flags;

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		done(cmd);
		return 0;
	}
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));

	spin_lock_irqsave(&h->lock, flags);
2306 2307 2308 2309 2310 2311
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
	}
2312
	spin_unlock_irqrestore(&h->lock, flags);
2313
	c = cmd_alloc(h);
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
		return SCSI_MLQUEUE_HOST_BUSY;
	}

	/* Fill in the command list header */

	cmd->scsi_done = done;    /* save this for use by completion code */

	/* save c in case we have to abort it  */
	cmd->host_scribble = (unsigned char *) c;

	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
2328 2329 2330 2331 2332

	/* Call alternate submit routine for I/O accelerated commands */
	if ((likely(h->transMethod & CFGTBL_Trans_io_accel1)) &&
		(dev->ioaccel_handle) &&
		((cmd->cmnd[0] == READ_10) || (cmd->cmnd[0] == WRITE_10)) &&
2333 2334
		(scsi_sg_count(cmd) <= IOACCEL1_MAXSGENTRIES) &&
		likely(cmd->request->cmd_type == REQ_TYPE_FS))
2335 2336
		return hpsa_scsi_ioaccel_queue_command(h, c);

2337 2338
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2339 2340
	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	c->Request.Type.Type = TYPE_CMD;
	c->Request.Type.Attribute = ATTR_SIMPLE;
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
		c->Request.Type.Direction = XFER_WRITE;
		break;
	case DMA_FROM_DEVICE:
		c->Request.Type.Direction = XFER_READ;
		break;
	case DMA_NONE:
		c->Request.Type.Direction = XFER_NONE;
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

		c->Request.Type.Direction = XFER_RSVD;
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

2385
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2386 2387 2388 2389 2390 2391 2392 2393
		cmd_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

J
Jeff Garzik 已提交
2394 2395
static DEF_SCSI_QCMD(hpsa_scsi_queue_command)

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1; /* mark scan as finished. */
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
}

static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
static int hpsa_change_queue_depth(struct scsi_device *sdev,
	int qdepth, int reason)
{
	struct ctlr_info *h = sdev_to_hba(sdev);

	if (reason != SCSI_QDEPTH_DEFAULT)
		return -ENOTSUPP;

	if (qdepth < 1)
		qdepth = 1;
	else
		if (qdepth > h->nr_cmds)
			qdepth = h->nr_cmds;
	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
	return sdev->queue_depth;
}

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
	/* we are being forcibly unloaded, and may not refuse. */
	scsi_remove_host(h->scsi_host);
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
}

static int hpsa_register_scsi(struct ctlr_info *h)
{
2465 2466
	struct Scsi_Host *sh;
	int error;
2467

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
	if (sh == NULL)
		goto fail;

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
	sh->can_queue = h->nr_cmds;
	sh->cmd_per_lun = h->nr_cmds;
	sh->sg_tablesize = h->maxsgentries;
	h->scsi_host = sh;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
	error = scsi_add_host(sh, &h->pdev->dev);
	if (error)
		goto fail_host_put;
	scsi_scan_host(sh);
	return 0;

 fail_host_put:
	dev_err(&h->pdev->dev, "%s: scsi_add_host"
		" failed for controller %d\n", __func__, h->ctlr);
	scsi_host_put(sh);
	return error;
 fail:
	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
		" failed for controller %d\n", __func__, h->ctlr);
	return -ENOMEM;
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530
}

static int wait_for_device_to_become_ready(struct ctlr_info *h,
	unsigned char lunaddr[])
{
	int rc = 0;
	int count = 0;
	int waittime = 1; /* seconds */
	struct CommandList *c;

	c = cmd_special_alloc(h);
	if (!c) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"wait_for_device_to_become_ready.\n");
		return IO_ERROR;
	}

	/* Send test unit ready until device ready, or give up. */
	while (count < HPSA_TUR_RETRY_LIMIT) {

		/* Wait for a bit.  do this first, because if we send
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
		count++;

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
			waittime = waittime * 2;

2531 2532 2533
		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
		(void) fill_cmd(c, TEST_UNIT_READY, h,
				NULL, 0, 0, lunaddr, TYPE_CMD);
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
		hpsa_scsi_do_simple_cmd_core(h, c);
		/* no unmap needed here because no data xfer. */

		if (c->err_info->CommandStatus == CMD_SUCCESS)
			break;

		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
			break;

		dev_warn(&h->pdev->dev, "waiting %d secs "
			"for device to become ready.\n", waittime);
		rc = 1; /* device not ready. */
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

	cmd_special_free(h, c);
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
2579 2580
	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2581 2582 2583 2584 2585 2586 2587 2588 2589
	/* send a reset to the SCSI LUN which the command was sent to */
	rc = hpsa_send_reset(h, dev->scsi3addr);
	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
		return SUCCESS;

	dev_warn(&h->pdev->dev, "resetting device failed.\n");
	return FAILED;
}

2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
static void hpsa_get_tag(struct ctlr_info *h,
	struct CommandList *c, u32 *taglower, u32 *tagupper)
{
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
		*tagupper = cm1->Tag.upper;
		*taglower = cm1->Tag.lower;
	} else {
		*tagupper = c->Header.Tag.upper;
		*taglower = c->Header.Tag.lower;
	}
}

2619
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2620
	struct CommandList *abort, int swizzle)
2621 2622 2623 2624
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
2625
	u32 tagupper, taglower;
2626 2627 2628 2629 2630 2631 2632

	c = cmd_special_alloc(h);
	if (c == NULL) {	/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -ENOMEM;
	}

2633 2634 2635
	/* fill_cmd can't fail here, no buffer to map */
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
		0, 0, scsi3addr, TYPE_MSG);
2636 2637
	if (swizzle)
		swizzle_abort_tag(&c->Request.CDB[4]);
2638
	hpsa_scsi_do_simple_cmd_core(h, c);
2639
	hpsa_get_tag(h, abort, &taglower, &tagupper);
2640
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2641
		__func__, tagupper, taglower);
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2653
			__func__, tagupper, taglower);
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
		hpsa_scsi_interpret_error(c);
		rc = -1;
		break;
	}
	cmd_special_free(h, c);
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
		abort->Header.Tag.upper, abort->Header.Tag.lower);
	return rc;
}

/*
 * hpsa_find_cmd_in_queue
 *
 * Used to determine whether a command (find) is still present
 * in queue_head.   Optionally excludes the last element of queue_head.
 *
 * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
 * not yet been submitted, and so can be aborted by the driver without
 * sending an abort to the hardware.
 *
 * Returns pointer to command if found in queue, NULL otherwise.
 */
static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
			struct scsi_cmnd *find, struct list_head *queue_head)
{
	unsigned long flags;
	struct CommandList *c = NULL;	/* ptr into cmpQ */

	if (!find)
		return 0;
	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(c, queue_head, list) {
		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
			continue;
		if (c->scsi_cmd == find) {
			spin_unlock_irqrestore(&h->lock, flags);
			return c;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	return NULL;
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
					u8 *tag, struct list_head *queue_head)
{
	unsigned long flags;
	struct CommandList *c;

