page_alloc.c 212.9 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kmemcheck.h>
28
#include <linux/kasan.h>
L
Linus Torvalds 已提交
29 30 31 32 33
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
34
#include <linux/ratelimit.h>
35
#include <linux/oom.h>
L
Linus Torvalds 已提交
36 37 38 39 40
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
41
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
42 43
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
44
#include <linux/vmstat.h>
45
#include <linux/mempolicy.h>
46
#include <linux/memremap.h>
47
#include <linux/stop_machine.h>
48 49
#include <linux/sort.h>
#include <linux/pfn.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/page_ext.h>
54
#include <linux/debugobjects.h>
55
#include <linux/kmemleak.h>
56
#include <linux/compaction.h>
57
#include <trace/events/kmem.h>
58
#include <trace/events/oom.h>
59
#include <linux/prefetch.h>
60
#include <linux/mm_inline.h>
61
#include <linux/migrate.h>
62
#include <linux/hugetlb.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/mm.h>
65
#include <linux/page_owner.h>
66
#include <linux/kthread.h>
67
#include <linux/memcontrol.h>
68
#include <linux/ftrace.h>
L
Linus Torvalds 已提交
69

70
#include <asm/sections.h>
L
Linus Torvalds 已提交
71
#include <asm/tlbflush.h>
72
#include <asm/div64.h>
L
Linus Torvalds 已提交
73 74
#include "internal.h"

75 76
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
77
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
78

79 80 81 82 83
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

84 85 86 87 88 89 90 91 92
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93
int _node_numa_mem_[MAX_NUMNODES];
94 95
#endif

96 97 98 99
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

100
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101
volatile unsigned long latent_entropy __latent_entropy;
102 103 104
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
105
/*
106
 * Array of node states.
L
Linus Torvalds 已提交
107
 */
108 109 110 111 112 113 114
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
115 116
#endif
	[N_MEMORY] = { { [0] = 1UL } },
117 118 119 120 121
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

122 123 124
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

125
unsigned long totalram_pages __read_mostly;
126
unsigned long totalreserve_pages __read_mostly;
127
unsigned long totalcma_pages __read_mostly;
128

129
int percpu_pagelist_fraction;
130
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

150 151 152 153 154 155 156 157 158
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
159 160 161 162

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
163 164
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
165 166 167 168
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
169 170
}

171
void pm_restrict_gfp_mask(void)
172 173
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
174 175
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
176
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
177
}
178 179 180

bool pm_suspended_storage(void)
{
181
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
182 183 184
		return false;
	return true;
}
185 186
#endif /* CONFIG_PM_SLEEP */

187
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
188
unsigned int pageblock_order __read_mostly;
189 190
#endif

191
static void __free_pages_ok(struct page *page, unsigned int order);
192

L
Linus Torvalds 已提交
193 194 195 196 197 198
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
199
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
200 201 202
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
203
 */
204
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
205
#ifdef CONFIG_ZONE_DMA
206
	 256,
207
#endif
208
#ifdef CONFIG_ZONE_DMA32
209
	 256,
210
#endif
211
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
212
	 32,
213
#endif
M
Mel Gorman 已提交
214
	 32,
215
};
L
Linus Torvalds 已提交
216 217 218

EXPORT_SYMBOL(totalram_pages);

219
static char * const zone_names[MAX_NR_ZONES] = {
220
#ifdef CONFIG_ZONE_DMA
221
	 "DMA",
222
#endif
223
#ifdef CONFIG_ZONE_DMA32
224
	 "DMA32",
225
#endif
226
	 "Normal",
227
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
228
	 "HighMem",
229
#endif
M
Mel Gorman 已提交
230
	 "Movable",
231 232 233
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
234 235
};

236 237 238 239 240 241 242 243 244 245 246 247 248
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

249 250 251 252 253 254
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
255 256 257
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
258 259
};

L
Linus Torvalds 已提交
260
int min_free_kbytes = 1024;
261
int user_min_free_kbytes = -1;
262
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
263

264 265
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
266
static unsigned long __meminitdata dma_reserve;
L
Linus Torvalds 已提交
267

T
Tejun Heo 已提交
268 269 270 271 272 273
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
274
static bool mirrored_kernelcore;
T
Tejun Heo 已提交
275 276 277 278 279

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
280

M
Miklos Szeredi 已提交
281 282
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
283
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
284
EXPORT_SYMBOL(nr_node_ids);
285
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
286 287
#endif

288 289
int page_group_by_mobility_disabled __read_mostly;

290 291 292
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
	unsigned long max_initialise;
	unsigned long reserved_lowmem;

	/*
	 * Initialise at least 2G of a node but also take into account that
	 * two large system hashes that can take up 1GB for 0.25TB/node.
	 */
	max_initialise = max(2UL << (30 - PAGE_SHIFT),
		(pgdat->node_spanned_pages >> 8));

	/*
	 * Compensate the all the memblock reservations (e.g. crash kernel)
	 * from the initial estimation to make sure we will initialize enough
	 * memory to boot.
	 */
	reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
			pgdat->node_start_pfn + max_initialise);
	max_initialise += reserved_lowmem;

	pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
313 314 315 316
	pgdat->first_deferred_pfn = ULONG_MAX;
}

/* Returns true if the struct page for the pfn is uninitialised */
317
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
318
{
319 320 321
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	/* Always populate low zones for address-contrained allocations */
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
	(*nr_initialised)++;
339
	if ((*nr_initialised > pgdat->static_init_size) &&
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
}

static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
465

466
void set_pageblock_migratetype(struct page *page, int migratetype)
467
{
468 469
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
470 471
		migratetype = MIGRATE_UNMOVABLE;

472 473 474 475
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
476
#ifdef CONFIG_DEBUG_VM
477
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
478
{
479 480 481
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
482
	unsigned long sp, start_pfn;
483

484 485
	do {
		seq = zone_span_seqbegin(zone);
486 487
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
488
		if (!zone_spans_pfn(zone, pfn))
489 490 491
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

492
	if (ret)
493 494 495
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
496

