hpsa.c 220.7 KB
Newer Older
1 2
/*
 *    Disk Array driver for HP Smart Array SAS controllers
3
 *    Copyright 2000, 2014 Hewlett-Packard Development Company, L.P.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; version 2 of the License.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *    NON INFRINGEMENT.  See the GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
 *
 */

#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/pci.h>
M
Matthew Garrett 已提交
26
#include <linux/pci-aspm.h>
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/compat.h>
#include <linux/blktrace_api.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/completion.h>
#include <linux/moduleparam.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
45
#include <scsi/scsi_tcq.h>
46 47 48
#include <linux/cciss_ioctl.h>
#include <linux/string.h>
#include <linux/bitmap.h>
A
Arun Sharma 已提交
49
#include <linux/atomic.h>
50
#include <linux/jiffies.h>
D
Don Brace 已提交
51
#include <linux/percpu-defs.h>
52
#include <linux/percpu.h>
53
#include <asm/div64.h>
54 55 56 57
#include "hpsa_cmd.h"
#include "hpsa.h"

/* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
58
#define HPSA_DRIVER_VERSION "3.4.4-1"
59
#define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
60
#define HPSA "hpsa"
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

/* How long to wait (in milliseconds) for board to go into simple mode */
#define MAX_CONFIG_WAIT 30000
#define MAX_IOCTL_CONFIG_WAIT 1000

/*define how many times we will try a command because of bus resets */
#define MAX_CMD_RETRIES 3

/* Embedded module documentation macros - see modules.h */
MODULE_AUTHOR("Hewlett-Packard Company");
MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
	HPSA_DRIVER_VERSION);
MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
MODULE_VERSION(HPSA_DRIVER_VERSION);
MODULE_LICENSE("GPL");

static int hpsa_allow_any;
module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_allow_any,
		"Allow hpsa driver to access unknown HP Smart Array hardware");
81 82 83 84
static int hpsa_simple_mode;
module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(hpsa_simple_mode,
	"Use 'simple mode' rather than 'performant mode'");
85 86 87 88 89 90 91 92

/* define the PCI info for the cards we can control */
static const struct pci_device_id hpsa_pci_device_id[] = {
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
93 94
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
95
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
96 97 98 99 100 101 102
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
103 104 105 106 107 108
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
109 110 111 112 113 114 115 116 117 118
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
119
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
120 121 122
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
123 124 125 126 127
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
128 129 130 131 132
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
	{PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
	{PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
133
	{PCI_VENDOR_ID_HP,     PCI_ANY_ID,	PCI_ANY_ID, PCI_ANY_ID,
134
		PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
	{0,}
};

MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);

/*  board_id = Subsystem Device ID & Vendor ID
 *  product = Marketing Name for the board
 *  access = Address of the struct of function pointers
 */
static struct board_type products[] = {
	{0x3241103C, "Smart Array P212", &SA5_access},
	{0x3243103C, "Smart Array P410", &SA5_access},
	{0x3245103C, "Smart Array P410i", &SA5_access},
	{0x3247103C, "Smart Array P411", &SA5_access},
	{0x3249103C, "Smart Array P812", &SA5_access},
150 151
	{0x324A103C, "Smart Array P712m", &SA5_access},
	{0x324B103C, "Smart Array P711m", &SA5_access},
152
	{0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
153 154 155 156 157 158 159
	{0x3350103C, "Smart Array P222", &SA5_access},
	{0x3351103C, "Smart Array P420", &SA5_access},
	{0x3352103C, "Smart Array P421", &SA5_access},
	{0x3353103C, "Smart Array P822", &SA5_access},
	{0x3354103C, "Smart Array P420i", &SA5_access},
	{0x3355103C, "Smart Array P220i", &SA5_access},
	{0x3356103C, "Smart Array P721m", &SA5_access},
160 161 162 163 164 165 166
	{0x1921103C, "Smart Array P830i", &SA5_access},
	{0x1922103C, "Smart Array P430", &SA5_access},
	{0x1923103C, "Smart Array P431", &SA5_access},
	{0x1924103C, "Smart Array P830", &SA5_access},
	{0x1926103C, "Smart Array P731m", &SA5_access},
	{0x1928103C, "Smart Array P230i", &SA5_access},
	{0x1929103C, "Smart Array P530", &SA5_access},
167 168 169 170 171 172 173 174 175
	{0x21BD103C, "Smart Array", &SA5_access},
	{0x21BE103C, "Smart Array", &SA5_access},
	{0x21BF103C, "Smart Array", &SA5_access},
	{0x21C0103C, "Smart Array", &SA5_access},
	{0x21C1103C, "Smart Array", &SA5_access},
	{0x21C2103C, "Smart Array", &SA5_access},
	{0x21C3103C, "Smart Array", &SA5_access},
	{0x21C4103C, "Smart Array", &SA5_access},
	{0x21C5103C, "Smart Array", &SA5_access},
176
	{0x21C6103C, "Smart Array", &SA5_access},
177 178 179
	{0x21C7103C, "Smart Array", &SA5_access},
	{0x21C8103C, "Smart Array", &SA5_access},
	{0x21C9103C, "Smart Array", &SA5_access},
180 181 182 183 184
	{0x21CA103C, "Smart Array", &SA5_access},
	{0x21CB103C, "Smart Array", &SA5_access},
	{0x21CC103C, "Smart Array", &SA5_access},
	{0x21CD103C, "Smart Array", &SA5_access},
	{0x21CE103C, "Smart Array", &SA5_access},
185 186 187 188 189
	{0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
	{0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
	{0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
	{0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
	{0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
190 191 192 193 194
	{0xFFFF103C, "Unknown Smart Array", &SA5_access},
};

static int number_of_controllers;

195 196
static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
D
Don Brace 已提交
197
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
198 199
static void lock_and_start_io(struct ctlr_info *h);
static void start_io(struct ctlr_info *h, unsigned long *flags);
200 201

#ifdef CONFIG_COMPAT
D
Don Brace 已提交
202 203
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
	void __user *arg);
204 205 206 207 208 209
#endif

static void cmd_free(struct ctlr_info *h, struct CommandList *c);
static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
static struct CommandList *cmd_alloc(struct ctlr_info *h);
static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
210
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
211
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
212
	int cmd_type);
213
#define VPD_PAGE (1 << 8)
214

J
Jeff Garzik 已提交
215
static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
216 217 218
static void hpsa_scan_start(struct Scsi_Host *);
static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time);
219 220
static int hpsa_change_queue_depth(struct scsi_device *sdev,
	int qdepth, int reason);
221 222

static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
223
static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
224 225 226 227 228 229 230 231
static int hpsa_slave_alloc(struct scsi_device *sdev);
static void hpsa_slave_destroy(struct scsi_device *sdev);

static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c);
232 233
/* performant mode helper functions */
static void calc_bucket_map(int *bucket, int num_buckets,
234
	int nsgs, int min_blocks, int *bucket_map);
235
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
236
static inline u32 next_command(struct ctlr_info *h, u8 q);
237 238 239 240 241 242 243 244
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset);
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar);
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready);
245
static inline void finish_cmd(struct CommandList *c);
246
static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
247 248
#define BOARD_NOT_READY 0
#define BOARD_READY 1
249
static void hpsa_drain_accel_commands(struct ctlr_info *h);
250
static void hpsa_flush_cache(struct ctlr_info *h);
251 252 253
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr);
254 255 256 257 258 259 260

static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
{
	unsigned long *priv = shost_priv(sdev->host);
	return (struct ctlr_info *) *priv;
}

261 262 263 264 265 266
static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
{
	unsigned long *priv = shost_priv(sh);
	return (struct ctlr_info *) *priv;
}

267 268 269 270 271 272 273 274
static int check_for_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
		return 0;

	switch (c->err_info->SenseInfo[12]) {
	case STATE_CHANGED:
275
		dev_warn(&h->pdev->dev, HPSA "%d: a state change "
276 277 278
			"detected, command retried\n", h->ctlr);
		break;
	case LUN_FAILED:
279
		dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
280 281 282
			"detected, action required\n", h->ctlr);
		break;
	case REPORT_LUNS_CHANGED:
283
		dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
M
Mike Miller 已提交
284
			"changed, action required\n", h->ctlr);
285
	/*
286 287
	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
	 * target (array) devices.
288 289 290
	 */
		break;
	case POWER_OR_RESET:
291
		dev_warn(&h->pdev->dev, HPSA "%d: a power on "
292 293 294
			"or device reset detected\n", h->ctlr);
		break;
	case UNIT_ATTENTION_CLEARED:
295
		dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
296 297 298
		    "cleared by another initiator\n", h->ctlr);
		break;
	default:
299
		dev_warn(&h->pdev->dev, HPSA "%d: unknown "
300 301 302 303 304 305
			"unit attention detected\n", h->ctlr);
		break;
	}
	return 1;
}

306 307 308 309 310 311 312 313 314 315
static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
{
	if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
		(c->err_info->ScsiStatus != SAM_STAT_BUSY &&
		 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
		return 0;
	dev_warn(&h->pdev->dev, HPSA "device busy");
	return 1;
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int status, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &status) != 1)
		return -EINVAL;
	h = shost_to_hba(shost);
	h->acciopath_status = !!status;
	dev_warn(&h->pdev->dev,
		"hpsa: HP SSD Smart Path %s via sysfs update.\n",
		h->acciopath_status ? "enabled" : "disabled");
	return count;
}

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
static ssize_t host_store_raid_offload_debug(struct device *dev,
					 struct device_attribute *attr,
					 const char *buf, size_t count)
{
	int debug_level, len;
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	char tmpbuf[10];

	if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
		return -EACCES;
	len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
	strncpy(tmpbuf, buf, len);
	tmpbuf[len] = '\0';
	if (sscanf(tmpbuf, "%d", &debug_level) != 1)
		return -EINVAL;
	if (debug_level < 0)
		debug_level = 0;
	h = shost_to_hba(shost);
	h->raid_offload_debug = debug_level;
	dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
		h->raid_offload_debug);
	return count;
}

365 366 367 368 369 370
static ssize_t host_store_rescan(struct device *dev,
				 struct device_attribute *attr,
				 const char *buf, size_t count)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
371
	h = shost_to_hba(shost);
M
Mike Miller 已提交
372
	hpsa_scan_start(h->scsi_host);
373 374 375
	return count;
}

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
static ssize_t host_show_firmware_revision(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);
	unsigned char *fwrev;

	h = shost_to_hba(shost);
	if (!h->hba_inquiry_data)
		return 0;
	fwrev = &h->hba_inquiry_data[32];
	return snprintf(buf, 20, "%c%c%c%c\n",
		fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
}

391 392 393 394 395 396 397 398 399
static ssize_t host_show_commands_outstanding(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct Scsi_Host *shost = class_to_shost(dev);
	struct ctlr_info *h = shost_to_hba(shost);

	return snprintf(buf, 20, "%d\n", h->commands_outstanding);
}

400 401 402 403 404 405 406 407
static ssize_t host_show_transport_mode(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 20, "%s\n",
408
		h->transMethod & CFGTBL_Trans_Performant ?
409 410 411
			"performant" : "simple");
}

412 413 414 415 416 417 418 419 420 421 422
static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
	return snprintf(buf, 30, "HP SSD Smart Path %s\n",
		(h->acciopath_status == 1) ?  "enabled" : "disabled");
}

423
/* List of controllers which cannot be hard reset on kexec with reset_devices */
424 425 426 427 428 429 430 431 432 433 434 435 436
static u32 unresettable_controller[] = {
	0x324a103C, /* Smart Array P712m */
	0x324b103C, /* SmartArray P711m */
	0x3223103C, /* Smart Array P800 */
	0x3234103C, /* Smart Array P400 */
	0x3235103C, /* Smart Array P400i */
	0x3211103C, /* Smart Array E200i */
	0x3212103C, /* Smart Array E200 */
	0x3213103C, /* Smart Array E200i */
	0x3214103C, /* Smart Array E200i */
	0x3215103C, /* Smart Array E200i */
	0x3237103C, /* Smart Array E500 */
	0x323D103C, /* Smart Array P700m */
437
	0x40800E11, /* Smart Array 5i */
438 439
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
440 441 442 443 444 445
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
446 447
};

448 449
/* List of controllers which cannot even be soft reset */
static u32 soft_unresettable_controller[] = {
450
	0x40800E11, /* Smart Array 5i */
451 452 453 454 455 456
	0x40700E11, /* Smart Array 5300 */
	0x40820E11, /* Smart Array 532 */
	0x40830E11, /* Smart Array 5312 */
	0x409A0E11, /* Smart Array 641 */
	0x409B0E11, /* Smart Array 642 */
	0x40910E11, /* Smart Array 6i */
457 458 459 460 461 462 463 464 465 466 467 468
	/* Exclude 640x boards.  These are two pci devices in one slot
	 * which share a battery backed cache module.  One controls the
	 * cache, the other accesses the cache through the one that controls
	 * it.  If we reset the one controlling the cache, the other will
	 * likely not be happy.  Just forbid resetting this conjoined mess.
	 * The 640x isn't really supported by hpsa anyway.
	 */
	0x409C0E11, /* Smart Array 6400 */
	0x409D0E11, /* Smart Array 6400 EM */
};

static int ctlr_is_hard_resettable(u32 board_id)
469 470 471 472
{
	int i;

	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
473 474 475 476 477 478 479 480 481 482 483
		if (unresettable_controller[i] == board_id)
			return 0;
	return 1;
}

static int ctlr_is_soft_resettable(u32 board_id)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
		if (soft_unresettable_controller[i] == board_id)
484 485 486 487
			return 0;
	return 1;
}

488 489 490 491 492 493
static int ctlr_is_resettable(u32 board_id)
{
	return ctlr_is_hard_resettable(board_id) ||
		ctlr_is_soft_resettable(board_id);
}

494 495 496 497 498 499 500
static ssize_t host_show_resettable(struct device *dev,
	struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct Scsi_Host *shost = class_to_shost(dev);

	h = shost_to_hba(shost);
501
	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
502 503
}

504 505 506 507 508 509
static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
{
	return (scsi3addr[3] & 0xC0) == 0x40;
}

static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
510
	"1(ADM)", "UNKNOWN"
511
};
512 513 514 515 516 517 518
#define HPSA_RAID_0	0
#define HPSA_RAID_4	1
#define HPSA_RAID_1	2	/* also used for RAID 10 */
#define HPSA_RAID_5	3	/* also used for RAID 50 */
#define HPSA_RAID_51	4
#define HPSA_RAID_6	5	/* also used for RAID 60 */
#define HPSA_RAID_ADM	6	/* also used for RAID 1+0 ADM */
519 520 521 522 523 524
#define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)

static ssize_t raid_level_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	ssize_t l = 0;
525
	unsigned char rlevel;
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}

	/* Is this even a logical drive? */
	if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
		spin_unlock_irqrestore(&h->lock, flags);
		l = snprintf(buf, PAGE_SIZE, "N/A\n");
		return l;
	}

	rlevel = hdev->raid_level;
	spin_unlock_irqrestore(&h->lock, flags);
549
	if (rlevel > RAID_UNKNOWN)
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
		rlevel = RAID_UNKNOWN;
	l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
	return l;
}

static ssize_t lunid_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char lunid[8];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		lunid[0], lunid[1], lunid[2], lunid[3],
		lunid[4], lunid[5], lunid[6], lunid[7]);
}

static ssize_t unique_id_show(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	unsigned char sn[16];

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	memcpy(sn, hdev->device_id, sizeof(sn));
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 16 * 2 + 2,
			"%02X%02X%02X%02X%02X%02X%02X%02X"
			"%02X%02X%02X%02X%02X%02X%02X%02X\n",
			sn[0], sn[1], sn[2], sn[3],
			sn[4], sn[5], sn[6], sn[7],
			sn[8], sn[9], sn[10], sn[11],
			sn[12], sn[13], sn[14], sn[15]);
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
	     struct device_attribute *attr, char *buf)
{
	struct ctlr_info *h;
	struct scsi_device *sdev;
	struct hpsa_scsi_dev_t *hdev;
	unsigned long flags;
	int offload_enabled;

	sdev = to_scsi_device(dev);
	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->lock, flags);
	hdev = sdev->hostdata;
	if (!hdev) {
		spin_unlock_irqrestore(&h->lock, flags);
		return -ENODEV;
	}
	offload_enabled = hdev->offload_enabled;
	spin_unlock_irqrestore(&h->lock, flags);
	return snprintf(buf, 20, "%d\n", offload_enabled);
}

629 630 631 632
static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
633 634
static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
			host_show_hp_ssd_smart_path_enabled, NULL);
635 636 637
static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
		host_show_hp_ssd_smart_path_status,
		host_store_hp_ssd_smart_path_status);
638 639
static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
			host_store_raid_offload_debug);
640 641 642 643 644 645
static DEVICE_ATTR(firmware_revision, S_IRUGO,
	host_show_firmware_revision, NULL);
static DEVICE_ATTR(commands_outstanding, S_IRUGO,
	host_show_commands_outstanding, NULL);
static DEVICE_ATTR(transport_mode, S_IRUGO,
	host_show_transport_mode, NULL);
646 647
static DEVICE_ATTR(resettable, S_IRUGO,
	host_show_resettable, NULL);
648 649 650 651 652

static struct device_attribute *hpsa_sdev_attrs[] = {
	&dev_attr_raid_level,
	&dev_attr_lunid,
	&dev_attr_unique_id,
653
	&dev_attr_hp_ssd_smart_path_enabled,
654 655 656 657 658 659 660 661
	NULL,
};

static struct device_attribute *hpsa_shost_attrs[] = {
	&dev_attr_rescan,
	&dev_attr_firmware_revision,
	&dev_attr_commands_outstanding,
	&dev_attr_transport_mode,
662
	&dev_attr_resettable,
663
	&dev_attr_hp_ssd_smart_path_status,
664
	&dev_attr_raid_offload_debug,
665 666 667 668 669
	NULL,
};

static struct scsi_host_template hpsa_driver_template = {
	.module			= THIS_MODULE,
670 671
	.name			= HPSA,
	.proc_name		= HPSA,
672 673 674 675 676 677
	.queuecommand		= hpsa_scsi_queue_command,
	.scan_start		= hpsa_scan_start,
	.scan_finished		= hpsa_scan_finished,
	.change_queue_depth	= hpsa_change_queue_depth,
	.this_id		= -1,
	.use_clustering		= ENABLE_CLUSTERING,
678
	.eh_abort_handler	= hpsa_eh_abort_handler,
679 680 681 682 683 684 685 686 687
	.eh_device_reset_handler = hpsa_eh_device_reset_handler,
	.ioctl			= hpsa_ioctl,
	.slave_alloc		= hpsa_slave_alloc,
	.slave_destroy		= hpsa_slave_destroy,
#ifdef CONFIG_COMPAT
	.compat_ioctl		= hpsa_compat_ioctl,
#endif
	.sdev_attrs = hpsa_sdev_attrs,
	.shost_attrs = hpsa_shost_attrs,
688
	.max_sectors = 8192,
689
	.no_write_same = 1,
690 691 692 693 694 695 696 697 698
};


/* Enqueuing and dequeuing functions for cmdlists. */
static inline void addQ(struct list_head *list, struct CommandList *c)
{
	list_add_tail(&c->list, list);
}

699
static inline u32 next_command(struct ctlr_info *h, u8 q)
700 701
{
	u32 a;
702
	struct reply_queue_buffer *rq = &h->reply_queue[q];
703
	unsigned long flags;
704

705 706 707
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return h->access.command_completed(h, q);

708
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
709
		return h->access.command_completed(h, q);
710

711 712 713
	if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
		a = rq->head[rq->current_entry];
		rq->current_entry++;
714
		spin_lock_irqsave(&h->lock, flags);
715
		h->commands_outstanding--;
716
		spin_unlock_irqrestore(&h->lock, flags);
717 718 719 720
	} else {
		a = FIFO_EMPTY;
	}
	/* Check for wraparound */
721 722 723
	if (rq->current_entry == h->max_commands) {
		rq->current_entry = 0;
		rq->wraparound ^= 1;
724 725 726 727
	}
	return a;
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
/*
 * There are some special bits in the bus address of the
 * command that we have to set for the controller to know
 * how to process the command:
 *
 * Normal performant mode:
 * bit 0: 1 means performant mode, 0 means simple mode.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 0)
 *
 * ioaccel1 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-3 = block fetch table entry
 * bits 4-6 = command type (== 110)
 * (command type is needed because ioaccel1 mode
 * commands are submitted through the same register as normal
 * mode commands, so this is how the controller knows whether
 * the command is normal mode or ioaccel1 mode.)
 *
 * ioaccel2 mode:
 * bit 0 = "performant mode" bit.
 * bits 1-4 = block fetch table entry (note extra bit)
 * bits 4-6 = not needed, because ioaccel2 mode has
 * a separate special register for submitting commands.
 */

754 755 756 757 758 759
/* set_performant_mode: Modify the tag for cciss performant
 * set bit 0 for pull model, bits 3-1 for block fetch
 * register number
 */
static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
{
760
	if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
761
		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
762
		if (likely(h->msix_vector > 0))
763
			c->Header.ReplyQueue =
764
				raw_smp_processor_id() % h->nreply_queues;
765
	}
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static void set_ioaccel1_performant_mode(struct ctlr_info *h,
						struct CommandList *c)
{
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit (bit 0)
	 *  - pull count (bits 1-3)
	 *  - command type (bits 4-6)
	 */
	c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
					IOACCEL1_BUSADDR_CMDTYPE;
}

static void set_ioaccel2_performant_mode(struct ctlr_info *h,
						struct CommandList *c)
{
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];

	/* Tell the controller to post the reply to the queue for this
	 * processor.  This seems to give the best I/O throughput.
	 */
	cp->reply_queue = smp_processor_id() % h->nreply_queues;
	/* Set the bits in the address sent down to include:
	 *  - performant mode bit not used in ioaccel mode 2
	 *  - pull count (bits 0-3)
	 *  - command type isn't needed for ioaccel2
	 */
	c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
static int is_firmware_flash_cmd(u8 *cdb)
{
	return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
}

/*
 * During firmware flash, the heartbeat register may not update as frequently
 * as it should.  So we dial down lockup detection during firmware flash. and
 * dial it back up when firmware flash completes.
 */
#define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
#define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
		struct CommandList *c)
{
	if (!is_firmware_flash_cmd(c->Request.CDB))
		return;
	atomic_inc(&h->firmware_flash_in_progress);
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
}

static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
		struct CommandList *c)
{
	if (is_firmware_flash_cmd(c->Request.CDB) &&
		atomic_dec_and_test(&h->firmware_flash_in_progress))
		h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
}

832 833 834 835 836
static void enqueue_cmd_and_start_io(struct ctlr_info *h,
	struct CommandList *c)
{
	unsigned long flags;

837 838 839 840 841 842 843 844 845 846
	switch (c->cmd_type) {
	case CMD_IOACCEL1:
		set_ioaccel1_performant_mode(h, c);
		break;
	case CMD_IOACCEL2:
		set_ioaccel2_performant_mode(h, c);
		break;
	default:
		set_performant_mode(h, c);
	}
847
	dial_down_lockup_detection_during_fw_flash(h, c);
848 849 850
	spin_lock_irqsave(&h->lock, flags);
	addQ(&h->reqQ, c);
	h->Qdepth++;
851
	start_io(h, &flags);
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
	spin_unlock_irqrestore(&h->lock, flags);
}

static inline void removeQ(struct CommandList *c)
{
	if (WARN_ON(list_empty(&c->list)))
		return;
	list_del_init(&c->list);
}

static inline int is_hba_lunid(unsigned char scsi3addr[])
{
	return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
}

static inline int is_scsi_rev_5(struct ctlr_info *h)
{
	if (!h->hba_inquiry_data)
		return 0;
	if ((h->hba_inquiry_data[2] & 0x07) == 5)
		return 1;
	return 0;
}

876 877 878 879 880 881 882
static int hpsa_find_target_lun(struct ctlr_info *h,
	unsigned char scsi3addr[], int bus, int *target, int *lun)
{
	/* finds an unused bus, target, lun for a new physical device
	 * assumes h->devlock is held
	 */
	int i, found = 0;
883
	DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
884

885
	bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
886 887 888

	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
889
			__set_bit(h->dev[i]->target, lun_taken);
890 891
	}

892 893 894 895 896 897
	i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
	if (i < HPSA_MAX_DEVICES) {
		/* *bus = 1; */
		*target = i;
		*lun = 0;
		found = 1;
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	}
	return !found;
}

/* Add an entry into h->dev[] array. */
static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
		struct hpsa_scsi_dev_t *device,
		struct hpsa_scsi_dev_t *added[], int *nadded)
{
	/* assumes h->devlock is held */
	int n = h->ndevices;
	int i;
	unsigned char addr1[8], addr2[8];
	struct hpsa_scsi_dev_t *sd;

913
	if (n >= HPSA_MAX_DEVICES) {
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
		dev_err(&h->pdev->dev, "too many devices, some will be "
			"inaccessible.\n");
		return -1;
	}

	/* physical devices do not have lun or target assigned until now. */
	if (device->lun != -1)
		/* Logical device, lun is already assigned. */
		goto lun_assigned;

	/* If this device a non-zero lun of a multi-lun device
	 * byte 4 of the 8-byte LUN addr will contain the logical
	 * unit no, zero otherise.
	 */
	if (device->scsi3addr[4] == 0) {
		/* This is not a non-zero lun of a multi-lun device */
		if (hpsa_find_target_lun(h, device->scsi3addr,
			device->bus, &device->target, &device->lun) != 0)
			return -1;
		goto lun_assigned;
	}

	/* This is a non-zero lun of a multi-lun device.
	 * Search through our list and find the device which
	 * has the same 8 byte LUN address, excepting byte 4.
	 * Assign the same bus and target for this new LUN.
	 * Use the logical unit number from the firmware.
	 */
	memcpy(addr1, device->scsi3addr, 8);
	addr1[4] = 0;
	for (i = 0; i < n; i++) {
		sd = h->dev[i];
		memcpy(addr2, sd->scsi3addr, 8);
		addr2[4] = 0;
		/* differ only in byte 4? */
		if (memcmp(addr1, addr2, 8) == 0) {
			device->bus = sd->bus;
			device->target = sd->target;
			device->lun = device->scsi3addr[4];
			break;
		}
	}
	if (device->lun == -1) {
		dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
			" suspect firmware bug or unsupported hardware "
			"configuration.\n");
			return -1;
	}

lun_assigned:

	h->dev[n] = device;
	h->ndevices++;
	added[*nadded] = device;
	(*nadded)++;

	/* initially, (before registering with scsi layer) we don't
	 * know our hostno and we don't want to print anything first
	 * time anyway (the scsi layer's inquiries will show that info)
	 */
	/* if (hostno != -1) */
		dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
			scsi_device_type(device->devtype), hostno,
			device->bus, device->target, device->lun);
	return 0;
}

981 982 983 984 985 986 987 988 989
/* Update an entry in h->dev[] array. */
static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry)
{
	/* assumes h->devlock is held */
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);

	/* Raid level changed. */
	h->dev[entry]->raid_level = new_entry->raid_level;
990 991 992 993

	/* Raid offload parameters changed. */
	h->dev[entry]->offload_config = new_entry->offload_config;
	h->dev[entry]->offload_enabled = new_entry->offload_enabled;
994 995 996
	h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
	h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
	h->dev[entry]->raid_map = new_entry->raid_map;
997

998 999 1000 1001 1002
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
		new_entry->target, new_entry->lun);
}

1003 1004 1005 1006 1007 1008 1009
/* Replace an entry from h->dev[] array. */
static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
	int entry, struct hpsa_scsi_dev_t *new_entry,
	struct hpsa_scsi_dev_t *added[], int *nadded,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
1010
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1011 1012
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

	/*
	 * New physical devices won't have target/lun assigned yet
	 * so we need to preserve the values in the slot we are replacing.
	 */
	if (new_entry->target == -1) {
		new_entry->target = h->dev[entry]->target;
		new_entry->lun = h->dev[entry]->lun;
	}

1023 1024 1025 1026 1027 1028 1029 1030
	h->dev[entry] = new_entry;
	added[*nadded] = new_entry;
	(*nadded)++;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
		scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
			new_entry->target, new_entry->lun);
}

1031 1032 1033 1034 1035 1036 1037 1038
/* Remove an entry from h->dev[] array. */
static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
	struct hpsa_scsi_dev_t *removed[], int *nremoved)
{
	/* assumes h->devlock is held */
	int i;
	struct hpsa_scsi_dev_t *sd;

1039
	BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108

	sd = h->dev[entry];
	removed[*nremoved] = h->dev[entry];
	(*nremoved)++;

	for (i = entry; i < h->ndevices-1; i++)
		h->dev[i] = h->dev[i+1];
	h->ndevices--;
	dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
		scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
		sd->lun);
}

#define SCSI3ADDR_EQ(a, b) ( \
	(a)[7] == (b)[7] && \
	(a)[6] == (b)[6] && \
	(a)[5] == (b)[5] && \
	(a)[4] == (b)[4] && \
	(a)[3] == (b)[3] && \
	(a)[2] == (b)[2] && \
	(a)[1] == (b)[1] && \
	(a)[0] == (b)[0])

static void fixup_botched_add(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *added)
{
	/* called when scsi_add_device fails in order to re-adjust
	 * h->dev[] to match the mid layer's view.
	 */
	unsigned long flags;
	int i, j;

	spin_lock_irqsave(&h->lock, flags);
	for (i = 0; i < h->ndevices; i++) {
		if (h->dev[i] == added) {
			for (j = i; j < h->ndevices-1; j++)
				h->dev[j] = h->dev[j+1];
			h->ndevices--;
			break;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	kfree(added);
}

static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* we compare everything except lun and target as these
	 * are not yet assigned.  Compare parts likely
	 * to differ first
	 */
	if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
		sizeof(dev1->scsi3addr)) != 0)
		return 0;
	if (memcmp(dev1->device_id, dev2->device_id,
		sizeof(dev1->device_id)) != 0)
		return 0;
	if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
		return 0;
	if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
		return 0;
	if (dev1->devtype != dev2->devtype)
		return 0;
	if (dev1->bus != dev2->bus)
		return 0;
	return 1;
}