	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(c, queue_head, list) {
		if (memcmp(&c->Header.Tag, tag, 8) != 0)
			continue;
		spin_unlock_irqrestore(&h->lock, flags);
		return c;
	}
	spin_unlock_irqrestore(&h->lock, flags);
	return NULL;
}

/* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
 * tell which kind we're dealing with, so we send the abort both ways.  There
 * shouldn't be any collisions between swizzled and unswizzled tags due to the
 * way we construct our tags but we check anyway in case the assumptions which
 * make this true someday become false.
 */
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
	unsigned char *scsi3addr, struct CommandList *abort)
{
	u8 swizzled_tag[8];
	struct CommandList *c;
	int rc = 0, rc2 = 0;

	/* we do not expect to find the swizzled tag in our queue, but
	 * check anyway just to be sure the assumptions which make this
	 * the case haven't become wrong.
	 */
	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
	swizzle_abort_tag(swizzled_tag);
	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
	if (c != NULL) {
		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
		return hpsa_send_abort(h, scsi3addr, abort, 0);
	}
	rc = hpsa_send_abort(h, scsi3addr, abort, 0);

	/* if the command is still in our queue, we can't conclude that it was
	 * aborted (it might have just completed normally) but in any case
	 * we don't need to try to abort it another way.
	 */
	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
	if (c)
		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
	return rc && rc2;
}

2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

	int i, rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct CommandList *found;
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
2765
	u32 tagupper, taglower;
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797

	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
	if (WARN(h == NULL,
			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
		return FAILED;

	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
		h->scsi_host->host_no, sc->device->channel,
		sc->device->id, sc->device->lun);

	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
		return FAILED;
	}

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
				msg);
		return FAILED;
	}
2798 2799
	hpsa_get_tag(h, abort, &taglower, &tagupper);
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	as  = (struct scsi_cmnd *) abort->scsi_cmd;
	if (as != NULL)
		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
			as->cmnd[0], as->serial_number);
	dev_dbg(&h->pdev->dev, "%s\n", msg);
	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);

	/* Search reqQ to See if command is queued but not submitted,
	 * if so, complete the command with aborted status and remove
	 * it from the reqQ.
	 */
	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
	if (found) {
		found->err_info->CommandStatus = CMD_ABORTED;
		finish_cmd(found);
		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
				msg);
		return SUCCESS;
	}

	/* not in reqQ, if also not in cmpQ, must have already completed */
	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
	if (!found)  {
2824
		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2825 2826 2827 2828 2829 2830 2831 2832 2833
				msg);
		return SUCCESS;
	}

	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
2834
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	if (rc != 0) {
		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
			h->scsi_host->host_no,
			dev->bus, dev->target, dev->lun);
		return FAILED;
	}
	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);

	/* If the abort(s) above completed and actually aborted the
	 * command, then the command to be aborted should already be
	 * completed.  If not, wait around a bit more to see if they
	 * manage to complete normally.
	 */
#define ABORT_COMPLETE_WAIT_SECS 30
	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
		if (!found)
			return SUCCESS;
		msleep(100);
	}
	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
		msg, ABORT_COMPLETE_WAIT_SECS);
	return FAILED;
}


2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
 */
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	int i;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;
2874
	unsigned long flags;
2875

2876
	spin_lock_irqsave(&h->lock, flags);
2877 2878
	do {
		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2879 2880
		if (i == h->nr_cmds) {
			spin_unlock_irqrestore(&h->lock, flags);
2881
			return NULL;
2882
		}
2883 2884 2885
	} while (test_and_set_bit
		 (i & (BITS_PER_LONG - 1),
		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2886 2887
	spin_unlock_irqrestore(&h->lock, flags);

2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	c = h->cmd_pool + i;
	memset(c, 0, sizeof(*c));
	cmd_dma_handle = h->cmd_pool_dhandle
	    + i * sizeof(*c);
	c->err_info = h->errinfo_pool + i;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + i * sizeof(*c->err_info);

	c->cmdindex = i;

2899
	INIT_LIST_HEAD(&c->list);
2900 2901
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	c->ErrDesc.Addr.lower = temp64.val32.lower;
	c->ErrDesc.Addr.upper = temp64.val32.upper;
	c->ErrDesc.Len = sizeof(*c->err_info);

	c->h = h;
	return c;
}

/* For operations that can wait for kmalloc to possibly sleep,
 * this routine can be called. Lock need not be held to call
 * cmd_special_alloc. cmd_special_free() is the complement.
 */
static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;

	c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
	if (c == NULL)
		return NULL;
	memset(c, 0, sizeof(*c));

2925
	c->cmd_type = CMD_SCSI;
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
	c->cmdindex = -1;

	c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
		    &err_dma_handle);

	if (c->err_info == NULL) {
		pci_free_consistent(h->pdev,
			sizeof(*c), c, cmd_dma_handle);
		return NULL;
	}
	memset(c->err_info, 0, sizeof(*c->err_info));

2938
	INIT_LIST_HEAD(&c->list);
2939 2940
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
	c->ErrDesc.Addr.lower = temp64.val32.lower;
	c->ErrDesc.Addr.upper = temp64.val32.upper;
	c->ErrDesc.Len = sizeof(*c->err_info);

	c->h = h;
	return c;
}

static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
	int i;
2952
	unsigned long flags;
2953 2954

	i = c - h->cmd_pool;
2955
	spin_lock_irqsave(&h->lock, flags);
2956 2957
	clear_bit(i & (BITS_PER_LONG - 1),
		  h->cmd_pool_bits + (i / BITS_PER_LONG));
2958
	spin_unlock_irqrestore(&h->lock, flags);
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
}

static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
{
	union u64bit temp64;

	temp64.val32.lower = c->ErrDesc.Addr.lower;
	temp64.val32.upper = c->ErrDesc.Addr.upper;
	pci_free_consistent(h->pdev, sizeof(*c->err_info),
			    c->err_info, (dma_addr_t) temp64.val);
	pci_free_consistent(h->pdev, sizeof(*c),
2970
			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
}

#ifdef CONFIG_COMPAT

static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

2984
	memset(&arg64, 0, sizeof(arg64));
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

3000
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
	int cmd, void *arg)
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

3021
	memset(&arg64, 0, sizeof(arg64));
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