497
	return ret;
498 499 500 501
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
502
	if (!pfn_valid_within(page_to_pfn(page)))
503
		return 0;
L
Linus Torvalds 已提交
504
	if (zone != page_zone(page))
505 506 507 508 509 510 511
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
512
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
513 514
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
515
		return 1;
516 517 518
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
519 520
	return 0;
}
N
Nick Piggin 已提交
521
#else
522
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
523 524 525 526 527
{
	return 0;
}
#endif

528 529
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
530
{
531 532 533 534 535 536 537 538 539 540 541 542 543 544
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
545
			pr_alert(
546
			      "BUG: Bad page state: %lu messages suppressed\n",
547 548 549 550 551 552 553 554
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

555
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
556
		current->comm, page_to_pfn(page));
557 558 559 560 561
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
562
	dump_page_owner(page);
563

564
	print_modules();
L
Linus Torvalds 已提交
565
	dump_stack();
566
out:
567
	/* Leave bad fields for debug, except PageBuddy could make trouble */
568
	page_mapcount_reset(page); /* remove PageBuddy */
569
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
570 571 572 573 574
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
575
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
576
 *
577 578
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
579
 *
580 581
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
582
 *
583
 * The first tail page's ->compound_order holds the order of allocation.
584
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
585
 */
586

587
void free_compound_page(struct page *page)
588
{
589
	__free_pages_ok(page, compound_order(page));
590 591
}

592
void prep_compound_page(struct page *page, unsigned int order)
593 594 595 596
{
	int i;
	int nr_pages = 1 << order;

597
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
598 599 600 601
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
602
		set_page_count(p, 0);
603
		p->mapping = TAIL_MAPPING;
604
		set_compound_head(p, page);
605
	}
606
	atomic_set(compound_mapcount_ptr(page), -1);
607 608
}

609 610
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
611 612
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
613
EXPORT_SYMBOL(_debug_pagealloc_enabled);
614 615
bool _debug_guardpage_enabled __read_mostly;

616 617 618 619
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
620
	return kstrtobool(buf, &_debug_pagealloc_enabled);
621 622 623
}
early_param("debug_pagealloc", early_debug_pagealloc);

624 625
static bool need_debug_guardpage(void)
{
626 627 628 629
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

630 631 632
	if (!debug_guardpage_minorder())
		return false;

633 634 635 636 637
	return true;
}

static void init_debug_guardpage(void)
{
638 639 640
	if (!debug_pagealloc_enabled())
		return;

641 642 643
	if (!debug_guardpage_minorder())
		return;

644 645 646 647 648 649 650
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
651 652 653 654 655 656

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
657
		pr_err("Bad debug_guardpage_minorder value\n");
658 659 660
		return 0;
	}
	_debug_guardpage_minorder = res;
661
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
662 663
	return 0;
}
664
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
665

666
static inline bool set_page_guard(struct zone *zone, struct page *page,
667
				unsigned int order, int migratetype)
668
{
669 670 671
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
672 673 674 675
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
676 677

	page_ext = lookup_page_ext(page);
678
	if (unlikely(!page_ext))
679
		return false;
680

681 682
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

683 684 685 686
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
687 688

	return true;
689 690
}

691 692
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
693
{
694 695 696 697 698 699
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
700 701 702
	if (unlikely(!page_ext))
		return;

703 704
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

705 706 707
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
708 709
}
#else
710
struct page_ext_operations debug_guardpage_ops;
711 712
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
713 714
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
715 716
#endif

717
static inline void set_page_order(struct page *page, unsigned int order)
718
{
H
Hugh Dickins 已提交
719
	set_page_private(page, order);
720
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
721 722 723 724
}

static inline void rmv_page_order(struct page *page)
{
725
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
726
	set_page_private(page, 0);
L
Linus Torvalds 已提交
727 728 729 730 731
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
732
 * (a) the buddy is not in a hole (check before calling!) &&
733
 * (b) the buddy is in the buddy system &&
734 735
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
736
 *
737 738 739 740
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
741
 *
742
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
743
 */
744
static inline int page_is_buddy(struct page *page, struct page *buddy,
745
							unsigned int order)
L
Linus Torvalds 已提交
746
{
747
	if (page_is_guard(buddy) && page_order(buddy) == order) {
748 749 750
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

751 752
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

753 754 755
		return 1;
	}

756
	if (PageBuddy(buddy) && page_order(buddy) == order) {
757 758 759 760 761 762 763 764
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

765 766
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

767
		return 1;
768
	}
769
	return 0;
L
Linus Torvalds 已提交
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
785 786 787
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
788
 * So when we are allocating or freeing one, we can derive the state of the
789 790
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
791
 * If a block is freed, and its buddy is also free, then this
792
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
793
 *
794
 * -- nyc
L
Linus Torvalds 已提交
795 796
 */

N
Nick Piggin 已提交
797
static inline void __free_one_page(struct page *page,
798
		unsigned long pfn,
799 800
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
801
{
802 803
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
804
	struct page *buddy;
805 806 807
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
808

809
	VM_BUG_ON(!zone_is_initialized(zone));
810
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
811

812
	VM_BUG_ON(migratetype == -1);
813
	if (likely(!is_migrate_isolate(migratetype)))
814
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
815

816
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
817
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
818

819
continue_merging:
820
	while (order < max_order - 1) {
821 822
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
823 824 825

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
826
		if (!page_is_buddy(page, buddy, order))
827
			goto done_merging;
828 829 830 831 832
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
833
			clear_page_guard(zone, buddy, order, migratetype);
834 835 836 837 838
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
839 840 841
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
842 843
		order++;
	}
844 845 846 847 848 849 850 851 852 853 854 855
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

856 857
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
858 859 860 861 862 863 864 865 866 867 868 869
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
870
	set_page_order(page, order);
871 872 873 874 875 876 877 878 879

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
880
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
881
		struct page *higher_page, *higher_buddy;
882 883 884 885
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
886 887
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
888 889 890 891 892 893 894 895
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
896 897 898
	zone->free_area[order].nr_free++;
}