1109 1110 1111 1112 1113 1114 1115 1116 1117
static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
	struct hpsa_scsi_dev_t *dev2)
{
	/* Device attributes that can change, but don't mean
	 * that the device is a different device, nor that the OS
	 * needs to be told anything about the change.
	 */
	if (dev1->raid_level != dev2->raid_level)
		return 1;
1118 1119 1120 1121
	if (dev1->offload_config != dev2->offload_config)
		return 1;
	if (dev1->offload_enabled != dev2->offload_enabled)
		return 1;
1122 1123 1124
	return 0;
}

1125 1126 1127
/* Find needle in haystack.  If exact match found, return DEVICE_SAME,
 * and return needle location in *index.  If scsi3addr matches, but not
 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1128 1129 1130 1131
 * location in *index.
 * In the case of a minor device attribute change, such as RAID level, just
 * return DEVICE_UPDATED, along with the updated device's location in index.
 * If needle not found, return DEVICE_NOT_FOUND.
1132 1133 1134 1135 1136 1137 1138 1139 1140
 */
static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
	struct hpsa_scsi_dev_t *haystack[], int haystack_size,
	int *index)
{
	int i;
#define DEVICE_NOT_FOUND 0
#define DEVICE_CHANGED 1
#define DEVICE_SAME 2
1141
#define DEVICE_UPDATED 3
1142
	for (i = 0; i < haystack_size; i++) {
1143 1144
		if (haystack[i] == NULL) /* previously removed. */
			continue;
1145 1146
		if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
			*index = i;
1147 1148 1149
			if (device_is_the_same(needle, haystack[i])) {
				if (device_updated(needle, haystack[i]))
					return DEVICE_UPDATED;
1150
				return DEVICE_SAME;
1151
			} else {
1152 1153 1154
				/* Keep offline devices offline */
				if (needle->volume_offline)
					return DEVICE_NOT_FOUND;
1155
				return DEVICE_CHANGED;
1156
			}
1157 1158 1159 1160 1161 1162
		}
	}
	*index = -1;
	return DEVICE_NOT_FOUND;
}

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
static void hpsa_monitor_offline_device(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	struct offline_device_entry *device;
	unsigned long flags;

	/* Check to see if device is already on the list */
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_entry(device, &h->offline_device_list, offline_list) {
		if (memcmp(device->scsi3addr, scsi3addr,
			sizeof(device->scsi3addr)) == 0) {
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
			return;
		}
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);

	/* Device is not on the list, add it. */
	device = kmalloc(sizeof(*device), GFP_KERNEL);
	if (!device) {
		dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
		return;
	}
	memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_add_tail(&device->offline_list, &h->offline_device_list);
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
}

/* Print a message explaining various offline volume states */
static void hpsa_show_volume_status(struct ctlr_info *h,
	struct hpsa_scsi_dev_t *sd)
{
	if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
	switch (sd->volume_offline) {
	case HPSA_LV_OK:
		break;
	case HPSA_LV_UNDERGOING_ERASE:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_RPI:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing rapid parity initialization process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_RPI:
		dev_info(&h->pdev->dev,
				"C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
				h->scsi_host->host_no,
				sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_NO_KEY:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
		dev_info(&h->pdev->dev,
			"C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
			h->scsi_host->host_no,
			sd->bus, sd->target, sd->lun);
		break;
	}
}

1267
static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
	struct hpsa_scsi_dev_t *sd[], int nsds)
{
	/* sd contains scsi3 addresses and devtypes, and inquiry
	 * data.  This function takes what's in sd to be the current
	 * reality and updates h->dev[] to reflect that reality.
	 */
	int i, entry, device_change, changes = 0;
	struct hpsa_scsi_dev_t *csd;
	unsigned long flags;
	struct hpsa_scsi_dev_t **added, **removed;
	int nadded, nremoved;
	struct Scsi_Host *sh = NULL;

1281 1282
	added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
	removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295

	if (!added || !removed) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"adjust_hpsa_scsi_table\n");
		goto free_and_out;
	}

	spin_lock_irqsave(&h->devlock, flags);

	/* find any devices in h->dev[] that are not in
	 * sd[] and remove them from h->dev[], and for any
	 * devices which have changed, remove the old device
	 * info and add the new device info.
1296 1297
	 * If minor device attributes change, just update
	 * the existing device structure.
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	 */
	i = 0;
	nremoved = 0;
	nadded = 0;
	while (i < h->ndevices) {
		csd = h->dev[i];
		device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			hpsa_scsi_remove_entry(h, hostno, i,
				removed, &nremoved);
			continue; /* remove ^^^, hence i not incremented */
		} else if (device_change == DEVICE_CHANGED) {
			changes++;
1312 1313
			hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
				added, &nadded, removed, &nremoved);
1314 1315 1316 1317
			/* Set it to NULL to prevent it from being freed
			 * at the bottom of hpsa_update_scsi_devices()
			 */
			sd[entry] = NULL;
1318 1319
		} else if (device_change == DEVICE_UPDATED) {
			hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		}
		i++;
	}

	/* Now, make sure every device listed in sd[] is also
	 * listed in h->dev[], adding them if they aren't found
	 */

	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344

		/* Don't add devices which are NOT READY, FORMAT IN PROGRESS
		 * as the SCSI mid-layer does not handle such devices well.
		 * It relentlessly loops sending TUR at 3Hz, then READ(10)
		 * at 160Hz, and prevents the system from coming up.
		 */
		if (sd[i]->volume_offline) {
			hpsa_show_volume_status(h, sd[i]);
			dev_info(&h->pdev->dev, "c%db%dt%dl%d: temporarily offline\n",
				h->scsi_host->host_no,
				sd[i]->bus, sd[i]->target, sd[i]->lun);
			continue;
		}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
		device_change = hpsa_scsi_find_entry(sd[i], h->dev,
					h->ndevices, &entry);
		if (device_change == DEVICE_NOT_FOUND) {
			changes++;
			if (hpsa_scsi_add_entry(h, hostno, sd[i],
				added, &nadded) != 0)
				break;
			sd[i] = NULL; /* prevent from being freed later. */
		} else if (device_change == DEVICE_CHANGED) {
			/* should never happen... */
			changes++;
			dev_warn(&h->pdev->dev,
				"device unexpectedly changed.\n");
			/* but if it does happen, we just ignore that device */
		}
	}
	spin_unlock_irqrestore(&h->devlock, flags);

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	/* Monitor devices which are in one of several NOT READY states to be
	 * brought online later. This must be done without holding h->devlock,
	 * so don't touch h->dev[]
	 */
	for (i = 0; i < nsds; i++) {
		if (!sd[i]) /* if already added above. */
			continue;
		if (sd[i]->volume_offline)
			hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
	}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
	/* Don't notify scsi mid layer of any changes the first time through
	 * (or if there are no changes) scsi_scan_host will do it later the
	 * first time through.
	 */
	if (hostno == -1 || !changes)
		goto free_and_out;

	sh = h->scsi_host;
	/* Notify scsi mid layer of any removed devices */
	for (i = 0; i < nremoved; i++) {
		struct scsi_device *sdev =
			scsi_device_lookup(sh, removed[i]->bus,
				removed[i]->target, removed[i]->lun);
		if (sdev != NULL) {
			scsi_remove_device(sdev);
			scsi_device_put(sdev);
		} else {
			/* We don't expect to get here.
			 * future cmds to this device will get selection
			 * timeout as if the device was gone.
			 */
			dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
				" for removal.", hostno, removed[i]->bus,
				removed[i]->target, removed[i]->lun);
		}
		kfree(removed[i]);
		removed[i] = NULL;
	}

	/* Notify scsi mid layer of any added devices */
	for (i = 0; i < nadded; i++) {
		if (scsi_add_device(sh, added[i]->bus,
			added[i]->target, added[i]->lun) == 0)
			continue;
		dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
			"device not added.\n", hostno, added[i]->bus,
			added[i]->target, added[i]->lun);
		/* now we have to remove it from h->dev,
		 * since it didn't get added to scsi mid layer
		 */
		fixup_botched_add(h, added[i]);
	}

free_and_out:
	kfree(added);
	kfree(removed);
}

/*
1423
 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
 * Assume's h->devlock is held.
 */
static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
	int bus, int target, int lun)
{
	int i;
	struct hpsa_scsi_dev_t *sd;

	for (i = 0; i < h->ndevices; i++) {
		sd = h->dev[i];
		if (sd->bus == bus && sd->target == target && sd->lun == lun)
			return sd;
	}
	return NULL;
}

/* link sdev->hostdata to our per-device structure. */
static int hpsa_slave_alloc(struct scsi_device *sdev)
{
	struct hpsa_scsi_dev_t *sd;
	unsigned long flags;
	struct ctlr_info *h;

	h = sdev_to_hba(sdev);
	spin_lock_irqsave(&h->devlock, flags);
	sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
		sdev_id(sdev), sdev->lun);
	if (sd != NULL)
		sdev->hostdata = sd;
	spin_unlock_irqrestore(&h->devlock, flags);
	return 0;
}

static void hpsa_slave_destroy(struct scsi_device *sdev)
{
1459
	/* nothing to do. */
1460 1461
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (!h->cmd_sg_list)
		return;
	for (i = 0; i < h->nr_cmds; i++) {
		kfree(h->cmd_sg_list[i]);
		h->cmd_sg_list[i] = NULL;
	}
	kfree(h->cmd_sg_list);
	h->cmd_sg_list = NULL;
}

static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
{
	int i;

	if (h->chainsize <= 0)
		return 0;

	h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
				GFP_KERNEL);
	if (!h->cmd_sg_list)
		return -ENOMEM;
	for (i = 0; i < h->nr_cmds; i++) {
		h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
						h->chainsize, GFP_KERNEL);
		if (!h->cmd_sg_list[i])
			goto clean;
	}
	return 0;

clean:
	hpsa_free_sg_chain_blocks(h);
	return -ENOMEM;
}

1500
static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg, *chain_block;
	u64 temp64;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	chain_block = h->cmd_sg_list[c->cmdindex];
	chain_sg->Ext = HPSA_SG_CHAIN;
	chain_sg->Len = sizeof(*chain_sg) *
		(c->Header.SGTotal - h->max_cmd_sg_entries);
	temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
				PCI_DMA_TODEVICE);
1513 1514 1515 1516 1517 1518
	if (dma_mapping_error(&h->pdev->dev, temp64)) {
		/* prevent subsequent unmapping */
		chain_sg->Addr.lower = 0;
		chain_sg->Addr.upper = 0;
		return -1;
	}
1519 1520
	chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
	chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1521
	return 0;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
}

static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
	struct CommandList *c)
{
	struct SGDescriptor *chain_sg;
	union u64bit temp64;

	if (c->Header.SGTotal <= h->max_cmd_sg_entries)
		return;

	chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
	temp64.val32.lower = chain_sg->Addr.lower;
	temp64.val32.upper = chain_sg->Addr.upper;
	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
}

1539 1540 1541 1542 1543 1544

/* Decode the various types of errors on ioaccel2 path.
 * Return 1 for any error that should generate a RAID path retry.
 * Return 0 for errors that don't require a RAID path retry.
 */
static int handle_ioaccel_mode2_error(struct ctlr_info *h,
1545 1546 1547 1548 1549
					struct CommandList *c,
					struct scsi_cmnd *cmd,
					struct io_accel2_cmd *c2)
{
	int data_len;
1550
	int retry = 0;
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560

	switch (c2->error_data.serv_response) {
	case IOACCEL2_SERV_RESPONSE_COMPLETE:
		switch (c2->error_data.status) {
		case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
			dev_warn(&h->pdev->dev,
				"%s: task complete with check condition.\n",
				"HP SSD Smart Path");
1561
			cmd->result |= SAM_STAT_CHECK_CONDITION;
1562
			if (c2->error_data.data_present !=
1563 1564 1565
					IOACCEL2_SENSE_DATA_PRESENT) {
				memset(cmd->sense_buffer, 0,
					SCSI_SENSE_BUFFERSIZE);
1566
				break;
1567
			}
1568 1569 1570 1571 1572 1573 1574 1575 1576
			/* copy the sense data */
			data_len = c2->error_data.sense_data_len;
			if (data_len > SCSI_SENSE_BUFFERSIZE)
				data_len = SCSI_SENSE_BUFFERSIZE;
			if (data_len > sizeof(c2->error_data.sense_data_buff))
				data_len =
					sizeof(c2->error_data.sense_data_buff);
			memcpy(cmd->sense_buffer,
				c2->error_data.sense_data_buff, data_len);
1577
			retry = 1;
1578 1579 1580 1581 1582
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
			dev_warn(&h->pdev->dev,
				"%s: task complete with BUSY status.\n",
				"HP SSD Smart Path");
1583
			retry = 1;
1584 1585 1586 1587 1588
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
			dev_warn(&h->pdev->dev,
				"%s: task complete with reservation conflict.\n",
				"HP SSD Smart Path");
1589
			retry = 1;
1590 1591 1592 1593 1594 1595 1596 1597 1598
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
			/* Make scsi midlayer do unlimited retries */
			cmd->result = DID_IMM_RETRY << 16;
			break;
		case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
			dev_warn(&h->pdev->dev,
				"%s: task complete with aborted status.\n",
				"HP SSD Smart Path");
1599
			retry = 1;
1600 1601 1602 1603 1604
			break;
		default:
			dev_warn(&h->pdev->dev,
				"%s: task complete with unrecognized status: 0x%02x\n",
				"HP SSD Smart Path", c2->error_data.status);
1605
			retry = 1;
1606 1607 1608 1609 1610 1611 1612 1613
			break;
		}
		break;
	case IOACCEL2_SERV_RESPONSE_FAILURE:
		/* don't expect to get here. */
		dev_warn(&h->pdev->dev,
			"unexpected delivery or target failure, status = 0x%02x\n",
			c2->error_data.status);
1614
		retry = 1;
1615 1616 1617 1618 1619 1620 1621
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
		dev_warn(&h->pdev->dev, "task management function rejected.\n");
1622
		retry = 1;
1623 1624 1625 1626 1627 1628 1629
		break;
	case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
		dev_warn(&h->pdev->dev, "task management function invalid LUN\n");
		break;
	default:
		dev_warn(&h->pdev->dev,
			"%s: Unrecognized server response: 0x%02x\n",
1630 1631 1632
			"HP SSD Smart Path",
			c2->error_data.serv_response);
		retry = 1;
1633 1634
		break;
	}
1635 1636

	return retry;	/* retry on raid path? */
1637 1638 1639 1640 1641 1642 1643
}

static void process_ioaccel2_completion(struct ctlr_info *h,
		struct CommandList *c, struct scsi_cmnd *cmd,
		struct hpsa_scsi_dev_t *dev)
{
	struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
1644
	int raid_retry = 0;
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

	/* check for good status */
	if (likely(c2->error_data.serv_response == 0 &&
			c2->error_data.status == 0)) {
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return;
	}

	/* Any RAID offload error results in retry which will use
	 * the normal I/O path so the controller can handle whatever's
	 * wrong.
	 */
	if (is_logical_dev_addr_mode(dev->scsi3addr) &&
		c2->error_data.serv_response ==
			IOACCEL2_SERV_RESPONSE_FAILURE) {
		dev->offload_enabled = 0;
1662
		h->drv_req_rescan = 1;	/* schedule controller for a rescan */
1663 1664 1665 1666 1667
		cmd->result = DID_SOFT_ERROR << 16;
		cmd_free(h, c);
		cmd->scsi_done(cmd);
		return;
	}
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	raid_retry = handle_ioaccel_mode2_error(h, c, cmd, c2);
	/* If error found, disable Smart Path, schedule a rescan,
	 * and force a retry on the standard path.
	 */
	if (raid_retry) {
		dev_warn(&h->pdev->dev, "%s: Retrying on standard path.\n",
			"HP SSD Smart Path");
		dev->offload_enabled = 0; /* Disable Smart Path */
		h->drv_req_rescan = 1;	  /* schedule controller rescan */
		cmd->result = DID_SOFT_ERROR << 16;
	}
1679 1680 1681 1682
	cmd_free(h, c);
	cmd->scsi_done(cmd);
}

1683
static void complete_scsi_command(struct CommandList *cp)
1684 1685 1686 1687
{
	struct scsi_cmnd *cmd;
	struct ctlr_info *h;
	struct ErrorInfo *ei;
1688
	struct hpsa_scsi_dev_t *dev;
1689 1690 1691 1692

	unsigned char sense_key;
	unsigned char asc;      /* additional sense code */
	unsigned char ascq;     /* additional sense code qualifier */
1693
	unsigned long sense_data_size;
1694 1695 1696 1697

	ei = cp->err_info;
	cmd = (struct scsi_cmnd *) cp->scsi_cmd;
	h = cp->h;
1698
	dev = cmd->device->hostdata;
1699 1700

	scsi_dma_unmap(cmd); /* undo the DMA mappings */
1701 1702
	if ((cp->cmd_type == CMD_SCSI) &&
		(cp->Header.SGTotal > h->max_cmd_sg_entries))
1703
		hpsa_unmap_sg_chain_block(h, cp);
1704 1705 1706

	cmd->result = (DID_OK << 16); 		/* host byte */
	cmd->result |= (COMMAND_COMPLETE << 8);	/* msg byte */
1707 1708 1709 1710

	if (cp->cmd_type == CMD_IOACCEL2)
		return process_ioaccel2_completion(h, cp, cmd, dev);

1711
	cmd->result |= ei->ScsiStatus;
1712

1713 1714 1715 1716 1717 1718 1719 1720
	scsi_set_resid(cmd, ei->ResidualCnt);
	if (ei->CommandStatus == 0) {
		cmd_free(h, cp);
		cmd->scsi_done(cmd);
		return;
	}

	/* copy the sense data */
1721 1722 1723 1724 1725 1726 1727 1728
	if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
		sense_data_size = SCSI_SENSE_BUFFERSIZE;
	else
		sense_data_size = sizeof(ei->SenseInfo);
	if (ei->SenseLen < sense_data_size)
		sense_data_size = ei->SenseLen;

	memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1729

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	/* For I/O accelerator commands, copy over some fields to the normal
	 * CISS header used below for error handling.
	 */
	if (cp->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
		cp->Header.SGList = cp->Header.SGTotal = scsi_sg_count(cmd);
		cp->Request.CDBLen = c->io_flags & IOACCEL1_IOFLAGS_CDBLEN_MASK;
		cp->Header.Tag.lower = c->Tag.lower;
		cp->Header.Tag.upper = c->Tag.upper;
		memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
		memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753

		/* Any RAID offload error results in retry which will use
		 * the normal I/O path so the controller can handle whatever's
		 * wrong.
		 */
		if (is_logical_dev_addr_mode(dev->scsi3addr)) {
			if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
				dev->offload_enabled = 0;
			cmd->result = DID_SOFT_ERROR << 16;
			cmd_free(h, cp);
			cmd->scsi_done(cmd);
			return;
		}
1754 1755
	}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	/* an error has occurred */
	switch (ei->CommandStatus) {

	case CMD_TARGET_STATUS:
		if (ei->ScsiStatus) {
			/* Get sense key */
			sense_key = 0xf & ei->SenseInfo[2];
			/* Get additional sense code */
			asc = ei->SenseInfo[12];
			/* Get addition sense code qualifier */
			ascq = ei->SenseInfo[13];
		}

		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1770
			if (check_for_unit_attention(h, cp))
1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
				break;
			if (sense_key == ILLEGAL_REQUEST) {
				/*
				 * SCSI REPORT_LUNS is commonly unsupported on
				 * Smart Array.  Suppress noisy complaint.
				 */
				if (cp->Request.CDB[0] == REPORT_LUNS)
					break;

				/* If ASC/ASCQ indicate Logical Unit
				 * Not Supported condition,
				 */
				if ((asc == 0x25) && (ascq == 0x0)) {
					dev_warn(&h->pdev->dev, "cp %p "
						"has check condition\n", cp);
					break;
				}
			}

			if (sense_key == NOT_READY) {
				/* If Sense is Not Ready, Logical Unit
				 * Not ready, Manual Intervention
				 * required
				 */
				if ((asc == 0x04) && (ascq == 0x03)) {
					dev_warn(&h->pdev->dev, "cp %p "
						"has check condition: unit "
						"not ready, manual "
						"intervention required\n", cp);
					break;
				}
			}
1803 1804 1805 1806 1807 1808
			if (sense_key == ABORTED_COMMAND) {
				/* Aborted command is retryable */
				dev_warn(&h->pdev->dev, "cp %p "
					"has check condition: aborted command: "
					"ASC: 0x%x, ASCQ: 0x%x\n",
					cp, asc, ascq);
1809
				cmd->result |= DID_SOFT_ERROR << 16;
1810 1811
				break;
			}
1812
			/* Must be some other type of check condition */
1813
			dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1814 1815 1816 1817
					"unknown type: "
					"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
					"Returning result: 0x%x, "
					"cmd=[%02x %02x %02x %02x %02x "
1818
					"%02x %02x %02x %02x %02x %02x "
1819 1820 1821 1822 1823 1824 1825
					"%02x %02x %02x %02x %02x]\n",
					cp, sense_key, asc, ascq,
					cmd->result,
					cmd->cmnd[0], cmd->cmnd[1],
					cmd->cmnd[2], cmd->cmnd[3],
					cmd->cmnd[4], cmd->cmnd[5],
					cmd->cmnd[6], cmd->cmnd[7],
1826 1827 1828 1829
					cmd->cmnd[8], cmd->cmnd[9],
					cmd->cmnd[10], cmd->cmnd[11],
					cmd->cmnd[12], cmd->cmnd[13],
					cmd->cmnd[14], cmd->cmnd[15]);
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
			break;
		}


		/* Problem was not a check condition
		 * Pass it up to the upper layers...
		 */
		if (ei->ScsiStatus) {
			dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
				"Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
				"Returning result: 0x%x\n",
				cp, ei->ScsiStatus,
				sense_key, asc, ascq,
				cmd->result);
		} else {  /* scsi status is zero??? How??? */
			dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
				"Returning no connection.\n", cp),

			/* Ordinarily, this case should never happen,
			 * but there is a bug in some released firmware
			 * revisions that allows it to happen if, for
			 * example, a 4100 backplane loses power and
			 * the tape drive is in it.  We assume that
			 * it's a fatal error of some kind because we
			 * can't show that it wasn't. We will make it
			 * look like selection timeout since that is
			 * the most common reason for this to occur,
			 * and it's severe enough.
			 */

			cmd->result = DID_NO_CONNECT << 16;
		}
		break;

	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
		dev_warn(&h->pdev->dev, "cp %p has"
			" completed with data overrun "
			"reported\n", cp);
		break;
	case CMD_INVALID: {
		/* print_bytes(cp, sizeof(*cp), 1, 0);
		print_cmd(cp); */
		/* We get CMD_INVALID if you address a non-existent device
		 * instead of a selection timeout (no response).  You will
		 * see this if you yank out a drive, then try to access it.
		 * This is kind of a shame because it means that any other
		 * CMD_INVALID (e.g. driver bug) will get interpreted as a
		 * missing target. */
		cmd->result = DID_NO_CONNECT << 16;
	}
		break;
	case CMD_PROTOCOL_ERR:
1884
		cmd->result = DID_ERROR << 16;
1885
		dev_warn(&h->pdev->dev, "cp %p has "
1886
			"protocol error\n", cp);
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
		break;
	case CMD_HARDWARE_ERR:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
		break;
	case CMD_CONNECTION_LOST:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
		break;
	case CMD_ABORTED:
		cmd->result = DID_ABORT << 16;
		dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
				cp, ei->ScsiStatus);
		break;
	case CMD_ABORT_FAILED:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
		break;
	case CMD_UNSOLICITED_ABORT:
1906 1907
		cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
		dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1908 1909 1910 1911 1912 1913
			"abort\n", cp);
		break;
	case CMD_TIMEOUT:
		cmd->result = DID_TIME_OUT << 16;
		dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
		break;
1914 1915 1916 1917
	case CMD_UNABORTABLE:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "Command unabortable\n");
		break;
1918 1919 1920 1921 1922 1923 1924 1925
	case CMD_IOACCEL_DISABLED:
		/* This only handles the direct pass-through case since RAID
		 * offload is handled above.  Just attempt a retry.
		 */
		cmd->result = DID_SOFT_ERROR << 16;
		dev_warn(&h->pdev->dev,
				"cp %p had HP SSD Smart Path error\n", cp);
		break;
1926 1927 1928 1929 1930 1931
	default:
		cmd->result = DID_ERROR << 16;
		dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
				cp, ei->CommandStatus);
	}
	cmd_free(h, cp);
1932
	cmd->scsi_done(cmd);
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
}

static void hpsa_pci_unmap(struct pci_dev *pdev,
	struct CommandList *c, int sg_used, int data_direction)
{
	int i;
	union u64bit addr64;

	for (i = 0; i < sg_used; i++) {
		addr64.val32.lower = c->SG[i].Addr.lower;
		addr64.val32.upper = c->SG[i].Addr.upper;
		pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
			data_direction);
	}
}

1949
static int hpsa_map_one(struct pci_dev *pdev,
1950 1951 1952 1953 1954
		struct CommandList *cp,
		unsigned char *buf,
		size_t buflen,
		int data_direction)
{
1955
	u64 addr64;
1956 1957 1958 1959

	if (buflen == 0 || data_direction == PCI_DMA_NONE) {
		cp->Header.SGList = 0;
		cp->Header.SGTotal = 0;
1960
		return 0;
1961 1962
	}

1963
	addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1964
	if (dma_mapping_error(&pdev->dev, addr64)) {
1965
		/* Prevent subsequent unmap of something never mapped */
1966 1967
		cp->Header.SGList = 0;
		cp->Header.SGTotal = 0;
1968
		return -1;
1969
	}
1970
	cp->SG[0].Addr.lower =
1971
	  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1972
	cp->SG[0].Addr.upper =
1973
	  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1974
	cp->SG[0].Len = buflen;
1975
	cp->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining */
1976 1977
	cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1978
	return 0;
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
}

static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
	struct CommandList *c)
{
	DECLARE_COMPLETION_ONSTACK(wait);

	c->waiting = &wait;
	enqueue_cmd_and_start_io(h, c);
	wait_for_completion(&wait);
}

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
static u32 lockup_detected(struct ctlr_info *h)
{
	int cpu;
	u32 rc, *lockup_detected;

	cpu = get_cpu();
	lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
	rc = *lockup_detected;
	put_cpu();
	return rc;
}

2003 2004 2005 2006
static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
	struct CommandList *c)
{
	/* If controller lockup detected, fake a hardware error. */
2007
	if (unlikely(lockup_detected(h)))
2008
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
2009
	else
2010 2011 2012
		hpsa_scsi_do_simple_cmd_core(h, c);
}

2013
#define MAX_DRIVER_CMD_RETRIES 25
2014 2015 2016
static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
	struct CommandList *c, int data_direction)
{
2017
	int backoff_time = 10, retry_count = 0;
2018 2019

	do {
2020
		memset(c->err_info, 0, sizeof(*c->err_info));
2021 2022
		hpsa_scsi_do_simple_cmd_core(h, c);
		retry_count++;
2023 2024 2025 2026 2027
		if (retry_count > 3) {
			msleep(backoff_time);
			if (backoff_time < 1000)
				backoff_time *= 2;
		}
2028
	} while ((check_for_unit_attention(h, c) ||
2029 2030
			check_for_busy(h, c)) &&
			retry_count <= MAX_DRIVER_CMD_RETRIES);
2031 2032 2033
	hpsa_pci_unmap(h->pdev, c, 1, data_direction);
}

2034 2035
static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
				struct CommandList *c)
2036
{
2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	const u8 *cdb = c->Request.CDB;
	const u8 *lun = c->Header.LUN.LunAddrBytes;

	dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
	" CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		txt, lun[0], lun[1], lun[2], lun[3],
		lun[4], lun[5], lun[6], lun[7],
		cdb[0], cdb[1], cdb[2], cdb[3],
		cdb[4], cdb[5], cdb[6], cdb[7],
		cdb[8], cdb[9], cdb[10], cdb[11],
		cdb[12], cdb[13], cdb[14], cdb[15]);
}

static void hpsa_scsi_interpret_error(struct ctlr_info *h,
			struct CommandList *cp)
{
	const struct ErrorInfo *ei = cp->err_info;
2054
	struct device *d = &cp->h->pdev->dev;
2055
	const u8 *sd = ei->SenseInfo;
2056 2057 2058

	switch (ei->CommandStatus) {
	case CMD_TARGET_STATUS:
2059 2060 2061 2062 2063 2064
		hpsa_print_cmd(h, "SCSI status", cp);
		if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
			dev_warn(d, "SCSI Status = 02, Sense key = %02x, ASC = %02x, ASCQ = %02x\n",
				sd[2] & 0x0f, sd[12], sd[13]);
		else
			dev_warn(d, "SCSI Status = %02x\n", ei->ScsiStatus);
2065 2066 2067 2068 2069 2070 2071 2072 2073
		if (ei->ScsiStatus == 0)
			dev_warn(d, "SCSI status is abnormally zero.  "
			"(probably indicates selection timeout "
			"reported incorrectly due to a known "
			"firmware bug, circa July, 2001.)\n");
		break;
	case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
		break;
	case CMD_DATA_OVERRUN:
2074
		hpsa_print_cmd(h, "overrun condition", cp);
2075 2076 2077 2078 2079
		break;
	case CMD_INVALID: {
		/* controller unfortunately reports SCSI passthru's
		 * to non-existent targets as invalid commands.
		 */
2080 2081
		hpsa_print_cmd(h, "invalid command", cp);
		dev_warn(d, "probably means device no longer present\n");
2082 2083 2084
		}
		break;
	case CMD_PROTOCOL_ERR:
2085
		hpsa_print_cmd(h, "protocol error", cp);
2086 2087
		break;
	case CMD_HARDWARE_ERR:
2088
		hpsa_print_cmd(h, "hardware error", cp);
2089 2090
		break;
	case CMD_CONNECTION_LOST:
2091
		hpsa_print_cmd(h, "connection lost", cp);
2092 2093
		break;
	case CMD_ABORTED:
2094
		hpsa_print_cmd(h, "aborted", cp);
2095 2096
		break;
	case CMD_ABORT_FAILED:
2097
		hpsa_print_cmd(h, "abort failed", cp);
2098 2099
		break;
	case CMD_UNSOLICITED_ABORT:
2100
		hpsa_print_cmd(h, "unsolicited abort", cp);
2101 2102
		break;
	case CMD_TIMEOUT:
2103
		hpsa_print_cmd(h, "timed out", cp);
2104
		break;
2105
	case CMD_UNABORTABLE:
2106
		hpsa_print_cmd(h, "unabortable", cp);
2107
		break;
2108
	default:
2109 2110
		hpsa_print_cmd(h, "unknown status", cp);
		dev_warn(d, "Unknown command status %x\n",
2111 2112 2113 2114 2115
				ei->CommandStatus);
	}
}

static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2116
			u16 page, unsigned char *buf,
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
			unsigned char bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);

	if (c == NULL) {			/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2127
		return -ENOMEM;
2128 2129
	}