3038
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
3039 3040 3041 3042 3043 3044 3045 3046
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
	union u64bit temp64;
3123
	int rc = 0;
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
			return -EFAULT;
3139 3140 3141 3142
		if (iocommand.Request.Type.Direction == XFER_WRITE) {
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
3143 3144
				rc = -EFAULT;
				goto out_kfree;
3145 3146 3147
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
3148
		}
3149
	}
3150 3151
	c = cmd_special_alloc(h);
	if (c == NULL) {
3152 3153
		rc = -ENOMEM;
		goto out_kfree;
3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	}
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
		c->Header.SGTotal = 1;
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
		c->Header.SGTotal = 0;
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
	/* use the kernel address the cmd block for tag */
	c->Header.Tag.lower = c->busaddr;

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
		temp64.val = pci_map_single(h->pdev, buff,
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3178 3179 3180 3181 3182 3183 3184
		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
			c->SG[0].Addr.lower = 0;
			c->SG[0].Addr.upper = 0;
			c->SG[0].Len = 0;
			rc = -ENOMEM;
			goto out;
		}
3185 3186 3187
		c->SG[0].Addr.lower = temp64.val32.lower;
		c->SG[0].Addr.upper = temp64.val32.upper;
		c->SG[0].Len = iocommand.buf_size;
3188
		c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/
3189
	}
3190
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3191 3192
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3193 3194 3195 3196 3197 3198
	check_ioctl_unit_attention(h, c);

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3199 3200
		rc = -EFAULT;
		goto out;
3201
	}
3202 3203
	if (iocommand.Request.Type.Direction == XFER_READ &&
		iocommand.buf_size > 0) {
3204 3205
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3206 3207
			rc = -EFAULT;
			goto out;
3208 3209
		}
	}
3210
out:
3211
	cmd_special_free(h, c);
3212 3213 3214
out_kfree:
	kfree(buff);
	return rc;
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
	union u64bit temp64;
	BYTE sg_used = 0;
	int status = 0;
	int i;
3227 3228
	u32 left;
	u32 sz;
3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
3255
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3256 3257 3258
		status = -EINVAL;
		goto cleanup1;
	}
3259
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3260 3261 3262 3263
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
3264
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
		if (ioc->Request.Type.Direction == XFER_WRITE) {
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
				status = -ENOMEM;
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
	c = cmd_special_alloc(h);
	if (c == NULL) {
		status = -ENOMEM;
		goto cleanup1;
	}
	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
3297
	c->Header.SGList = c->Header.SGTotal = sg_used;
3298 3299 3300 3301 3302 3303 3304 3305
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	c->Header.Tag.lower = c->busaddr;
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
			temp64.val = pci_map_single(h->pdev, buff[i],
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
3306 3307 3308 3309 3310 3311 3312
			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
				c->SG[i].Addr.lower = 0;
				c->SG[i].Addr.upper = 0;
				c->SG[i].Len = 0;
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
3313
				goto cleanup0;
3314
			}
3315 3316 3317
			c->SG[i].Addr.lower = temp64.val32.lower;
			c->SG[i].Addr.upper = temp64.val32.upper;
			c->SG[i].Len = buff_size[i];
3318
			c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST;
3319 3320
		}
	}
3321
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3322 3323
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3324 3325 3326 3327 3328
	check_ioctl_unit_attention(h, c);
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
3329
		goto cleanup0;
3330
	}
3331
	if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3332 3333 3334 3335 3336
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
3337
				goto cleanup0;
3338 3339 3340 3341 3342
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
3343 3344
cleanup0:
	cmd_special_free(h, c);
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
cleanup1:
	if (buff) {
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392

static int increment_passthru_count(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->passthru_count_lock, flags);
	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
		return -1;
	}
	h->passthru_count++;
	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
	return 0;
}

static void decrement_passthru_count(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->passthru_count_lock, flags);
	if (h->passthru_count <= 0) {
		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
		/* not expecting to get here. */
		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
		return;
	}
	h->passthru_count--;
	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
}

3393 3394 3395 3396 3397 3398 3399
/*
 * ioctl
 */
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
3400
	int rc;
3401 3402 3403 3404 3405 3406 3407

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
3408
		hpsa_scan_start(h->scsi_host);
3409 3410 3411 3412 3413 3414
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
3415 3416 3417 3418 3419
		if (increment_passthru_count(h))
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
		decrement_passthru_count(h);
		return rc;
3420
	case CCISS_BIG_PASSTHRU:
3421 3422 3423 3424 3425
		if (increment_passthru_count(h))
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
		decrement_passthru_count(h);
		return rc;
3426 3427 3428 3429 3430
	default:
		return -ENOTTY;
	}
}

3431 3432
static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
				u8 reset_type)
3433 3434 3435 3436 3437 3438
{
	struct CommandList *c;

	c = cmd_alloc(h);
	if (!c)
		return -ENOMEM;
3439 3440
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
	return 0;
}

3452
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3453
	void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3454 3455 3456
	int cmd_type)
{
	int pci_dir = XFER_NONE;
3457
	struct CommandList *a; /* for commands to be aborted */
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508

	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
		c->Header.SGTotal = 1;
	} else {
		c->Header.SGList = 0;
		c->Header.SGTotal = 0;
	}
	c->Header.Tag.lower = c->busaddr;
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	c->Request.Type.Type = cmd_type;
	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
			if (page_code != 0) {
				c->Request.CDB[1] = 0x01;
				c->Request.CDB[2] = page_code;
			}
			c->Request.CDBLen = 6;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_WRITE;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3509 3510
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_NONE;
			c->Request.Timeout = 0;
			break;
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
3521
			return -1;
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_NONE;
			c->Request.Timeout = 0; /* Don't time out */
3532 3533
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
3534
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3535 3536 3537 3538 3539 3540
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568
			break;
		case  HPSA_ABORT_MSG:
			a = buff;       /* point to command to be aborted */
			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
				a->Header.Tag.upper, a->Header.Tag.lower,
				c->Header.Tag.upper, c->Header.Tag.lower);
			c->Request.CDBLen = 16;
			c->Request.Type.Type = TYPE_MSG;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_WRITE;
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

	switch (c->Request.Type.Direction) {
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
3593 3594 3595
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
3596 3597 3598 3599 3600 3601 3602 3603 3604
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
3605 3606
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
3607 3608 3609 3610 3611 3612 3613 3614 3615 3616

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

/* Takes cmds off the submission queue and sends them to the hardware,
 * then puts them on the queue of cmds waiting for completion.
 */
static void start_io(struct ctlr_info *h)
{
	struct CommandList *c;
3617
	unsigned long flags;
3618

3619
	spin_lock_irqsave(&h->lock, flags);
3620 3621
	while (!list_empty(&h->reqQ)) {
		c = list_entry(h->reqQ.next, struct CommandList, list);
3622 3623
		/* can't do anything if fifo is full */
		if ((h->access.fifo_full(h))) {
3624
			h->fifo_recently_full = 1;
3625 3626 3627
			dev_warn(&h->pdev->dev, "fifo full\n");
			break;
		}
3628
		h->fifo_recently_full = 0;
3629 3630 3631 3632 3633 3634 3635