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

921
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
922
{
923 924 925 926 927
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
928

929
	if (unlikely(atomic_read(&page->_mapcount) != -1))
930 931 932
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
933
	if (unlikely(page_ref_count(page) != 0))
934
		bad_reason = "nonzero _refcount";
935 936 937 938
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
939 940 941 942
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
943
	bad_page(page, bad_reason, bad_flags);
944 945 946 947
}

static inline int free_pages_check(struct page *page)
{
948
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
949 950 951 952
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
953
	return 1;
L
Linus Torvalds 已提交
954 955
}

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1006 1007
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1008
{
1009
	int bad = 0;
1010 1011 1012

	VM_BUG_ON_PAGE(PageTail(page), page);

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	trace_mm_page_free(page, order);
	kmemcheck_free_shadow(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1025

1026 1027
		if (compound)
			ClearPageDoubleMap(page);
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1038
	if (PageMappingFlags(page))
1039
		page->mapping = NULL;
1040
	if (memcg_kmem_enabled() && PageKmemcg(page))
1041
		memcg_kmem_uncharge(page, order);
1042 1043 1044 1045
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1046

1047 1048 1049
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1050 1051 1052

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1053
					   PAGE_SIZE << order);
1054
		debug_check_no_obj_freed(page_address(page),
1055
					   PAGE_SIZE << order);
1056
	}
1057 1058 1059
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1060
	kasan_free_pages(page, order);
1061 1062 1063 1064

	return true;
}

1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1081 1082 1083 1084 1085 1086
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

L
Linus Torvalds 已提交
1087
/*
1088
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1089
 * Assumes all pages on list are in same zone, and of same order.
1090
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1091 1092 1093 1094 1095 1096 1097
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1098 1099
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1100
{
1101
	int migratetype = 0;
1102
	int batch_free = 0;
1103
	bool isolated_pageblocks;
1104

1105
	spin_lock(&zone->lock);
1106
	isolated_pageblocks = has_isolate_pageblock(zone);
1107

1108
	while (count) {
N
Nick Piggin 已提交
1109
		struct page *page;
1110 1111 1112
		struct list_head *list;

		/*
1113 1114 1115 1116 1117
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1118 1119
		 */
		do {
1120
			batch_free++;
1121 1122 1123 1124
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1125

1126 1127
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1128
			batch_free = count;
1129

1130
		do {
1131 1132
			int mt;	/* migratetype of the to-be-freed page */

1133
			page = list_last_entry(list, struct page, lru);
1134 1135
			/* must delete as __free_one_page list manipulates */
			list_del(&page->lru);
1136

1137
			mt = get_pcppage_migratetype(page);
1138 1139 1140
			/* MIGRATE_ISOLATE page should not go to pcplists */
			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
			/* Pageblock could have been isolated meanwhile */
1141
			if (unlikely(isolated_pageblocks))
1142 1143
				mt = get_pageblock_migratetype(page);

1144 1145 1146
			if (bulkfree_pcp_prepare(page))
				continue;

1147
			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1148
			trace_mm_page_pcpu_drain(page, 0, mt);
1149
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1150
	}
1151
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1152 1153
}

1154 1155
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1156
				unsigned int order,
1157
				int migratetype)
L
Linus Torvalds 已提交
1158
{
1159
	spin_lock(&zone->lock);
1160 1161 1162 1163
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1164
	__free_one_page(page, pfn, zone, order, migratetype);
1165
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1166 1167
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
				unsigned long zone, int nid)
{
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
					int nid)
{
	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
}

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
static void init_reserved_page(unsigned long pfn)
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
	__init_single_pfn(pfn, zid, nid);
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1216 1217 1218 1219 1220 1221
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1222
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1223 1224 1225 1226
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1227 1228 1229 1230 1231
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1232 1233 1234 1235

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1236 1237 1238
			SetPageReserved(page);
		}
	}
1239 1240
}

1241 1242
static void __free_pages_ok(struct page *page, unsigned int order)
{
1243
	unsigned long flags;
M
Minchan Kim 已提交
1244
	int migratetype;
1245
	unsigned long pfn = page_to_pfn(page);
1246

1247
	if (!free_pages_prepare(page, order, true))
1248 1249
		return;

1250
	migratetype = get_pfnblock_migratetype(page, pfn);
1251 1252
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1253
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1254
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1255 1256
}

1257
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1258
{
1259
	unsigned int nr_pages = 1 << order;
1260
	struct page *p = page;
1261
	unsigned int loop;
1262

1263 1264 1265
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1266 1267
		__ClearPageReserved(p);
		set_page_count(p, 0);
1268
	}
1269 1270
	__ClearPageReserved(p);
	set_page_count(p, 0);
1271

1272
	page_zone(page)->managed_pages += nr_pages;
1273 1274
	set_page_refcounted(page);
	__free_pages(page, order);
1275 1276
}

1277 1278
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1279

1280 1281 1282 1283
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1284
	static DEFINE_SPINLOCK(early_pfn_lock);
1285 1286
	int nid;

1287
	spin_lock(&early_pfn_lock);
1288
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1289
	if (nid < 0)
1290
		nid = first_online_node;
1291 1292 1293
	spin_unlock(&early_pfn_lock);

	return nid;
1294 1295 1296 1297
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1298 1299 1300
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1322 1323 1324
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1325 1326 1327 1328 1329 1330
{
	return true;
}
#endif


1331
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1332 1333 1334 1335
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1336
	return __free_pages_boot_core(page, order);
1337 1338
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1368 1369 1370
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1410
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411
static void __init deferred_free_range(struct page *page,
1412 1413 1414 1415 1416 1417 1418 1419
					unsigned long pfn, int nr_pages)
{
	int i;

	if (!page)
		return;

	/* Free a large naturally-aligned chunk if possible */
1420 1421
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1422
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1423
		__free_pages_boot_core(page, pageblock_order);
1424 1425 1426
		return;
	}

1427 1428 1429
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1430
		__free_pages_boot_core(page, 0);
1431
	}
1432 1433
}