2130 2131 2132 2133 2134
	if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2135 2136 2137
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2138
		hpsa_scsi_interpret_error(h, c);
2139 2140
		rc = -1;
	}
2141
out:
2142 2143 2144 2145
	cmd_special_free(h, c);
	return rc;
}

2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
static int hpsa_bmic_ctrl_mode_sense(struct ctlr_info *h,
		unsigned char *scsi3addr, unsigned char page,
		struct bmic_controller_parameters *buf, size_t bufsize)
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);

	if (c == NULL) {			/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -ENOMEM;
	}

	if (fill_cmd(c, BMIC_SENSE_CONTROLLER_PARAMETERS, h, buf, bufsize,
			page, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
		hpsa_scsi_interpret_error(h, c);
		rc = -1;
	}
out:
	cmd_special_free(h, c);
	return rc;
	}

2177 2178
static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
	u8 reset_type)
2179 2180 2181 2182 2183 2184 2185 2186 2187
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);

	if (c == NULL) {			/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2188
		return -ENOMEM;
2189 2190
	}

2191
	/* fill_cmd can't fail here, no data buffer to map. */
2192 2193 2194
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
			scsi3addr, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to LUN reset */
2195 2196 2197 2198 2199
	hpsa_scsi_do_simple_cmd_core(h, c);
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	if (ei->CommandStatus != 0) {
2200
		hpsa_scsi_interpret_error(h, c);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
		rc = -1;
	}
	cmd_special_free(h, c);
	return rc;
}

static void hpsa_get_raid_level(struct ctlr_info *h,
	unsigned char *scsi3addr, unsigned char *raid_level)
{
	int rc;
	unsigned char *buf;

	*raid_level = RAID_UNKNOWN;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2217
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2218 2219 2220 2221 2222 2223 2224 2225
	if (rc == 0)
		*raid_level = buf[8];
	if (*raid_level > RAID_UNKNOWN)
		*raid_level = RAID_UNKNOWN;
	kfree(buf);
	return;
}

2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
#define HPSA_MAP_DEBUG
#ifdef HPSA_MAP_DEBUG
static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
				struct raid_map_data *map_buff)
{
	struct raid_map_disk_data *dd = &map_buff->data[0];
	int map, row, col;
	u16 map_cnt, row_cnt, disks_per_row;

	if (rc != 0)
		return;

2238 2239 2240 2241
	/* Show details only if debugging has been activated. */
	if (h->raid_offload_debug < 2)
		return;

2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	dev_info(&h->pdev->dev, "structure_size = %u\n",
				le32_to_cpu(map_buff->structure_size));
	dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
			le32_to_cpu(map_buff->volume_blk_size));
	dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->volume_blk_cnt));
	dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
			map_buff->phys_blk_shift);
	dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
			map_buff->parity_rotation_shift);
	dev_info(&h->pdev->dev, "strip_size = %u\n",
			le16_to_cpu(map_buff->strip_size));
	dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
			le64_to_cpu(map_buff->disk_starting_blk));
	dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
			le64_to_cpu(map_buff->disk_blk_cnt));
	dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
			le16_to_cpu(map_buff->data_disks_per_row));
	dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
			le16_to_cpu(map_buff->metadata_disks_per_row));
	dev_info(&h->pdev->dev, "row_cnt = %u\n",
			le16_to_cpu(map_buff->row_cnt));
	dev_info(&h->pdev->dev, "layout_map_count = %u\n",
			le16_to_cpu(map_buff->layout_map_count));
2266 2267 2268 2269 2270 2271 2272 2273
	dev_info(&h->pdev->dev, "flags = %u\n",
			le16_to_cpu(map_buff->flags));
	if (map_buff->flags & RAID_MAP_FLAG_ENCRYPT_ON)
		dev_info(&h->pdev->dev, "encrypytion = ON\n");
	else
		dev_info(&h->pdev->dev, "encrypytion = OFF\n");
	dev_info(&h->pdev->dev, "dekindex = %u\n",
			le16_to_cpu(map_buff->dekindex));
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

	map_cnt = le16_to_cpu(map_buff->layout_map_count);
	for (map = 0; map < map_cnt; map++) {
		dev_info(&h->pdev->dev, "Map%u:\n", map);
		row_cnt = le16_to_cpu(map_buff->row_cnt);
		for (row = 0; row < row_cnt; row++) {
			dev_info(&h->pdev->dev, "  Row%u:\n", row);
			disks_per_row =
				le16_to_cpu(map_buff->data_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    D%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
			disks_per_row =
				le16_to_cpu(map_buff->metadata_disks_per_row);
			for (col = 0; col < disks_per_row; col++, dd++)
				dev_info(&h->pdev->dev,
					"    M%02u: h=0x%04x xor=%u,%u\n",
					col, dd->ioaccel_handle,
					dd->xor_mult[0], dd->xor_mult[1]);
		}
	}
}
#else
static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
			__attribute__((unused)) int rc,
			__attribute__((unused)) struct raid_map_data *map_buff)
{
}
#endif

static int hpsa_get_raid_map(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc = 0;
	struct CommandList *c;
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);
	if (c == NULL) {
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -ENOMEM;
	}
	if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
			sizeof(this_device->raid_map), 0,
			scsi3addr, TYPE_CMD)) {
		dev_warn(&h->pdev->dev, "Out of memory in hpsa_get_raid_map()\n");
		cmd_special_free(h, c);
		return -ENOMEM;
	}
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2328
		hpsa_scsi_interpret_error(h, c);
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
		cmd_special_free(h, c);
		return -1;
	}
	cmd_special_free(h, c);

	/* @todo in the future, dynamically allocate RAID map memory */
	if (le32_to_cpu(this_device->raid_map.structure_size) >
				sizeof(this_device->raid_map)) {
		dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
		rc = -1;
	}
	hpsa_debug_map_buff(h, rc, &this_device->raid_map);
	return rc;
}

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
static int hpsa_vpd_page_supported(struct ctlr_info *h,
	unsigned char scsi3addr[], u8 page)
{
	int rc;
	int i;
	int pages;
	unsigned char *buf, bufsize;

	buf = kzalloc(256, GFP_KERNEL);
	if (!buf)
		return 0;

	/* Get the size of the page list first */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, HPSA_VPD_HEADER_SZ);
	if (rc != 0)
		goto exit_unsupported;
	pages = buf[3];
	if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
		bufsize = pages + HPSA_VPD_HEADER_SZ;
	else
		bufsize = 255;

	/* Get the whole VPD page list */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
				VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
				buf, bufsize);
	if (rc != 0)
		goto exit_unsupported;

	pages = buf[3];
	for (i = 1; i <= pages; i++)
		if (buf[3 + i] == page)
			goto exit_supported;
exit_unsupported:
	kfree(buf);
	return 0;
exit_supported:
	kfree(buf);
	return 1;
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
static void hpsa_get_ioaccel_status(struct ctlr_info *h,
	unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
{
	int rc;
	unsigned char *buf;
	u8 ioaccel_status;

	this_device->offload_config = 0;
	this_device->offload_enabled = 0;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return;
2400 2401
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
		goto out;
2402
	rc = hpsa_scsi_do_inquiry(h, scsi3addr,
2403
			VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	if (rc != 0)
		goto out;

#define IOACCEL_STATUS_BYTE 4
#define OFFLOAD_CONFIGURED_BIT 0x01
#define OFFLOAD_ENABLED_BIT 0x02
	ioaccel_status = buf[IOACCEL_STATUS_BYTE];
	this_device->offload_config =
		!!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
	if (this_device->offload_config) {
		this_device->offload_enabled =
			!!(ioaccel_status & OFFLOAD_ENABLED_BIT);
		if (hpsa_get_raid_map(h, scsi3addr, this_device))
			this_device->offload_enabled = 0;
	}
out:
	kfree(buf);
	return;
}

2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
/* Get the device id from inquiry page 0x83 */
static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
	unsigned char *device_id, int buflen)
{
	int rc;
	unsigned char *buf;

	if (buflen > 16)
		buflen = 16;
	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
2435
		return -ENOMEM;
2436
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
	if (rc == 0)
		memcpy(device_id, &buf[8], buflen);
	kfree(buf);
	return rc != 0;
}

static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
		struct ReportLUNdata *buf, int bufsize,
		int extended_response)
{
	int rc = IO_OK;
	struct CommandList *c;
	unsigned char scsi3addr[8];
	struct ErrorInfo *ei;

	c = cmd_special_alloc(h);
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -1;
	}
2457 2458
	/* address the controller */
	memset(scsi3addr, 0, sizeof(scsi3addr));
2459 2460 2461 2462 2463
	if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
		buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
		rc = -1;
		goto out;
	}
2464 2465 2466 2467 2468 2469
	if (extended_response)
		c->Request.CDB[1] = extended_response;
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
	ei = c->err_info;
	if (ei->CommandStatus != 0 &&
	    ei->CommandStatus != CMD_DATA_UNDERRUN) {
2470
		hpsa_scsi_interpret_error(h, c);
2471
		rc = -1;
2472 2473 2474 2475 2476 2477 2478 2479
	} else {
		if (buf->extended_response_flag != extended_response) {
			dev_err(&h->pdev->dev,
				"report luns requested format %u, got %u\n",
				extended_response,
				buf->extended_response_flag);
			rc = -1;
		}
2480
	}
2481
out:
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
	cmd_special_free(h, c);
	return rc;
}

static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf,
		int bufsize, int extended_response)
{
	return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
}

static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
		struct ReportLUNdata *buf, int bufsize)
{
	return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
}

static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
	int bus, int target, int lun)
{
	device->bus = bus;
	device->target = target;
	device->lun = lun;
}

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520
/* Use VPD inquiry to get details of volume status */
static int hpsa_get_volume_status(struct ctlr_info *h,
					unsigned char scsi3addr[])
{
	int rc;
	int status;
	int size;
	unsigned char *buf;

	buf = kzalloc(64, GFP_KERNEL);
	if (!buf)
		return HPSA_VPD_LV_STATUS_UNSUPPORTED;

	/* Does controller have VPD for logical volume status? */
2521
	if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
2522 2523 2524 2525 2526
		goto exit_failed;

	/* Get the size of the VPD return buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, HPSA_VPD_HEADER_SZ);
2527
	if (rc != 0)
2528 2529 2530 2531 2532 2533
		goto exit_failed;
	size = buf[3];

	/* Now get the whole VPD buffer */
	rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
					buf, size + HPSA_VPD_HEADER_SZ);
2534
	if (rc != 0)
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
		goto exit_failed;
	status = buf[4]; /* status byte */

	kfree(buf);
	return status;
exit_failed:
	kfree(buf);
	return HPSA_VPD_LV_STATUS_UNSUPPORTED;
}

/* Determine offline status of a volume.
 * Return either:
 *  0 (not offline)
2548
 *  0xff (offline for unknown reasons)
2549 2550 2551
 *  # (integer code indicating one of several NOT READY states
 *     describing why a volume is to be kept offline)
 */
2552
static int hpsa_volume_offline(struct ctlr_info *h,
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
					unsigned char scsi3addr[])
{
	struct CommandList *c;
	unsigned char *sense, sense_key, asc, ascq;
	int ldstat = 0;
	u16 cmd_status;
	u8 scsi_status;
#define ASC_LUN_NOT_READY 0x04
#define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
#define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02

	c = cmd_alloc(h);
	if (!c)
		return 0;
	(void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
	hpsa_scsi_do_simple_cmd_core(h, c);
	sense = c->err_info->SenseInfo;
	sense_key = sense[2];
	asc = sense[12];
	ascq = sense[13];
	cmd_status = c->err_info->CommandStatus;
	scsi_status = c->err_info->ScsiStatus;
	cmd_free(h, c);
	/* Is the volume 'not ready'? */
	if (cmd_status != CMD_TARGET_STATUS ||
		scsi_status != SAM_STAT_CHECK_CONDITION ||
		sense_key != NOT_READY ||
		asc != ASC_LUN_NOT_READY)  {
		return 0;
	}

	/* Determine the reason for not ready state */
	ldstat = hpsa_get_volume_status(h, scsi3addr);

	/* Keep volume offline in certain cases: */
	switch (ldstat) {
	case HPSA_LV_UNDERGOING_ERASE:
	case HPSA_LV_UNDERGOING_RPI:
	case HPSA_LV_PENDING_RPI:
	case HPSA_LV_ENCRYPTED_NO_KEY:
	case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
	case HPSA_LV_UNDERGOING_ENCRYPTION:
	case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
	case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
		return ldstat;
	case HPSA_VPD_LV_STATUS_UNSUPPORTED:
		/* If VPD status page isn't available,
		 * use ASC/ASCQ to determine state
		 */
		if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
			(ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
			return ldstat;
		break;
	default:
		break;
	}
	return 0;
}

2612
static int hpsa_update_device_info(struct ctlr_info *h,
2613 2614
	unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
	unsigned char *is_OBDR_device)
2615
{
2616 2617 2618 2619 2620 2621

#define OBDR_SIG_OFFSET 43
#define OBDR_TAPE_SIG "$DR-10"
#define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
#define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)

2622
	unsigned char *inq_buff;
2623
	unsigned char *obdr_sig;
2624

2625
	inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649
	if (!inq_buff)
		goto bail_out;

	/* Do an inquiry to the device to see what it is. */
	if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
		(unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
		/* Inquiry failed (msg printed already) */
		dev_err(&h->pdev->dev,
			"hpsa_update_device_info: inquiry failed\n");
		goto bail_out;
	}

	this_device->devtype = (inq_buff[0] & 0x1f);
	memcpy(this_device->scsi3addr, scsi3addr, 8);
	memcpy(this_device->vendor, &inq_buff[8],
		sizeof(this_device->vendor));
	memcpy(this_device->model, &inq_buff[16],
		sizeof(this_device->model));
	memset(this_device->device_id, 0,
		sizeof(this_device->device_id));
	hpsa_get_device_id(h, scsi3addr, this_device->device_id,
		sizeof(this_device->device_id));

	if (this_device->devtype == TYPE_DISK &&
2650
		is_logical_dev_addr_mode(scsi3addr)) {
2651 2652
		int volume_offline;

2653
		hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
2654 2655
		if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
			hpsa_get_ioaccel_status(h, scsi3addr, this_device);
2656 2657 2658 2659
		volume_offline = hpsa_volume_offline(h, scsi3addr);
		if (volume_offline < 0 || volume_offline > 0xff)
			volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
		this_device->volume_offline = volume_offline & 0xff;
2660
	} else {
2661
		this_device->raid_level = RAID_UNKNOWN;
2662 2663
		this_device->offload_config = 0;
		this_device->offload_enabled = 0;
2664
		this_device->volume_offline = 0;
2665
	}
2666

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
	if (is_OBDR_device) {
		/* See if this is a One-Button-Disaster-Recovery device
		 * by looking for "$DR-10" at offset 43 in inquiry data.
		 */
		obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
		*is_OBDR_device = (this_device->devtype == TYPE_ROM &&
					strncmp(obdr_sig, OBDR_TAPE_SIG,
						OBDR_SIG_LEN) == 0);
	}

2677 2678 2679 2680 2681 2682 2683 2684
	kfree(inq_buff);
	return 0;

bail_out:
	kfree(inq_buff);
	return 1;
}

2685
static unsigned char *ext_target_model[] = {
2686 2687 2688 2689
	"MSA2012",
	"MSA2024",
	"MSA2312",
	"MSA2324",
2690
	"P2000 G3 SAS",
2691
	"MSA 2040 SAS",
2692 2693 2694
	NULL,
};

2695
static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
2696 2697 2698
{
	int i;

2699 2700 2701
	for (i = 0; ext_target_model[i]; i++)
		if (strncmp(device->model, ext_target_model[i],
			strlen(ext_target_model[i])) == 0)
2702 2703 2704 2705 2706
			return 1;
	return 0;
}

/* Helper function to assign bus, target, lun mapping of devices.
2707
 * Puts non-external target logical volumes on bus 0, external target logical
2708 2709 2710 2711 2712 2713
 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
 * Logical drive target and lun are assigned at this time, but
 * physical device lun and target assignment are deferred (assigned
 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
 */
static void figure_bus_target_lun(struct ctlr_info *h,
2714
	u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
2715
{
2716 2717 2718 2719
	u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));

	if (!is_logical_dev_addr_mode(lunaddrbytes)) {
		/* physical device, target and lun filled in later */
2720
		if (is_hba_lunid(lunaddrbytes))
2721
			hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
2722
		else
2723 2724 2725 2726 2727
			/* defer target, lun assignment for physical devices */
			hpsa_set_bus_target_lun(device, 2, -1, -1);
		return;
	}
	/* It's a logical device */
2728 2729
	if (is_ext_target(h, device)) {
		/* external target way, put logicals on bus 1
2730 2731 2732 2733 2734 2735
		 * and match target/lun numbers box
		 * reports, other smart array, bus 0, target 0, match lunid
		 */
		hpsa_set_bus_target_lun(device,
			1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
		return;
2736
	}
2737
	hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
2738 2739 2740 2741
}

/*
 * If there is no lun 0 on a target, linux won't find any devices.
2742
 * For the external targets (arrays), we have to manually detect the enclosure
2743 2744 2745 2746 2747 2748 2749 2750
 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
 * it for some reason.  *tmpdevice is the target we're adding,
 * this_device is a pointer into the current element of currentsd[]
 * that we're building up in update_scsi_devices(), below.
 * lunzerobits is a bitmap that tracks which targets already have a
 * lun 0 assigned.
 * Returns 1 if an enclosure was added, 0 if not.
 */
2751
static int add_ext_target_dev(struct ctlr_info *h,
2752
	struct hpsa_scsi_dev_t *tmpdevice,
2753
	struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
2754
	unsigned long lunzerobits[], int *n_ext_target_devs)
2755 2756 2757
{
	unsigned char scsi3addr[8];

2758
	if (test_bit(tmpdevice->target, lunzerobits))
2759 2760 2761 2762 2763
		return 0; /* There is already a lun 0 on this target. */

	if (!is_logical_dev_addr_mode(lunaddrbytes))
		return 0; /* It's the logical targets that may lack lun 0. */

2764 2765
	if (!is_ext_target(h, tmpdevice))
		return 0; /* Only external target devices have this problem. */
2766

2767
	if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
2768 2769
		return 0;

2770
	memset(scsi3addr, 0, 8);
2771
	scsi3addr[3] = tmpdevice->target;
2772 2773 2774
	if (is_hba_lunid(scsi3addr))
		return 0; /* Don't add the RAID controller here. */

2775 2776 2777
	if (is_scsi_rev_5(h))
		return 0; /* p1210m doesn't need to do this. */

2778
	if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
2779 2780
		dev_warn(&h->pdev->dev, "Maximum number of external "
			"target devices exceeded.  Check your hardware "
2781 2782 2783 2784
			"configuration.");
		return 0;
	}

2785
	if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
2786
		return 0;
2787
	(*n_ext_target_devs)++;
2788 2789 2790
	hpsa_set_bus_target_lun(this_device,
				tmpdevice->bus, tmpdevice->target, 0);
	set_bit(tmpdevice->target, lunzerobits);
2791 2792 2793
	return 1;
}

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
/*
 * Get address of physical disk used for an ioaccel2 mode command:
 *	1. Extract ioaccel2 handle from the command.
 *	2. Find a matching ioaccel2 handle from list of physical disks.
 *	3. Return:
 *		1 and set scsi3addr to address of matching physical
 *		0 if no matching physical disk was found.
 */
static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
	struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
{
	struct ReportExtendedLUNdata *physicals = NULL;
	int responsesize = 24;	/* size of physical extended response */
	int extended = 2;	/* flag forces reporting 'other dev info'. */
	int reportsize = sizeof(*physicals) + HPSA_MAX_PHYS_LUN * responsesize;
	u32 nphysicals = 0;	/* number of reported physical devs */
	int found = 0;		/* found match (1) or not (0) */
	u32 find;		/* handle we need to match */
	int i;
	struct scsi_cmnd *scmd;	/* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *d; /* device of request being aborted */
	struct io_accel2_cmd *c2a; /* ioaccel2 command to abort */
	u32 it_nexus;		/* 4 byte device handle for the ioaccel2 cmd */
	u32 scsi_nexus;		/* 4 byte device handle for the ioaccel2 cmd */

	if (ioaccel2_cmd_to_abort->cmd_type != CMD_IOACCEL2)
		return 0; /* no match */

	/* point to the ioaccel2 device handle */
	c2a = &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
	if (c2a == NULL)
		return 0; /* no match */

	scmd = (struct scsi_cmnd *) ioaccel2_cmd_to_abort->scsi_cmd;
	if (scmd == NULL)
		return 0; /* no match */

	d = scmd->device->hostdata;
	if (d == NULL)
		return 0; /* no match */

	it_nexus = cpu_to_le32((u32) d->ioaccel_handle);
	scsi_nexus = cpu_to_le32((u32) c2a->scsi_nexus);
	find = c2a->scsi_nexus;

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"%s: scsi_nexus:0x%08x device id: 0x%02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
			__func__, scsi_nexus,
			d->device_id[0], d->device_id[1], d->device_id[2],
			d->device_id[3], d->device_id[4], d->device_id[5],
			d->device_id[6], d->device_id[7], d->device_id[8],
			d->device_id[9], d->device_id[10], d->device_id[11],
			d->device_id[12], d->device_id[13], d->device_id[14],
			d->device_id[15]);

2850 2851
	/* Get the list of physical devices */
	physicals = kzalloc(reportsize, GFP_KERNEL);
2852 2853
	if (physicals == NULL)
		return 0;
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
	if (hpsa_scsi_do_report_phys_luns(h, (struct ReportLUNdata *) physicals,
		reportsize, extended)) {
		dev_err(&h->pdev->dev,
			"Can't lookup %s device handle: report physical LUNs failed.\n",
			"HP SSD Smart Path");
		kfree(physicals);
		return 0;
	}
	nphysicals = be32_to_cpu(*((__be32 *)physicals->LUNListLength)) /
							responsesize;

	/* find ioaccel2 handle in list of physicals: */
	for (i = 0; i < nphysicals; i++) {
2867 2868
		struct ext_report_lun_entry *entry = &physicals->LUN[i];

2869
		/* handle is in bytes 28-31 of each lun */
2870
		if (entry->ioaccel_handle != find)
2871 2872
			continue; /* didn't match */
		found = 1;
2873
		memcpy(scsi3addr, entry->lunid, 8);
2874 2875
		if (h->raid_offload_debug > 0)
			dev_info(&h->pdev->dev,
2876
				"%s: Searched h=0x%08x, Found h=0x%08x, scsiaddr 0x%8phN\n",
2877
				__func__, find,
2878
				entry->ioaccel_handle, scsi3addr);
2879 2880 2881 2882 2883 2884 2885 2886 2887 2888
		break; /* found it */
	}

	kfree(physicals);
	if (found)
		return 1;
	else
		return 0;

}
2889 2890 2891 2892 2893 2894 2895 2896
/*
 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
 * logdev.  The number of luns in physdev and logdev are returned in
 * *nphysicals and *nlogicals, respectively.
 * Returns 0 on success, -1 otherwise.
 */
static int hpsa_gather_lun_info(struct ctlr_info *h,
	int reportlunsize,
2897
	struct ReportLUNdata *physdev, u32 *nphysicals, int *physical_mode,
2898
	struct ReportLUNdata *logdev, u32 *nlogicals)
2899
{
2900 2901 2902 2903 2904
	int physical_entry_size = 8;

	*physical_mode = 0;

	/* For I/O accelerator mode we need to read physical device handles */
2905 2906
	if (h->transMethod & CFGTBL_Trans_io_accel1 ||
		h->transMethod & CFGTBL_Trans_io_accel2) {
2907 2908 2909
		*physical_mode = HPSA_REPORT_PHYS_EXTENDED;
		physical_entry_size = 24;
	}
2910
	if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize,
2911
							*physical_mode)) {
2912 2913 2914
		dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
		return -1;
	}
2915 2916
	*nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) /
							physical_entry_size;
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
	if (*nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
			"  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals - HPSA_MAX_PHYS_LUN);
		*nphysicals = HPSA_MAX_PHYS_LUN;
	}
	if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
		dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
		return -1;
	}
2927
	*nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	/* Reject Logicals in excess of our max capability. */
	if (*nlogicals > HPSA_MAX_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical LUNs (%d) exceeded.  "
			"%d LUNs ignored.\n", HPSA_MAX_LUN,
			*nlogicals - HPSA_MAX_LUN);
			*nlogicals = HPSA_MAX_LUN;
	}
	if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
		dev_warn(&h->pdev->dev,
			"maximum logical + physical LUNs (%d) exceeded. "
			"%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
			*nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
		*nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
	}
	return 0;
}

D
Don Brace 已提交
2946 2947
static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
	int i, int nphysicals, int nlogicals,
2948
	struct ReportExtendedLUNdata *physdev_list,
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
	struct ReportLUNdata *logdev_list)
{
	/* Helper function, figure out where the LUN ID info is coming from
	 * given index i, lists of physical and logical devices, where in
	 * the list the raid controller is supposed to appear (first or last)
	 */

	int logicals_start = nphysicals + (raid_ctlr_position == 0);
	int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);

	if (i == raid_ctlr_position)
		return RAID_CTLR_LUNID;

	if (i < logicals_start)
2963 2964
		return &physdev_list->LUN[i -
				(raid_ctlr_position == 0)].lunid[0];
2965 2966 2967 2968 2969 2970 2971 2972

	if (i < last_device)
		return &logdev_list->LUN[i - nphysicals -
			(raid_ctlr_position == 0)][0];
	BUG();
	return NULL;
}

2973 2974 2975
static int hpsa_hba_mode_enabled(struct ctlr_info *h)
{
	int rc;
2976
	int hba_mode_enabled;
2977 2978 2979 2980 2981
	struct bmic_controller_parameters *ctlr_params;
	ctlr_params = kzalloc(sizeof(struct bmic_controller_parameters),
		GFP_KERNEL);

	if (!ctlr_params)
2982
		return -ENOMEM;
2983 2984
	rc = hpsa_bmic_ctrl_mode_sense(h, RAID_CTLR_LUNID, 0, ctlr_params,
		sizeof(struct bmic_controller_parameters));
2985
	if (rc) {
2986
		kfree(ctlr_params);
2987
		return rc;
2988
	}
2989 2990 2991 2992 2993

	hba_mode_enabled =
		((ctlr_params->nvram_flags & HBA_MODE_ENABLED_FLAG) != 0);
	kfree(ctlr_params);
	return hba_mode_enabled;
2994 2995
}

2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
{
	/* the idea here is we could get notified
	 * that some devices have changed, so we do a report
	 * physical luns and report logical luns cmd, and adjust
	 * our list of devices accordingly.
	 *
	 * The scsi3addr's of devices won't change so long as the
	 * adapter is not reset.  That means we can rescan and
	 * tell which devices we already know about, vs. new
	 * devices, vs.  disappearing devices.
	 */
3008
	struct ReportExtendedLUNdata *physdev_list = NULL;
3009
	struct ReportLUNdata *logdev_list = NULL;
3010 3011
	u32 nphysicals = 0;
	u32 nlogicals = 0;
3012
	int physical_mode = 0;
3013
	u32 ndev_allocated = 0;
3014 3015
	struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
	int ncurrent = 0;
3016
	int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 24;
3017
	int i, n_ext_target_devs, ndevs_to_allocate;
3018
	int raid_ctlr_position;
3019
	int rescan_hba_mode;
3020
	DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
3021

3022
	currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
3023 3024 3025 3026
	physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
	logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
	tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);

3027
	if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
3028 3029 3030 3031 3032
		dev_err(&h->pdev->dev, "out of memory\n");
		goto out;
	}
	memset(lunzerobits, 0, sizeof(lunzerobits));

3033
	rescan_hba_mode = hpsa_hba_mode_enabled(h);
3034 3035
	if (rescan_hba_mode < 0)
		goto out;
3036 3037 3038 3039 3040 3041 3042 3043

	if (!h->hba_mode_enabled && rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode enabled\n");
	else if (h->hba_mode_enabled && !rescan_hba_mode)
		dev_warn(&h->pdev->dev, "HBA mode disabled\n");

	h->hba_mode_enabled = rescan_hba_mode;

3044 3045
	if (hpsa_gather_lun_info(h, reportlunsize,
			(struct ReportLUNdata *) physdev_list, &nphysicals,
3046
			&physical_mode, logdev_list, &nlogicals))
3047 3048
		goto out;

3049 3050 3051
	/* We might see up to the maximum number of logical and physical disks
	 * plus external target devices, and a device for the local RAID
	 * controller.
3052
	 */
3053
	ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
3054 3055 3056