		/* Get the first entry from the Request Q */
		removeQ(c);
		h->Qdepth--;

		/* Put job onto the completed Q */
		addQ(&h->cmpQ, c);
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648

		/* Must increment commands_outstanding before unlocking
		 * and submitting to avoid race checking for fifo full
		 * condition.
		 */
		h->commands_outstanding++;
		if (h->commands_outstanding > h->max_outstanding)
			h->max_outstanding = h->commands_outstanding;

		/* Tell the controller execute command */
		spin_unlock_irqrestore(&h->lock, flags);
		h->access.submit_command(h, c);
		spin_lock_irqsave(&h->lock, flags);
3649
	}
3650
	spin_unlock_irqrestore(&h->lock, flags);
3651 3652
}

3653
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3654
{
3655
	return h->access.command_completed(h, q);
3656 3657
}

3658
static inline bool interrupt_pending(struct ctlr_info *h)
3659 3660 3661 3662 3663 3664
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
3665 3666
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
3667 3668
}

3669 3670
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
3671 3672 3673 3674 3675 3676 3677 3678
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

3679
static inline void finish_cmd(struct CommandList *c)
3680
{
3681
	unsigned long flags;
3682 3683
	int io_may_be_stalled = 0;
	struct ctlr_info *h = c->h;
3684

3685
	spin_lock_irqsave(&h->lock, flags);
3686
	removeQ(c);
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709

	/*
	 * Check for possibly stalled i/o.
	 *
	 * If a fifo_full condition is encountered, requests will back up
	 * in h->reqQ.  This queue is only emptied out by start_io which is
	 * only called when a new i/o request comes in.  If no i/o's are
	 * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
	 * start_io from here if we detect such a danger.
	 *
	 * Normally, we shouldn't hit this case, but pounding on the
	 * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
	 * commands_outstanding is low.  We want to avoid calling
	 * start_io from in here as much as possible, and esp. don't
	 * want to get in a cycle where we call start_io every time
	 * through here.
	 */
	if (unlikely(h->fifo_recently_full) &&
		h->commands_outstanding < 5)
		io_may_be_stalled = 1;

	spin_unlock_irqrestore(&h->lock, flags);

3710
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3711
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI))
3712
		complete_scsi_command(c);
3713 3714
	else if (c->cmd_type == CMD_IOCTL_PEND)
		complete(c->waiting);
3715 3716
	if (unlikely(io_may_be_stalled))
		start_io(h);
3717 3718
}

3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
static inline u32 hpsa_tag_contains_index(u32 tag)
{
	return tag & DIRECT_LOOKUP_BIT;
}

static inline u32 hpsa_tag_to_index(u32 tag)
{
	return tag >> DIRECT_LOOKUP_SHIFT;
}

3729 3730

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3731
{
3732 3733
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
3734
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3735 3736
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
3737 3738
}

3739
/* process completion of an indexed ("direct lookup") command */
3740
static inline void process_indexed_cmd(struct ctlr_info *h,
3741 3742 3743 3744 3745 3746
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

	tag_index = hpsa_tag_to_index(raw_tag);
3747 3748 3749 3750
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
3751 3752 3753
}

/* process completion of a non-indexed command */
3754
static inline void process_nonindexed_cmd(struct ctlr_info *h,
3755 3756 3757 3758
	u32 raw_tag)
{
	u32 tag;
	struct CommandList *c = NULL;
3759
	unsigned long flags;
3760

3761
	tag = hpsa_tag_discard_error_bits(h, raw_tag);
3762
	spin_lock_irqsave(&h->lock, flags);
3763
	list_for_each_entry(c, &h->cmpQ, list) {
3764
		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3765
			spin_unlock_irqrestore(&h->lock, flags);
3766
			finish_cmd(c);
3767
			return;
3768 3769
		}
	}
3770
	spin_unlock_irqrestore(&h->lock, flags);
3771 3772 3773
	bad_tag(h, h->nr_cmds + 1, raw_tag);
}

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

3793 3794 3795 3796 3797 3798
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
3799
{
3800 3801 3802 3803 3804 3805 3806
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
3807 3808 3809 3810 3811 3812 3813
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
3814
	h->last_intr_timestamp = get_jiffies_64();
3815
	while (interrupt_pending(h)) {
3816
		raw_tag = get_next_completion(h, q);
3817
		while (raw_tag != FIFO_EMPTY)
3818
			raw_tag = next_command(h, q);
3819 3820 3821 3822
	}
	return IRQ_HANDLED;
}

3823
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3824
{
3825
	struct ctlr_info *h = queue_to_hba(queue);
3826
	u32 raw_tag;
3827
	u8 q = *(u8 *) queue;
3828 3829 3830 3831

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

3832
	h->last_intr_timestamp = get_jiffies_64();
3833
	raw_tag = get_next_completion(h, q);
3834
	while (raw_tag != FIFO_EMPTY)
3835
		raw_tag = next_command(h, q);
3836 3837 3838
	return IRQ_HANDLED;
}

3839
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3840
{
3841
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
3842
	u32 raw_tag;
3843
	u8 q = *(u8 *) queue;
3844 3845 3846

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
3847
	h->last_intr_timestamp = get_jiffies_64();
3848
	while (interrupt_pending(h)) {
3849
		raw_tag = get_next_completion(h, q);
3850
		while (raw_tag != FIFO_EMPTY) {
3851 3852
			if (likely(hpsa_tag_contains_index(raw_tag)))
				process_indexed_cmd(h, raw_tag);
3853
			else
3854
				process_nonindexed_cmd(h, raw_tag);
3855
			raw_tag = next_command(h, q);
3856 3857 3858 3859 3860
		}
	}
	return IRQ_HANDLED;
}

3861
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3862
{
3863
	struct ctlr_info *h = queue_to_hba(queue);
3864
	u32 raw_tag;
3865
	u8 q = *(u8 *) queue;
3866

3867
	h->last_intr_timestamp = get_jiffies_64();
3868
	raw_tag = get_next_completion(h, q);
3869
	while (raw_tag != FIFO_EMPTY) {
3870 3871
		if (likely(hpsa_tag_contains_index(raw_tag)))
			process_indexed_cmd(h, raw_tag);
3872
		else
3873
			process_nonindexed_cmd(h, raw_tag);
3874
		raw_tag = next_command(h, q);
3875 3876 3877 3878
	}
	return IRQ_HANDLED;
}

3879 3880 3881 3882
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
3883 3884
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
	uint32_t paddr32, tag;
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
	paddr32 = paddr64;