1434 1435 1436 1437 1438 1439 1440 1441 1442
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1443

1444
/* Initialise remaining memory on a node */
1445
static int __init deferred_init_memmap(void *data)
1446
{
1447 1448
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1449 1450 1451 1452 1453 1454 1455
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
	unsigned long walk_start, walk_end;
	int i, zid;
	struct zone *zone;
	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1456
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1457

1458
	if (first_init_pfn == ULONG_MAX) {
1459
		pgdat_init_report_one_done();
1460 1461 1462 1463 1464 1465
		return 0;
	}

	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480

	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}

	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
		unsigned long pfn, end_pfn;
1481
		struct page *page = NULL;
1482 1483 1484
		struct page *free_base_page = NULL;
		unsigned long free_base_pfn = 0;
		int nr_to_free = 0;
1485 1486 1487 1488 1489 1490 1491 1492 1493

		end_pfn = min(walk_end, zone_end_pfn(zone));
		pfn = first_init_pfn;
		if (pfn < walk_start)
			pfn = walk_start;
		if (pfn < zone->zone_start_pfn)
			pfn = zone->zone_start_pfn;

		for (; pfn < end_pfn; pfn++) {
1494
			if (!pfn_valid_within(pfn))
1495
				goto free_range;
1496

1497 1498
			/*
			 * Ensure pfn_valid is checked every
1499
			 * pageblock_nr_pages for memory holes
1500
			 */
1501
			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1502 1503
				if (!pfn_valid(pfn)) {
					page = NULL;
1504
					goto free_range;
1505 1506 1507 1508 1509
				}
			}

			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
				page = NULL;
1510
				goto free_range;
1511 1512 1513
			}

			/* Minimise pfn page lookups and scheduler checks */
1514
			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1515 1516
				page++;
			} else {
1517 1518 1519 1520 1521 1522
				nr_pages += nr_to_free;
				deferred_free_range(free_base_page,
						free_base_pfn, nr_to_free);
				free_base_page = NULL;
				free_base_pfn = nr_to_free = 0;

1523 1524 1525
				page = pfn_to_page(pfn);
				cond_resched();
			}
1526 1527 1528

			if (page->flags) {
				VM_BUG_ON(page_zone(page) != zone);
1529
				goto free_range;
1530 1531 1532
			}

			__init_single_page(page, pfn, zid, nid);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
			if (!free_base_page) {
				free_base_page = page;
				free_base_pfn = pfn;
				nr_to_free = 0;
			}
			nr_to_free++;

			/* Where possible, batch up pages for a single free */
			continue;
free_range:
			/* Free the current block of pages to allocator */
			nr_pages += nr_to_free;
			deferred_free_range(free_base_page, free_base_pfn,
								nr_to_free);
			free_base_page = NULL;
			free_base_pfn = nr_to_free = 0;
1549
		}
1550 1551 1552
		/* Free the last block of pages to allocator */
		nr_pages += nr_to_free;
		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1553

1554 1555 1556 1557 1558 1559
		first_init_pfn = max(end_pfn, first_init_pfn);
	}

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1560
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1561
					jiffies_to_msecs(jiffies - start));
1562 1563

	pgdat_init_report_one_done();
1564 1565
	return 0;
}
1566
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1567 1568 1569

void __init page_alloc_init_late(void)
{
1570 1571 1572
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1573 1574
	int nid;

1575 1576
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1577 1578 1579 1580 1581
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1582
	wait_for_completion(&pgdat_init_all_done_comp);
1583 1584 1585

	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1586 1587 1588 1589
#endif

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1590 1591
}

1592
#ifdef CONFIG_CMA
1593
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1619
	adjust_managed_page_count(page, pageblock_nr_pages);
1620 1621
}
#endif
L
Linus Torvalds 已提交
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1635
 * -- nyc
L
Linus Torvalds 已提交
1636
 */
N
Nick Piggin 已提交
1637
static inline void expand(struct zone *zone, struct page *page,
1638 1639
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1640 1641 1642 1643 1644 1645 1646
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1647
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1648

1649 1650 1651 1652 1653 1654 1655
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1656
			continue;
1657

1658
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1659 1660 1661 1662 1663
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1664
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1665
{
1666 1667
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1668

1669
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1670 1671 1672
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1673
	if (unlikely(page_ref_count(page) != 0))
1674
		bad_reason = "nonzero _count";
1675 1676 1677
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1678 1679 1680
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1681
	}
1682 1683 1684 1685
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1686 1687 1688 1689
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1704 1705
}

1706
static inline bool free_pages_prezeroed(void)
1707 1708
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1709
		page_poisoning_enabled();
1710 1711
}

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1759
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1760
							unsigned int alloc_flags)
1761 1762
{
	int i;
1763

1764
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1765

1766
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1767 1768
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1769 1770 1771 1772

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1773
	/*
1774
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1775 1776 1777 1778
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1779 1780 1781 1782
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1783 1784
}

1785 1786 1787 1788
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1789 1790
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1791 1792 1793
						int migratetype)
{
	unsigned int current_order;
1794
	struct free_area *area;
1795 1796 1797 1798 1799
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1800
		page = list_first_entry_or_null(&area->free_list[migratetype],
1801
							struct page, lru);
1802 1803
		if (!page)
			continue;
1804 1805 1806 1807
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1808
		set_pcppage_migratetype(page, migratetype);
1809 1810 1811 1812 1813 1814 1815
		return page;
	}

	return NULL;
}


1816 1817 1818 1819
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1820
static int fallbacks[MIGRATE_TYPES][4] = {
1821 1822 1823
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1824
#ifdef CONFIG_CMA
1825
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1826
#endif
1827
#ifdef CONFIG_MEMORY_ISOLATION
1828
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1829
#endif
1830 1831
};

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
#ifdef CONFIG_CMA
static struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1843 1844
/*
 * Move the free pages in a range to the free lists of the requested type.
1845
 * Note that start_page and end_pages are not aligned on a pageblock
1846 1847
 * boundary. If alignment is required, use move_freepages_block()
 */
1848
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
1849
			  struct page *start_page, struct page *end_page,
1850
			  int migratetype, int *num_movable)
1851 1852
{
	struct page *page;
1853
	unsigned int order;
1854
	int pages_moved = 0;
1855 1856 1857 1858 1859 1860 1861