	/* Allocate the per device structures */
	for (i = 0; i < ndevs_to_allocate; i++) {
3057 3058 3059 3060 3061 3062 3063
		if (i >= HPSA_MAX_DEVICES) {
			dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
				"  %d devices ignored.\n", HPSA_MAX_DEVICES,
				ndevs_to_allocate - HPSA_MAX_DEVICES);
			break;
		}

3064 3065 3066 3067 3068 3069 3070 3071 3072
		currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
		if (!currentsd[i]) {
			dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
				__FILE__, __LINE__);
			goto out;
		}
		ndev_allocated++;
	}

3073
	if (is_scsi_rev_5(h))
3074 3075 3076 3077
		raid_ctlr_position = 0;
	else
		raid_ctlr_position = nphysicals + nlogicals;

3078
	/* adjust our table of devices */
3079
	n_ext_target_devs = 0;
3080
	for (i = 0; i < nphysicals + nlogicals + 1; i++) {
3081
		u8 *lunaddrbytes, is_OBDR = 0;
3082 3083

		/* Figure out where the LUN ID info is coming from */
3084 3085
		lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
			i, nphysicals, nlogicals, physdev_list, logdev_list);
3086
		/* skip masked physical devices. */
3087 3088
		if (lunaddrbytes[3] & 0xC0 &&
			i < nphysicals + (raid_ctlr_position == 0))
3089 3090 3091
			continue;

		/* Get device type, vendor, model, device id */
3092 3093
		if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
							&is_OBDR))
3094
			continue; /* skip it if we can't talk to it. */
3095
		figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
3096 3097 3098
		this_device = currentsd[ncurrent];

		/*
3099
		 * For external target devices, we have to insert a LUN 0 which
3100 3101 3102 3103 3104
		 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
		 * is nonetheless an enclosure device there.  We have to
		 * present that otherwise linux won't find anything if
		 * there is no lun 0.
		 */
3105
		if (add_ext_target_dev(h, tmpdevice, this_device,
3106
				lunaddrbytes, lunzerobits,
3107
				&n_ext_target_devs)) {
3108 3109 3110 3111 3112 3113 3114
			ncurrent++;
			this_device = currentsd[ncurrent];
		}

		*this_device = *tmpdevice;

		switch (this_device->devtype) {
3115
		case TYPE_ROM:
3116 3117 3118 3119 3120 3121 3122
			/* We don't *really* support actual CD-ROM devices,
			 * just "One Button Disaster Recovery" tape drive
			 * which temporarily pretends to be a CD-ROM drive.
			 * So we check that the device is really an OBDR tape
			 * device by checking for "$DR-10" in bytes 43-48 of
			 * the inquiry data.
			 */
3123 3124
			if (is_OBDR)
				ncurrent++;
3125 3126
			break;
		case TYPE_DISK:
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
			if (h->hba_mode_enabled) {
				/* never use raid mapper in HBA mode */
				this_device->offload_enabled = 0;
				ncurrent++;
				break;
			} else if (h->acciopath_status) {
				if (i >= nphysicals) {
					ncurrent++;
					break;
				}
			} else {
				if (i < nphysicals)
					break;
3140
				ncurrent++;
3141
				break;
3142 3143 3144 3145 3146 3147 3148
			}
			if (physical_mode == HPSA_REPORT_PHYS_EXTENDED) {
				memcpy(&this_device->ioaccel_handle,
					&lunaddrbytes[20],
					sizeof(this_device->ioaccel_handle));
				ncurrent++;
			}
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
			break;
		case TYPE_TAPE:
		case TYPE_MEDIUM_CHANGER:
			ncurrent++;
			break;
		case TYPE_RAID:
			/* Only present the Smartarray HBA as a RAID controller.
			 * If it's a RAID controller other than the HBA itself
			 * (an external RAID controller, MSA500 or similar)
			 * don't present it.
			 */
			if (!is_hba_lunid(lunaddrbytes))
				break;
			ncurrent++;
			break;
		default:
			break;
		}
3167
		if (ncurrent >= HPSA_MAX_DEVICES)
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
			break;
	}
	adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
out:
	kfree(tmpdevice);
	for (i = 0; i < ndev_allocated; i++)
		kfree(currentsd[i]);
	kfree(currentsd);
	kfree(physdev_list);
	kfree(logdev_list);
}

/* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
 * dma mapping  and fills in the scatter gather entries of the
 * hpsa command, cp.
 */
3184
static int hpsa_scatter_gather(struct ctlr_info *h,
3185 3186 3187 3188 3189
		struct CommandList *cp,
		struct scsi_cmnd *cmd)
{
	unsigned int len;
	struct scatterlist *sg;
3190
	u64 addr64;
3191 3192
	int use_sg, i, sg_index, chained;
	struct SGDescriptor *curr_sg;
3193

3194
	BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
3195 3196 3197 3198 3199 3200 3201 3202

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (!use_sg)
		goto sglist_finished;

3203 3204 3205
	curr_sg = cp->SG;
	chained = 0;
	sg_index = 0;
3206
	scsi_for_each_sg(cmd, sg, use_sg, i) {
3207 3208 3209 3210 3211 3212
		if (i == h->max_cmd_sg_entries - 1 &&
			use_sg > h->max_cmd_sg_entries) {
			chained = 1;
			curr_sg = h->cmd_sg_list[cp->cmdindex];
			sg_index = 0;
		}
3213
		addr64 = (u64) sg_dma_address(sg);
3214
		len  = sg_dma_len(sg);
3215 3216 3217
		curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
		curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
		curr_sg->Len = len;
3218
		curr_sg->Ext = (i < scsi_sg_count(cmd) - 1) ? 0 : HPSA_SG_LAST;
3219 3220 3221 3222 3223 3224 3225 3226 3227
		curr_sg++;
	}

	if (use_sg + chained > h->maxSG)
		h->maxSG = use_sg + chained;

	if (chained) {
		cp->Header.SGList = h->max_cmd_sg_entries;
		cp->Header.SGTotal = (u16) (use_sg + 1);
3228 3229 3230 3231
		if (hpsa_map_sg_chain_block(h, cp)) {
			scsi_dma_unmap(cmd);
			return -1;
		}
3232
		return 0;
3233 3234 3235 3236
	}

sglist_finished:

3237 3238
	cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
	cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
3239 3240 3241
	return 0;
}

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
#define IO_ACCEL_INELIGIBLE (1)
static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
{
	int is_write = 0;
	u32 block;
	u32 block_cnt;

	/* Perform some CDB fixups if needed using 10 byte reads/writes only */
	switch (cdb[0]) {
	case WRITE_6:
	case WRITE_12:
		is_write = 1;
	case READ_6:
	case READ_12:
		if (*cdb_len == 6) {
			block = (((u32) cdb[2]) << 8) | cdb[3];
			block_cnt = cdb[4];
		} else {
			BUG_ON(*cdb_len != 12);
			block = (((u32) cdb[2]) << 24) |
				(((u32) cdb[3]) << 16) |
				(((u32) cdb[4]) << 8) |
				cdb[5];
			block_cnt =
				(((u32) cdb[6]) << 24) |
				(((u32) cdb[7]) << 16) |
				(((u32) cdb[8]) << 8) |
				cdb[9];
		}
		if (block_cnt > 0xffff)
			return IO_ACCEL_INELIGIBLE;

		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (block >> 24);
		cdb[3] = (u8) (block >> 16);
		cdb[4] = (u8) (block >> 8);
		cdb[5] = (u8) (block);
		cdb[6] = 0;
		cdb[7] = (u8) (block_cnt >> 8);
		cdb[8] = (u8) (block_cnt);
		cdb[9] = 0;
		*cdb_len = 10;
		break;
	}
	return 0;
}

3290
static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
3291 3292
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr)
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
	unsigned int len;
	unsigned int total_len = 0;
	struct scatterlist *sg;
	u64 addr64;
	int use_sg, i;
	struct SGDescriptor *curr_sg;
	u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;

3304 3305 3306 3307
	/* TODO: implement chaining support */
	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
		return IO_ACCEL_INELIGIBLE;

3308 3309
	BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);

3310 3311 3312
	if (fixup_ioaccel_cdb(cdb, &cdb_len))
		return IO_ACCEL_INELIGIBLE;

3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	c->cmd_type = CMD_IOACCEL1;

	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (use_sg) {
		curr_sg = cp->SG;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
			curr_sg->Addr.upper =
				(u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
			curr_sg->Len = len;

			if (i == (scsi_sg_count(cmd) - 1))
				curr_sg->Ext = HPSA_SG_LAST;
			else
				curr_sg->Ext = 0;  /* we are not chaining */
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_OUT;
			break;
		case DMA_FROM_DEVICE:
			control |= IOACCEL1_CONTROL_DATA_IN;
			break;
		case DMA_NONE:
			control |= IOACCEL1_CONTROL_NODATAXFER;
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
		control |= IOACCEL1_CONTROL_NODATAXFER;
	}

3362
	c->Header.SGList = use_sg;
3363
	/* Fill out the command structure to submit */
3364
	cp->dev_handle = ioaccel_handle & 0xFFFF;
3365 3366
	cp->transfer_len = total_len;
	cp->io_flags = IOACCEL1_IOFLAGS_IO_REQ |
3367
			(cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK);
3368
	cp->control = control;
3369 3370
	memcpy(cp->CDB, cdb, cdb_len);
	memcpy(cp->CISS_LUN, scsi3addr, 8);
3371
	/* Tag was already set at init time. */
3372
	enqueue_cmd_and_start_io(h, c);
3373 3374
	return 0;
}
3375

3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
/*
 * Queue a command directly to a device behind the controller using the
 * I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;

	return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
		cmd->cmnd, cmd->cmd_len, dev->scsi3addr);
}

3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
/*
 * Set encryption parameters for the ioaccel2 request
 */
static void set_encrypt_ioaccel2(struct ctlr_info *h,
	struct CommandList *c, struct io_accel2_cmd *cp)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	u64 first_block;

	BUG_ON(!(dev->offload_config && dev->offload_enabled));

	/* Are we doing encryption on this device */
	if (!(map->flags & RAID_MAP_FLAG_ENCRYPT_ON))
		return;
	/* Set the data encryption key index. */
	cp->dekindex = map->dekindex;

	/* Set the encryption enable flag, encoded into direction field. */
	cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;

	/* Set encryption tweak values based on logical block address
	 * If block size is 512, tweak value is LBA.
	 * For other block sizes, tweak is (LBA * block size)/ 512)
	 */
	switch (cmd->cmnd[0]) {
	/* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_6:
	case READ_6:
		if (map->volume_blk_size == 512) {
			cp->tweak_lower =
				(((u32) cmd->cmnd[2]) << 8) |
					cmd->cmnd[3];
			cp->tweak_upper = 0;
		} else {
			first_block =
				(((u64) cmd->cmnd[2]) << 8) |
					cmd->cmnd[3];
			first_block = (first_block * map->volume_blk_size)/512;
			cp->tweak_lower = (u32)first_block;
			cp->tweak_upper = (u32)(first_block >> 32);
		}
		break;
	case WRITE_10:
	case READ_10:
		if (map->volume_blk_size == 512) {
			cp->tweak_lower =
				(((u32) cmd->cmnd[2]) << 24) |
				(((u32) cmd->cmnd[3]) << 16) |
				(((u32) cmd->cmnd[4]) << 8) |
					cmd->cmnd[5];
			cp->tweak_upper = 0;
		} else {
			first_block =
				(((u64) cmd->cmnd[2]) << 24) |
				(((u64) cmd->cmnd[3]) << 16) |
				(((u64) cmd->cmnd[4]) << 8) |
					cmd->cmnd[5];
			first_block = (first_block * map->volume_blk_size)/512;
			cp->tweak_lower = (u32)first_block;
			cp->tweak_upper = (u32)(first_block >> 32);
		}
		break;
	/* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
	case WRITE_12:
	case READ_12:
		if (map->volume_blk_size == 512) {
			cp->tweak_lower =
				(((u32) cmd->cmnd[2]) << 24) |
				(((u32) cmd->cmnd[3]) << 16) |
				(((u32) cmd->cmnd[4]) << 8) |
					cmd->cmnd[5];
			cp->tweak_upper = 0;
		} else {
			first_block =
				(((u64) cmd->cmnd[2]) << 24) |
				(((u64) cmd->cmnd[3]) << 16) |
				(((u64) cmd->cmnd[4]) << 8) |
					cmd->cmnd[5];
			first_block = (first_block * map->volume_blk_size)/512;
			cp->tweak_lower = (u32)first_block;
			cp->tweak_upper = (u32)(first_block >> 32);
		}
		break;
	case WRITE_16:
	case READ_16:
		if (map->volume_blk_size == 512) {
			cp->tweak_lower =
				(((u32) cmd->cmnd[6]) << 24) |
				(((u32) cmd->cmnd[7]) << 16) |
				(((u32) cmd->cmnd[8]) << 8) |
					cmd->cmnd[9];
			cp->tweak_upper =
				(((u32) cmd->cmnd[2]) << 24) |
				(((u32) cmd->cmnd[3]) << 16) |
				(((u32) cmd->cmnd[4]) << 8) |
					cmd->cmnd[5];
		} else {
			first_block =
				(((u64) cmd->cmnd[2]) << 56) |
				(((u64) cmd->cmnd[3]) << 48) |
				(((u64) cmd->cmnd[4]) << 40) |
				(((u64) cmd->cmnd[5]) << 32) |
				(((u64) cmd->cmnd[6]) << 24) |
				(((u64) cmd->cmnd[7]) << 16) |
				(((u64) cmd->cmnd[8]) << 8) |
					cmd->cmnd[9];
			first_block = (first_block * map->volume_blk_size)/512;
			cp->tweak_lower = (u32)first_block;
			cp->tweak_upper = (u32)(first_block >> 32);
		}
		break;
	default:
		dev_err(&h->pdev->dev,
			"ERROR: %s: IOACCEL request CDB size not supported for encryption\n",
			__func__);
		BUG();
		break;
	}
}

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
	struct ioaccel2_sg_element *curr_sg;
	int use_sg, i;
	struct scatterlist *sg;
	u64 addr64;
	u32 len;
	u32 total_len = 0;

	if (scsi_sg_count(cmd) > h->ioaccel_maxsg)
		return IO_ACCEL_INELIGIBLE;

	if (fixup_ioaccel_cdb(cdb, &cdb_len))
		return IO_ACCEL_INELIGIBLE;
	c->cmd_type = CMD_IOACCEL2;
	/* Adjust the DMA address to point to the accelerated command buffer */
	c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
				(c->cmdindex * sizeof(*cp));
	BUG_ON(c->busaddr & 0x0000007F);

	memset(cp, 0, sizeof(*cp));
	cp->IU_type = IOACCEL2_IU_TYPE;

	use_sg = scsi_dma_map(cmd);
	if (use_sg < 0)
		return use_sg;

	if (use_sg) {
		BUG_ON(use_sg > IOACCEL2_MAXSGENTRIES);
		curr_sg = cp->sg;
		scsi_for_each_sg(cmd, sg, use_sg, i) {
			addr64 = (u64) sg_dma_address(sg);
			len  = sg_dma_len(sg);
			total_len += len;
			curr_sg->address = cpu_to_le64(addr64);
			curr_sg->length = cpu_to_le32(len);
			curr_sg->reserved[0] = 0;
			curr_sg->reserved[1] = 0;
			curr_sg->reserved[2] = 0;
			curr_sg->chain_indicator = 0;
			curr_sg++;
		}

		switch (cmd->sc_data_direction) {
		case DMA_TO_DEVICE:
3561 3562
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_OUT;
3563 3564
			break;
		case DMA_FROM_DEVICE:
3565 3566
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_DATA_IN;
3567 3568
			break;
		case DMA_NONE:
3569 3570
			cp->direction &= ~IOACCEL2_DIRECTION_MASK;
			cp->direction |= IOACCEL2_DIR_NO_DATA;
3571 3572 3573 3574 3575 3576 3577 3578
			break;
		default:
			dev_err(&h->pdev->dev, "unknown data direction: %d\n",
				cmd->sc_data_direction);
			BUG();
			break;
		}
	} else {
3579 3580
		cp->direction &= ~IOACCEL2_DIRECTION_MASK;
		cp->direction |= IOACCEL2_DIR_NO_DATA;
3581
	}
3582 3583 3584 3585

	/* Set encryption parameters, if necessary */
	set_encrypt_ioaccel2(h, c, cp);

3586
	cp->scsi_nexus = ioaccel_handle;
3587
	cp->Tag = (c->cmdindex << DIRECT_LOOKUP_SHIFT) |
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617
				DIRECT_LOOKUP_BIT;
	memcpy(cp->cdb, cdb, sizeof(cp->cdb));

	/* fill in sg elements */
	cp->sg_count = (u8) use_sg;

	cp->data_len = cpu_to_le32(total_len);
	cp->err_ptr = cpu_to_le64(c->busaddr +
			offsetof(struct io_accel2_cmd, error_data));
	cp->err_len = cpu_to_le32((u32) sizeof(cp->error_data));

	enqueue_cmd_and_start_io(h, c);
	return 0;
}

/*
 * Queue a command to the correct I/O accelerator path.
 */
static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
	struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
	u8 *scsi3addr)
{
	if (h->transMethod & CFGTBL_Trans_io_accel1)
		return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
						cdb, cdb_len, scsi3addr);
	else
		return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
						cdb, cdb_len, scsi3addr);
}

3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
static void raid_map_helper(struct raid_map_data *map,
		int offload_to_mirror, u32 *map_index, u32 *current_group)
{
	if (offload_to_mirror == 0)  {
		/* use physical disk in the first mirrored group. */
		*map_index %= map->data_disks_per_row;
		return;
	}
	do {
		/* determine mirror group that *map_index indicates */
		*current_group = *map_index / map->data_disks_per_row;
		if (offload_to_mirror == *current_group)
			continue;
		if (*current_group < (map->layout_map_count - 1)) {
			/* select map index from next group */
			*map_index += map->data_disks_per_row;
			(*current_group)++;
		} else {
			/* select map index from first group */
			*map_index %= map->data_disks_per_row;
			*current_group = 0;
		}
	} while (offload_to_mirror != *current_group);
}

3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
/*
 * Attempt to perform offload RAID mapping for a logical volume I/O.
 */
static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
	struct CommandList *c)
{
	struct scsi_cmnd *cmd = c->scsi_cmd;
	struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
	struct raid_map_data *map = &dev->raid_map;
	struct raid_map_disk_data *dd = &map->data[0];
	int is_write = 0;
	u32 map_index;
	u64 first_block, last_block;
	u32 block_cnt;
	u32 blocks_per_row;
	u64 first_row, last_row;
	u32 first_row_offset, last_row_offset;
	u32 first_column, last_column;
3661 3662 3663 3664 3665 3666 3667 3668
	u64 r0_first_row, r0_last_row;
	u32 r5or6_blocks_per_row;
	u64 r5or6_first_row, r5or6_last_row;
	u32 r5or6_first_row_offset, r5or6_last_row_offset;
	u32 r5or6_first_column, r5or6_last_column;
	u32 total_disks_per_row;
	u32 stripesize;
	u32 first_group, last_group, current_group;
3669 3670 3671 3672 3673 3674 3675 3676 3677
	u32 map_row;
	u32 disk_handle;
	u64 disk_block;
	u32 disk_block_cnt;
	u8 cdb[16];
	u8 cdb_len;
#if BITS_PER_LONG == 32
	u64 tmpdiv;
#endif
3678
	int offload_to_mirror;
3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690

	BUG_ON(!(dev->offload_config && dev->offload_enabled));

	/* check for valid opcode, get LBA and block count */
	switch (cmd->cmnd[0]) {
	case WRITE_6:
		is_write = 1;
	case READ_6:
		first_block =
			(((u64) cmd->cmnd[2]) << 8) |
			cmd->cmnd[3];
		block_cnt = cmd->cmnd[4];
3691 3692
		if (block_cnt == 0)
			block_cnt = 256;
3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
		break;
	case WRITE_10:
		is_write = 1;
	case READ_10:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[7]) << 8) |
			cmd->cmnd[8];
		break;
	case WRITE_12:
		is_write = 1;
	case READ_12:
		first_block =
			(((u64) cmd->cmnd[2]) << 24) |
			(((u64) cmd->cmnd[3]) << 16) |
			(((u64) cmd->cmnd[4]) << 8) |
			cmd->cmnd[5];
		block_cnt =
			(((u32) cmd->cmnd[6]) << 24) |
			(((u32) cmd->cmnd[7]) << 16) |
			(((u32) cmd->cmnd[8]) << 8) |
		cmd->cmnd[9];
		break;
	case WRITE_16:
		is_write = 1;
	case READ_16:
		first_block =
			(((u64) cmd->cmnd[2]) << 56) |
			(((u64) cmd->cmnd[3]) << 48) |
			(((u64) cmd->cmnd[4]) << 40) |
			(((u64) cmd->cmnd[5]) << 32) |
			(((u64) cmd->cmnd[6]) << 24) |
			(((u64) cmd->cmnd[7]) << 16) |
			(((u64) cmd->cmnd[8]) << 8) |
			cmd->cmnd[9];
		block_cnt =
			(((u32) cmd->cmnd[10]) << 24) |
			(((u32) cmd->cmnd[11]) << 16) |
			(((u32) cmd->cmnd[12]) << 8) |
			cmd->cmnd[13];
		break;
	default:
		return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
	}
	last_block = first_block + block_cnt - 1;

	/* check for write to non-RAID-0 */
	if (is_write && dev->raid_level != 0)
		return IO_ACCEL_INELIGIBLE;

	/* check for invalid block or wraparound */
	if (last_block >= map->volume_blk_cnt || last_block < first_block)
		return IO_ACCEL_INELIGIBLE;

	/* calculate stripe information for the request */
	blocks_per_row = map->data_disks_per_row * map->strip_size;
#if BITS_PER_LONG == 32
	tmpdiv = first_block;
	(void) do_div(tmpdiv, blocks_per_row);
	first_row = tmpdiv;
	tmpdiv = last_block;
	(void) do_div(tmpdiv, blocks_per_row);
	last_row = tmpdiv;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	tmpdiv = first_row_offset;
	(void) do_div(tmpdiv,  map->strip_size);
	first_column = tmpdiv;
	tmpdiv = last_row_offset;
	(void) do_div(tmpdiv, map->strip_size);
	last_column = tmpdiv;
#else
	first_row = first_block / blocks_per_row;
	last_row = last_block / blocks_per_row;
	first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
	last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
	first_column = first_row_offset / map->strip_size;
	last_column = last_row_offset / map->strip_size;
#endif

	/* if this isn't a single row/column then give to the controller */
	if ((first_row != last_row) || (first_column != last_column))
		return IO_ACCEL_INELIGIBLE;

	/* proceeding with driver mapping */
3782 3783
	total_disks_per_row = map->data_disks_per_row +
				map->metadata_disks_per_row;
3784 3785
	map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
				map->row_cnt;
3786 3787 3788 3789 3790 3791 3792 3793 3794
	map_index = (map_row * total_disks_per_row) + first_column;

	switch (dev->raid_level) {
	case HPSA_RAID_0:
		break; /* nothing special to do */
	case HPSA_RAID_1:
		/* Handles load balance across RAID 1 members.
		 * (2-drive R1 and R10 with even # of drives.)
		 * Appropriate for SSDs, not optimal for HDDs
3795
		 */
3796
		BUG_ON(map->layout_map_count != 2);
3797 3798 3799
		if (dev->offload_to_mirror)
			map_index += map->data_disks_per_row;
		dev->offload_to_mirror = !dev->offload_to_mirror;
3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844
		break;
	case HPSA_RAID_ADM:
		/* Handles N-way mirrors  (R1-ADM)
		 * and R10 with # of drives divisible by 3.)
		 */
		BUG_ON(map->layout_map_count != 3);

		offload_to_mirror = dev->offload_to_mirror;
		raid_map_helper(map, offload_to_mirror,
				&map_index, &current_group);
		/* set mirror group to use next time */
		offload_to_mirror =
			(offload_to_mirror >= map->layout_map_count - 1)
			? 0 : offload_to_mirror + 1;
		dev->offload_to_mirror = offload_to_mirror;
		/* Avoid direct use of dev->offload_to_mirror within this
		 * function since multiple threads might simultaneously
		 * increment it beyond the range of dev->layout_map_count -1.
		 */
		break;
	case HPSA_RAID_5:
	case HPSA_RAID_6:
		if (map->layout_map_count <= 1)
			break;

		/* Verify first and last block are in same RAID group */
		r5or6_blocks_per_row =
			map->strip_size * map->data_disks_per_row;
		BUG_ON(r5or6_blocks_per_row == 0);
		stripesize = r5or6_blocks_per_row * map->layout_map_count;
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_group = do_div(tmpdiv, stripesize);
		tmpdiv = first_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		first_group = tmpdiv;
		tmpdiv = last_block;
		last_group = do_div(tmpdiv, stripesize);
		tmpdiv = last_group;
		(void) do_div(tmpdiv, r5or6_blocks_per_row);
		last_group = tmpdiv;
#else
		first_group = (first_block % stripesize) / r5or6_blocks_per_row;
		last_group = (last_block % stripesize) / r5or6_blocks_per_row;
#endif
3845
		if (first_group != last_group)
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
			return IO_ACCEL_INELIGIBLE;

		/* Verify request is in a single row of RAID 5/6 */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		(void) do_div(tmpdiv, stripesize);
		first_row = r5or6_first_row = r0_first_row = tmpdiv;
		tmpdiv = last_block;
		(void) do_div(tmpdiv, stripesize);
		r5or6_last_row = r0_last_row = tmpdiv;
#else
		first_row = r5or6_first_row = r0_first_row =
						first_block / stripesize;
		r5or6_last_row = r0_last_row = last_block / stripesize;
#endif
		if (r5or6_first_row != r5or6_last_row)
			return IO_ACCEL_INELIGIBLE;


		/* Verify request is in a single column */
#if BITS_PER_LONG == 32
		tmpdiv = first_block;
		first_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = first_row_offset;
		first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
		r5or6_first_row_offset = first_row_offset;
		tmpdiv = last_block;
		r5or6_last_row_offset = do_div(tmpdiv, stripesize);
		tmpdiv = r5or6_last_row_offset;
		r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
		tmpdiv = r5or6_first_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		first_column = r5or6_first_column = tmpdiv;
		tmpdiv = r5or6_last_row_offset;
		(void) do_div(tmpdiv, map->strip_size);
		r5or6_last_column = tmpdiv;
#else
		first_row_offset = r5or6_first_row_offset =
			(u32)((first_block % stripesize) %
						r5or6_blocks_per_row);

		r5or6_last_row_offset =
			(u32)((last_block % stripesize) %
						r5or6_blocks_per_row);

		first_column = r5or6_first_column =
			r5or6_first_row_offset / map->strip_size;
		r5or6_last_column =
			r5or6_last_row_offset / map->strip_size;
#endif
		if (r5or6_first_column != r5or6_last_column)
			return IO_ACCEL_INELIGIBLE;

		/* Request is eligible */
		map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
			map->row_cnt;

		map_index = (first_group *
			(map->row_cnt * total_disks_per_row)) +
			(map_row * total_disks_per_row) + first_column;
		break;
	default:
		return IO_ACCEL_INELIGIBLE;
3909
	}
3910

3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
	disk_handle = dd[map_index].ioaccel_handle;
	disk_block = map->disk_starting_blk + (first_row * map->strip_size) +
			(first_row_offset - (first_column * map->strip_size));
	disk_block_cnt = block_cnt;

	/* handle differing logical/physical block sizes */
	if (map->phys_blk_shift) {
		disk_block <<= map->phys_blk_shift;
		disk_block_cnt <<= map->phys_blk_shift;
	}
	BUG_ON(disk_block_cnt > 0xffff);

	/* build the new CDB for the physical disk I/O */
	if (disk_block > 0xffffffff) {
		cdb[0] = is_write ? WRITE_16 : READ_16;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 56);
		cdb[3] = (u8) (disk_block >> 48);
		cdb[4] = (u8) (disk_block >> 40);
		cdb[5] = (u8) (disk_block >> 32);
		cdb[6] = (u8) (disk_block >> 24);
		cdb[7] = (u8) (disk_block >> 16);
		cdb[8] = (u8) (disk_block >> 8);
		cdb[9] = (u8) (disk_block);
		cdb[10] = (u8) (disk_block_cnt >> 24);
		cdb[11] = (u8) (disk_block_cnt >> 16);
		cdb[12] = (u8) (disk_block_cnt >> 8);
		cdb[13] = (u8) (disk_block_cnt);
		cdb[14] = 0;
		cdb[15] = 0;
		cdb_len = 16;
	} else {
		cdb[0] = is_write ? WRITE_10 : READ_10;
		cdb[1] = 0;
		cdb[2] = (u8) (disk_block >> 24);
		cdb[3] = (u8) (disk_block >> 16);
		cdb[4] = (u8) (disk_block >> 8);
		cdb[5] = (u8) (disk_block);
		cdb[6] = 0;
		cdb[7] = (u8) (disk_block_cnt >> 8);
		cdb[8] = (u8) (disk_block_cnt);
		cdb[9] = 0;
		cdb_len = 10;
	}
	return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
						dev->scsi3addr);
}

J
Jeff Garzik 已提交
3959
static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
3960 3961 3962 3963 3964 3965
	void (*done)(struct scsi_cmnd *))
{
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	unsigned char scsi3addr[8];
	struct CommandList *c;
3966
	int rc = 0;
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977

	/* Get the ptr to our adapter structure out of cmd->host. */
	h = sdev_to_hba(cmd->device);
	dev = cmd->device->hostdata;
	if (!dev) {
		cmd->result = DID_NO_CONNECT << 16;
		done(cmd);
		return 0;
	}
	memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));

