dumpstack.c 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
 */
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/utsname.h>
#include <linux/hardirq.h>
#include <linux/kdebug.h>
#include <linux/module.h>
#include <linux/ptrace.h>
13
#include <linux/sched/debug.h>
14
#include <linux/sched/task_stack.h>
15
#include <linux/ftrace.h>
16 17 18 19
#include <linux/kexec.h>
#include <linux/bug.h>
#include <linux/nmi.h>
#include <linux/sysfs.h>
20
#include <linux/kasan.h>
21

22
#include <asm/cpu_entry_area.h>
23
#include <asm/stacktrace.h>
24
#include <asm/unwind.h>
25 26

int panic_on_unrecovered_nmi;
27
int panic_on_io_nmi;
28 29
static int die_counter;

30 31
static struct pt_regs exec_summary_regs;

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
bool in_task_stack(unsigned long *stack, struct task_struct *task,
		   struct stack_info *info)
{
	unsigned long *begin = task_stack_page(task);
	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;

	if (stack < begin || stack >= end)
		return false;

	info->type	= STACK_TYPE_TASK;
	info->begin	= begin;
	info->end	= end;
	info->next_sp	= NULL;

	return true;
}

49
bool in_entry_stack(unsigned long *stack, struct stack_info *info)
50
{
51
	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
52

53 54
	void *begin = ss;
	void *end = ss + 1;
55 56 57 58

	if ((void *)stack < begin || (void *)stack >= end)
		return false;

59
	info->type	= STACK_TYPE_ENTRY;
60 61 62 63 64 65 66
	info->begin	= begin;
	info->end	= end;
	info->next_sp	= NULL;

	return true;
}

67
static void printk_stack_address(unsigned long address, int reliable,
68
				 char *log_lvl)
69
{
70
	touch_nmi_watchdog();
71
	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
72 73
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
/*
 * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
 *
 * In case where we don't have the exact kernel image (which, if we did, we can
 * simply disassemble and navigate to the RIP), the purpose of the bigger
 * prologue is to have more context and to be able to correlate the code from
 * the different toolchains better.
 *
 * In addition, it helps in recreating the register allocation of the failing
 * kernel and thus make sense of the register dump.
 *
 * What is more, the additional complication of a variable length insn arch like
 * x86 warrants having longer byte sequence before rIP so that the disassembler
 * can "sync" up properly and find instruction boundaries when decoding the
 * opcode bytes.
 *
 * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
 * guesstimate in attempt to achieve all of the above.
 */
93
void show_opcodes(struct pt_regs *regs, const char *loglvl)
94
{
95 96 97
#define PROLOGUE_SIZE 42
#define EPILOGUE_SIZE 21
#define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
98
	u8 opcodes[OPCODE_BUFSIZE];
99 100 101 102 103 104 105 106 107 108 109 110
	unsigned long prologue = regs->ip - PROLOGUE_SIZE;
	bool bad_ip;

	/*
	 * Make sure userspace isn't trying to trick us into dumping kernel
	 * memory by pointing the userspace instruction pointer at it.
	 */
	bad_ip = user_mode(regs) &&
		__chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX);

	if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue,
					OPCODE_BUFSIZE)) {
111 112 113 114 115
		printk("%sCode: Bad RIP value.\n", loglvl);
	} else {
		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
116 117 118
	}
}

119 120 121 122 123 124 125
void show_ip(struct pt_regs *regs, const char *loglvl)
{
#ifdef CONFIG_X86_32
	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
#else
	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
#endif
126
	show_opcodes(regs, loglvl);
127 128
}

129 130
void show_iret_regs(struct pt_regs *regs)
{
131
	show_ip(regs, KERN_DEFAULT);
132 133 134 135
	printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
		regs->sp, regs->flags);
}

136 137
static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
				  bool partial)
138
{
139 140 141 142 143 144 145 146 147 148
	/*
	 * These on_stack() checks aren't strictly necessary: the unwind code
	 * has already validated the 'regs' pointer.  The checks are done for
	 * ordering reasons: if the registers are on the next stack, we don't
	 * want to print them out yet.  Otherwise they'll be shown as part of
	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
	 * next stack, this function will be called again with the same regs so
	 * they can be printed in the right context.
	 */
	if (!partial && on_stack(info, regs, sizeof(*regs))) {
149
		__show_regs(regs, SHOW_REGS_SHORT);
150 151 152