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
1862
	 * grouping pages by mobility
1863
	 */
1864
	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1865 1866
#endif

1867 1868 1869
	if (num_movable)
		*num_movable = 0;

1870 1871 1872 1873 1874 1875
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

1876 1877 1878
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

1879
		if (!PageBuddy(page)) {
1880 1881 1882 1883 1884 1885 1886 1887 1888
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

1889 1890 1891 1892 1893
			page++;
			continue;
		}

		order = page_order(page);
1894 1895
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
1896
		page += 1 << order;
1897
		pages_moved += 1 << order;
1898 1899
	}

1900
	return pages_moved;
1901 1902
}

1903
int move_freepages_block(struct zone *zone, struct page *page,
1904
				int migratetype, int *num_movable)
1905 1906 1907 1908 1909
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
1910
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1911
	start_page = pfn_to_page(start_pfn);
1912 1913
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
1914 1915

	/* Do not cross zone boundaries */
1916
	if (!zone_spans_pfn(zone, start_pfn))
1917
		start_page = page;
1918
	if (!zone_spans_pfn(zone, end_pfn))
1919 1920
		return 0;

1921 1922
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
1923 1924
}

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

1936
/*
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
1947
 */
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
1972 1973 1974 1975
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
1976 1977
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
1978
					int start_type, bool whole_block)
1979
{
1980
	unsigned int current_order = page_order(page);
1981
	struct free_area *area;
1982 1983 1984 1985
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
1986

1987 1988 1989 1990
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
1991
	if (is_migrate_highatomic(old_block_type))
1992 1993
		goto single_page;

1994 1995 1996
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
1997
		goto single_page;
1998 1999
	}

2000 2001 2002 2003
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2028
	/* moving whole block can fail due to zone boundary conditions */
2029
	if (!free_pages)
2030
		goto single_page;
2031

2032 2033 2034 2035 2036
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2037 2038
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2039 2040 2041 2042 2043 2044

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2045 2046
}

2047 2048 2049 2050 2051 2052 2053 2054
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2065
		if (fallback_mt == MIGRATE_TYPES)
2066 2067 2068 2069
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2070

2071 2072 2073
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2074 2075 2076 2077 2078
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2079
	}
2080 2081

	return -1;
2082 2083
}

2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2110 2111
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2112 2113
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2114
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2126 2127 2128
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2129
 */
2130 2131
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2132 2133 2134 2135 2136 2137 2138
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2139
	bool ret;
2140 2141 2142

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2143 2144 2145 2146 2147 2148
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2149 2150 2151 2152 2153 2154
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2155 2156 2157 2158
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2159 2160 2161
				continue;

			/*
2162 2163 2164 2165 2166
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2167
			 */
2168
			if (is_migrate_highatomic_page(page)) {
2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2191 2192
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2193 2194 2195 2196
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2197 2198 2199
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2200 2201

	return false;
2202 2203
}

2204 2205 2206 2207 2208
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2209 2210 2211 2212
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2213 2214
 */
static inline bool
2215
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2216
{
2217
	struct free_area *area;
2218
	int current_order;
2219
	struct page *page;
2220 2221
	int fallback_mt;
	bool can_steal;
2222

2223 2224 2225 2226 2227
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2228
	for (current_order = MAX_ORDER - 1; current_order >= order;
2229
				--current_order) {
2230 2231
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2232
				start_migratetype, false, &can_steal);
2233 2234
		if (fallback_mt == -1)
			continue;
2235

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2247

2248 2249
		goto do_steal;
	}
2250

2251
	return false;
2252

2253 2254 2255 2256 2257 2258 2259 2260
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2261 2262
	}

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2280 2281
}

2282
/*
L
Linus Torvalds 已提交
2283 2284 2285
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2286
static struct page *__rmqueue(struct zone *zone, unsigned int order,
2287
				int migratetype)
L
Linus Torvalds 已提交
2288 2289 2290
{
	struct page *page;

2291
retry:
2292
	page = __rmqueue_smallest(zone, order, migratetype);
2293
	if (unlikely(!page)) {
2294 2295 2296
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2297 2298
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2299 2300
	}

2301
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2302
	return page;
L
Linus Torvalds 已提交
2303 2304
}

2305
/*
L
Linus Torvalds 已提交
2306 2307 2308 2309
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2310
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2311
			unsigned long count, struct list_head *list,
2312
			int migratetype, bool cold)
L
Linus Torvalds 已提交
2313
{
2314
	int i, alloced = 0;
2315

2316
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2317
	for (i = 0; i < count; ++i) {
2318
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2319
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2320
			break;
2321

2322 2323 2324
		if (unlikely(check_pcp_refill(page)))
			continue;

2325 2326 2327 2328 2329 2330 2331 2332 2333
		/*
		 * Split buddy pages returned by expand() are received here
		 * in physical page order. The page is added to the callers and
		 * list and the list head then moves forward. From the callers
		 * perspective, the linked list is ordered by page number in
		 * some conditions. This is useful for IO devices that can
		 * merge IO requests if the physical pages are ordered
		 * properly.
		 */
2334
		if (likely(!cold))
2335 2336 2337
			list_add(&page->lru, list);
		else
			list_add_tail(&page->lru, list);
2338
		list = &page->lru;
2339
		alloced++;
2340
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2341 2342
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2343
	}
2344 2345 2346 2347 2348 2349 2350

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2351
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2352
	spin_unlock(&zone->lock);
2353
	return alloced;
L
Linus Torvalds 已提交
2354 2355
}

2356
#ifdef CONFIG_NUMA
2357
/*
2358 2359 2360 2361
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2362 2363
 * Note that this function must be called with the thread pinned to
 * a single processor.
2364
 */
2365
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2366 2367
{
	unsigned long flags;
2368
	int to_drain, batch;
2369