3978
	if (unlikely(lockup_detected(h))) {
3979 3980 3981 3982
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
	}
3983
	c = cmd_alloc(h);
3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
	if (c == NULL) {			/* trouble... */
		dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
		return SCSI_MLQUEUE_HOST_BUSY;
	}

	/* Fill in the command list header */

	cmd->scsi_done = done;    /* save this for use by completion code */

	/* save c in case we have to abort it  */
	cmd->host_scribble = (unsigned char *) c;

	c->cmd_type = CMD_SCSI;
	c->scsi_cmd = cmd;
3998

3999 4000 4001 4002
	/* Call alternate submit routine for I/O accelerated commands.
	 * Retries always go down the normal I/O path.
	 */
	if (likely(cmd->retries == 0 &&
4003 4004
		cmd->request->cmd_type == REQ_TYPE_FS &&
		h->acciopath_status)) {
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
		if (dev->offload_enabled) {
			rc = hpsa_scsi_ioaccel_raid_map(h, c);
			if (rc == 0)
				return 0; /* Sent on ioaccel path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		} else if (dev->ioaccel_handle) {
			rc = hpsa_scsi_ioaccel_direct_map(h, c);
			if (rc == 0)
				return 0; /* Sent on direct map path */
			if (rc < 0) {   /* scsi_dma_map failed. */
				cmd_free(h, c);
				return SCSI_MLQUEUE_HOST_BUSY;
			}
		}
	}
4023

4024 4025
	c->Header.ReplyQueue = 0;  /* unused in simple mode */
	memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
4026 4027
	c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
	c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071

	/* Fill in the request block... */

	c->Request.Timeout = 0;
	memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
	BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
	c->Request.CDBLen = cmd->cmd_len;
	memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
	c->Request.Type.Type = TYPE_CMD;
	c->Request.Type.Attribute = ATTR_SIMPLE;
	switch (cmd->sc_data_direction) {
	case DMA_TO_DEVICE:
		c->Request.Type.Direction = XFER_WRITE;
		break;
	case DMA_FROM_DEVICE:
		c->Request.Type.Direction = XFER_READ;
		break;
	case DMA_NONE:
		c->Request.Type.Direction = XFER_NONE;
		break;
	case DMA_BIDIRECTIONAL:
		/* This can happen if a buggy application does a scsi passthru
		 * and sets both inlen and outlen to non-zero. ( see
		 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
		 */

		c->Request.Type.Direction = XFER_RSVD;
		/* This is technically wrong, and hpsa controllers should
		 * reject it with CMD_INVALID, which is the most correct
		 * response, but non-fibre backends appear to let it
		 * slide by, and give the same results as if this field
		 * were set correctly.  Either way is acceptable for
		 * our purposes here.
		 */

		break;

	default:
		dev_err(&h->pdev->dev, "unknown data direction: %d\n",
			cmd->sc_data_direction);
		BUG();
		break;
	}

4072
	if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
4073 4074 4075 4076 4077 4078 4079 4080
		cmd_free(h, c);
		return SCSI_MLQUEUE_HOST_BUSY;
	}
	enqueue_cmd_and_start_io(h, c);
	/* the cmd'll come back via intr handler in complete_scsi_command()  */
	return 0;
}

J
Jeff Garzik 已提交
4081 4082
static DEF_SCSI_QCMD(hpsa_scsi_queue_command)

4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
static int do_not_scan_if_controller_locked_up(struct ctlr_info *h)
{
	unsigned long flags;

	/*
	 * Don't let rescans be initiated on a controller known
	 * to be locked up.  If the controller locks up *during*
	 * a rescan, that thread is probably hosed, but at least
	 * we can prevent new rescan threads from piling up on a
	 * locked up controller.
	 */
4094
	if (unlikely(lockup_detected(h))) {
4095 4096 4097 4098 4099 4100 4101 4102 4103
		spin_lock_irqsave(&h->scan_lock, flags);
		h->scan_finished = 1;
		wake_up_all(&h->scan_wait_queue);
		spin_unlock_irqrestore(&h->scan_lock, flags);
		return 1;
	}
	return 0;
}

4104 4105 4106 4107 4108
static void hpsa_scan_start(struct Scsi_Host *sh)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;

4109 4110 4111
	if (do_not_scan_if_controller_locked_up(h))
		return;

4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
	/* wait until any scan already in progress is finished. */
	while (1) {
		spin_lock_irqsave(&h->scan_lock, flags);
		if (h->scan_finished)
			break;
		spin_unlock_irqrestore(&h->scan_lock, flags);
		wait_event(h->scan_wait_queue, h->scan_finished);
		/* Note: We don't need to worry about a race between this
		 * thread and driver unload because the midlayer will
		 * have incremented the reference count, so unload won't
		 * happen if we're in here.
		 */
	}
	h->scan_finished = 0; /* mark scan as in progress */
	spin_unlock_irqrestore(&h->scan_lock, flags);

4128 4129 4130
	if (do_not_scan_if_controller_locked_up(h))
		return;

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151
	hpsa_update_scsi_devices(h, h->scsi_host->host_no);

	spin_lock_irqsave(&h->scan_lock, flags);
	h->scan_finished = 1; /* mark scan as finished. */
	wake_up_all(&h->scan_wait_queue);
	spin_unlock_irqrestore(&h->scan_lock, flags);
}

static int hpsa_scan_finished(struct Scsi_Host *sh,
	unsigned long elapsed_time)
{
	struct ctlr_info *h = shost_to_hba(sh);
	unsigned long flags;
	int finished;

	spin_lock_irqsave(&h->scan_lock, flags);
	finished = h->scan_finished;
	spin_unlock_irqrestore(&h->scan_lock, flags);
	return finished;
}

4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
static int hpsa_change_queue_depth(struct scsi_device *sdev,
	int qdepth, int reason)
{
	struct ctlr_info *h = sdev_to_hba(sdev);

	if (reason != SCSI_QDEPTH_DEFAULT)
		return -ENOTSUPP;

	if (qdepth < 1)
		qdepth = 1;
	else
		if (qdepth > h->nr_cmds)
			qdepth = h->nr_cmds;
4165
	scsi_adjust_queue_depth(sdev, qdepth);
4166 4167 4168
	return sdev->queue_depth;
}

4169 4170 4171 4172 4173 4174 4175 4176 4177 4178
static void hpsa_unregister_scsi(struct ctlr_info *h)
{
	/* we are being forcibly unloaded, and may not refuse. */
	scsi_remove_host(h->scsi_host);
	scsi_host_put(h->scsi_host);
	h->scsi_host = NULL;
}

static int hpsa_register_scsi(struct ctlr_info *h)
{
4179 4180
	struct Scsi_Host *sh;
	int error;
4181

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193
	sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
	if (sh == NULL)
		goto fail;

	sh->io_port = 0;
	sh->n_io_port = 0;
	sh->this_id = -1;
	sh->max_channel = 3;
	sh->max_cmd_len = MAX_COMMAND_SIZE;
	sh->max_lun = HPSA_MAX_LUN;
	sh->max_id = HPSA_MAX_LUN;
	sh->can_queue = h->nr_cmds;
4194 4195 4196 4197
	if (h->hba_mode_enabled)
		sh->cmd_per_lun = 7;
	else
		sh->cmd_per_lun = h->nr_cmds;
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
	sh->sg_tablesize = h->maxsgentries;
	h->scsi_host = sh;
	sh->hostdata[0] = (unsigned long) h;
	sh->irq = h->intr[h->intr_mode];
	sh->unique_id = sh->irq;
	error = scsi_add_host(sh, &h->pdev->dev);
	if (error)
		goto fail_host_put;
	scsi_scan_host(sh);
	return 0;

 fail_host_put:
	dev_err(&h->pdev->dev, "%s: scsi_add_host"
		" failed for controller %d\n", __func__, h->ctlr);
	scsi_host_put(sh);
	return error;
 fail:
	dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
		" failed for controller %d\n", __func__, h->ctlr);
	return -ENOMEM;
4218 4219 4220 4221 4222
}

static int wait_for_device_to_become_ready(struct ctlr_info *h,
	unsigned char lunaddr[])
{
4223
	int rc;
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242
	int count = 0;
	int waittime = 1; /* seconds */
	struct CommandList *c;

	c = cmd_special_alloc(h);
	if (!c) {
		dev_warn(&h->pdev->dev, "out of memory in "
			"wait_for_device_to_become_ready.\n");
		return IO_ERROR;
	}

	/* Send test unit ready until device ready, or give up. */
	while (count < HPSA_TUR_RETRY_LIMIT) {

		/* Wait for a bit.  do this first, because if we send
		 * the TUR right away, the reset will just abort it.
		 */
		msleep(1000 * waittime);
		count++;
4243
		rc = 0; /* Device ready. */
4244 4245 4246 4247 4248

		/* Increase wait time with each try, up to a point. */
		if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
			waittime = waittime * 2;

4249 4250 4251
		/* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
		(void) fill_cmd(c, TEST_UNIT_READY, h,
				NULL, 0, 0, lunaddr, TYPE_CMD);
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
		hpsa_scsi_do_simple_cmd_core(h, c);
		/* no unmap needed here because no data xfer. */

		if (c->err_info->CommandStatus == CMD_SUCCESS)
			break;

		if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
			(c->err_info->SenseInfo[2] == NO_SENSE ||
			c->err_info->SenseInfo[2] == UNIT_ATTENTION))
			break;

		dev_warn(&h->pdev->dev, "waiting %d secs "
			"for device to become ready.\n", waittime);
		rc = 1; /* device not ready. */
	}

	if (rc)
		dev_warn(&h->pdev->dev, "giving up on device.\n");
	else
		dev_warn(&h->pdev->dev, "device is ready.\n");

	cmd_special_free(h, c);
	return rc;
}

/* Need at least one of these error handlers to keep ../scsi/hosts.c from
 * complaining.  Doing a host- or bus-reset can't do anything good here.
 */
static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
{
	int rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;

	/* find the controller to which the command to be aborted was sent */
	h = sdev_to_hba(scsicmd->device);
	if (h == NULL) /* paranoia */
		return FAILED;
	dev = scsicmd->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
			"device lookup failed.\n");
		return FAILED;
	}
4297 4298
	dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
4299
	/* send a reset to the SCSI LUN which the command was sent to */
4300
	rc = hpsa_send_reset(h, dev->scsi3addr, HPSA_RESET_TYPE_LUN);
4301 4302 4303 4304 4305 4306 4307
	if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
		return SUCCESS;

	dev_warn(&h->pdev->dev, "resetting device failed.\n");
	return FAILED;
}

4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
static void swizzle_abort_tag(u8 *tag)
{
	u8 original_tag[8];

	memcpy(original_tag, tag, 8);
	tag[0] = original_tag[3];
	tag[1] = original_tag[2];
	tag[2] = original_tag[1];
	tag[3] = original_tag[0];
	tag[4] = original_tag[7];
	tag[5] = original_tag[6];
	tag[6] = original_tag[5];
	tag[7] = original_tag[4];
}

4323 4324 4325 4326 4327 4328 4329 4330
static void hpsa_get_tag(struct ctlr_info *h,
	struct CommandList *c, u32 *taglower, u32 *tagupper)
{
	if (c->cmd_type == CMD_IOACCEL1) {
		struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
			&h->ioaccel_cmd_pool[c->cmdindex];
		*tagupper = cm1->Tag.upper;
		*taglower = cm1->Tag.lower;
4331 4332 4333 4334 4335
		return;
	}
	if (c->cmd_type == CMD_IOACCEL2) {
		struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
			&h->ioaccel2_cmd_pool[c->cmdindex];
4336 4337 4338
		/* upper tag not used in ioaccel2 mode */
		memset(tagupper, 0, sizeof(*tagupper));
		*taglower = cm2->Tag;
4339
		return;
4340
	}
4341 4342
	*tagupper = c->Header.Tag.upper;
	*taglower = c->Header.Tag.lower;
4343 4344
}

4345

4346
static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
4347
	struct CommandList *abort, int swizzle)
4348 4349 4350 4351
{
	int rc = IO_OK;
	struct CommandList *c;
	struct ErrorInfo *ei;
4352
	u32 tagupper, taglower;
4353 4354 4355 4356 4357 4358 4359

	c = cmd_special_alloc(h);
	if (c == NULL) {	/* trouble... */
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		return -ENOMEM;
	}

4360 4361 4362
	/* fill_cmd can't fail here, no buffer to map */
	(void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
		0, 0, scsi3addr, TYPE_MSG);
4363 4364
	if (swizzle)
		swizzle_abort_tag(&c->Request.CDB[4]);
4365
	hpsa_scsi_do_simple_cmd_core(h, c);
4366
	hpsa_get_tag(h, abort, &taglower, &tagupper);
4367
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
4368
		__func__, tagupper, taglower);
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
	/* no unmap needed here because no data xfer. */

	ei = c->err_info;
	switch (ei->CommandStatus) {
	case CMD_SUCCESS:
		break;
	case CMD_UNABORTABLE: /* Very common, don't make noise. */
		rc = -1;
		break;
	default:
		dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
4380
			__func__, tagupper, taglower);
4381
		hpsa_scsi_interpret_error(h, c);
4382 4383 4384 4385
		rc = -1;
		break;
	}
	cmd_special_free(h, c);
4386 4387
	dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
		__func__, tagupper, taglower);
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
	return rc;
}

/*
 * hpsa_find_cmd_in_queue
 *
 * Used to determine whether a command (find) is still present
 * in queue_head.   Optionally excludes the last element of queue_head.
 *
 * This is used to avoid unnecessary aborts.  Commands in h->reqQ have
 * not yet been submitted, and so can be aborted by the driver without
 * sending an abort to the hardware.
 *
 * Returns pointer to command if found in queue, NULL otherwise.
 */
static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
			struct scsi_cmnd *find, struct list_head *queue_head)
{
	unsigned long flags;
	struct CommandList *c = NULL;	/* ptr into cmpQ */

	if (!find)
D
Don Brace 已提交
4410
		return NULL;
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(c, queue_head, list) {
		if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
			continue;
		if (c->scsi_cmd == find) {
			spin_unlock_irqrestore(&h->lock, flags);
			return c;
		}
	}
	spin_unlock_irqrestore(&h->lock, flags);
	return NULL;
}

4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
					u8 *tag, struct list_head *queue_head)
{
	unsigned long flags;
	struct CommandList *c;

	spin_lock_irqsave(&h->lock, flags);
	list_for_each_entry(c, queue_head, list) {
		if (memcmp(&c->Header.Tag, tag, 8) != 0)
			continue;
		spin_unlock_irqrestore(&h->lock, flags);
		return c;
	}
	spin_unlock_irqrestore(&h->lock, flags);
	return NULL;
}

4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
/* ioaccel2 path firmware cannot handle abort task requests.
 * Change abort requests to physical target reset, and send to the
 * address of the physical disk used for the ioaccel 2 command.
 * Return 0 on success (IO_OK)
 *	 -1 on failure
 */

static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
	unsigned char *scsi3addr, struct CommandList *abort)
{
	int rc = IO_OK;
	struct scsi_cmnd *scmd; /* scsi command within request being aborted */
	struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
	unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
	unsigned char *psa = &phys_scsi3addr[0];

	/* Get a pointer to the hpsa logical device. */
	scmd = (struct scsi_cmnd *) abort->scsi_cmd;
	dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
	if (dev == NULL) {
		dev_warn(&h->pdev->dev,
			"Cannot abort: no device pointer for command.\n");
			return -1; /* not abortable */
	}

4466 4467 4468 4469 4470 4471 4472
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Abort requested on C%d:B%d:T%d:L%d scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
			scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
			scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);

4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
	if (!dev->offload_enabled) {
		dev_warn(&h->pdev->dev,
			"Can't abort: device is not operating in HP SSD Smart Path mode.\n");
		return -1; /* not abortable */
	}

	/* Incoming scsi3addr is logical addr. We need physical disk addr. */
	if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
		dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
		return -1; /* not abortable */
	}

	/* send the reset */
4486 4487 4488 4489 4490
	if (h->raid_offload_debug > 0)
		dev_info(&h->pdev->dev,
			"Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
	rc = hpsa_send_reset(h, psa, HPSA_RESET_TYPE_TARGET);
	if (rc != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return rc; /* failed to reset */
	}

	/* wait for device to recover */
	if (wait_for_device_to_become_ready(h, psa) != 0) {
		dev_warn(&h->pdev->dev,
			"Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
			psa[0], psa[1], psa[2], psa[3],
			psa[4], psa[5], psa[6], psa[7]);
		return -1;  /* failed to recover */
	}

	/* device recovered */
	dev_info(&h->pdev->dev,
		"Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
		psa[0], psa[1], psa[2], psa[3],
		psa[4], psa[5], psa[6], psa[7]);

	return rc; /* success */
}

4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
/* Some Smart Arrays need the abort tag swizzled, and some don't.  It's hard to
 * tell which kind we're dealing with, so we send the abort both ways.  There
 * shouldn't be any collisions between swizzled and unswizzled tags due to the
 * way we construct our tags but we check anyway in case the assumptions which
 * make this true someday become false.
 */
static int hpsa_send_abort_both_ways(struct ctlr_info *h,
	unsigned char *scsi3addr, struct CommandList *abort)
{
	u8 swizzled_tag[8];
	struct CommandList *c;
	int rc = 0, rc2 = 0;

4531 4532 4533 4534 4535 4536 4537 4538
	/* ioccelerator mode 2 commands should be aborted via the
	 * accelerated path, since RAID path is unaware of these commands,
	 * but underlying firmware can't handle abort TMF.
	 * Change abort to physical device reset.
	 */
	if (abort->cmd_type == CMD_IOACCEL2)
		return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr, abort);

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
	/* we do not expect to find the swizzled tag in our queue, but
	 * check anyway just to be sure the assumptions which make this
	 * the case haven't become wrong.
	 */
	memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
	swizzle_abort_tag(swizzled_tag);
	c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
	if (c != NULL) {
		dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
		return hpsa_send_abort(h, scsi3addr, abort, 0);
	}
	rc = hpsa_send_abort(h, scsi3addr, abort, 0);

	/* if the command is still in our queue, we can't conclude that it was
	 * aborted (it might have just completed normally) but in any case
	 * we don't need to try to abort it another way.
	 */
	c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
	if (c)
		rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
	return rc && rc2;
}

4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576
/* Send an abort for the specified command.
 *	If the device and controller support it,
 *		send a task abort request.
 */
static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
{

	int i, rc;
	struct ctlr_info *h;
	struct hpsa_scsi_dev_t *dev;
	struct CommandList *abort; /* pointer to command to be aborted */
	struct CommandList *found;
	struct scsi_cmnd *as;	/* ptr to scsi cmd inside aborted command. */
	char msg[256];		/* For debug messaging. */
	int ml = 0;
4577
	u32 tagupper, taglower;
4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590

	/* Find the controller of the command to be aborted */
	h = sdev_to_hba(sc->device);
	if (WARN(h == NULL,
			"ABORT REQUEST FAILED, Controller lookup failed.\n"))
		return FAILED;

	/* Check that controller supports some kind of task abort */
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
		!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		return FAILED;

	memset(msg, 0, sizeof(msg));
H
Hannes Reinecke 已提交
4591
	ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%llu ",
4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609
		h->scsi_host->host_no, sc->device->channel,
		sc->device->id, sc->device->lun);

	/* Find the device of the command to be aborted */
	dev = sc->device->hostdata;
	if (!dev) {
		dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
				msg);
		return FAILED;
	}

	/* Get SCSI command to be aborted */
	abort = (struct CommandList *) sc->host_scribble;
	if (abort == NULL) {
		dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
				msg);
		return FAILED;
	}
4610 4611
	hpsa_get_tag(h, abort, &taglower, &tagupper);
	ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
	as  = (struct scsi_cmnd *) abort->scsi_cmd;
	if (as != NULL)
		ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
			as->cmnd[0], as->serial_number);
	dev_dbg(&h->pdev->dev, "%s\n", msg);
	dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
		h->scsi_host->host_no, dev->bus, dev->target, dev->lun);

	/* Search reqQ to See if command is queued but not submitted,
	 * if so, complete the command with aborted status and remove
	 * it from the reqQ.
	 */
	found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
	if (found) {
		found->err_info->CommandStatus = CMD_ABORTED;
		finish_cmd(found);
		dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
				msg);
		return SUCCESS;
	}

	/* not in reqQ, if also not in cmpQ, must have already completed */
	found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
	if (!found)  {
4636
		dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
4637 4638 4639 4640 4641 4642 4643 4644 4645
				msg);
		return SUCCESS;
	}

	/*
	 * Command is in flight, or possibly already completed
	 * by the firmware (but not to the scsi mid layer) but we can't
	 * distinguish which.  Send the abort down.
	 */
4646
	rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
	if (rc != 0) {
		dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
		dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
			h->scsi_host->host_no,
			dev->bus, dev->target, dev->lun);
		return FAILED;
	}
	dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);

	/* If the abort(s) above completed and actually aborted the
	 * command, then the command to be aborted should already be
	 * completed.  If not, wait around a bit more to see if they
	 * manage to complete normally.
	 */
#define ABORT_COMPLETE_WAIT_SECS 30
	for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
		found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
		if (!found)
			return SUCCESS;
		msleep(100);
	}
	dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
		msg, ABORT_COMPLETE_WAIT_SECS);
	return FAILED;
}


4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
/*
 * For operations that cannot sleep, a command block is allocated at init,
 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
 * which ones are free or in use.  Lock must be held when calling this.
 * cmd_free() is the complement.
 */
static struct CommandList *cmd_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	int i;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;
4686
	unsigned long flags;
4687

4688
	spin_lock_irqsave(&h->lock, flags);
4689 4690
	do {
		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
4691 4692
		if (i == h->nr_cmds) {
			spin_unlock_irqrestore(&h->lock, flags);
4693
			return NULL;
4694
		}
4695 4696 4697
	} while (test_and_set_bit
		 (i & (BITS_PER_LONG - 1),
		  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
4698 4699
	spin_unlock_irqrestore(&h->lock, flags);

4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
	c = h->cmd_pool + i;
	memset(c, 0, sizeof(*c));
	cmd_dma_handle = h->cmd_pool_dhandle
	    + i * sizeof(*c);
	c->err_info = h->errinfo_pool + i;
	memset(c->err_info, 0, sizeof(*c->err_info));
	err_dma_handle = h->errinfo_pool_dhandle
	    + i * sizeof(*c->err_info);

	c->cmdindex = i;

4711
	INIT_LIST_HEAD(&c->list);
4712 4713
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
	c->ErrDesc.Addr.lower = temp64.val32.lower;
	c->ErrDesc.Addr.upper = temp64.val32.upper;
	c->ErrDesc.Len = sizeof(*c->err_info);

	c->h = h;
	return c;
}

/* For operations that can wait for kmalloc to possibly sleep,
 * this routine can be called. Lock need not be held to call
 * cmd_special_alloc. cmd_special_free() is the complement.
 */
static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
{
	struct CommandList *c;
	union u64bit temp64;
	dma_addr_t cmd_dma_handle, err_dma_handle;

J
Joe Perches 已提交
4732
	c = pci_zalloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
4733 4734 4735
	if (c == NULL)
		return NULL;

4736
	c->cmd_type = CMD_SCSI;
4737 4738
	c->cmdindex = -1;

J
Joe Perches 已提交
4739 4740
	c->err_info = pci_zalloc_consistent(h->pdev, sizeof(*c->err_info),
					    &err_dma_handle);
4741 4742 4743 4744 4745 4746 4747

	if (c->err_info == NULL) {
		pci_free_consistent(h->pdev,
			sizeof(*c), c, cmd_dma_handle);
		return NULL;
	}

4748
	INIT_LIST_HEAD(&c->list);
4749 4750
	c->busaddr = (u32) cmd_dma_handle;
	temp64.val = (u64) err_dma_handle;
4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
	c->ErrDesc.Addr.lower = temp64.val32.lower;
	c->ErrDesc.Addr.upper = temp64.val32.upper;
	c->ErrDesc.Len = sizeof(*c->err_info);

	c->h = h;
	return c;
}

static void cmd_free(struct ctlr_info *h, struct CommandList *c)
{
	int i;
4762
	unsigned long flags;
4763 4764

	i = c - h->cmd_pool;
4765
	spin_lock_irqsave(&h->lock, flags);
4766 4767
	clear_bit(i & (BITS_PER_LONG - 1),
		  h->cmd_pool_bits + (i / BITS_PER_LONG));
4768
	spin_unlock_irqrestore(&h->lock, flags);
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
}

static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
{
	union u64bit temp64;

	temp64.val32.lower = c->ErrDesc.Addr.lower;
	temp64.val32.upper = c->ErrDesc.Addr.upper;
	pci_free_consistent(h->pdev, sizeof(*c->err_info),
			    c->err_info, (dma_addr_t) temp64.val);
	pci_free_consistent(h->pdev, sizeof(*c),
4780
			    c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
4781 4782 4783 4784
}

#ifdef CONFIG_COMPAT

D
Don Brace 已提交
4785 4786
static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
	void __user *arg)
4787 4788 4789 4790 4791 4792 4793 4794
{
	IOCTL32_Command_struct __user *arg32 =
	    (IOCTL32_Command_struct __user *) arg;
	IOCTL_Command_struct arg64;
	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

4795
	memset(&arg64, 0, sizeof(arg64));
4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
4811
	err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
4812 4813 4814 4815 4816 4817 4818 4819 4820 4821
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}

static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
D
Don Brace 已提交
4822
	int cmd, void __user *arg)
4823 4824 4825 4826 4827 4828 4829 4830 4831
{
	BIG_IOCTL32_Command_struct __user *arg32 =
	    (BIG_IOCTL32_Command_struct __user *) arg;
	BIG_IOCTL_Command_struct arg64;
	BIG_IOCTL_Command_struct __user *p =
	    compat_alloc_user_space(sizeof(arg64));
	int err;
	u32 cp;

4832
	memset(&arg64, 0, sizeof(arg64));
4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
	err = 0;
	err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
			   sizeof(arg64.LUN_info));
	err |= copy_from_user(&arg64.Request, &arg32->Request,
			   sizeof(arg64.Request));
	err |= copy_from_user(&arg64.error_info, &arg32->error_info,
			   sizeof(arg64.error_info));
	err |= get_user(arg64.buf_size, &arg32->buf_size);
	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
	err |= get_user(cp, &arg32->buf);
	arg64.buf = compat_ptr(cp);
	err |= copy_to_user(p, &arg64, sizeof(arg64));

	if (err)
		return -EFAULT;

D
Don Brace 已提交
4849
	err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
4850 4851 4852 4853 4854 4855 4856 4857
	if (err)
		return err;
	err |= copy_in_user(&arg32->error_info, &p->error_info,
			 sizeof(arg32->error_info));
	if (err)
		return -EFAULT;
	return err;
}
4858

D
Don Brace 已提交
4859
static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
{
	switch (cmd) {
	case CCISS_GETPCIINFO:
	case CCISS_GETINTINFO:
	case CCISS_SETINTINFO:
	case CCISS_GETNODENAME:
	case CCISS_SETNODENAME:
	case CCISS_GETHEARTBEAT:
	case CCISS_GETBUSTYPES:
	case CCISS_GETFIRMVER:
	case CCISS_GETDRIVVER:
	case CCISS_REVALIDVOLS:
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
	case CCISS_RESCANDISK:
	case CCISS_GETLUNINFO:
		return hpsa_ioctl(dev, cmd, arg);

	case CCISS_PASSTHRU32:
		return hpsa_ioctl32_passthru(dev, cmd, arg);
	case CCISS_BIG_PASSTHRU32:
		return hpsa_ioctl32_big_passthru(dev, cmd, arg);

	default:
		return -ENOIOCTLCMD;
	}
}
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933
#endif

static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
{
	struct hpsa_pci_info pciinfo;

	if (!argp)
		return -EINVAL;
	pciinfo.domain = pci_domain_nr(h->pdev->bus);
	pciinfo.bus = h->pdev->bus->number;
	pciinfo.dev_fn = h->pdev->devfn;
	pciinfo.board_id = h->board_id;
	if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
		return -EFAULT;
	return 0;
}

static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
{
	DriverVer_type DriverVer;
	unsigned char vmaj, vmin, vsubmin;
	int rc;

	rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
		&vmaj, &vmin, &vsubmin);
	if (rc != 3) {
		dev_info(&h->pdev->dev, "driver version string '%s' "
			"unrecognized.", HPSA_DRIVER_VERSION);
		vmaj = 0;
		vmin = 0;
		vsubmin = 0;
	}
	DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
	if (!argp)
		return -EINVAL;
	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
		return -EFAULT;
	return 0;
}

static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	IOCTL_Command_struct iocommand;
	struct CommandList *c;
	char *buff = NULL;
	union u64bit temp64;
4934
	int rc = 0;
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
		return -EFAULT;
	if ((iocommand.buf_size < 1) &&
	    (iocommand.Request.Type.Direction != XFER_NONE)) {
		return -EINVAL;
	}
	if (iocommand.buf_size > 0) {
		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
		if (buff == NULL)
			return -EFAULT;
4950
		if (iocommand.Request.Type.Direction & XFER_WRITE) {
4951 4952 4953
			/* Copy the data into the buffer we created */
			if (copy_from_user(buff, iocommand.buf,
				iocommand.buf_size)) {
4954 4955
				rc = -EFAULT;
				goto out_kfree;
4956 4957 4958
			}
		} else {
			memset(buff, 0, iocommand.buf_size);
4959
		}
4960
	}
4961 4962
	c = cmd_special_alloc(h);
	if (c == NULL) {
4963 4964
		rc = -ENOMEM;
		goto out_kfree;
4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
	}
	/* Fill in the command type */
	c->cmd_type = CMD_IOCTL_PEND;
	/* Fill in Command Header */
	c->Header.ReplyQueue = 0; /* unused in simple mode */
	if (iocommand.buf_size > 0) {	/* buffer to fill */
		c->Header.SGList = 1;
		c->Header.SGTotal = 1;
	} else	{ /* no buffers to fill */
		c->Header.SGList = 0;
		c->Header.SGTotal = 0;
	}
	memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
	/* use the kernel address the cmd block for tag */
	c->Header.Tag.lower = c->busaddr;