	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
				       IRET_FRAME_SIZE)) {
153 154 155 156 157 158 159 160 161
		/*
		 * When an interrupt or exception occurs in entry code, the
		 * full pt_regs might not have been saved yet.  In that case
		 * just print the iret frame.
		 */
		show_iret_regs(regs);
	}
}

162 163
void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
			unsigned long *stack, char *log_lvl)
164
{
165 166 167 168
	struct unwind_state state;
	struct stack_info stack_info = {0};
	unsigned long visit_mask = 0;
	int graph_idx = 0;
169
	bool partial = false;
170

171
	printk("%sCall Trace:\n", log_lvl);
172

173
	unwind_start(&state, task, regs, stack);
174
	stack = stack ? : get_stack_pointer(task, regs);
175
	regs = unwind_get_entry_regs(&state, &partial);
176

177 178 179 180 181 182 183 184
	/*
	 * Iterate through the stacks, starting with the current stack pointer.
	 * Each stack has a pointer to the next one.
	 *
	 * x86-64 can have several stacks:
	 * - task stack
	 * - interrupt stack
	 * - HW exception stacks (double fault, nmi, debug, mce)
185
	 * - entry stack
186
	 *
187
	 * x86-32 can have up to four stacks:
188 189 190
	 * - task stack
	 * - softirq stack
	 * - hardirq stack
191
	 * - entry stack
192
	 */
193
	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
194
		const char *stack_name;
195

196 197 198 199 200 201 202 203 204 205 206
		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
			/*
			 * We weren't on a valid stack.  It's possible that
			 * we overflowed a valid stack into a guard page.
			 * See if the next page up is valid so that we can
			 * generate some kind of backtrace if this happens.
			 */
			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
			if (get_stack_info(stack, task, &stack_info, &visit_mask))
				break;
		}
207

208 209 210
		stack_name = stack_type_name(stack_info.type);
		if (stack_name)
			printk("%s <%s>\n", log_lvl, stack_name);
211

212
		if (regs)
213
			show_regs_if_on_stack(&stack_info, regs, partial);
214

215 216 217 218 219 220 221 222 223 224 225 226 227
		/*
		 * Scan the stack, printing any text addresses we find.  At the
		 * same time, follow proper stack frames with the unwinder.
		 *
		 * Addresses found during the scan which are not reported by
		 * the unwinder are considered to be additional clues which are
		 * sometimes useful for debugging and are prefixed with '?'.
		 * This also serves as a failsafe option in case the unwinder
		 * goes off in the weeds.
		 */
		for (; stack < stack_info.end; stack++) {
			unsigned long real_addr;
			int reliable = 0;
228
			unsigned long addr = READ_ONCE_NOCHECK(*stack);
229 230 231 232 233 234
			unsigned long *ret_addr_p =
				unwind_get_return_address_ptr(&state);

			if (!__kernel_text_address(addr))
				continue;

235 236
			/*
			 * Don't print regs->ip again if it was already printed
237
			 * by show_regs_if_on_stack().
238
			 */
239 240
			if (regs && stack == &regs->ip)
				goto next;
241

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
			if (stack == ret_addr_p)
				reliable = 1;

			/*
			 * When function graph tracing is enabled for a
			 * function, its return address on the stack is
			 * replaced with the address of an ftrace handler
			 * (return_to_handler).  In that case, before printing
			 * the "real" address, we want to print the handler
			 * address as an "unreliable" hint that function graph
			 * tracing was involved.
			 */
			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
							  addr, stack);
			if (real_addr != addr)
				printk_stack_address(addr, 0, log_lvl);
			printk_stack_address(real_addr, reliable, log_lvl);

			if (!reliable)
				continue;

263
next:
264 265 266 267 268 269
			/*
			 * Get the next frame from the unwinder.  No need to
			 * check for an error: if anything goes wrong, the rest
			 * of the addresses will just be printed as unreliable.
			 */
			unwind_next_frame(&state);
270 271

