dumpstack.c 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
 */
#include <linux/kallsyms.h>
#include <linux/kprobes.h>
#include <linux/uaccess.h>
#include <linux/utsname.h>
#include <linux/hardirq.h>
#include <linux/kdebug.h>
#include <linux/module.h>
#include <linux/ptrace.h>
13
#include <linux/sched/debug.h>
14
#include <linux/sched/task_stack.h>
15
#include <linux/ftrace.h>
16 17 18 19 20 21
#include <linux/kexec.h>
#include <linux/bug.h>
#include <linux/nmi.h>
#include <linux/sysfs.h>

#include <asm/stacktrace.h>
22
#include <asm/unwind.h>
23 24

int panic_on_unrecovered_nmi;
25
int panic_on_io_nmi;
26 27 28
unsigned int code_bytes = 64;
static int die_counter;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
bool in_task_stack(unsigned long *stack, struct task_struct *task,
		   struct stack_info *info)
{
	unsigned long *begin = task_stack_page(task);
	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;

	if (stack < begin || stack >= end)
		return false;

	info->type	= STACK_TYPE_TASK;
	info->begin	= begin;
	info->end	= end;
	info->next_sp	= NULL;

	return true;
}

46 47
bool in_sysenter_stack(unsigned long *stack, struct stack_info *info)
{
48 49
	int cpu = smp_processor_id();
	struct tss_struct *tss = &get_cpu_entry_area(cpu)->tss;
50

51
	void *begin = &tss->SYSENTER_stack;
52 53 54 55 56 57 58 59 60 61 62 63 64
	void *end = (void *)&tss->SYSENTER_stack + sizeof(tss->SYSENTER_stack);

	if ((void *)stack < begin || (void *)stack >= end)
		return false;

	info->type	= STACK_TYPE_SYSENTER;
	info->begin	= begin;
	info->end	= end;
	info->next_sp	= NULL;

	return true;
}

65
static void printk_stack_address(unsigned long address, int reliable,
66
				 char *log_lvl)
67
{
68
	touch_nmi_watchdog();
69
	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
70 71
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
void show_iret_regs(struct pt_regs *regs)
{
	printk(KERN_DEFAULT "RIP: %04x:%pS\n", (int)regs->cs, (void *)regs->ip);
	printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
		regs->sp, regs->flags);
}

static void show_regs_safe(struct stack_info *info, struct pt_regs *regs)
{
	if (on_stack(info, regs, sizeof(*regs)))
		__show_regs(regs, 0);
	else if (on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
			  IRET_FRAME_SIZE)) {
		/*
		 * When an interrupt or exception occurs in entry code, the
		 * full pt_regs might not have been saved yet.  In that case
		 * just print the iret frame.
		 */
		show_iret_regs(regs);
	}
}

94 95
void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
			unsigned long *stack, char *log_lvl)
96
{
97 98 99 100
	struct unwind_state state;
	struct stack_info stack_info = {0};
	unsigned long visit_mask = 0;
	int graph_idx = 0;
101

102
	printk("%sCall Trace:\n", log_lvl);
103

104
	unwind_start(&state, task, regs, stack);
105
	stack = stack ? : get_stack_pointer(task, regs);
106

107 108 109 110 111 112 113 114
	/*
	 * Iterate through the stacks, starting with the current stack pointer.
	 * Each stack has a pointer to the next one.
	 *
	 * x86-64 can have several stacks:
	 * - task stack
	 * - interrupt stack
	 * - HW exception stacks (double fault, nmi, debug, mce)
115
	 * - SYSENTER stack
116
	 *
117
	 * x86-32 can have up to four stacks:
118 119 120
	 * - task stack
	 * - softirq stack
	 * - hardirq stack
121
	 * - SYSENTER stack
122
	 */
123
	for (regs = NULL; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
124
		const char *stack_name;
125

126 127 128 129 130 131 132 133 134 135 136
		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
			/*
			 * We weren't on a valid stack.  It's possible that
			 * we overflowed a valid stack into a guard page.
			 * See if the next page up is valid so that we can
			 * generate some kind of backtrace if this happens.
			 */
			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
			if (get_stack_info(stack, task, &stack_info, &visit_mask))
				break;
		}
137

138 139 140
		stack_name = stack_type_name(stack_info.type);
		if (stack_name)
			printk("%s <%s>\n", log_lvl, stack_name);
141

142 143
		if (regs)
			show_regs_safe(&stack_info, regs);
144

145 146 147 148 149 150 151 152 153 154 155 156 157
		/*
		 * Scan the stack, printing any text addresses we find.  At the
		 * same time, follow proper stack frames with the unwinder.
		 *
		 * Addresses found during the scan which are not reported by
		 * the unwinder are considered to be additional clues which are
		 * sometimes useful for debugging and are prefixed with '?'.
		 * This also serves as a failsafe option in case the unwinder
		 * goes off in the weeds.
		 */
		for (; stack < stack_info.end; stack++) {
			unsigned long real_addr;
			int reliable = 0;
158
			unsigned long addr = READ_ONCE_NOCHECK(*stack);
159 160 161 162 163 164
			unsigned long *ret_addr_p =
				unwind_get_return_address_ptr(&state);

			if (!__kernel_text_address(addr))
				continue;

165 166
			/*
			 * Don't print regs->ip again if it was already printed
167
			 * by show_regs_safe() below.
168
			 */
169 170
			if (regs && stack == &regs->ip)
				goto next;
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
			if (stack == ret_addr_p)
				reliable = 1;