2370
	local_irq_save(flags);
2371
	batch = READ_ONCE(pcp->batch);
2372
	to_drain = min(pcp->count, batch);
2373 2374 2375 2376
	if (to_drain > 0) {
		free_pcppages_bulk(zone, to_drain, pcp);
		pcp->count -= to_drain;
	}
2377
	local_irq_restore(flags);
2378 2379 2380
}
#endif

2381
/*
2382
 * Drain pcplists of the indicated processor and zone.
2383 2384 2385 2386 2387
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2388
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2389
{
N
Nick Piggin 已提交
2390
	unsigned long flags;
2391 2392
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2393

2394 2395
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2396

2397 2398 2399 2400 2401 2402 2403
	pcp = &pset->pcp;
	if (pcp->count) {
		free_pcppages_bulk(zone, pcp->count, pcp);
		pcp->count = 0;
	}
	local_irq_restore(flags);
}
2404

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2418 2419 2420
	}
}

2421 2422
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2423 2424 2425
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2426
 */
2427
void drain_local_pages(struct zone *zone)
2428
{
2429 2430 2431 2432 2433 2434
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2435 2436
}

2437 2438
static void drain_local_pages_wq(struct work_struct *work)
{
2439 2440 2441 2442 2443 2444 2445 2446
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2447
	drain_local_pages(NULL);
2448
	preempt_enable();
2449 2450
}

2451
/*
2452 2453
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2454 2455
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2456
 * Note that this can be extremely slow as the draining happens in a workqueue.
2457
 */
2458
void drain_all_pages(struct zone *zone)
2459
{
2460 2461 2462 2463 2464 2465 2466 2467
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2468 2469 2470 2471 2472 2473 2474
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2475 2476 2477 2478
	/* Workqueues cannot recurse */
	if (current->flags & PF_WQ_WORKER)
		return;

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2489

2490 2491 2492 2493 2494 2495 2496
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2497 2498
		struct per_cpu_pageset *pcp;
		struct zone *z;
2499
		bool has_pcps = false;
2500 2501

		if (zone) {
2502
			pcp = per_cpu_ptr(zone->pageset, cpu);
2503
			if (pcp->pcp.count)
2504
				has_pcps = true;
2505 2506 2507 2508 2509 2510 2511
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2512 2513
			}
		}
2514

2515 2516 2517 2518 2519
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2520

2521 2522 2523
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2524
		queue_work_on(cpu, mm_percpu_wq, work);
2525
	}
2526 2527 2528 2529
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2530 2531
}

2532
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2533 2534 2535

void mark_free_pages(struct zone *zone)
{
2536 2537
	unsigned long pfn, max_zone_pfn;
	unsigned long flags;
2538
	unsigned int order, t;
2539
	struct page *page;
L
Linus Torvalds 已提交
2540

2541
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2542 2543 2544
		return;

	spin_lock_irqsave(&zone->lock, flags);
2545

2546
	max_zone_pfn = zone_end_pfn(zone);
2547 2548
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2549
			page = pfn_to_page(pfn);
2550 2551 2552 2553

			if (page_zone(page) != zone)
				continue;

2554 2555
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2556
		}
L
Linus Torvalds 已提交
2557

2558
	for_each_migratetype_order(order, t) {
2559 2560
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2561
			unsigned long i;
L
Linus Torvalds 已提交
2562

2563
			pfn = page_to_pfn(page);
2564
			for (i = 0; i < (1UL << order); i++)
2565
				swsusp_set_page_free(pfn_to_page(pfn + i));
2566
		}
2567
	}
L
Linus Torvalds 已提交
2568 2569
	spin_unlock_irqrestore(&zone->lock, flags);
}
2570
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2571 2572 2573

/*
 * Free a 0-order page
2574
 * cold == true ? free a cold page : free a hot page
L
Linus Torvalds 已提交
2575
 */
2576
void free_hot_cold_page(struct page *page, bool cold)
L
Linus Torvalds 已提交
2577 2578 2579
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
2580
	unsigned long flags;
2581
	unsigned long pfn = page_to_pfn(page);
2582
	int migratetype;
L
Linus Torvalds 已提交
2583

2584
	if (!free_pcp_prepare(page))
2585 2586
		return;

2587
	migratetype = get_pfnblock_migratetype(page, pfn);
2588
	set_pcppage_migratetype(page, migratetype);
2589 2590
	local_irq_save(flags);
	__count_vm_event(PGFREE);
2591

2592 2593 2594
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2595
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2596 2597 2598 2599
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2600
		if (unlikely(is_migrate_isolate(migratetype))) {
2601
			free_one_page(zone, page, pfn, 0, migratetype);
2602 2603 2604 2605 2606
			goto out;
		}
		migratetype = MIGRATE_MOVABLE;
	}

2607
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2608
	if (!cold)
2609
		list_add(&page->lru, &pcp->lists[migratetype]);
2610 2611
	else
		list_add_tail(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2612
	pcp->count++;
N
Nick Piggin 已提交
2613
	if (pcp->count >= pcp->high) {
2614
		unsigned long batch = READ_ONCE(pcp->batch);
2615 2616
		free_pcppages_bulk(zone, batch, pcp);
		pcp->count -= batch;
N
Nick Piggin 已提交
2617
	}
2618 2619

out:
2620
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2621 2622
}

2623 2624 2625
/*
 * Free a list of 0-order pages
 */
2626
void free_hot_cold_page_list(struct list_head *list, bool cold)
2627 2628 2629 2630
{
	struct page *page, *next;

	list_for_each_entry_safe(page, next, list, lru) {
2631
		trace_mm_page_free_batched(page, cold);
2632 2633 2634 2635
		free_hot_cold_page(page, cold);
	}
}

N
Nick Piggin 已提交
2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2648 2649
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659

#ifdef CONFIG_KMEMCHECK
	/*
	 * Split shadow pages too, because free(page[0]) would
	 * otherwise free the whole shadow.
	 */
	if (kmemcheck_page_is_tracked(page))
		split_page(virt_to_page(page[0].shadow), order);
#endif