			/* if the frame has entry regs, print them */
272
			regs = unwind_get_entry_regs(&state, &partial);
273
			if (regs)
274
				show_regs_if_on_stack(&stack_info, regs, partial);
275 276
		}

277 278
		if (stack_name)
			printk("%s </%s>\n", log_lvl, stack_name);
279
	}
280 281 282 283
}

void show_stack(struct task_struct *task, unsigned long *sp)
{
284 285
	task = task ? : current;

286 287 288 289
	/*
	 * Stack frames below this one aren't interesting.  Don't show them
	 * if we're printing for %current.
	 */
290
	if (!sp && task == current)
291
		sp = get_stack_pointer(current, NULL);
292

293
	show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
294 295
}

296 297
void show_stack_regs(struct pt_regs *regs)
{
298
	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
299 300
}

301
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
302 303 304
static int die_owner = -1;
static unsigned int die_nest_count;

305
unsigned long oops_begin(void)
306 307 308 309 310 311 312 313 314
{
	int cpu;
	unsigned long flags;

	oops_enter();

	/* racy, but better than risking deadlock. */
	raw_local_irq_save(flags);
	cpu = smp_processor_id();
315
	if (!arch_spin_trylock(&die_lock)) {
316 317 318
		if (cpu == die_owner)
			/* nested oops. should stop eventually */;
		else
319
			arch_spin_lock(&die_lock);
320 321 322 323 324 325 326
	}
	die_nest_count++;
	die_owner = cpu;
	console_verbose();
	bust_spinlocks(1);
	return flags;
}
327
NOKPROBE_SYMBOL(oops_begin);
328

329 330
void __noreturn rewind_stack_do_exit(int signr);

331
void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
332 333 334 335 336 337
{
	if (regs && kexec_should_crash(current))
		crash_kexec(regs);

	bust_spinlocks(0);
	die_owner = -1;
338
	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
339 340 341
	die_nest_count--;
	if (!die_nest_count)
		/* Nest count reaches zero, release the lock. */
342
		arch_spin_unlock(&die_lock);
343 344 345
	raw_local_irq_restore(flags);
	oops_exit();

346
	/* Executive summary in case the oops scrolled away */
347
	__show_regs(&exec_summary_regs, SHOW_REGS_ALL);
348

349 350 351 352 353 354
	if (!signr)
		return;
	if (in_interrupt())
		panic("Fatal exception in interrupt");
	if (panic_on_oops)
		panic("Fatal exception");
355 356 357 358 359

	/*
	 * We're not going to return, but we might be on an IST stack or
	 * have very little stack space left.  Rewind the stack and kill
	 * the task.
360 361
	 * Before we rewind the stack, we have to tell KASAN that we're going to
	 * reuse the task stack and that existing poisons are invalid.
362
	 */
363
	kasan_unpoison_task_stack(current);
364
	rewind_stack_do_exit(signr);
365
}
366
NOKPROBE_SYMBOL(oops_end);
367

368
int __die(const char *str, struct pt_regs *regs, long err)
369
{
370 371 372 373
	/* Save the regs of the first oops for the executive summary later. */
	if (!die_counter)
		exec_summary_regs = *regs;

374
	printk(KERN_DEFAULT
375
	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
376 377 378
	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT"         : "",
	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
379 380 381
	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
382

383 384 385
	show_regs(regs);
	print_modules();

386
	if (notify_die(DIE_OOPS, str, regs, err,
387
			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
388 389 390 391
		return 1;

	return 0;
}
392
NOKPROBE_SYMBOL(__die);
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407

/*
 * This is gone through when something in the kernel has done something bad
 * and is about to be terminated:
 */
void die(const char *str, struct pt_regs *regs, long err)
{
	unsigned long flags = oops_begin();
	int sig = SIGSEGV;

	if (__die(str, regs, err))
		sig = 0;
	oops_end(flags, regs, sig);
}

408 409 410 411
void show_regs(struct pt_regs *regs)
{
	show_regs_print_info(KERN_DEFAULT);

412
	__show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL);
413 414

	/*
415
	 * When in-kernel, we also print out the stack at the time of the fault..
416
	 */
417
	if (!user_mode(regs))
418 419
		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
}