	/* Fill in Request block */
	memcpy(&c->Request, &iocommand.Request,
		sizeof(c->Request));

	/* Fill in the scatter gather information */
	if (iocommand.buf_size > 0) {
		temp64.val = pci_map_single(h->pdev, buff,
			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
4989 4990 4991 4992 4993 4994 4995
		if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
			c->SG[0].Addr.lower = 0;
			c->SG[0].Addr.upper = 0;
			c->SG[0].Len = 0;
			rc = -ENOMEM;
			goto out;
		}
4996 4997 4998
		c->SG[0].Addr.lower = temp64.val32.lower;
		c->SG[0].Addr.upper = temp64.val32.upper;
		c->SG[0].Len = iocommand.buf_size;
4999
		c->SG[0].Ext = HPSA_SG_LAST; /* we are not chaining*/
5000
	}
5001
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5002 5003
	if (iocommand.buf_size > 0)
		hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
5004 5005 5006 5007 5008 5009
	check_ioctl_unit_attention(h, c);

	/* Copy the error information out */
	memcpy(&iocommand.error_info, c->err_info,
		sizeof(iocommand.error_info));
	if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
5010 5011
		rc = -EFAULT;
		goto out;
5012
	}
5013
	if ((iocommand.Request.Type.Direction & XFER_READ) &&
5014
		iocommand.buf_size > 0) {
5015 5016
		/* Copy the data out of the buffer we created */
		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
5017 5018
			rc = -EFAULT;
			goto out;
5019 5020
		}
	}
5021
out:
5022
	cmd_special_free(h, c);
5023 5024 5025
out_kfree:
	kfree(buff);
	return rc;
5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037
}

static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
{
	BIG_IOCTL_Command_struct *ioc;
	struct CommandList *c;
	unsigned char **buff = NULL;
	int *buff_size = NULL;
	union u64bit temp64;
	BYTE sg_used = 0;
	int status = 0;
	int i;
5038 5039
	u32 left;
	u32 sz;
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
	BYTE __user *data_ptr;

	if (!argp)
		return -EINVAL;
	if (!capable(CAP_SYS_RAWIO))
		return -EPERM;
	ioc = (BIG_IOCTL_Command_struct *)
	    kmalloc(sizeof(*ioc), GFP_KERNEL);
	if (!ioc) {
		status = -ENOMEM;
		goto cleanup1;
	}
	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
		status = -EFAULT;
		goto cleanup1;
	}
	if ((ioc->buf_size < 1) &&
	    (ioc->Request.Type.Direction != XFER_NONE)) {
		status = -EINVAL;
		goto cleanup1;
	}
	/* Check kmalloc limits  using all SGs */
	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
		status = -EINVAL;
		goto cleanup1;
	}
5066
	if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
5067 5068 5069
		status = -EINVAL;
		goto cleanup1;
	}
5070
	buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
5071 5072 5073 5074
	if (!buff) {
		status = -ENOMEM;
		goto cleanup1;
	}
5075
	buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089
	if (!buff_size) {
		status = -ENOMEM;
		goto cleanup1;
	}
	left = ioc->buf_size;
	data_ptr = ioc->buf;
	while (left) {
		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
		buff_size[sg_used] = sz;
		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
		if (buff[sg_used] == NULL) {
			status = -ENOMEM;
			goto cleanup1;
		}
5090
		if (ioc->Request.Type.Direction & XFER_WRITE) {
5091
			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
5092
				status = -EFAULT;
5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107
				goto cleanup1;
			}
		} else
			memset(buff[sg_used], 0, sz);
		left -= sz;
		data_ptr += sz;
		sg_used++;
	}
	c = cmd_special_alloc(h);
	if (c == NULL) {
		status = -ENOMEM;
		goto cleanup1;
	}
	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
5108
	c->Header.SGList = c->Header.SGTotal = sg_used;
5109 5110 5111 5112 5113 5114 5115 5116
	memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
	c->Header.Tag.lower = c->busaddr;
	memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
	if (ioc->buf_size > 0) {
		int i;
		for (i = 0; i < sg_used; i++) {
			temp64.val = pci_map_single(h->pdev, buff[i],
				    buff_size[i], PCI_DMA_BIDIRECTIONAL);
5117 5118 5119 5120 5121 5122 5123
			if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
				c->SG[i].Addr.lower = 0;
				c->SG[i].Addr.upper = 0;
				c->SG[i].Len = 0;
				hpsa_pci_unmap(h->pdev, c, i,
					PCI_DMA_BIDIRECTIONAL);
				status = -ENOMEM;
5124
				goto cleanup0;
5125
			}
5126 5127 5128
			c->SG[i].Addr.lower = temp64.val32.lower;
			c->SG[i].Addr.upper = temp64.val32.upper;
			c->SG[i].Len = buff_size[i];
5129
			c->SG[i].Ext = i < sg_used - 1 ? 0 : HPSA_SG_LAST;
5130 5131
		}
	}
5132
	hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
5133 5134
	if (sg_used)
		hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
5135 5136 5137 5138 5139
	check_ioctl_unit_attention(h, c);
	/* Copy the error information out */
	memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
		status = -EFAULT;
5140
		goto cleanup0;
5141
	}
5142
	if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
5143 5144 5145 5146 5147
		/* Copy the data out of the buffer we created */
		BYTE __user *ptr = ioc->buf;
		for (i = 0; i < sg_used; i++) {
			if (copy_to_user(ptr, buff[i], buff_size[i])) {
				status = -EFAULT;
5148
				goto cleanup0;
5149 5150 5151 5152 5153
			}
			ptr += buff_size[i];
		}
	}
	status = 0;
5154 5155
cleanup0:
	cmd_special_free(h, c);
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
cleanup1:
	if (buff) {
		for (i = 0; i < sg_used; i++)
			kfree(buff[i]);
		kfree(buff);
	}
	kfree(buff_size);
	kfree(ioc);
	return status;
}

static void check_ioctl_unit_attention(struct ctlr_info *h,
	struct CommandList *c)
{
	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
		(void) check_for_unit_attention(h, c);
}
5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203

static int increment_passthru_count(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->passthru_count_lock, flags);
	if (h->passthru_count >= HPSA_MAX_CONCURRENT_PASSTHRUS) {
		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
		return -1;
	}
	h->passthru_count++;
	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
	return 0;
}

static void decrement_passthru_count(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->passthru_count_lock, flags);
	if (h->passthru_count <= 0) {
		spin_unlock_irqrestore(&h->passthru_count_lock, flags);
		/* not expecting to get here. */
		dev_warn(&h->pdev->dev, "Bug detected, passthru_count seems to be incorrect.\n");
		return;
	}
	h->passthru_count--;
	spin_unlock_irqrestore(&h->passthru_count_lock, flags);
}

5204 5205 5206
/*
 * ioctl
 */
D
Don Brace 已提交
5207
static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
5208 5209 5210
{
	struct ctlr_info *h;
	void __user *argp = (void __user *)arg;
5211
	int rc;
5212 5213 5214 5215 5216 5217 5218

	h = sdev_to_hba(dev);

	switch (cmd) {
	case CCISS_DEREGDISK:
	case CCISS_REGNEWDISK:
	case CCISS_REGNEWD:
5219
		hpsa_scan_start(h->scsi_host);
5220 5221 5222 5223 5224 5225
		return 0;
	case CCISS_GETPCIINFO:
		return hpsa_getpciinfo_ioctl(h, argp);
	case CCISS_GETDRIVVER:
		return hpsa_getdrivver_ioctl(h, argp);
	case CCISS_PASSTHRU:
5226 5227 5228 5229 5230
		if (increment_passthru_count(h))
			return -EAGAIN;
		rc = hpsa_passthru_ioctl(h, argp);
		decrement_passthru_count(h);
		return rc;
5231
	case CCISS_BIG_PASSTHRU:
5232 5233 5234 5235 5236
		if (increment_passthru_count(h))
			return -EAGAIN;
		rc = hpsa_big_passthru_ioctl(h, argp);
		decrement_passthru_count(h);
		return rc;
5237 5238 5239 5240 5241
	default:
		return -ENOTTY;
	}
}

5242 5243
static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
				u8 reset_type)
5244 5245 5246 5247 5248 5249
{
	struct CommandList *c;

	c = cmd_alloc(h);
	if (!c)
		return -ENOMEM;
5250 5251
	/* fill_cmd can't fail here, no data buffer to map */
	(void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262
		RAID_CTLR_LUNID, TYPE_MSG);
	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
	c->waiting = NULL;
	enqueue_cmd_and_start_io(h, c);
	/* Don't wait for completion, the reset won't complete.  Don't free
	 * the command either.  This is the last command we will send before
	 * re-initializing everything, so it doesn't matter and won't leak.
	 */
	return 0;
}

5263
static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
5264
	void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
5265 5266 5267
	int cmd_type)
{
	int pci_dir = XFER_NONE;
5268
	struct CommandList *a; /* for commands to be aborted */
5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286

	c->cmd_type = CMD_IOCTL_PEND;
	c->Header.ReplyQueue = 0;
	if (buff != NULL && size > 0) {
		c->Header.SGList = 1;
		c->Header.SGTotal = 1;
	} else {
		c->Header.SGList = 0;
		c->Header.SGTotal = 0;
	}
	c->Header.Tag.lower = c->busaddr;
	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);

	c->Request.Type.Type = cmd_type;
	if (cmd_type == TYPE_CMD) {
		switch (cmd) {
		case HPSA_INQUIRY:
			/* are we trying to read a vital product page */
5287
			if (page_code & VPD_PAGE) {
5288
				c->Request.CDB[1] = 0x01;
5289
				c->Request.CDB[2] = (page_code & 0xff);
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
			}
			c->Request.CDBLen = 6;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_INQUIRY;
			c->Request.CDB[4] = size & 0xFF;
			break;
		case HPSA_REPORT_LOG:
		case HPSA_REPORT_PHYS:
			/* Talking to controller so It's a physical command
			   mode = 00 target = 0.  Nothing to write.
			 */
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
		case HPSA_CACHE_FLUSH:
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_WRITE;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_WRITE;
			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
5320 5321
			c->Request.CDB[7] = (size >> 8) & 0xFF;
			c->Request.CDB[8] = size & 0xFF;
5322 5323 5324 5325 5326 5327 5328
			break;
		case TEST_UNIT_READY:
			c->Request.CDBLen = 6;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_NONE;
			c->Request.Timeout = 0;
			break;
5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340
		case HPSA_GET_RAID_MAP:
			c->Request.CDBLen = 12;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = HPSA_CISS_READ;
			c->Request.CDB[1] = cmd;
			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			c->Request.CDB[9] = size & 0xFF;
			break;
5341 5342 5343 5344 5345 5346 5347 5348 5349 5350
		case BMIC_SENSE_CONTROLLER_PARAMETERS:
			c->Request.CDBLen = 10;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_READ;
			c->Request.Timeout = 0;
			c->Request.CDB[0] = BMIC_READ;
			c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
			c->Request.CDB[7] = (size >> 16) & 0xFF;
			c->Request.CDB[8] = (size >> 8) & 0xFF;
			break;
5351 5352 5353
		default:
			dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
			BUG();
5354
			return -1;
5355 5356 5357 5358 5359 5360 5361 5362 5363 5364
		}
	} else if (cmd_type == TYPE_MSG) {
		switch (cmd) {

		case  HPSA_DEVICE_RESET_MSG:
			c->Request.CDBLen = 16;
			c->Request.Type.Type =  1; /* It is a MSG not a CMD */
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_NONE;
			c->Request.Timeout = 0; /* Don't time out */
5365 5366
			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
			c->Request.CDB[0] =  cmd;
5367
			c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
5368 5369 5370 5371 5372 5373
			/* If bytes 4-7 are zero, it means reset the */
			/* LunID device */
			c->Request.CDB[4] = 0x00;
			c->Request.CDB[5] = 0x00;
			c->Request.CDB[6] = 0x00;
			c->Request.CDB[7] = 0x00;
5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
			break;
		case  HPSA_ABORT_MSG:
			a = buff;       /* point to command to be aborted */
			dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
				a->Header.Tag.upper, a->Header.Tag.lower,
				c->Header.Tag.upper, c->Header.Tag.lower);
			c->Request.CDBLen = 16;
			c->Request.Type.Type = TYPE_MSG;
			c->Request.Type.Attribute = ATTR_SIMPLE;
			c->Request.Type.Direction = XFER_WRITE;
			c->Request.Timeout = 0; /* Don't time out */
			c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
			c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
			c->Request.CDB[2] = 0x00; /* reserved */
			c->Request.CDB[3] = 0x00; /* reserved */
			/* Tag to abort goes in CDB[4]-CDB[11] */
			c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
			c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
			c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
			c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
			c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
			c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
			c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
			c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
			c->Request.CDB[12] = 0x00; /* reserved */
			c->Request.CDB[13] = 0x00; /* reserved */
			c->Request.CDB[14] = 0x00; /* reserved */
			c->Request.CDB[15] = 0x00; /* reserved */
5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425
		break;
		default:
			dev_warn(&h->pdev->dev, "unknown message type %d\n",
				cmd);
			BUG();
		}
	} else {
		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
		BUG();
	}

	switch (c->Request.Type.Direction) {
	case XFER_READ:
		pci_dir = PCI_DMA_FROMDEVICE;
		break;
	case XFER_WRITE:
		pci_dir = PCI_DMA_TODEVICE;
		break;
	case XFER_NONE:
		pci_dir = PCI_DMA_NONE;
		break;
	default:
		pci_dir = PCI_DMA_BIDIRECTIONAL;
	}
5426 5427 5428
	if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
		return -1;
	return 0;
5429 5430 5431 5432 5433 5434 5435 5436 5437
}

/*
 * Map (physical) PCI mem into (virtual) kernel space
 */
static void __iomem *remap_pci_mem(ulong base, ulong size)
{
	ulong page_base = ((ulong) base) & PAGE_MASK;
	ulong page_offs = ((ulong) base) - page_base;
5438 5439
	void __iomem *page_remapped = ioremap_nocache(page_base,
		page_offs + size);
5440 5441 5442 5443 5444 5445

	return page_remapped ? (page_remapped + page_offs) : NULL;
}

/* Takes cmds off the submission queue and sends them to the hardware,
 * then puts them on the queue of cmds waiting for completion.
5446
 * Assumes h->lock is held
5447
 */
5448
static void start_io(struct ctlr_info *h, unsigned long *flags)
5449 5450 5451
{
	struct CommandList *c;

5452 5453
	while (!list_empty(&h->reqQ)) {
		c = list_entry(h->reqQ.next, struct CommandList, list);
5454 5455
		/* can't do anything if fifo is full */
		if ((h->access.fifo_full(h))) {
5456
			h->fifo_recently_full = 1;
5457 5458 5459
			dev_warn(&h->pdev->dev, "fifo full\n");
			break;
		}
5460
		h->fifo_recently_full = 0;
5461 5462 5463 5464 5465 5466 5467

		/* Get the first entry from the Request Q */
		removeQ(c);
		h->Qdepth--;

		/* Put job onto the completed Q */
		addQ(&h->cmpQ, c);
5468 5469 5470 5471 5472 5473 5474 5475

		/* Must increment commands_outstanding before unlocking
		 * and submitting to avoid race checking for fifo full
		 * condition.
		 */
		h->commands_outstanding++;

		/* Tell the controller execute command */
5476
		spin_unlock_irqrestore(&h->lock, *flags);
5477
		h->access.submit_command(h, c);
5478
		spin_lock_irqsave(&h->lock, *flags);
5479
	}
5480 5481 5482 5483 5484 5485 5486 5487
}

static void lock_and_start_io(struct ctlr_info *h)
{
	unsigned long flags;

	spin_lock_irqsave(&h->lock, flags);
	start_io(h, &flags);
5488
	spin_unlock_irqrestore(&h->lock, flags);
5489 5490
}

5491
static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
5492
{
5493
	return h->access.command_completed(h, q);
5494 5495
}

5496
static inline bool interrupt_pending(struct ctlr_info *h)
5497 5498 5499 5500 5501 5502
{
	return h->access.intr_pending(h);
}

static inline long interrupt_not_for_us(struct ctlr_info *h)
{
5503 5504
	return (h->access.intr_pending(h) == 0) ||
		(h->interrupts_enabled == 0);
5505 5506
}

5507 5508
static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
	u32 raw_tag)
5509 5510 5511 5512 5513 5514 5515 5516
{
	if (unlikely(tag_index >= h->nr_cmds)) {
		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
		return 1;
	}
	return 0;
}

5517
static inline void finish_cmd(struct CommandList *c)
5518
{
5519
	unsigned long flags;
5520 5521
	int io_may_be_stalled = 0;
	struct ctlr_info *h = c->h;
5522

5523
	spin_lock_irqsave(&h->lock, flags);
5524
	removeQ(c);
5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547

	/*
	 * Check for possibly stalled i/o.
	 *
	 * If a fifo_full condition is encountered, requests will back up
	 * in h->reqQ.  This queue is only emptied out by start_io which is
	 * only called when a new i/o request comes in.  If no i/o's are
	 * forthcoming, the i/o's in h->reqQ can get stuck.  So we call
	 * start_io from here if we detect such a danger.
	 *
	 * Normally, we shouldn't hit this case, but pounding on the
	 * CCISS_PASSTHRU ioctl can provoke it.  Only call start_io if
	 * commands_outstanding is low.  We want to avoid calling
	 * start_io from in here as much as possible, and esp. don't
	 * want to get in a cycle where we call start_io every time
	 * through here.
	 */
	if (unlikely(h->fifo_recently_full) &&
		h->commands_outstanding < 5)
		io_may_be_stalled = 1;

	spin_unlock_irqrestore(&h->lock, flags);

5548
	dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
5549 5550
	if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
			|| c->cmd_type == CMD_IOACCEL2))
5551
		complete_scsi_command(c);
5552 5553
	else if (c->cmd_type == CMD_IOCTL_PEND)
		complete(c->waiting);
5554
	if (unlikely(io_may_be_stalled))
5555
		lock_and_start_io(h);
5556 5557
}

5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
static inline u32 hpsa_tag_contains_index(u32 tag)
{
	return tag & DIRECT_LOOKUP_BIT;
}

static inline u32 hpsa_tag_to_index(u32 tag)
{
	return tag >> DIRECT_LOOKUP_SHIFT;
}

5568 5569

static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
5570
{
5571 5572
#define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
#define HPSA_SIMPLE_ERROR_BITS 0x03
5573
	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
5574 5575
		return tag & ~HPSA_SIMPLE_ERROR_BITS;
	return tag & ~HPSA_PERF_ERROR_BITS;
5576 5577
}

5578
/* process completion of an indexed ("direct lookup") command */
5579
static inline void process_indexed_cmd(struct ctlr_info *h,
5580 5581 5582 5583 5584 5585
	u32 raw_tag)
{
	u32 tag_index;
	struct CommandList *c;

	tag_index = hpsa_tag_to_index(raw_tag);
5586 5587 5588 5589
	if (!bad_tag(h, tag_index, raw_tag)) {
		c = h->cmd_pool + tag_index;
		finish_cmd(c);
	}
5590 5591 5592
}

/* process completion of a non-indexed command */
5593
static inline void process_nonindexed_cmd(struct ctlr_info *h,
5594 5595 5596 5597
	u32 raw_tag)
{
	u32 tag;
	struct CommandList *c = NULL;
5598
	unsigned long flags;
5599

5600
	tag = hpsa_tag_discard_error_bits(h, raw_tag);
5601
	spin_lock_irqsave(&h->lock, flags);
5602
	list_for_each_entry(c, &h->cmpQ, list) {
5603
		if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
5604
			spin_unlock_irqrestore(&h->lock, flags);
5605
			finish_cmd(c);
5606
			return;
5607 5608
		}
	}
5609
	spin_unlock_irqrestore(&h->lock, flags);
5610 5611 5612
	bad_tag(h, h->nr_cmds + 1, raw_tag);
}

5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
/* Some controllers, like p400, will give us one interrupt
 * after a soft reset, even if we turned interrupts off.
 * Only need to check for this in the hpsa_xxx_discard_completions
 * functions.
 */
static int ignore_bogus_interrupt(struct ctlr_info *h)
{
	if (likely(!reset_devices))
		return 0;

	if (likely(h->interrupts_enabled))
		return 0;

	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
		"(known firmware bug.)  Ignoring.\n");

	return 1;
}

5632 5633 5634 5635 5636 5637
/*
 * Convert &h->q[x] (passed to interrupt handlers) back to h.
 * Relies on (h-q[x] == x) being true for x such that
 * 0 <= x < MAX_REPLY_QUEUES.
 */
static struct ctlr_info *queue_to_hba(u8 *queue)
5638
{
5639 5640 5641 5642 5643 5644 5645
	return container_of((queue - *queue), struct ctlr_info, q[0]);
}

static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
{
	struct ctlr_info *h = queue_to_hba(queue);
	u8 q = *(u8 *) queue;
5646 5647 5648 5649 5650 5651 5652
	u32 raw_tag;

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
5653
	h->last_intr_timestamp = get_jiffies_64();
5654
	while (interrupt_pending(h)) {
5655
		raw_tag = get_next_completion(h, q);
5656
		while (raw_tag != FIFO_EMPTY)
5657
			raw_tag = next_command(h, q);
5658 5659 5660 5661
	}
	return IRQ_HANDLED;
}

5662
static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
5663
{
5664
	struct ctlr_info *h = queue_to_hba(queue);
5665
	u32 raw_tag;
5666
	u8 q = *(u8 *) queue;
5667 5668 5669 5670

	if (ignore_bogus_interrupt(h))
		return IRQ_NONE;

5671
	h->last_intr_timestamp = get_jiffies_64();
5672
	raw_tag = get_next_completion(h, q);
5673
	while (raw_tag != FIFO_EMPTY)
5674
		raw_tag = next_command(h, q);
5675 5676 5677
	return IRQ_HANDLED;
}

5678
static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
5679
{
5680
	struct ctlr_info *h = queue_to_hba((u8 *) queue);
5681
	u32 raw_tag;
5682
	u8 q = *(u8 *) queue;
5683 5684 5685

	if (interrupt_not_for_us(h))
		return IRQ_NONE;
5686
	h->last_intr_timestamp = get_jiffies_64();
5687
	while (interrupt_pending(h)) {
5688
		raw_tag = get_next_completion(h, q);
5689
		while (raw_tag != FIFO_EMPTY) {
5690 5691
			if (likely(hpsa_tag_contains_index(raw_tag)))
				process_indexed_cmd(h, raw_tag);
5692
			else
5693
				process_nonindexed_cmd(h, raw_tag);
5694
			raw_tag = next_command(h, q);
5695 5696 5697 5698 5699
		}
	}
	return IRQ_HANDLED;
}

5700
static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
5701
{
5702
	struct ctlr_info *h = queue_to_hba(queue);
5703
	u32 raw_tag;
5704
	u8 q = *(u8 *) queue;
5705

5706
	h->last_intr_timestamp = get_jiffies_64();
5707
	raw_tag = get_next_completion(h, q);
5708
	while (raw_tag != FIFO_EMPTY) {
5709 5710
		if (likely(hpsa_tag_contains_index(raw_tag)))
			process_indexed_cmd(h, raw_tag);
5711
		else
5712
			process_nonindexed_cmd(h, raw_tag);
5713
		raw_tag = next_command(h, q);
5714 5715 5716 5717
	}
	return IRQ_HANDLED;
}

5718 5719 5720 5721
/* Send a message CDB to the firmware. Careful, this only works
 * in simple mode, not performant mode due to the tag lookup.
 * We only ever use this immediately after a controller reset.
 */
5722 5723
static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
			unsigned char type)
5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786
{
	struct Command {
		struct CommandListHeader CommandHeader;
		struct RequestBlock Request;
		struct ErrDescriptor ErrorDescriptor;
	};
	struct Command *cmd;
	static const size_t cmd_sz = sizeof(*cmd) +
					sizeof(cmd->ErrorDescriptor);
	dma_addr_t paddr64;
	uint32_t paddr32, tag;
	void __iomem *vaddr;
	int i, err;

	vaddr = pci_ioremap_bar(pdev, 0);
	if (vaddr == NULL)
		return -ENOMEM;

	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
	 * CCISS commands, so they must be allocated from the lower 4GiB of
	 * memory.
	 */
	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
	if (err) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
	if (cmd == NULL) {
		iounmap(vaddr);
		return -ENOMEM;
	}

	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
	 * although there's no guarantee, we assume that the address is at
	 * least 4-byte aligned (most likely, it's page-aligned).
	 */
	paddr32 = paddr64;

	cmd->CommandHeader.ReplyQueue = 0;
	cmd->CommandHeader.SGList = 0;
	cmd->CommandHeader.SGTotal = 0;
	cmd->CommandHeader.Tag.lower = paddr32;
	cmd->CommandHeader.Tag.upper = 0;
	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);

	cmd->Request.CDBLen = 16;
	cmd->Request.Type.Type = TYPE_MSG;
	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
	cmd->Request.Type.Direction = XFER_NONE;
	cmd->Request.Timeout = 0; /* Don't time out */
	cmd->Request.CDB[0] = opcode;
	cmd->Request.CDB[1] = type;
	memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
	cmd->ErrorDescriptor.Addr.upper = 0;
	cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);

	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);

	for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
5787
		if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817
			break;
		msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
	}

	iounmap(vaddr);

	/* we leak the DMA buffer here ... no choice since the controller could
	 *  still complete the command.
	 */
	if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
			opcode, type);
		return -ETIMEDOUT;
	}

	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);

	if (tag & HPSA_ERROR_BIT) {
		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
			opcode, type);
		return -EIO;
	}

	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
		opcode, type);
	return 0;
}

#define hpsa_noop(p) hpsa_message(p, 3, 0)

5818
static int hpsa_controller_hard_reset(struct pci_dev *pdev,
D
Don Brace 已提交
5819
	void __iomem *vaddr, u32 use_doorbell)
5820 5821 5822 5823 5824 5825 5826 5827 5828 5829
{
	u16 pmcsr;
	int pos;

	if (use_doorbell) {
		/* For everything after the P600, the PCI power state method
		 * of resetting the controller doesn't work, so we have this
		 * other way using the doorbell register.
		 */
		dev_info(&pdev->dev, "using doorbell to reset controller\n");
5830
		writel(use_doorbell, vaddr + SA5_DOORBELL);
5831

5832
		/* PMC hardware guys tell us we need a 10 second delay after
5833 5834 5835 5836
		 * doorbell reset and before any attempt to talk to the board
		 * at all to ensure that this actually works and doesn't fall
		 * over in some weird corner cases.
		 */
5837
		msleep(10000);
5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867
	} else { /* Try to do it the PCI power state way */

		/* Quoting from the Open CISS Specification: "The Power
		 * Management Control/Status Register (CSR) controls the power
		 * state of the device.  The normal operating state is D0,
		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
		 * the controller, place the interface device in D3 then to D0,
		 * this causes a secondary PCI reset which will reset the
		 * controller." */

		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
		if (pos == 0) {
			dev_err(&pdev->dev,
				"hpsa_reset_controller: "
				"PCI PM not supported\n");
			return -ENODEV;
		}
		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
		/* enter the D3hot power management state */
		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
		pmcsr |= PCI_D3hot;
		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);

		msleep(500);

		/* enter the D0 power management state */
		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
		pmcsr |= PCI_D0;
		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
5868 5869 5870 5871 5872 5873 5874

		/*
		 * The P600 requires a small delay when changing states.
		 * Otherwise we may think the board did not reset and we bail.
		 * This for kdump only and is particular to the P600.
		 */
		msleep(500);
5875 5876 5877 5878
	}
	return 0;
}

5879
static void init_driver_version(char *driver_version, int len)
5880 5881
{
	memset(driver_version, 0, len);
5882
	strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
5883 5884
}

5885
static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900
{
	char *driver_version;
	int i, size = sizeof(cfgtable->driver_version);

	driver_version = kmalloc(size, GFP_KERNEL);
	if (!driver_version)
		return -ENOMEM;

	init_driver_version(driver_version, size);
	for (i = 0; i < size; i++)
		writeb(driver_version[i], &cfgtable->driver_version[i]);
	kfree(driver_version);
	return 0;
}

5901 5902
static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
					  unsigned char *driver_ver)
5903 5904 5905 5906 5907 5908 5909
{
	int i;

	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
		driver_ver[i] = readb(&cfgtable->driver_version[i]);
}

5910
static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
{

	char *driver_ver, *old_driver_ver;
	int rc, size = sizeof(cfgtable->driver_version);

	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
	if (!old_driver_ver)
		return -ENOMEM;
	driver_ver = old_driver_ver + size;

	/* After a reset, the 32 bytes of "driver version" in the cfgtable
	 * should have been changed, otherwise we know the reset failed.
	 */
	init_driver_version(old_driver_ver, size);
	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
	rc = !memcmp(driver_ver, old_driver_ver, size);
	kfree(old_driver_ver);
	return rc;
}
5930
/* This does a hard reset of the controller using PCI power management
5931
 * states or the using the doorbell register.
5932
 */
5933
static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
5934
{
5935 5936 5937 5938 5939
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
	void __iomem *vaddr;
	unsigned long paddr;
5940
	u32 misc_fw_support;
5941
	int rc;
5942
	struct CfgTable __iomem *cfgtable;
5943
	u32 use_doorbell;
5944
	u32 board_id;
5945
	u16 command_register;
5946

5947 5948
	/* For controllers as old as the P600, this is very nearly
	 * the same thing as
5949 5950 5951 5952 5953 5954
	 *
	 * pci_save_state(pci_dev);
	 * pci_set_power_state(pci_dev, PCI_D3hot);
	 * pci_set_power_state(pci_dev, PCI_D0);
	 * pci_restore_state(pci_dev);
	 *
5955 5956 5957
	 * For controllers newer than the P600, the pci power state
	 * method of resetting doesn't work so we have another way
	 * using the doorbell register.
5958
	 */
5959