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
	cmd->CommandHeader.SGTotal = 0;
	cmd->CommandHeader.Tag.lower = paddr32;
	cmd->CommandHeader.Tag.upper = 0;
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
	cmd->Request.Type.Type = TYPE_MSG;
	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
	cmd->Request.Type.Direction = XFER_NONE;
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
	cmd->ErrorDescriptor.Addr.upper = 0;
	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);

	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3948
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

3979
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3980
	void * __iomem vaddr, u32 use_doorbell)
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
{
	u16 pmcsr;
	int pos;

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
3991
		writel(use_doorbell, vaddr + SA5_DOORBELL);
3992 3993 3994 3995 3996 3997 3998

		/* PMC hardware guys tell us we need a 5 second delay after
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
		msleep(5000);
3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */

		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
		if (pos == 0) {
			dev_err(&pdev->dev,
				"hpsa_reset_controller: "
				"PCI PM not supported\n");
			return -ENODEV;
		}
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
		/* enter the D3hot power management state */
		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
		pmcsr |= PCI_D3hot;
		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);

		msleep(500);

		/* enter the D0 power management state */
		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
		pmcsr |= PCI_D0;
		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4029 4030 4031 4032 4033 4034 4035

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
4036 4037 4038 4039
	}
	return 0;
}

4040
static void init_driver_version(char *driver_version, int len)
4041 4042
{
	memset(driver_version, 0, len);
4043
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
4044 4045
}

4046
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

4062 4063
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
4064 4065 4066 4067 4068 4069 4070
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

4071
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
4091
/* This does a hard reset of the controller using PCI power management
4092
 * states or the using the doorbell register.
4093
 */
4094
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
4095
{
4096 4097 4098 4099 4100
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
4101
	u32 misc_fw_support;
4102
	int rc;
4103
	struct CfgTable __iomem *cfgtable;
4104
	u32 use_doorbell;
4105
	u32 board_id;
4106
	u16 command_register;
4107

4108 4109
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
4110 4111 4112 4113 4114 4115
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
4116 4117 4118
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
4119
	 */
4120

4121
	rc = hpsa_lookup_board_id(pdev, &board_id);
4122
	if (rc < 0 || !ctlr_is_resettable(board_id)) {
4123 4124 4125
		dev_warn(&pdev->dev, "Not resetting device.\n");
		return -ENODEV;
	}
4126 4127 4128 4129

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
4130

4131 4132 4133 4134 4135 4136 4137
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	/* Turn the board off.  This is so that later pci_restore_state()
	 * won't turn the board on before the rest of config space is ready.
	 */
	pci_disable_device(pdev);
	pci_save_state(pdev);
4138

4139 4140 4141 4142 4143 4144 4145
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
4146

4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
4158 4159 4160
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
		goto unmap_vaddr;
4161

4162 4163 4164
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
4165
	misc_fw_support = readl(&cfgtable->misc_fw_support);
4166 4167 4168 4169 4170 4171
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
4172 4173
			dev_warn(&pdev->dev, "Soft reset not supported. "
				"Firmware update is required.\n");
4174
			rc = -ENOTSUPP; /* try soft reset */
4175 4176 4177
			goto unmap_cfgtable;
		}
	}
4178

4179 4180 4181
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
4182

4183 4184 4185 4186 4187
	pci_restore_state(pdev);
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		goto unmap_cfgtable;
4188
	}
4189
	pci_write_config_word(pdev, 4, command_register);
4190

4191 4192 4193 4194
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

4195 4196 4197
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
4198 4199
			"failed waiting for board to become ready "
			"after hard reset\n");
4200 4201 4202
		goto unmap_cfgtable;
	}

4203 4204 4205 4206
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
4207 4208 4209
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
4210
	} else {
4211
		dev_info(&pdev->dev, "board ready after hard reset.\n");
4212 4213 4214 4215 4216 4217 4218 4219
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
4220 4221 4222 4223 4224 4225 4226 4227 4228
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
static void print_cfg_table(struct device *dev, struct CfgTable *tb)
{
4229
#ifdef HPSA_DEBUG
4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
	dev_info(dev, "   Max outstanding commands = 0x%d\n",
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
4260
}
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

/* If MSI/MSI-X is supported by the kernel we will try to enable it on
 * controllers that are capable. If not, we use IO-APIC mode.
 */

4301
static void hpsa_interrupt_mode(struct ctlr_info *h)
4302 4303
{
#ifdef CONFIG_PCI_MSI
4304 4305 4306 4307 4308 4309 4310
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
4311 4312

	/* Some boards advertise MSI but don't really support it */
4313 4314
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4315
		goto default_int_mode;
4316 4317
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
		dev_info(&h->pdev->dev, "MSIX\n");
4318
		h->msix_vector = MAX_REPLY_QUEUES;
4319
		err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4320
				      h->msix_vector);
4321
		if (err > 0) {
4322
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4323
			       "available\n", err);
4324 4325 4326 4327 4328 4329 4330 4331
			h->msix_vector = err;
			err = pci_enable_msix(h->pdev, hpsa_msix_entries,
					      h->msix_vector);
		}
		if (!err) {
			for (i = 0; i < h->msix_vector; i++)
				h->intr[i] = hpsa_msix_entries[i].vector;
			return;
4332
		} else {
4333
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4334
			       err);
4335
			h->msix_vector = 0;
4336 4337 4338
			goto default_int_mode;
		}
	}
4339 4340 4341
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
		dev_info(&h->pdev->dev, "MSI\n");
		if (!pci_enable_msi(h->pdev))
4342 4343
			h->msi_vector = 1;
		else
4344
			dev_warn(&h->pdev->dev, "MSI init failed\n");
4345 4346 4347 4348
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
4349
	h->intr[h->intr_mode] = h->pdev->irq;
4350 4351
}

4352
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

4366 4367 4368
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
4369 4370 4371 4372 4373 4374 4375
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

4376 4377
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
4378 4379 4380 4381
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4382
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4383
			/* addressing mode bits already removed */
4384 4385
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4386 4387 4388
				*memory_bar);
			return 0;
		}
4389
	dev_warn(&pdev->dev, "no memory BAR found\n");
4390 4391 4392
	return -ENODEV;
}

4393 4394
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
4395
{
4396
	int i, iterations;
4397
	u32 scratchpad;
4398 4399 4400 4401
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4402

4403 4404 4405 4406 4407 4408 4409 4410 4411
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
4412 4413
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
4414
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4415 4416 4417
	return -ENODEV;
}

4418 4419 4420
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

4433
static int hpsa_find_cfgtables(struct ctlr_info *h)
4434
{
4435 4436 4437
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
4438
	u32 trans_offset;
4439
	int rc;
4440

4441 4442 4443 4444
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
4445
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4446
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4447 4448
	if (!h->cfgtable)
		return -ENOMEM;
4449 4450 4451
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
4452
	/* Find performant mode table. */
4453
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4454 4455 4456 4457 4458 4459 4460 4461
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
	if (!h->transtable)
		return -ENOMEM;
	return 0;
}