			/*
			 * When function graph tracing is enabled for a
			 * function, its return address on the stack is
			 * replaced with the address of an ftrace handler
			 * (return_to_handler).  In that case, before printing
			 * the "real" address, we want to print the handler
			 * address as an "unreliable" hint that function graph
			 * tracing was involved.
			 */
			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
							  addr, stack);
			if (real_addr != addr)
				printk_stack_address(addr, 0, log_lvl);
			printk_stack_address(real_addr, reliable, log_lvl);

			if (!reliable)
				continue;

193
next:
194 195 196 197 198 199
			/*
			 * Get the next frame from the unwinder.  No need to
			 * check for an error: if anything goes wrong, the rest
			 * of the addresses will just be printed as unreliable.
			 */
			unwind_next_frame(&state);
200 201 202

			/* if the frame has entry regs, print them */
			regs = unwind_get_entry_regs(&state);
203 204
			if (regs)
				show_regs_safe(&stack_info, regs);
205 206
		}

207 208
		if (stack_name)
			printk("%s </%s>\n", log_lvl, stack_name);
209
	}
210 211 212 213
}

void show_stack(struct task_struct *task, unsigned long *sp)
{
214 215
	task = task ? : current;

216 217 218 219
	/*
	 * Stack frames below this one aren't interesting.  Don't show them
	 * if we're printing for %current.
	 */
220
	if (!sp && task == current)
221
		sp = get_stack_pointer(current, NULL);
222

223
	show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
224 225
}

226 227
void show_stack_regs(struct pt_regs *regs)
{
228
	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
229 230
}

231
static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
232 233 234
static int die_owner = -1;
static unsigned int die_nest_count;

235
unsigned long oops_begin(void)
236 237 238 239 240 241 242 243 244
{
	int cpu;
	unsigned long flags;

	oops_enter();

	/* racy, but better than risking deadlock. */
	raw_local_irq_save(flags);
	cpu = smp_processor_id();
245
	if (!arch_spin_trylock(&die_lock)) {
246 247 248
		if (cpu == die_owner)
			/* nested oops. should stop eventually */;
		else
249
			arch_spin_lock(&die_lock);
250 251 252 253 254 255 256
	}
	die_nest_count++;
	die_owner = cpu;
	console_verbose();
	bust_spinlocks(1);
	return flags;
}
257
EXPORT_SYMBOL_GPL(oops_begin);
258
NOKPROBE_SYMBOL(oops_begin);
259

260 261
void __noreturn rewind_stack_do_exit(int signr);

262
void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
263 264 265 266 267 268
{
	if (regs && kexec_should_crash(current))
		crash_kexec(regs);

	bust_spinlocks(0);
	die_owner = -1;
269
	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
270 271 272
	die_nest_count--;
	if (!die_nest_count)
		/* Nest count reaches zero, release the lock. */
273
		arch_spin_unlock(&die_lock);
274 275 276 277 278 279 280 281 282
	raw_local_irq_restore(flags);
	oops_exit();

	if (!signr)
		return;
	if (in_interrupt())
		panic("Fatal exception in interrupt");
	if (panic_on_oops)
		panic("Fatal exception");
283 284 285 286 287 288 289

	/*
	 * We're not going to return, but we might be on an IST stack or
	 * have very little stack space left.  Rewind the stack and kill
	 * the task.
	 */
	rewind_stack_do_exit(signr);
290
}
291
NOKPROBE_SYMBOL(oops_end);
292

293
int __die(const char *str, struct pt_regs *regs, long err)
294 295 296 297 298
{
#ifdef CONFIG_X86_32
	unsigned short ss;
	unsigned long sp;
#endif
299
	printk(KERN_DEFAULT
300 301 302 303 304 305
	       "%s: %04lx [#%d]%s%s%s%s\n", str, err & 0xffff, ++die_counter,
	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT"         : "",
	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "");

306
	if (notify_die(DIE_OOPS, str, regs, err,
307
			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
308 309
		return 1;

310
	print_modules();
311
	show_regs(regs);
312
#ifdef CONFIG_X86_32
313
	if (user_mode(regs)) {
314
		sp = regs->sp;
315
		ss = regs->ss;
316 317 318
	} else {
		sp = kernel_stack_pointer(regs);
		savesegment(ss, ss);
319
	}
320 321
	printk(KERN_EMERG "EIP: %pS SS:ESP: %04x:%08lx\n",
	       (void *)regs->ip, ss, sp);
322 323
#else
	/* Executive summary in case the oops scrolled away */
324
	printk(KERN_ALERT "RIP: %pS RSP: %016lx\n", (void *)regs->ip, regs->sp);
325 326 327
#endif
	return 0;
}
328
NOKPROBE_SYMBOL(__die);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

/*
 * This is gone through when something in the kernel has done something bad
 * and is about to be terminated:
 */
void die(const char *str, struct pt_regs *regs, long err)
{
	unsigned long flags = oops_begin();
	int sig = SIGSEGV;

	if (__die(str, regs, err))
		sig = 0;
	oops_end(flags, regs, sig);
}

static int __init code_bytes_setup(char *s)
{
346 347 348 349 350 351 352 353 354 355 356
	ssize_t ret;
	unsigned long val;

	if (!s)
		return -EINVAL;

	ret = kstrtoul(s, 0, &val);
	if (ret)
		return ret;

	code_bytes = val;
357 358 359 360 361 362
	if (code_bytes > 8192)
		code_bytes = 8192;

	return 1;
}
__setup("code_bytes=", code_bytes_setup);