5960
	rc = hpsa_lookup_board_id(pdev, &board_id);
5961
	if (rc < 0 || !ctlr_is_resettable(board_id)) {
5962 5963 5964
		dev_warn(&pdev->dev, "Not resetting device.\n");
		return -ENODEV;
	}
5965 5966 5967 5968

	/* if controller is soft- but not hard resettable... */
	if (!ctlr_is_hard_resettable(board_id))
		return -ENOTSUPP; /* try soft reset later. */
5969

5970 5971 5972
	/* Save the PCI command register */
	pci_read_config_word(pdev, 4, &command_register);
	pci_save_state(pdev);
5973

5974 5975 5976 5977 5978 5979 5980
	/* find the first memory BAR, so we can find the cfg table */
	rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
	if (rc)
		return rc;
	vaddr = remap_pci_mem(paddr, 0x250);
	if (!vaddr)
		return -ENOMEM;
5981

5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992
	/* find cfgtable in order to check if reset via doorbell is supported */
	rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
					&cfg_base_addr_index, &cfg_offset);
	if (rc)
		goto unmap_vaddr;
	cfgtable = remap_pci_mem(pci_resource_start(pdev,
		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
	if (!cfgtable) {
		rc = -ENOMEM;
		goto unmap_vaddr;
	}
5993 5994 5995
	rc = write_driver_ver_to_cfgtable(cfgtable);
	if (rc)
		goto unmap_vaddr;
5996

5997 5998 5999
	/* If reset via doorbell register is supported, use that.
	 * There are two such methods.  Favor the newest method.
	 */
6000
	misc_fw_support = readl(&cfgtable->misc_fw_support);
6001 6002 6003 6004 6005 6006
	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
	if (use_doorbell) {
		use_doorbell = DOORBELL_CTLR_RESET2;
	} else {
		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
		if (use_doorbell) {
6007 6008
			dev_warn(&pdev->dev, "Soft reset not supported. "
				"Firmware update is required.\n");
6009
			rc = -ENOTSUPP; /* try soft reset */
6010 6011 6012
			goto unmap_cfgtable;
		}
	}
6013

6014 6015 6016
	rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
	if (rc)
		goto unmap_cfgtable;
6017

6018 6019
	pci_restore_state(pdev);
	pci_write_config_word(pdev, 4, command_register);
6020

6021 6022 6023 6024
	/* Some devices (notably the HP Smart Array 5i Controller)
	   need a little pause here */
	msleep(HPSA_POST_RESET_PAUSE_MSECS);

6025 6026 6027
	rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
	if (rc) {
		dev_warn(&pdev->dev,
6028 6029
			"failed waiting for board to become ready "
			"after hard reset\n");
6030 6031 6032
		goto unmap_cfgtable;
	}

6033 6034 6035 6036
	rc = controller_reset_failed(vaddr);
	if (rc < 0)
		goto unmap_cfgtable;
	if (rc) {
6037 6038 6039
		dev_warn(&pdev->dev, "Unable to successfully reset "
			"controller. Will try soft reset.\n");
		rc = -ENOTSUPP;
6040
	} else {
6041
		dev_info(&pdev->dev, "board ready after hard reset.\n");
6042 6043 6044 6045 6046 6047 6048 6049
	}

unmap_cfgtable:
	iounmap(cfgtable);

unmap_vaddr:
	iounmap(vaddr);
	return rc;
6050 6051 6052 6053 6054 6055 6056
}

/*
 *  We cannot read the structure directly, for portability we must use
 *   the io functions.
 *   This is for debug only.
 */
D
Don Brace 已提交
6057
static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
6058
{
6059
#ifdef HPSA_DEBUG
6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089
	int i;
	char temp_name[17];

	dev_info(dev, "Controller Configuration information\n");
	dev_info(dev, "------------------------------------\n");
	for (i = 0; i < 4; i++)
		temp_name[i] = readb(&(tb->Signature[i]));
	temp_name[4] = '\0';
	dev_info(dev, "   Signature = %s\n", temp_name);
	dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
	dev_info(dev, "   Transport methods supported = 0x%x\n",
	       readl(&(tb->TransportSupport)));
	dev_info(dev, "   Transport methods active = 0x%x\n",
	       readl(&(tb->TransportActive)));
	dev_info(dev, "   Requested transport Method = 0x%x\n",
	       readl(&(tb->HostWrite.TransportRequest)));
	dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntDelay)));
	dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
	       readl(&(tb->HostWrite.CoalIntCount)));
	dev_info(dev, "   Max outstanding commands = 0x%d\n",
	       readl(&(tb->CmdsOutMax)));
	dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
	for (i = 0; i < 16; i++)
		temp_name[i] = readb(&(tb->ServerName[i]));
	temp_name[16] = '\0';
	dev_info(dev, "   Server Name = %s\n", temp_name);
	dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
		readl(&(tb->HeartBeat)));
#endif				/* HPSA_DEBUG */
6090
}
6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130

static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
{
	int i, offset, mem_type, bar_type;

	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
		return 0;
	offset = 0;
	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
			offset += 4;
		else {
			mem_type = pci_resource_flags(pdev, i) &
			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
			switch (mem_type) {
			case PCI_BASE_ADDRESS_MEM_TYPE_32:
			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
				offset += 4;	/* 32 bit */
				break;
			case PCI_BASE_ADDRESS_MEM_TYPE_64:
				offset += 8;
				break;
			default:	/* reserved in PCI 2.2 */
				dev_warn(&pdev->dev,
				       "base address is invalid\n");
				return -1;
				break;
			}
		}
		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
			return i + 1;
	}
	return -1;
}

/* If MSI/MSI-X is supported by the kernel we will try to enable it on
 * controllers that are capable. If not, we use IO-APIC mode.
 */

6131
static void hpsa_interrupt_mode(struct ctlr_info *h)
6132 6133
{
#ifdef CONFIG_PCI_MSI
6134 6135 6136 6137 6138 6139 6140
	int err, i;
	struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];

	for (i = 0; i < MAX_REPLY_QUEUES; i++) {
		hpsa_msix_entries[i].vector = 0;
		hpsa_msix_entries[i].entry = i;
	}
6141 6142

	/* Some boards advertise MSI but don't really support it */
6143 6144
	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
6145
		goto default_int_mode;
6146 6147
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
		dev_info(&h->pdev->dev, "MSIX\n");
6148
		h->msix_vector = MAX_REPLY_QUEUES;
6149 6150
		if (h->msix_vector > num_online_cpus())
			h->msix_vector = num_online_cpus();
6151 6152 6153 6154 6155 6156 6157
		err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
					    1, h->msix_vector);
		if (err < 0) {
			dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
			h->msix_vector = 0;
			goto single_msi_mode;
		} else if (err < h->msix_vector) {
6158
			dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
6159 6160
			       "available\n", err);
		}
6161 6162 6163 6164
		h->msix_vector = err;
		for (i = 0; i < h->msix_vector; i++)
			h->intr[i] = hpsa_msix_entries[i].vector;
		return;
6165
	}
6166
single_msi_mode:
6167 6168 6169
	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
		dev_info(&h->pdev->dev, "MSI\n");
		if (!pci_enable_msi(h->pdev))
6170 6171
			h->msi_vector = 1;
		else
6172
			dev_warn(&h->pdev->dev, "MSI init failed\n");
6173 6174 6175 6176
	}
default_int_mode:
#endif				/* CONFIG_PCI_MSI */
	/* if we get here we're going to use the default interrupt mode */
6177
	h->intr[h->intr_mode] = h->pdev->irq;
6178 6179
}

6180
static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
{
	int i;
	u32 subsystem_vendor_id, subsystem_device_id;

	subsystem_vendor_id = pdev->subsystem_vendor;
	subsystem_device_id = pdev->subsystem_device;
	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
		    subsystem_vendor_id;

	for (i = 0; i < ARRAY_SIZE(products); i++)
		if (*board_id == products[i].board_id)
			return i;

6194 6195 6196
	if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
		subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
		!hpsa_allow_any) {
6197 6198 6199 6200 6201 6202 6203
		dev_warn(&pdev->dev, "unrecognized board ID: "
			"0x%08x, ignoring.\n", *board_id);
			return -ENODEV;
	}
	return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
}

6204 6205
static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
				    unsigned long *memory_bar)
6206 6207 6208 6209
{
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
6210
		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
6211
			/* addressing mode bits already removed */
6212 6213
			*memory_bar = pci_resource_start(pdev, i);
			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
6214 6215 6216
				*memory_bar);
			return 0;
		}
6217
	dev_warn(&pdev->dev, "no memory BAR found\n");
6218 6219 6220
	return -ENODEV;
}

6221 6222
static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
				     int wait_for_ready)
6223
{
6224
	int i, iterations;
6225
	u32 scratchpad;
6226 6227 6228 6229
	if (wait_for_ready)
		iterations = HPSA_BOARD_READY_ITERATIONS;
	else
		iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
6230

6231 6232 6233 6234 6235 6236 6237 6238 6239
	for (i = 0; i < iterations; i++) {
		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
		if (wait_for_ready) {
			if (scratchpad == HPSA_FIRMWARE_READY)
				return 0;
		} else {
			if (scratchpad != HPSA_FIRMWARE_READY)
				return 0;
		}
6240 6241
		msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
	}
6242
	dev_warn(&pdev->dev, "board not ready, timed out.\n");
6243 6244 6245
	return -ENODEV;
}

6246 6247 6248
static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
			       u32 *cfg_base_addr, u64 *cfg_base_addr_index,
			       u64 *cfg_offset)
6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
{
	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
	*cfg_base_addr &= (u32) 0x0000ffff;
	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
	if (*cfg_base_addr_index == -1) {
		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
		return -ENODEV;
	}
	return 0;
}

6261
static int hpsa_find_cfgtables(struct ctlr_info *h)
6262
{
6263 6264 6265
	u64 cfg_offset;
	u32 cfg_base_addr;
	u64 cfg_base_addr_index;
6266
	u32 trans_offset;
6267
	int rc;
6268

6269 6270 6271 6272
	rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
		&cfg_base_addr_index, &cfg_offset);
	if (rc)
		return rc;
6273
	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
6274
		       cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
6275 6276
	if (!h->cfgtable)
		return -ENOMEM;
6277 6278 6279
	rc = write_driver_ver_to_cfgtable(h->cfgtable);
	if (rc)
		return rc;
6280
	/* Find performant mode table. */
6281
	trans_offset = readl(&h->cfgtable->TransMethodOffset);
6282 6283 6284 6285 6286 6287 6288 6289
	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
				cfg_base_addr_index)+cfg_offset+trans_offset,
				sizeof(*h->transtable));
	if (!h->transtable)
		return -ENOMEM;
	return 0;
}

6290
static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
6291 6292
{
	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
6293 6294 6295 6296 6297

	/* Limit commands in memory limited kdump scenario. */
	if (reset_devices && h->max_commands > 32)
		h->max_commands = 32;

6298 6299 6300 6301 6302 6303 6304 6305 6306
	if (h->max_commands < 16) {
		dev_warn(&h->pdev->dev, "Controller reports "
			"max supported commands of %d, an obvious lie. "
			"Using 16.  Ensure that firmware is up to date.\n",
			h->max_commands);
		h->max_commands = 16;
	}
}

6307 6308 6309 6310
/* Interrogate the hardware for some limits:
 * max commands, max SG elements without chaining, and with chaining,
 * SG chain block size, etc.
 */
6311
static void hpsa_find_board_params(struct ctlr_info *h)
6312
{
6313
	hpsa_get_max_perf_mode_cmds(h);
6314 6315
	h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
	h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
6316
	h->fw_support = readl(&(h->cfgtable->misc_fw_support));
6317 6318 6319 6320 6321 6322 6323
	/*
	 * Limit in-command s/g elements to 32 save dma'able memory.
	 * Howvever spec says if 0, use 31
	 */
	h->max_cmd_sg_entries = 31;
	if (h->maxsgentries > 512) {
		h->max_cmd_sg_entries = 32;
6324
		h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
6325 6326 6327
		h->maxsgentries--; /* save one for chain pointer */
	} else {
		h->chainsize = 0;
6328
		h->maxsgentries = 31; /* default to traditional values */
6329
	}
6330 6331 6332

	/* Find out what task management functions are supported and cache */
	h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
6333 6334 6335 6336
	if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
	if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
		dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
6337 6338
}

6339 6340
static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
{
A
Akinobu Mita 已提交
6341
	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
6342 6343 6344 6345 6346 6347
		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
		return false;
	}
	return true;
}

6348
static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
6349
{
6350
	u32 driver_support;
6351

6352
	driver_support = readl(&(h->cfgtable->driver_support));
A
Arnd Bergmann 已提交
6353 6354
	/* Need to enable prefetch in the SCSI core for 6400 in x86 */
#ifdef CONFIG_X86
6355
	driver_support |= ENABLE_SCSI_PREFETCH;
6356
#endif
6357 6358
	driver_support |= ENABLE_UNIT_ATTN;
	writel(driver_support, &(h->cfgtable->driver_support));
6359 6360
}

6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374
/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
 * in a prefetch beyond physical memory.
 */
static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
{
	u32 dma_prefetch;

	if (h->board_id != 0x3225103C)
		return;
	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
	dma_prefetch |= 0x8000;
	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
}

6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
static void hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
{
	int i;
	u32 doorbell_value;
	unsigned long flags;
	/* wait until the clear_event_notify bit 6 is cleared by controller. */
	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
		if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
			break;
		/* delay and try again */
		msleep(20);
	}
}

6392
static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
6393 6394
{
	int i;
6395 6396
	u32 doorbell_value;
	unsigned long flags;
6397 6398 6399 6400 6401 6402

	/* under certain very rare conditions, this can take awhile.
	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
	 * as we enter this code.)
	 */
	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
6403 6404 6405
		spin_lock_irqsave(&h->lock, flags);
		doorbell_value = readl(h->vaddr + SA5_DOORBELL);
		spin_unlock_irqrestore(&h->lock, flags);
D
Dan Carpenter 已提交
6406
		if (!(doorbell_value & CFGTBL_ChangeReq))
6407 6408
			break;
		/* delay and try again */
6409
		usleep_range(10000, 20000);
6410
	}
6411 6412
}

6413
static int hpsa_enter_simple_mode(struct ctlr_info *h)
6414 6415 6416 6417 6418 6419 6420 6421
{
	u32 trans_support;

	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & SIMPLE_MODE))
		return -ENOTSUPP;

	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
6422

6423 6424
	/* Update the field, and then ring the doorbell */
	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
6425
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
6426 6427
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	hpsa_wait_for_mode_change_ack(h);
6428
	print_cfg_table(&h->pdev->dev, h->cfgtable);
6429 6430
	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
		goto error;
6431
	h->transMethod = CFGTBL_Trans_Simple;
6432
	return 0;
6433 6434 6435
error:
	dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
	return -ENODEV;
6436 6437
}

6438
static int hpsa_pci_init(struct ctlr_info *h)
6439
{
6440
	int prod_index, err;
6441

6442 6443 6444 6445 6446
	prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
	if (prod_index < 0)
		return -ENODEV;
	h->product_name = products[prod_index].product_name;
	h->access = *(products[prod_index].access);
6447

M
Matthew Garrett 已提交
6448 6449 6450
	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
			       PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);

6451
	err = pci_enable_device(h->pdev);
6452
	if (err) {
6453
		dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
6454 6455 6456
		return err;
	}

6457 6458 6459
	/* Enable bus mastering (pci_disable_device may disable this) */
	pci_set_master(h->pdev);

6460
	err = pci_request_regions(h->pdev, HPSA);
6461
	if (err) {
6462 6463
		dev_err(&h->pdev->dev,
			"cannot obtain PCI resources, aborting\n");
6464 6465
		return err;
	}
6466
	hpsa_interrupt_mode(h);
6467
	err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
6468
	if (err)
6469 6470
		goto err_out_free_res;
	h->vaddr = remap_pci_mem(h->paddr, 0x250);
6471 6472 6473 6474
	if (!h->vaddr) {
		err = -ENOMEM;
		goto err_out_free_res;
	}
6475
	err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
6476
	if (err)
6477
		goto err_out_free_res;
6478 6479
	err = hpsa_find_cfgtables(h);
	if (err)
6480
		goto err_out_free_res;
6481
	hpsa_find_board_params(h);
6482

6483
	if (!hpsa_CISS_signature_present(h)) {
6484 6485 6486
		err = -ENODEV;
		goto err_out_free_res;
	}
6487
	hpsa_set_driver_support_bits(h);
6488
	hpsa_p600_dma_prefetch_quirk(h);
6489 6490
	err = hpsa_enter_simple_mode(h);
	if (err)
6491 6492 6493 6494
		goto err_out_free_res;
	return 0;

err_out_free_res:
6495 6496 6497 6498 6499 6500
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
	if (h->vaddr)
		iounmap(h->vaddr);
6501
	pci_disable_device(h->pdev);
6502
	pci_release_regions(h->pdev);
6503 6504 6505
	return err;
}

6506
static void hpsa_hba_inquiry(struct ctlr_info *h)
6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521
{
	int rc;

#define HBA_INQUIRY_BYTE_COUNT 64
	h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
	if (!h->hba_inquiry_data)
		return;
	rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
		h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
	if (rc != 0) {
		kfree(h->hba_inquiry_data);
		h->hba_inquiry_data = NULL;
	}
}

6522
static int hpsa_init_reset_devices(struct pci_dev *pdev)
6523
{
6524
	int rc, i;
6525 6526 6527 6528

	if (!reset_devices)
		return 0;

6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
	/* kdump kernel is loading, we don't know in which state is
	 * the pci interface. The dev->enable_cnt is equal zero
	 * so we call enable+disable, wait a while and switch it on.
	 */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "Failed to enable PCI device\n");
		return -ENODEV;
	}
	pci_disable_device(pdev);
	msleep(260);			/* a randomly chosen number */
	rc = pci_enable_device(pdev);
	if (rc) {
		dev_warn(&pdev->dev, "failed to enable device.\n");
		return -ENODEV;
	}
6545
	pci_set_master(pdev);
6546 6547
	/* Reset the controller with a PCI power-cycle or via doorbell */
	rc = hpsa_kdump_hard_reset_controller(pdev);
6548

6549 6550
	/* -ENOTSUPP here means we cannot reset the controller
	 * but it's already (and still) up and running in
6551 6552
	 * "performant mode".  Or, it might be 640x, which can't reset
	 * due to concerns about shared bbwc between 6402/6404 pair.
6553
	 */
6554 6555 6556 6557 6558
	if (rc) {
		if (rc != -ENOTSUPP) /* just try to do the kdump anyhow. */
			rc = -ENODEV;
		goto out_disable;
	}
6559 6560

	/* Now try to get the controller to respond to a no-op */
6561
	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
6562 6563 6564 6565 6566 6567 6568
	for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
		if (hpsa_noop(pdev) == 0)
			break;
		else
			dev_warn(&pdev->dev, "no-op failed%s\n",
					(i < 11 ? "; re-trying" : ""));
	}
6569 6570 6571 6572 6573

out_disable:

	pci_disable_device(pdev);
	return rc;
6574 6575
}

6576
static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
{
	h->cmd_pool_bits = kzalloc(
		DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
		sizeof(unsigned long), GFP_KERNEL);
	h->cmd_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->cmd_pool),
		    &(h->cmd_pool_dhandle));
	h->errinfo_pool = pci_alloc_consistent(h->pdev,
		    h->nr_cmds * sizeof(*h->errinfo_pool),
		    &(h->errinfo_pool_dhandle));
	if ((h->cmd_pool_bits == NULL)
	    || (h->cmd_pool == NULL)
	    || (h->errinfo_pool == NULL)) {
		dev_err(&h->pdev->dev, "out of memory in %s", __func__);
		return -ENOMEM;
	}
	return 0;
}

static void hpsa_free_cmd_pool(struct ctlr_info *h)
{
	kfree(h->cmd_pool_bits);
	if (h->cmd_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct CommandList),
			    h->cmd_pool, h->cmd_pool_dhandle);
6603 6604 6605 6606
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
6607 6608 6609 6610 6611
	if (h->errinfo_pool)
		pci_free_consistent(h->pdev,
			    h->nr_cmds * sizeof(struct ErrorInfo),
			    h->errinfo_pool,
			    h->errinfo_pool_dhandle);
6612 6613 6614 6615
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(struct io_accel1_cmd),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
6616 6617
}

6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
static void hpsa_irq_affinity_hints(struct ctlr_info *h)
{
	int i, cpu, rc;

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < h->msix_vector; i++) {
		rc = irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
		cpu = cpumask_next(cpu, cpu_online_mask);
	}
}

6629 6630 6631 6632
static int hpsa_request_irq(struct ctlr_info *h,
	irqreturn_t (*msixhandler)(int, void *),
	irqreturn_t (*intxhandler)(int, void *))
{
6633
	int rc, i;
6634

6635 6636 6637 6638 6639 6640 6641
	/*
	 * initialize h->q[x] = x so that interrupt handlers know which
	 * queue to process.
	 */
	for (i = 0; i < MAX_REPLY_QUEUES; i++)
		h->q[i] = (u8) i;

6642
	if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
6643
		/* If performant mode and MSI-X, use multiple reply queues */
6644
		for (i = 0; i < h->msix_vector; i++)
6645 6646 6647
			rc = request_irq(h->intr[i], msixhandler,
					0, h->devname,
					&h->q[i]);
6648
		hpsa_irq_affinity_hints(h);
6649 6650
	} else {
		/* Use single reply pool */
6651
		if (h->msix_vector > 0 || h->msi_vector) {
6652 6653 6654 6655 6656 6657 6658 6659 6660
			rc = request_irq(h->intr[h->intr_mode],
				msixhandler, 0, h->devname,
				&h->q[h->intr_mode]);
		} else {
			rc = request_irq(h->intr[h->intr_mode],
				intxhandler, IRQF_SHARED, h->devname,
				&h->q[h->intr_mode]);
		}
	}
6661 6662 6663 6664 6665 6666 6667 6668
	if (rc) {
		dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
		       h->intr[h->intr_mode], h->devname);
		return -ENODEV;
	}
	return 0;
}

6669
static int hpsa_kdump_soft_reset(struct ctlr_info *h)
6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
{
	if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
		HPSA_RESET_TYPE_CONTROLLER)) {
		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
		return -EIO;
	}

	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
		return -1;
	}

	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
	if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
		dev_warn(&h->pdev->dev, "Board failed to become ready "
			"after soft reset.\n");
		return -1;
	}

	return 0;
}

6693 6694 6695 6696 6697 6698 6699
static void free_irqs(struct ctlr_info *h)
{
	int i;

	if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
		/* Single reply queue, only one irq to free */
		i = h->intr_mode;
6700
		irq_set_affinity_hint(h->intr[i], NULL);
6701 6702 6703 6704
		free_irq(h->intr[i], &h->q[i]);
		return;
	}

6705 6706
	for (i = 0; i < h->msix_vector; i++) {
		irq_set_affinity_hint(h->intr[i], NULL);
6707
		free_irq(h->intr[i], &h->q[i]);
6708
	}
6709 6710
}

6711
static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
6712
{
6713
	free_irqs(h);
6714
#ifdef CONFIG_PCI_MSI
6715 6716 6717 6718 6719 6720 6721
	if (h->msix_vector) {
		if (h->pdev->msix_enabled)
			pci_disable_msix(h->pdev);
	} else if (h->msi_vector) {
		if (h->pdev->msi_enabled)
			pci_disable_msi(h->pdev);
	}
6722
#endif /* CONFIG_PCI_MSI */
6723 6724
}

6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738
static void hpsa_free_reply_queues(struct ctlr_info *h)
{
	int i;

	for (i = 0; i < h->nreply_queues; i++) {
		if (!h->reply_queue[i].head)
			continue;
		pci_free_consistent(h->pdev, h->reply_queue_size,
			h->reply_queue[i].head, h->reply_queue[i].busaddr);
		h->reply_queue[i].head = NULL;
		h->reply_queue[i].busaddr = 0;
	}
}

6739 6740 6741
static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
{
	hpsa_free_irqs_and_disable_msix(h);
6742 6743
	hpsa_free_sg_chain_blocks(h);
	hpsa_free_cmd_pool(h);
6744
	kfree(h->ioaccel1_blockFetchTable);
6745
	kfree(h->blockFetchTable);
6746
	hpsa_free_reply_queues(h);
6747 6748 6749 6750 6751 6752
	if (h->vaddr)
		iounmap(h->vaddr);
	if (h->transtable)
		iounmap(h->transtable);
	if (h->cfgtable)
		iounmap(h->cfgtable);
6753
	pci_disable_device(h->pdev);
6754 6755 6756 6757
	pci_release_regions(h->pdev);
	kfree(h);
}

6758 6759 6760 6761 6762 6763 6764 6765 6766 6767
/* Called when controller lockup detected. */
static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
{
	struct CommandList *c = NULL;

	assert_spin_locked(&h->lock);
	/* Mark all outstanding commands as failed and complete them. */
	while (!list_empty(list)) {
		c = list_entry(list->next, struct CommandList, list);
		c->err_info->CommandStatus = CMD_HARDWARE_ERR;
6768
		finish_cmd(c);
6769 6770 6771
	}
}

6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
{
	int i, cpu;

	cpu = cpumask_first(cpu_online_mask);
	for (i = 0; i < num_online_cpus(); i++) {
		u32 *lockup_detected;
		lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
		*lockup_detected = value;
		cpu = cpumask_next(cpu, cpu_online_mask);
	}
	wmb(); /* be sure the per-cpu variables are out to memory */
}

6786 6787 6788
static void controller_lockup_detected(struct ctlr_info *h)
{
	unsigned long flags;
6789
	u32 lockup_detected;
6790 6791 6792

	h->access.set_intr_mask(h, HPSA_INTR_OFF);
	spin_lock_irqsave(&h->lock, flags);
6793 6794 6795 6796 6797 6798 6799 6800
	lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
	if (!lockup_detected) {
		/* no heartbeat, but controller gave us a zero. */
		dev_warn(&h->pdev->dev,
			"lockup detected but scratchpad register is zero\n");
		lockup_detected = 0xffffffff;
	}
	set_lockup_detected_for_all_cpus(h, lockup_detected);
6801 6802
	spin_unlock_irqrestore(&h->lock, flags);
	dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
6803
			lockup_detected);
6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
	pci_disable_device(h->pdev);
	spin_lock_irqsave(&h->lock, flags);
	fail_all_cmds_on_list(h, &h->cmpQ);
	fail_all_cmds_on_list(h, &h->reqQ);
	spin_unlock_irqrestore(&h->lock, flags);
}

static void detect_controller_lockup(struct ctlr_info *h)
{
	u64 now;
	u32 heartbeat;
	unsigned long flags;

	now = get_jiffies_64();
	/* If we've received an interrupt recently, we're ok. */
	if (time_after64(h->last_intr_timestamp +
6820
				(h->heartbeat_sample_interval), now))
6821 6822 6823 6824 6825 6826 6827 6828
		return;

	/*
	 * If we've already checked the heartbeat recently, we're ok.
	 * This could happen if someone sends us a signal. We
	 * otherwise don't care about signals in this thread.
	 */
	if (time_after64(h->last_heartbeat_timestamp +
6829
				(h->heartbeat_sample_interval), now))
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845
		return;

	/* If heartbeat has not changed since we last looked, we're not ok. */
	spin_lock_irqsave(&h->lock, flags);
	heartbeat = readl(&h->cfgtable->HeartBeat);
	spin_unlock_irqrestore(&h->lock, flags);
	if (h->last_heartbeat == heartbeat) {
		controller_lockup_detected(h);
		return;
	}

	/* We're ok. */
	h->last_heartbeat = heartbeat;
	h->last_heartbeat_timestamp = now;
}

6846
static void hpsa_ack_ctlr_events(struct ctlr_info *h)
6847 6848 6849 6850
{
	int i;
	char *event_type;

6851 6852 6853
	/* Clear the driver-requested rescan flag */
	h->drv_req_rescan = 0;

6854
	/* Ask the controller to clear the events we're handling. */
6855 6856
	if ((h->transMethod & (CFGTBL_Trans_io_accel1
			| CFGTBL_Trans_io_accel2)) &&
6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
		(h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
		 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {

		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
			event_type = "state change";
		if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
			event_type = "configuration change";
		/* Stop sending new RAID offload reqs via the IO accelerator */
		scsi_block_requests(h->scsi_host);
		for (i = 0; i < h->ndevices; i++)
			h->dev[i]->offload_enabled = 0;
6868
		hpsa_drain_accel_commands(h);
6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888
		/* Set 'accelerator path config change' bit */
		dev_warn(&h->pdev->dev,
			"Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
			h->events, event_type);
		writel(h->events, &(h->cfgtable->clear_event_notify));
		/* Set the "clear event notify field update" bit 6 */
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		/* Wait until ctlr clears 'clear event notify field', bit 6 */
		hpsa_wait_for_clear_event_notify_ack(h);
		scsi_unblock_requests(h->scsi_host);
	} else {
		/* Acknowledge controller notification events. */
		writel(h->events, &(h->cfgtable->clear_event_notify));
		writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_clear_event_notify_ack(h);
#if 0
		writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
		hpsa_wait_for_mode_change_ack(h);
#endif
	}
6889
	return;
6890 6891 6892 6893
}

/* Check a register on the controller to see if there are configuration
 * changes (added/changed/removed logical drives, etc.) which mean that
6894 6895
 * we should rescan the controller for devices.
 * Also check flag for driver-initiated rescan.
6896
 */
6897
static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
6898
{
6899 6900 6901
	if (h->drv_req_rescan)
		return 1;

6902
	if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
6903
		return 0;
6904 6905

	h->events = readl(&(h->cfgtable->event_notify));
6906 6907
	return h->events & RESCAN_REQUIRED_EVENT_BITS;
}
6908