2660
	for (i = 1; i < (1 << order); i++)
2661
		set_page_refcounted(page + i);
2662
	split_page_owner(page, order);
N
Nick Piggin 已提交
2663
}
K
K. Y. Srinivasan 已提交
2664
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2665

2666
int __isolate_free_page(struct page *page, unsigned int order)
2667 2668 2669
{
	unsigned long watermark;
	struct zone *zone;
2670
	int mt;
2671 2672 2673 2674

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2675
	mt = get_pageblock_migratetype(page);
2676

2677
	if (!is_migrate_isolate(mt)) {
2678 2679 2680 2681 2682 2683 2684
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2685
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2686 2687
			return 0;

2688
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2689
	}
2690 2691 2692 2693 2694

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2695

2696 2697 2698 2699
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2700 2701
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2702 2703
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2704
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2705
			    && !is_migrate_highatomic(mt))
2706 2707 2708
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2709 2710
	}

2711

2712
	return 1UL << order;
2713 2714
}

2715 2716 2717 2718 2719
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2720
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2721 2722 2723 2724
{
#ifdef CONFIG_NUMA
	enum zone_stat_item local_stat = NUMA_LOCAL;

2725
	if (z->node != numa_node_id())
2726 2727
		local_stat = NUMA_OTHER;

2728
	if (z->node == preferred_zone->node)
2729
		__inc_zone_state(z, NUMA_HIT);
2730
	else {
2731 2732 2733
		__inc_zone_state(z, NUMA_MISS);
		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
	}
2734
	__inc_zone_state(z, local_stat);
2735 2736 2737
#endif
}

2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
			bool cold, struct per_cpu_pages *pcp,
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
					migratetype, cold);
			if (unlikely(list_empty(list)))
				return NULL;
		}

		if (cold)
			page = list_last_entry(list, struct page, lru);
		else
			page = list_first_entry(list, struct page, lru);

		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	bool cold = ((gfp_flags & __GFP_COLD) != 0);
	struct page *page;
2775
	unsigned long flags;
2776

2777
	local_irq_save(flags);
2778 2779 2780 2781 2782 2783 2784
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2785
	local_irq_restore(flags);
2786 2787 2788
	return page;
}

L
Linus Torvalds 已提交
2789
/*
2790
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2791
 */
2792
static inline
2793
struct page *rmqueue(struct zone *preferred_zone,
2794
			struct zone *zone, unsigned int order,
2795 2796
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2797 2798
{
	unsigned long flags;
2799
	struct page *page;
L
Linus Torvalds 已提交
2800

2801
	if (likely(order == 0)) {
2802 2803 2804 2805
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2806

2807 2808 2809 2810 2811 2812
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2813

2814 2815 2816 2817 2818 2819 2820
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
2821
		if (!page)
2822 2823 2824 2825 2826 2827 2828
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
2829

2830
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
2831
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
2832
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2833

2834 2835
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
2836
	return page;
N
Nick Piggin 已提交
2837 2838 2839 2840

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
2841 2842
}

2843 2844
#ifdef CONFIG_FAIL_PAGE_ALLOC

2845
static struct {
2846 2847
	struct fault_attr attr;

2848
	bool ignore_gfp_highmem;
2849
	bool ignore_gfp_reclaim;
2850
	u32 min_order;
2851 2852
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
2853
	.ignore_gfp_reclaim = true,
2854
	.ignore_gfp_highmem = true,
2855
	.min_order = 1,
2856 2857 2858 2859 2860 2861 2862 2863
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

2864
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2865
{
2866
	if (order < fail_page_alloc.min_order)
2867
		return false;
2868
	if (gfp_mask & __GFP_NOFAIL)
2869
		return false;
2870
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2871
		return false;
2872 2873
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
2874
		return false;
2875 2876 2877 2878 2879 2880 2881 2882

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
2883
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2884 2885
	struct dentry *dir;

2886 2887 2888 2889
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
2890

2891
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2892
				&fail_page_alloc.ignore_gfp_reclaim))
2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
2903
	debugfs_remove_recursive(dir);
2904

2905
	return -ENOMEM;
2906 2907 2908 2909 2910 2911 2912 2913
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

2914
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2915
{
2916
	return false;
2917 2918 2919 2920
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
2921
/*
2922 2923 2924 2925
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
2926
 */
2927 2928 2929
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
2930
{
2931
	long min = mark;
L
Linus Torvalds 已提交
2932
	int o;
2933
	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
L
Linus Torvalds 已提交
2934

2935
	/* free_pages may go negative - that's OK */
2936
	free_pages -= (1 << order) - 1;
2937

R
Rohit Seth 已提交
2938
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
2939
		min -= min / 2;
2940 2941 2942 2943 2944 2945

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
2946
	if (likely(!alloc_harder))
2947 2948
		free_pages -= z->nr_reserved_highatomic;
	else
L
Linus Torvalds 已提交
2949
		min -= min / 4;
2950

2951 2952 2953
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
2954
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2955
#endif
2956

2957 2958 2959 2960 2961 2962
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2963
		return false;
L
Linus Torvalds 已提交
2964

2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		if (alloc_harder)
			return true;
L
Linus Torvalds 已提交
2979

2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
L
Linus Torvalds 已提交
2991
	}
2992
	return false;
2993 2994
}

2995
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2996
		      int classzone_idx, unsigned int alloc_flags)
2997 2998 2999 3000 3001
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3028
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3029
			unsigned long mark, int classzone_idx)
3030 3031 3032 3033 3034 3035
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3036
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3037
								free_pages);
L
Linus Torvalds 已提交
3038 3039
}

3040
#ifdef CONFIG_NUMA
3041 3042
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3043
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3044
				RECLAIM_DISTANCE;
3045
}
3046
#else	/* CONFIG_NUMA */
3047 3048 3049 3050
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3051 3052
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3053
/*
3054
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3055 3056 3057
 * a page.
 */
static struct page *
3058 3059
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3060
{
3061
	struct zoneref *z = ac->preferred_zoneref;
3062
	struct zone *zone;
3063 3064
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3065
	/*
3066
	 * Scan zonelist, looking for a zone with enough free.
3067
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3068
	 */
3069
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3070
								ac->nodemask) {
3071
		struct page *page;
3072 3073
		unsigned long mark;