4462
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4463 4464
{
	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4465 4466 4467 4468 4469

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

4470 4471 4472 4473 4474 4475 4476 4477 4478
	if (h->max_commands < 16) {
		dev_warn(&h->pdev->dev, "Controller reports "
			"max supported commands of %d, an obvious lie. "
			"Using 16.  Ensure that firmware is up to date.\n",
			h->max_commands);
		h->max_commands = 16;
	}
}

4479 4480 4481 4482
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
4483
static void hpsa_find_board_params(struct ctlr_info *h)
4484
{
4485
	hpsa_get_max_perf_mode_cmds(h);
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500
	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
	/*
	 * Limit in-command s/g elements to 32 save dma'able memory.
	 * Howvever spec says if 0, use 31
	 */
	h->max_cmd_sg_entries = 31;
	if (h->maxsgentries > 512) {
		h->max_cmd_sg_entries = 32;
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
		h->maxsgentries--; /* save one for chain pointer */
	} else {
		h->maxsgentries = 31; /* default to traditional values */
		h->chainsize = 0;
	}
4501 4502 4503

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4504 4505
}

4506 4507
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
4508
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4509 4510 4511 4512 4513 4514
		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
		return false;
	}
	return true;
}

4515
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
4516
{
4517
	u32 driver_support;
4518

4519 4520
#ifdef CONFIG_X86
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
4521 4522
	driver_support = readl(&(h->cfgtable->driver_support));
	driver_support |= ENABLE_SCSI_PREFETCH;
4523
#endif
4524 4525
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
4526 4527
}

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

4542
static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4543 4544
{
	int i;
4545 4546
	u32 doorbell_value;
	unsigned long flags;
4547 4548 4549 4550 4551 4552

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4553 4554 4555
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
4556
		if (!(doorbell_value & CFGTBL_ChangeReq))
4557 4558
			break;
		/* delay and try again */
4559
		usleep_range(10000, 20000);
4560
	}
4561 4562
}

4563
static int hpsa_enter_simple_mode(struct ctlr_info *h)
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	hpsa_wait_for_mode_change_ack(h);
4576 4577 4578 4579 4580 4581
	print_cfg_table(&h->pdev->dev, h->cfgtable);
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
		dev_warn(&h->pdev->dev,
			"unable to get board into simple mode\n");
		return -ENODEV;
	}
4582
	h->transMethod = CFGTBL_Trans_Simple;
4583 4584 4585
	return 0;
}

4586
static int hpsa_pci_init(struct ctlr_info *h)
4587
{
4588
	int prod_index, err;
4589

4590 4591 4592 4593 4594
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
		return -ENODEV;
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
4595

M
Matthew Garrett 已提交
4596 4597 4598
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

4599
	err = pci_enable_device(h->pdev);
4600
	if (err) {
4601
		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4602 4603 4604
		return err;
	}

4605 4606 4607
	/* Enable bus mastering (pci_disable_device may disable this) */
	pci_set_master(h->pdev);

4608
	err = pci_request_regions(h->pdev, HPSA);
4609
	if (err) {
4610 4611
		dev_err(&h->pdev->dev,
			"cannot obtain PCI resources, aborting\n");
4612 4613
		return err;
	}
4614
	hpsa_interrupt_mode(h);
4615
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4616
	if (err)
4617 4618
		goto err_out_free_res;
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4619 4620 4621 4622
	if (!h->vaddr) {
		err = -ENOMEM;
		goto err_out_free_res;
	}
4623
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4624
	if (err)
4625
		goto err_out_free_res;
4626 4627
	err = hpsa_find_cfgtables(h);
	if (err)
4628
		goto err_out_free_res;
4629
	hpsa_find_board_params(h);
4630

4631
	if (!hpsa_CISS_signature_present(h)) {
4632 4633 4634
		err = -ENODEV;
		goto err_out_free_res;
	}
4635
	hpsa_set_driver_support_bits(h);
4636
	hpsa_p600_dma_prefetch_quirk(h);
4637 4638
	err = hpsa_enter_simple_mode(h);
	if (err)
4639 4640 4641 4642
		goto err_out_free_res;
	return 0;

err_out_free_res:
4643 4644 4645 4646 4647 4648
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	if (h->vaddr)
		iounmap(h->vaddr);
4649
	pci_disable_device(h->pdev);
4650
	pci_release_regions(h->pdev);
4651 4652 4653
	return err;
}

4654
static void hpsa_hba_inquiry(struct ctlr_info *h)
4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

4670
static int hpsa_init_reset_devices(struct pci_dev *pdev)
4671
{
4672
	int rc, i;
4673 4674 4675 4676

	if (!reset_devices)
		return 0;

4677 4678
	/* Reset the controller with a PCI power-cycle or via doorbell */
	rc = hpsa_kdump_hard_reset_controller(pdev);
4679

4680 4681
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
4682 4683
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
4684 4685
	 */
	if (rc == -ENOTSUPP)
4686
		return rc; /* just try to do the kdump anyhow. */
4687 4688
	if (rc)
		return -ENODEV;
4689 4690

	/* Now try to get the controller to respond to a no-op */
4691
	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
	return 0;
}

4702
static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
		return -ENOMEM;
	}
	return 0;
}

static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
	if (h->cmd_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct CommandList),
			    h->cmd_pool, h->cmd_pool_dhandle);
	if (h->errinfo_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct ErrorInfo),
			    h->errinfo_pool,
			    h->errinfo_pool_dhandle);
4734 4735 4736 4737
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(struct io_accel1_cmd),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
4738 4739
}

4740 4741 4742 4743
static int hpsa_request_irq(struct ctlr_info *h,
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
4744
	int rc, i;
4745

4746 4747 4748 4749 4750 4751 4752
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

4753
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
4754
		/* If performant mode and MSI-X, use multiple reply queues */
4755
		for (i = 0; i < h->msix_vector; i++)
4756 4757 4758 4759 4760
			rc = request_irq(h->intr[i], msixhandler,
					0, h->devname,
					&h->q[i]);
	} else {
		/* Use single reply pool */
4761
		if (h->msix_vector > 0 || h->msi_vector) {
4762 4763 4764 4765 4766 4767 4768 4769 4770
			rc = request_irq(h->intr[h->intr_mode],
				msixhandler, 0, h->devname,
				&h->q[h->intr_mode]);
		} else {
			rc = request_irq(h->intr[h->intr_mode],
				intxhandler, IRQF_SHARED, h->devname,
				&h->q[h->intr_mode]);
		}
	}
4771 4772 4773 4774 4775 4776 4777 4778
	if (rc) {
		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
		       h->intr[h->intr_mode], h->devname);
		return -ENODEV;
	}
	return 0;
}