6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922
/*
 * Check if any of the offline devices have become ready
 */
static int hpsa_offline_devices_ready(struct ctlr_info *h)
{
	unsigned long flags;
	struct offline_device_entry *d;
	struct list_head *this, *tmp;

	spin_lock_irqsave(&h->offline_device_lock, flags);
	list_for_each_safe(this, tmp, &h->offline_device_list) {
		d = list_entry(this, struct offline_device_entry,
				offline_list);
		spin_unlock_irqrestore(&h->offline_device_lock, flags);
6923 6924 6925 6926
		if (!hpsa_volume_offline(h, d->scsi3addr)) {
			spin_lock_irqsave(&h->offline_device_lock, flags);
			list_del(&d->offline_list);
			spin_unlock_irqrestore(&h->offline_device_lock, flags);
6927
			return 1;
6928
		}
6929 6930 6931 6932
		spin_lock_irqsave(&h->offline_device_lock, flags);
	}
	spin_unlock_irqrestore(&h->offline_device_lock, flags);
	return 0;
6933 6934
}

6935

6936
static void hpsa_monitor_ctlr_worker(struct work_struct *work)
6937 6938
{
	unsigned long flags;
6939 6940 6941
	struct ctlr_info *h = container_of(to_delayed_work(work),
					struct ctlr_info, monitor_ctlr_work);
	detect_controller_lockup(h);
6942
	if (lockup_detected(h))
6943
		return;
6944 6945 6946 6947 6948 6949 6950 6951 6952

	if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
		scsi_host_get(h->scsi_host);
		h->drv_req_rescan = 0;
		hpsa_ack_ctlr_events(h);
		hpsa_scan_start(h->scsi_host);
		scsi_host_put(h->scsi_host);
	}

6953 6954 6955
	spin_lock_irqsave(&h->lock, flags);
	if (h->remove_in_progress) {
		spin_unlock_irqrestore(&h->lock, flags);
6956 6957
		return;
	}
6958 6959 6960
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
	spin_unlock_irqrestore(&h->lock, flags);
6961 6962
}

6963
static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6964
{
6965
	int dac, rc;
6966
	struct ctlr_info *h;
6967 6968
	int try_soft_reset = 0;
	unsigned long flags;
6969 6970 6971 6972

	if (number_of_controllers == 0)
		printk(KERN_INFO DRIVER_NAME "\n");

6973
	rc = hpsa_init_reset_devices(pdev);
6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986
	if (rc) {
		if (rc != -ENOTSUPP)
			return rc;
		/* If the reset fails in a particular way (it has no way to do
		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
		 * a soft reset once we get the controller configured up to the
		 * point that it can accept a command.
		 */
		try_soft_reset = 1;
		rc = 0;
	}

reinit_after_soft_reset:
6987

6988 6989 6990 6991 6992
	/* Command structures must be aligned on a 32-byte boundary because
	 * the 5 lower bits of the address are used by the hardware. and by
	 * the driver.  See comments in hpsa.h for more info.
	 */
	BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
6993 6994
	h = kzalloc(sizeof(*h), GFP_KERNEL);
	if (!h)
6995
		return -ENOMEM;
6996

6997
	h->pdev = pdev;
6998
	h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
6999 7000
	INIT_LIST_HEAD(&h->cmpQ);
	INIT_LIST_HEAD(&h->reqQ);
7001
	INIT_LIST_HEAD(&h->offline_device_list);
7002
	spin_lock_init(&h->lock);
7003
	spin_lock_init(&h->offline_device_lock);
7004
	spin_lock_init(&h->scan_lock);
7005
	spin_lock_init(&h->passthru_count_lock);
7006 7007 7008

	/* Allocate and clear per-cpu variable lockup_detected */
	h->lockup_detected = alloc_percpu(u32);
7009 7010
	if (!h->lockup_detected) {
		rc = -ENOMEM;
7011
		goto clean1;
7012
	}
7013 7014
	set_lockup_detected_for_all_cpus(h, 0);

7015
	rc = hpsa_pci_init(h);
7016
	if (rc != 0)
7017 7018
		goto clean1;

7019
	sprintf(h->devname, HPSA "%d", number_of_controllers);
7020 7021 7022 7023
	h->ctlr = number_of_controllers;
	number_of_controllers++;

	/* configure PCI DMA stuff */
7024 7025
	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
	if (rc == 0) {
7026
		dac = 1;
7027 7028 7029 7030 7031 7032 7033 7034
	} else {
		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
		if (rc == 0) {
			dac = 0;
		} else {
			dev_err(&pdev->dev, "no suitable DMA available\n");
			goto clean1;
		}
7035 7036 7037 7038
	}

	/* make sure the board interrupts are off */
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7039

7040
	if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
7041
		goto clean2;
7042 7043
	dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
	       h->devname, pdev->device,
7044
	       h->intr[h->intr_mode], dac ? "" : " not");
7045
	if (hpsa_allocate_cmd_pool(h))
7046
		goto clean4;
7047 7048
	if (hpsa_allocate_sg_chain_blocks(h))
		goto clean4;
7049 7050
	init_waitqueue_head(&h->scan_wait_queue);
	h->scan_finished = 1; /* no scan currently in progress */
7051 7052

	pci_set_drvdata(pdev, h);
7053
	h->ndevices = 0;
7054
	h->hba_mode_enabled = 0;
7055 7056
	h->scsi_host = NULL;
	spin_lock_init(&h->devlock);
7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074
	hpsa_put_ctlr_into_performant_mode(h);

	/* At this point, the controller is ready to take commands.
	 * Now, if reset_devices and the hard reset didn't work, try
	 * the soft reset and see if that works.
	 */
	if (try_soft_reset) {

		/* This is kind of gross.  We may or may not get a completion
		 * from the soft reset command, and if we do, then the value
		 * from the fifo may or may not be valid.  So, we wait 10 secs
		 * after the reset throwing away any completions we get during
		 * that time.  Unregister the interrupt handler and register
		 * fake ones to scoop up any residual completions.
		 */
		spin_lock_irqsave(&h->lock, flags);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);
		spin_unlock_irqrestore(&h->lock, flags);
7075
		free_irqs(h);
7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
		rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
					hpsa_intx_discard_completions);
		if (rc) {
			dev_warn(&h->pdev->dev, "Failed to request_irq after "
				"soft reset.\n");
			goto clean4;
		}

		rc = hpsa_kdump_soft_reset(h);
		if (rc)
			/* Neither hard nor soft reset worked, we're hosed. */
			goto clean4;

		dev_info(&h->pdev->dev, "Board READY.\n");
		dev_info(&h->pdev->dev,
			"Waiting for stale completions to drain.\n");
		h->access.set_intr_mask(h, HPSA_INTR_ON);
		msleep(10000);
		h->access.set_intr_mask(h, HPSA_INTR_OFF);

		rc = controller_reset_failed(h->cfgtable);
		if (rc)
			dev_info(&h->pdev->dev,
				"Soft reset appears to have failed.\n");

		/* since the controller's reset, we have to go back and re-init
		 * everything.  Easiest to just forget what we've done and do it
		 * all over again.
		 */
		hpsa_undo_allocations_after_kdump_soft_reset(h);
		try_soft_reset = 0;
		if (rc)
			/* don't go to clean4, we already unallocated */
			return -ENODEV;

		goto reinit_after_soft_reset;
	}
7113

7114 7115
		/* Enable Accelerated IO path at driver layer */
		h->acciopath_status = 1;
7116

7117 7118
	h->drv_req_rescan = 0;

7119 7120 7121
	/* Turn the interrupts on so we can service requests */
	h->access.set_intr_mask(h, HPSA_INTR_ON);

7122
	hpsa_hba_inquiry(h);
7123
	hpsa_register_scsi(h);	/* hook ourselves into SCSI subsystem */
7124 7125 7126 7127 7128 7129

	/* Monitor the controller for firmware lockups */
	h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
	INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
	schedule_delayed_work(&h->monitor_ctlr_work,
				h->heartbeat_sample_interval);
7130
	return 0;
7131 7132

clean4:
7133
	hpsa_free_sg_chain_blocks(h);
7134
	hpsa_free_cmd_pool(h);
7135
	free_irqs(h);
7136 7137
clean2:
clean1:
7138 7139
	if (h->lockup_detected)
		free_percpu(h->lockup_detected);
7140
	kfree(h);
7141
	return rc;
7142 7143 7144 7145 7146 7147
}

static void hpsa_flush_cache(struct ctlr_info *h)
{
	char *flush_buf;
	struct CommandList *c;
7148 7149

	/* Don't bother trying to flush the cache if locked up */
7150
	if (unlikely(lockup_detected(h)))
7151
		return;
7152 7153 7154 7155 7156 7157 7158 7159 7160
	flush_buf = kzalloc(4, GFP_KERNEL);
	if (!flush_buf)
		return;

	c = cmd_special_alloc(h);
	if (!c) {
		dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
		goto out_of_memory;
	}
7161 7162 7163 7164
	if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
		RAID_CTLR_LUNID, TYPE_CMD)) {
		goto out;
	}
7165 7166
	hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
	if (c->err_info->CommandStatus != 0)
7167
out:
7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185
		dev_warn(&h->pdev->dev,
			"error flushing cache on controller\n");
	cmd_special_free(h, c);
out_of_memory:
	kfree(flush_buf);
}

static void hpsa_shutdown(struct pci_dev *pdev)
{
	struct ctlr_info *h;

	h = pci_get_drvdata(pdev);
	/* Turn board interrupts off  and send the flush cache command
	 * sendcmd will turn off interrupt, and send the flush...
	 * To write all data in the battery backed cache to disks
	 */
	hpsa_flush_cache(h);
	h->access.set_intr_mask(h, HPSA_INTR_OFF);
7186
	hpsa_free_irqs_and_disable_msix(h);
7187 7188
}

7189
static void hpsa_free_device_info(struct ctlr_info *h)
7190 7191 7192 7193 7194 7195 7196
{
	int i;

	for (i = 0; i < h->ndevices; i++)
		kfree(h->dev[i]);
}

7197
static void hpsa_remove_one(struct pci_dev *pdev)
7198 7199
{
	struct ctlr_info *h;
7200
	unsigned long flags;
7201 7202

	if (pci_get_drvdata(pdev) == NULL) {
7203
		dev_err(&pdev->dev, "unable to remove device\n");
7204 7205 7206
		return;
	}
	h = pci_get_drvdata(pdev);
7207 7208 7209 7210 7211 7212 7213

	/* Get rid of any controller monitoring work items */
	spin_lock_irqsave(&h->lock, flags);
	h->remove_in_progress = 1;
	cancel_delayed_work(&h->monitor_ctlr_work);
	spin_unlock_irqrestore(&h->lock, flags);

7214 7215 7216
	hpsa_unregister_scsi(h);	/* unhook from SCSI subsystem */
	hpsa_shutdown(pdev);
	iounmap(h->vaddr);
7217 7218
	iounmap(h->transtable);
	iounmap(h->cfgtable);
7219
	hpsa_free_device_info(h);
7220
	hpsa_free_sg_chain_blocks(h);
7221 7222 7223 7224 7225 7226
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct CommandList),
		h->cmd_pool, h->cmd_pool_dhandle);
	pci_free_consistent(h->pdev,
		h->nr_cmds * sizeof(struct ErrorInfo),
		h->errinfo_pool, h->errinfo_pool_dhandle);
7227
	hpsa_free_reply_queues(h);
7228
	kfree(h->cmd_pool_bits);
7229
	kfree(h->blockFetchTable);
7230
	kfree(h->ioaccel1_blockFetchTable);
7231
	kfree(h->ioaccel2_blockFetchTable);
7232
	kfree(h->hba_inquiry_data);
7233
	pci_disable_device(pdev);
7234
	pci_release_regions(pdev);
7235
	free_percpu(h->lockup_detected);
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
	kfree(h);
}

static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
	__attribute__((unused)) pm_message_t state)
{
	return -ENOSYS;
}

static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
{
	return -ENOSYS;
}

static struct pci_driver hpsa_pci_driver = {
7251
	.name = HPSA,
7252
	.probe = hpsa_init_one,
7253
	.remove = hpsa_remove_one,
7254 7255 7256 7257 7258 7259
	.id_table = hpsa_pci_device_id,	/* id_table */
	.shutdown = hpsa_shutdown,
	.suspend = hpsa_suspend,
	.resume = hpsa_resume,
};

7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272
/* Fill in bucket_map[], given nsgs (the max number of
 * scatter gather elements supported) and bucket[],
 * which is an array of 8 integers.  The bucket[] array
 * contains 8 different DMA transfer sizes (in 16
 * byte increments) which the controller uses to fetch
 * commands.  This function fills in bucket_map[], which
 * maps a given number of scatter gather elements to one of
 * the 8 DMA transfer sizes.  The point of it is to allow the
 * controller to only do as much DMA as needed to fetch the
 * command, with the DMA transfer size encoded in the lower
 * bits of the command address.
 */
static void  calc_bucket_map(int bucket[], int num_buckets,
7273
	int nsgs, int min_blocks, int *bucket_map)
7274 7275 7276 7277 7278 7279
{
	int i, j, b, size;

	/* Note, bucket_map must have nsgs+1 entries. */
	for (i = 0; i <= nsgs; i++) {
		/* Compute size of a command with i SG entries */
7280
		size = i + min_blocks;
7281 7282
		b = num_buckets; /* Assume the biggest bucket */
		/* Find the bucket that is just big enough */
7283
		for (j = 0; j < num_buckets; j++) {
7284 7285 7286 7287 7288 7289 7290 7291 7292 7293
			if (bucket[j] >= size) {
				b = j;
				break;
			}
		}
		/* for a command with i SG entries, use bucket b. */
		bucket_map[i] = b;
	}
}

7294
static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
7295
{
7296 7297
	int i;
	unsigned long register_value;
7298 7299
	unsigned long transMethod = CFGTBL_Trans_Performant |
			(trans_support & CFGTBL_Trans_use_short_tags) |
7300 7301 7302
				CFGTBL_Trans_enable_directed_msix |
			(trans_support & (CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_io_accel2));
7303
	struct access_method access = SA5_performant_access;
7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314

	/* This is a bit complicated.  There are 8 registers on
	 * the controller which we write to to tell it 8 different
	 * sizes of commands which there may be.  It's a way of
	 * reducing the DMA done to fetch each command.  Encoded into
	 * each command's tag are 3 bits which communicate to the controller
	 * which of the eight sizes that command fits within.  The size of
	 * each command depends on how many scatter gather entries there are.
	 * Each SG entry requires 16 bytes.  The eight registers are programmed
	 * with the number of 16-byte blocks a command of that size requires.
	 * The smallest command possible requires 5 such 16 byte blocks.
7315
	 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
7316 7317 7318 7319 7320 7321
	 * blocks.  Note, this only extends to the SG entries contained
	 * within the command block, and does not extend to chained blocks
	 * of SG elements.   bft[] contains the eight values we write to
	 * the registers.  They are not evenly distributed, but have more
	 * sizes for small commands, and fewer sizes for larger commands.
	 */
7322
	int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
7323 7324 7325 7326 7327 7328 7329 7330 7331 7332
#define MIN_IOACCEL2_BFT_ENTRY 5
#define HPSA_IOACCEL2_HEADER_SZ 4
	int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
			13, 14, 15, 16, 17, 18, 19,
			HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
	BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
	BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
				 16 * MIN_IOACCEL2_BFT_ENTRY);
	BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
7333
	BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
7334 7335 7336 7337 7338 7339
	/*  5 = 1 s/g entry or 4k
	 *  6 = 2 s/g entry or 8k
	 *  8 = 4 s/g entry or 16k
	 * 10 = 6 s/g entry or 24k
	 */

7340 7341 7342 7343 7344 7345 7346
	/* If the controller supports either ioaccel method then
	 * we can also use the RAID stack submit path that does not
	 * perform the superfluous readl() after each command submission.
	 */
	if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
		access = SA5_performant_access_no_read;

7347
	/* Controller spec: zero out this buffer. */
7348 7349
	for (i = 0; i < h->nreply_queues; i++)
		memset(h->reply_queue[i].head, 0, h->reply_queue_size);
7350

7351 7352
	bft[7] = SG_ENTRIES_IN_CMD + 4;
	calc_bucket_map(bft, ARRAY_SIZE(bft),
7353
				SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
7354 7355 7356 7357 7358
	for (i = 0; i < 8; i++)
		writel(bft[i], &h->transtable->BlockFetch[i]);

	/* size of controller ring buffer */
	writel(h->max_commands, &h->transtable->RepQSize);
7359
	writel(h->nreply_queues, &h->transtable->RepQCount);
7360 7361
	writel(0, &h->transtable->RepQCtrAddrLow32);
	writel(0, &h->transtable->RepQCtrAddrHigh32);
7362 7363 7364

	for (i = 0; i < h->nreply_queues; i++) {
		writel(0, &h->transtable->RepQAddr[i].upper);
7365
		writel(h->reply_queue[i].busaddr,
7366 7367 7368
			&h->transtable->RepQAddr[i].lower);
	}

7369
	writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7370 7371 7372 7373 7374 7375 7376 7377
	writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
	/*
	 * enable outbound interrupt coalescing in accelerator mode;
	 */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		access = SA5_ioaccel_mode1_access;
		writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
		writel(4, &h->cfgtable->HostWrite.CoalIntCount);
7378 7379 7380 7381 7382 7383
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
			access = SA5_ioaccel_mode2_access;
			writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
			writel(4, &h->cfgtable->HostWrite.CoalIntCount);
		}
7384
	}
7385
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7386
	hpsa_wait_for_mode_change_ack(h);
7387 7388 7389 7390 7391 7392
	register_value = readl(&(h->cfgtable->TransportActive));
	if (!(register_value & CFGTBL_Trans_Performant)) {
		dev_warn(&h->pdev->dev, "unable to get board into"
					" performant mode\n");
		return;
	}
7393
	/* Change the access methods to the performant access methods */
7394 7395 7396
	h->access = access;
	h->transMethod = transMethod;

7397 7398
	if (!((trans_support & CFGTBL_Trans_io_accel1) ||
		(trans_support & CFGTBL_Trans_io_accel2)))
7399 7400
		return;

7401 7402 7403 7404 7405 7406 7407 7408 7409 7410
	if (trans_support & CFGTBL_Trans_io_accel1) {
		/* Set up I/O accelerator mode */
		for (i = 0; i < h->nreply_queues; i++) {
			writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
			h->reply_queue[i].current_entry =
				readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
		}
		bft[7] = h->ioaccel_maxsg + 8;
		calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
				h->ioaccel1_blockFetchTable);
7411

7412
		/* initialize all reply queue entries to unused */
7413 7414 7415 7416
		for (i = 0; i < h->nreply_queues; i++)
			memset(h->reply_queue[i].head,
				(u8) IOACCEL_MODE1_REPLY_UNUSED,
				h->reply_queue_size);
7417

7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461
		/* set all the constant fields in the accelerator command
		 * frames once at init time to save CPU cycles later.
		 */
		for (i = 0; i < h->nr_cmds; i++) {
			struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];

			cp->function = IOACCEL1_FUNCTION_SCSIIO;
			cp->err_info = (u32) (h->errinfo_pool_dhandle +
					(i * sizeof(struct ErrorInfo)));
			cp->err_info_len = sizeof(struct ErrorInfo);
			cp->sgl_offset = IOACCEL1_SGLOFFSET;
			cp->host_context_flags = IOACCEL1_HCFLAGS_CISS_FORMAT;
			cp->timeout_sec = 0;
			cp->ReplyQueue = 0;
			cp->Tag.lower = (i << DIRECT_LOOKUP_SHIFT) |
						DIRECT_LOOKUP_BIT;
			cp->Tag.upper = 0;
			cp->host_addr.lower =
				(u32) (h->ioaccel_cmd_pool_dhandle +
					(i * sizeof(struct io_accel1_cmd)));
			cp->host_addr.upper = 0;
		}
	} else if (trans_support & CFGTBL_Trans_io_accel2) {
		u64 cfg_offset, cfg_base_addr_index;
		u32 bft2_offset, cfg_base_addr;
		int rc;

		rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
			&cfg_base_addr_index, &cfg_offset);
		BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
		bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
		calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
				4, h->ioaccel2_blockFetchTable);
		bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
		BUILD_BUG_ON(offsetof(struct CfgTable,
				io_accel_request_size_offset) != 0xb8);
		h->ioaccel2_bft2_regs =
			remap_pci_mem(pci_resource_start(h->pdev,
					cfg_base_addr_index) +
					cfg_offset + bft2_offset,
					ARRAY_SIZE(bft2) *
					sizeof(*h->ioaccel2_bft2_regs));
		for (i = 0; i < ARRAY_SIZE(bft2); i++)
			writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
7462
	}
7463 7464
	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
	hpsa_wait_for_mode_change_ack(h);
7465 7466 7467 7468
}

static int hpsa_alloc_ioaccel_cmd_and_bft(struct ctlr_info *h)
{
7469 7470 7471 7472 7473
	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;

7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485
	/* Command structures must be aligned on a 128-byte boundary
	 * because the 7 lower bits of the address are used by the
	 * hardware.
	 */
	BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
			IOACCEL1_COMMANDLIST_ALIGNMENT);
	h->ioaccel_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			&(h->ioaccel_cmd_pool_dhandle));

	h->ioaccel1_blockFetchTable =
7486
		kmalloc(((h->ioaccel_maxsg + 1) *
7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel_cmd_pool == NULL) ||
		(h->ioaccel1_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
			h->ioaccel_cmd_pool, h->ioaccel_cmd_pool_dhandle);
	kfree(h->ioaccel1_blockFetchTable);
	return 1;
7504 7505
}

7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542
static int ioaccel2_alloc_cmds_and_bft(struct ctlr_info *h)
{
	/* Allocate ioaccel2 mode command blocks and block fetch table */

	h->ioaccel_maxsg =
		readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
	if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
		h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;

	BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
			IOACCEL2_COMMANDLIST_ALIGNMENT);
	h->ioaccel2_cmd_pool =
		pci_alloc_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			&(h->ioaccel2_cmd_pool_dhandle));

	h->ioaccel2_blockFetchTable =
		kmalloc(((h->ioaccel_maxsg + 1) *
				sizeof(u32)), GFP_KERNEL);

	if ((h->ioaccel2_cmd_pool == NULL) ||
		(h->ioaccel2_blockFetchTable == NULL))
		goto clean_up;

	memset(h->ioaccel2_cmd_pool, 0,
		h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
	return 0;

clean_up:
	if (h->ioaccel2_cmd_pool)
		pci_free_consistent(h->pdev,
			h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
			h->ioaccel2_cmd_pool, h->ioaccel2_cmd_pool_dhandle);
	kfree(h->ioaccel2_blockFetchTable);
	return 1;
}

7543
static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
7544 7545
{
	u32 trans_support;
7546 7547
	unsigned long transMethod = CFGTBL_Trans_Performant |
					CFGTBL_Trans_use_short_tags;
7548
	int i;
7549

7550 7551 7552
	if (hpsa_simple_mode)
		return;

7553 7554 7555 7556
	trans_support = readl(&(h->cfgtable->TransportSupport));
	if (!(trans_support & PERFORMANT_MODE))
		return;

7557 7558 7559 7560 7561 7562
	/* Check for I/O accelerator mode support */
	if (trans_support & CFGTBL_Trans_io_accel1) {
		transMethod |= CFGTBL_Trans_io_accel1 |
				CFGTBL_Trans_enable_directed_msix;
		if (hpsa_alloc_ioaccel_cmd_and_bft(h))
			goto clean_up;
7563 7564 7565 7566 7567 7568 7569
	} else {
		if (trans_support & CFGTBL_Trans_io_accel2) {
				transMethod |= CFGTBL_Trans_io_accel2 |
				CFGTBL_Trans_enable_directed_msix;
		if (ioaccel2_alloc_cmds_and_bft(h))
			goto clean_up;
		}
7570 7571
	}

7572
	h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
7573
	hpsa_get_max_perf_mode_cmds(h);
7574
	/* Performant mode ring buffer and supporting data structures */
7575
	h->reply_queue_size = h->max_commands * sizeof(u64);
7576

7577
	for (i = 0; i < h->nreply_queues; i++) {
7578 7579 7580 7581 7582
		h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
						h->reply_queue_size,
						&(h->reply_queue[i].busaddr));
		if (!h->reply_queue[i].head)
			goto clean_up;
7583 7584 7585 7586 7587
		h->reply_queue[i].size = h->max_commands;
		h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
		h->reply_queue[i].current_entry = 0;
	}

7588
	/* Need a block fetch table for performant mode */
7589
	h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
7590
				sizeof(u32)), GFP_KERNEL);
7591
	if (!h->blockFetchTable)
7592 7593
		goto clean_up;

7594
	hpsa_enter_performant_mode(h, trans_support);
7595 7596 7597
	return;

clean_up:
7598
	hpsa_free_reply_queues(h);
7599 7600 7601
	kfree(h->blockFetchTable);
}

7602
static int is_accelerated_cmd(struct CommandList *c)
7603
{
7604 7605 7606 7607 7608 7609
	return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
}

static void hpsa_drain_accel_commands(struct ctlr_info *h)
{
	struct CommandList *c = NULL;
7610
	unsigned long flags;
7611
	int accel_cmds_out;
7612 7613

	do { /* wait for all outstanding commands to drain out */
7614
		accel_cmds_out = 0;
7615
		spin_lock_irqsave(&h->lock, flags);
7616 7617 7618 7619
		list_for_each_entry(c, &h->cmpQ, list)
			accel_cmds_out += is_accelerated_cmd(c);
		list_for_each_entry(c, &h->reqQ, list)
			accel_cmds_out += is_accelerated_cmd(c);
7620
		spin_unlock_irqrestore(&h->lock, flags);
7621
		if (accel_cmds_out <= 0)
7622 7623 7624 7625 7626
			break;
		msleep(100);
	} while (1);
}

7627 7628 7629 7630 7631 7632
/*
 *  This is it.  Register the PCI driver information for the cards we control
 *  the OS will call our registered routines when it finds one of our cards.
 */
static int __init hpsa_init(void)
{
M
Mike Miller 已提交
7633
	return pci_register_driver(&hpsa_pci_driver);
7634 7635 7636 7637 7638 7639 7640
}

static void __exit hpsa_cleanup(void)
{
	pci_unregister_driver(&hpsa_pci_driver);
}

7641 7642
static void __attribute__((unused)) verify_offsets(void)
{
7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)

	VERIFY_OFFSET(structure_size, 0);
	VERIFY_OFFSET(volume_blk_size, 4);
	VERIFY_OFFSET(volume_blk_cnt, 8);
	VERIFY_OFFSET(phys_blk_shift, 16);
	VERIFY_OFFSET(parity_rotation_shift, 17);
	VERIFY_OFFSET(strip_size, 18);
	VERIFY_OFFSET(disk_starting_blk, 20);
	VERIFY_OFFSET(disk_blk_cnt, 28);
	VERIFY_OFFSET(data_disks_per_row, 36);
	VERIFY_OFFSET(metadata_disks_per_row, 38);
	VERIFY_OFFSET(row_cnt, 40);
	VERIFY_OFFSET(layout_map_count, 42);
	VERIFY_OFFSET(flags, 44);
	VERIFY_OFFSET(dekindex, 46);
	/* VERIFY_OFFSET(reserved, 48 */
	VERIFY_OFFSET(data, 64);

#undef VERIFY_OFFSET

7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)

	VERIFY_OFFSET(IU_type, 0);
	VERIFY_OFFSET(direction, 1);
	VERIFY_OFFSET(reply_queue, 2);
	/* VERIFY_OFFSET(reserved1, 3);  */
	VERIFY_OFFSET(scsi_nexus, 4);
	VERIFY_OFFSET(Tag, 8);
	VERIFY_OFFSET(cdb, 16);
	VERIFY_OFFSET(cciss_lun, 32);
	VERIFY_OFFSET(data_len, 40);
	VERIFY_OFFSET(cmd_priority_task_attr, 44);
	VERIFY_OFFSET(sg_count, 45);
	/* VERIFY_OFFSET(reserved3 */
	VERIFY_OFFSET(err_ptr, 48);
	VERIFY_OFFSET(err_len, 56);
	/* VERIFY_OFFSET(reserved4  */
	VERIFY_OFFSET(sg, 64);

#undef VERIFY_OFFSET

7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718
#define VERIFY_OFFSET(member, offset) \
	BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)

	VERIFY_OFFSET(dev_handle, 0x00);
	VERIFY_OFFSET(reserved1, 0x02);
	VERIFY_OFFSET(function, 0x03);
	VERIFY_OFFSET(reserved2, 0x04);
	VERIFY_OFFSET(err_info, 0x0C);
	VERIFY_OFFSET(reserved3, 0x10);
	VERIFY_OFFSET(err_info_len, 0x12);
	VERIFY_OFFSET(reserved4, 0x13);
	VERIFY_OFFSET(sgl_offset, 0x14);
	VERIFY_OFFSET(reserved5, 0x15);
	VERIFY_OFFSET(transfer_len, 0x1C);
	VERIFY_OFFSET(reserved6, 0x20);
	VERIFY_OFFSET(io_flags, 0x24);
	VERIFY_OFFSET(reserved7, 0x26);
	VERIFY_OFFSET(LUN, 0x34);
	VERIFY_OFFSET(control, 0x3C);
	VERIFY_OFFSET(CDB, 0x40);
	VERIFY_OFFSET(reserved8, 0x50);
	VERIFY_OFFSET(host_context_flags, 0x60);
	VERIFY_OFFSET(timeout_sec, 0x62);
	VERIFY_OFFSET(ReplyQueue, 0x64);
	VERIFY_OFFSET(reserved9, 0x65);
	VERIFY_OFFSET(Tag, 0x68);
	VERIFY_OFFSET(host_addr, 0x70);
	VERIFY_OFFSET(CISS_LUN, 0x78);
	VERIFY_OFFSET(SG, 0x78 + 8);
#undef VERIFY_OFFSET
}

7719 7720
module_init(hpsa_init);
module_exit(hpsa_cleanup);