4779
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
{
	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
		HPSA_RESET_TYPE_CONTROLLER)) {
		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
		return -EIO;
	}

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
static void free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
		free_irq(h->intr[i], &h->q[i]);
		return;
	}

4814
	for (i = 0; i < h->msix_vector; i++)
4815 4816 4817
		free_irq(h->intr[i], &h->q[i]);
}

4818
static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4819
{
4820
	free_irqs(h);
4821
#ifdef CONFIG_PCI_MSI
4822 4823 4824 4825 4826 4827 4828
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
	}
4829
#endif /* CONFIG_PCI_MSI */
4830 4831 4832 4833 4834
}

static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
	hpsa_free_irqs_and_disable_msix(h);
4835 4836
	hpsa_free_sg_chain_blocks(h);
	hpsa_free_cmd_pool(h);
4837
	kfree(h->ioaccel1_blockFetchTable);
4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
	kfree(h->blockFetchTable);
	pci_free_consistent(h->pdev, h->reply_pool_size,
		h->reply_pool, h->reply_pool_dhandle);
	if (h->vaddr)
		iounmap(h->vaddr);
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	pci_release_regions(h->pdev);
	kfree(h);
}

4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
/* Called when controller lockup detected. */
static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
{
	struct CommandList *c = NULL;

	assert_spin_locked(&h->lock);
	/* Mark all outstanding commands as failed and complete them. */
	while (!list_empty(list)) {
		c = list_entry(list->next, struct CommandList, list);
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4861
		finish_cmd(c);
4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
	}
}

static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
	h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	spin_unlock_irqrestore(&h->lock, flags);
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
			h->lockup_detected);
	pci_disable_device(h->pdev);
	spin_lock_irqsave(&h->lock, flags);
	fail_all_cmds_on_list(h, &h->cmpQ);
	fail_all_cmds_on_list(h, &h->reqQ);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void detect_controller_lockup(struct ctlr_info *h)
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
4891
				(h->heartbeat_sample_interval), now))
4892 4893 4894 4895 4896 4897 4898 4899
		return;

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
4900
				(h->heartbeat_sample_interval), now))
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916
		return;

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
		return;
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
}

4917
static void hpsa_monitor_ctlr_worker(struct work_struct *work)
4918 4919
{
	unsigned long flags;
4920 4921 4922 4923 4924 4925 4926 4927
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);
	detect_controller_lockup(h);
	if (h->lockup_detected)
		return;
	spin_lock_irqsave(&h->lock, flags);
	if (h->remove_in_progress) {
		spin_unlock_irqrestore(&h->lock, flags);
4928 4929
		return;
	}
4930 4931 4932
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
4933 4934
}

4935
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4936
{
4937
	int dac, rc;
4938
	struct ctlr_info *h;
4939 4940
	int try_soft_reset = 0;
	unsigned long flags;
4941 4942 4943 4944

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

4945
	rc = hpsa_init_reset_devices(pdev);
4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
4959

4960 4961 4962 4963 4964 4965
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
#define COMMANDLIST_ALIGNMENT 32
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4966 4967
	h = kzalloc(sizeof(*h), GFP_KERNEL);
	if (!h)
4968
		return -ENOMEM;
4969

4970
	h->pdev = pdev;
4971
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4972 4973
	INIT_LIST_HEAD(&h->cmpQ);
	INIT_LIST_HEAD(&h->reqQ);
4974 4975
	spin_lock_init(&h->lock);
	spin_lock_init(&h->scan_lock);
4976
	spin_lock_init(&h->passthru_count_lock);
4977
	rc = hpsa_pci_init(h);
4978
	if (rc != 0)
4979 4980
		goto clean1;

4981
	sprintf(h->devname, HPSA "%d", number_of_controllers);
4982 4983 4984 4985
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
4986 4987
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
4988
		dac = 1;
4989 4990 4991 4992 4993 4994 4995 4996
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
			goto clean1;
		}
4997 4998 4999 5000
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
5001

5002
	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
5003
		goto clean2;
5004 5005
	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
	       h->devname, pdev->device,
5006
	       h->intr[h->intr_mode], dac ? "" : " not");
5007
	if (hpsa_allocate_cmd_pool(h))
5008
		goto clean4;
5009 5010
	if (hpsa_allocate_sg_chain_blocks(h))
		goto clean4;
5011 5012
	init_waitqueue_head(&h->scan_wait_queue);
	h->scan_finished = 1; /* no scan currently in progress */
5013 5014

	pci_set_drvdata(pdev, h);
5015 5016 5017
	h->ndevices = 0;
	h->scsi_host = NULL;
	spin_lock_init(&h->devlock);
5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
	hpsa_put_ctlr_into_performant_mode(h);

	/* At this point, the controller is ready to take commands.
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
5036
		free_irqs(h);
5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
					hpsa_intx_discard_completions);
		if (rc) {
			dev_warn(&h->pdev->dev, "Failed to request_irq after "
				"soft reset.\n");
			goto clean4;
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
			goto clean4;

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
			/* don't go to clean4, we already unallocated */
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
5074 5075 5076 5077

	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

5078
	hpsa_hba_inquiry(h);
5079
	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
5080 5081 5082 5083 5084 5085

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
5086
	return 0;
5087 5088

clean4:
5089
	hpsa_free_sg_chain_blocks(h);
5090
	hpsa_free_cmd_pool(h);
5091
	free_irqs(h);
5092 5093 5094
clean2:
clean1:
	kfree(h);
5095
	return rc;
5096 5097 5098 5099 5100 5101
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
5102 5103 5104 5105 5106 5107 5108 5109 5110
	unsigned long flags;

	/* Don't bother trying to flush the cache if locked up */
	spin_lock_irqsave(&h->lock, flags);
	if (unlikely(h->lockup_detected)) {
		spin_unlock_irqrestore(&h->lock, flags);
		return;
	}
	spin_unlock_irqrestore(&h->lock, flags);
5111 5112 5113 5114 5115 5116 5117 5118 5119 5120

	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

	c = cmd_special_alloc(h);
	if (!c) {
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		goto out_of_memory;
	}
5121 5122 5123 5124
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
5125 5126
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
	if (c->err_info->CommandStatus != 0)
5127
out:
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
	cmd_special_free(h, c);
out_of_memory:
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
5146
	hpsa_free_irqs_and_disable_msix(h);
5147 5148
}

5149
static void hpsa_free_device_info(struct ctlr_info *h)
5150 5151 5152 5153 5154 5155 5156
{
	int i;

	for (i = 0; i < h->ndevices; i++)
		kfree(h->dev[i]);
}

5157
static void hpsa_remove_one(struct pci_dev *pdev)
5158 5159
{
	struct ctlr_info *h;
5160
	unsigned long flags;
5161 5162

	if (pci_get_drvdata(pdev) == NULL) {
5163
		dev_err(&pdev->dev, "unable to remove device\n");
5164 5165 5166
		return;
	}
	h = pci_get_drvdata(pdev);
5167 5168 5169 5170 5171 5172 5173

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	cancel_delayed_work(&h->monitor_ctlr_work);
	spin_unlock_irqrestore(&h->lock, flags);

5174 5175 5176
	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
	hpsa_shutdown(pdev);
	iounmap(h->vaddr);
5177 5178
	iounmap(h->transtable);
	iounmap(h->cfgtable);
5179
	hpsa_free_device_info(h);
5180
	hpsa_free_sg_chain_blocks(h);
5181 5182 5183 5184 5185 5186
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct CommandList),
		h->cmd_pool, h->cmd_pool_dhandle);
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct ErrorInfo),
		h->errinfo_pool, h->errinfo_pool_dhandle);
5187 5188
	pci_free_consistent(h->pdev, h->reply_pool_size,
		h->reply_pool, h->reply_pool_dhandle);
5189
	kfree(h->cmd_pool_bits);
5190
	kfree(h->blockFetchTable);
5191
	kfree(h->ioaccel1_blockFetchTable);
5192
	kfree(h->hba_inquiry_data);
5193
	pci_disable_device(pdev);
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209
	pci_release_regions(pdev);
	kfree(h);
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
5210
	.name = HPSA,
5211
	.probe = hpsa_init_one,
5212
	.remove = hpsa_remove_one,
5213 5214 5215 5216 5217 5218
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
5232
	int nsgs, int min_blocks, int *bucket_map)
5233 5234 5235 5236 5237 5238
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
5239
		size = i + min_blocks;
5240 5241
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
5242
		for (j = 0; j < num_buckets; j++) {
5243 5244 5245 5246 5247 5248 5249 5250 5251 5252
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

5253
static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
5254
{
5255 5256
	int i;
	unsigned long register_value;
5257 5258 5259 5260 5261 5262
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
			CFGTBL_Trans_enable_directed_msix |
			(trans_support & CFGTBL_Trans_io_accel1);

	struct access_method access = SA5_performant_access;
5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
5274
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5275 5276 5277 5278 5279 5280
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
5281 5282
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5283 5284 5285 5286 5287 5288 5289 5290 5291
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

	/* Controller spec: zero out this buffer. */
	memset(h->reply_pool, 0, h->reply_pool_size);

5292 5293
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
5294
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
5295 5296 5297 5298 5299
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
5300
	writel(h->nreply_queues, &h->transtable->RepQCount);
5301 5302
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
5303 5304 5305 5306 5307 5308 5309 5310

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
		writel(h->reply_pool_dhandle +
			(h->max_commands * sizeof(u64) * i),
			&h->transtable->RepQAddr[i].lower);
	}

5311 5312 5313 5314 5315 5316 5317 5318 5319
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
	}
5320
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5321
	hpsa_wait_for_mode_change_ack(h);
5322 5323 5324 5325 5326 5327
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
		dev_warn(&h->pdev->dev, "unable to get board into"
					" performant mode\n");
		return;
	}
5328
	/* Change the access methods to the performant access methods */
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
	h->access = access;
	h->transMethod = transMethod;

	if (!(trans_support & CFGTBL_Trans_io_accel1))
		return;

	/* Set up I/O accelerator mode */
	for (i = 0; i < h->nreply_queues; i++) {
		writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
		h->reply_queue[i].current_entry =
			readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
	}
	bft[7] = IOACCEL1_MAXSGENTRIES + 8;
	calc_bucket_map(bft, ARRAY_SIZE(bft), IOACCEL1_MAXSGENTRIES, 8,
			h->ioaccel1_blockFetchTable);

	/* initialize all reply queue entries to unused */
	memset(h->reply_pool, (u8) IOACCEL_MODE1_REPLY_UNUSED,
			h->reply_pool_size);

	/* set all the constant fields in the accelerator command
	 * frames once at init time to save CPU cycles later.
	 */
	for (i = 0; i < h->nr_cmds; i++) {
		struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

		cp->function = IOACCEL1_FUNCTION_SCSIIO;
		cp->err_info = (u32) (h->errinfo_pool_dhandle +
				(i * sizeof(struct ErrorInfo)));
		cp->err_info_len = sizeof(struct ErrorInfo);
		cp->sgl_offset = IOACCEL1_SGLOFFSET;
		cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
		cp->timeout_sec = 0;
		cp->ReplyQueue = 0;
		cp->Tag.lower = (i << DIRECT_LOOKUP_SHIFT) | DIRECT_LOOKUP_BIT;
		cp->Tag.upper = 0;
		cp->host_addr.lower = (u32) (h->ioaccel_cmd_pool_dhandle +
				(i * sizeof(struct io_accel1_cmd)));
		cp->host_addr.upper = 0;
	}
}

static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
{
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
#define IOACCEL1_COMMANDLIST_ALIGNMENT 128
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
		kmalloc(((IOACCEL1_MAXSGENTRIES + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
	kfree(h->ioaccel1_blockFetchTable);
	return 1;
5404 5405
}

5406
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5407 5408
{
	u32 trans_support;
5409 5410
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
5411
	int i;
5412

5413 5414 5415
	if (hpsa_simple_mode)
		return;

5416 5417 5418 5419 5420 5421 5422 5423 5424
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
			goto clean_up;
	}

	/* TODO, check that this next line h->nreply_queues is correct */
5425 5426 5427 5428
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
		return;

5429
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
5430
	hpsa_get_max_perf_mode_cmds(h);
5431
	/* Performant mode ring buffer and supporting data structures */
5432
	h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5433 5434 5435
	h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
				&(h->reply_pool_dhandle));

5436 5437 5438 5439 5440 5441 5442
	for (i = 0; i < h->nreply_queues; i++) {
		h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

5443
	/* Need a block fetch table for performant mode */
5444
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5445 5446 5447 5448 5449 5450
				sizeof(u32)), GFP_KERNEL);

	if ((h->reply_pool == NULL)
		|| (h->blockFetchTable == NULL))
		goto clean_up;

5451
	hpsa_enter_performant_mode(h, trans_support);
5452 5453 5454 5455 5456 5457 5458 5459 5460
	return;

clean_up:
	if (h->reply_pool)
		pci_free_consistent(h->pdev, h->reply_pool_size,
			h->reply_pool, h->reply_pool_dhandle);
	kfree(h->blockFetchTable);
}

5461 5462 5463 5464 5465 5466
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
5467
	return pci_register_driver(&hpsa_pci_driver);
5468 5469 5470 5471 5472 5473 5474
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
static void __attribute__((unused)) verify_offsets(void)
{
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
	VERIFY_OFFSET(Tag, 0x68);
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

5509 5510
module_init(hpsa_init);
module_exit(hpsa_cleanup);