3074 3075
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3076
			!__cpuset_zone_allowed(zone, gfp_mask))
3077
				continue;
3078 3079
		/*
		 * When allocating a page cache page for writing, we
3080 3081
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3082
		 * proportional share of globally allowed dirty pages.
3083
		 * The dirty limits take into account the node's
3084 3085 3086 3087 3088
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3089
		 * exceed the per-node dirty limit in the slowpath
3090
		 * (spread_dirty_pages unset) before going into reclaim,
3091
		 * which is important when on a NUMA setup the allowed
3092
		 * nodes are together not big enough to reach the
3093
		 * global limit.  The proper fix for these situations
3094
		 * will require awareness of nodes in the
3095 3096
		 * dirty-throttling and the flusher threads.
		 */
3097 3098 3099 3100 3101 3102 3103 3104 3105
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3106

3107
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3108
		if (!zone_watermark_fast(zone, order, mark,
3109
				       ac_classzone_idx(ac), alloc_flags)) {
3110 3111
			int ret;

3112 3113 3114 3115 3116
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3117
			if (node_reclaim_mode == 0 ||
3118
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3119 3120
				continue;

3121
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3122
			switch (ret) {
3123
			case NODE_RECLAIM_NOSCAN:
3124
				/* did not scan */
3125
				continue;
3126
			case NODE_RECLAIM_FULL:
3127
				/* scanned but unreclaimable */
3128
				continue;
3129 3130
			default:
				/* did we reclaim enough */
3131
				if (zone_watermark_ok(zone, order, mark,
3132
						ac_classzone_idx(ac), alloc_flags))
3133 3134 3135
					goto try_this_zone;

				continue;
3136
			}
R
Rohit Seth 已提交
3137 3138
		}

3139
try_this_zone:
3140
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3141
				gfp_mask, alloc_flags, ac->migratetype);
3142
		if (page) {
3143
			prep_new_page(page, order, gfp_mask, alloc_flags);
3144 3145 3146 3147 3148 3149 3150 3151

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3152 3153
			return page;
		}
3154
	}
3155

3156
	return NULL;
M
Martin Hicks 已提交
3157 3158
}

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3173
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3174 3175
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3176
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3177

3178
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
		if (test_thread_flag(TIF_MEMDIE) ||
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3190
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3191 3192
		filter &= ~SHOW_MEM_FILTER_NODES;

3193
	show_mem(filter, nodemask);
3194 3195
}

3196
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3197 3198 3199 3200 3201 3202
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3203
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3204 3205
		return;

3206
	pr_warn("%s: ", current->comm);
J
Joe Perches 已提交
3207

3208 3209 3210 3211 3212
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_cont("%pV", &vaf);
	va_end(args);
J
Joe Perches 已提交
3213

3214 3215 3216 3217 3218 3219
	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
	if (nodemask)
		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
	else
		pr_cont("(null)\n");

3220
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3221

3222
	dump_stack();
3223
	warn_alloc_show_mem(gfp_mask, nodemask);
3224 3225
}

3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3246 3247
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3248
	const struct alloc_context *ac, unsigned long *did_some_progress)
3249
{
3250 3251 3252
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3253
		.memcg = NULL,
3254 3255 3256
		.gfp_mask = gfp_mask,
		.order = order,
	};
3257 3258
	struct page *page;

3259 3260 3261
	*did_some_progress = 0;

	/*
3262 3263
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3264
	 */
3265
	if (!mutex_trylock(&oom_lock)) {
3266
		*did_some_progress = 1;
3267
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3268 3269
		return NULL;
	}
3270

3271 3272 3273 3274 3275
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
	 * we're still under heavy pressure.
	 */
3276 3277
	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3278
	if (page)
3279 3280
		goto out;

3281 3282 3283 3284 3285 3286
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3287 3288 3289 3290 3291 3292 3293 3294
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3313

3314
	/* Exhausted what can be done so it's blamo time */
3315
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3316
		*did_some_progress = 1;
3317

3318 3319 3320 3321 3322 3323
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3324 3325
					ALLOC_NO_WATERMARKS, ac);
	}
3326
out:
3327
	mutex_unlock(&oom_lock);
3328 3329 3330
	return page;
}

3331 3332 3333 3334 3335 3336
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3337 3338 3339 3340
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3341
		unsigned int alloc_flags, const struct alloc_context *ac,
3342
		enum compact_priority prio, enum compact_result *compact_result)
3343
{
3344
	struct page *page;
3345
	unsigned int noreclaim_flag;
3346 3347

	if (!order)
3348 3349
		return NULL;

3350
	noreclaim_flag = memalloc_noreclaim_save();
3351
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3352
									prio);
3353
	memalloc_noreclaim_restore(noreclaim_flag);
3354

3355
	if (*compact_result <= COMPACT_INACTIVE)
3356
		return NULL;
3357

3358 3359 3360 3361 3362
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3363

3364
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3365

3366 3367
	if (page) {
		struct zone *zone = page_zone(page);
3368

3369 3370 3371 3372 3373
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3374

3375 3376 3377 3378 3379
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3380

3381
	cond_resched();
3382 3383 3384

	return NULL;
}
3385

3386 3387 3388 3389
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3390
		     int *compaction_retries)
3391 3392
{
	int max_retries = MAX_COMPACT_RETRIES;
3393
	int min_priority;
3394 3395 3396
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3397 3398 3399 3400

	if (!order)
		return false;

3401 3402 3403
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3404 3405 3406 3407 3408
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3409 3410
	if (compaction_failed(compact_result))
		goto check_priority;
3411 3412 3413 3414 3415 3416 3417

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3418 3419 3420 3421
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3422 3423

	/*
3424
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3425 3426 3427 3428 3429 3430 3431 3432
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3433 3434 3435 3436
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3437

3438 3439 3440 3441 3442
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3443 3444
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3445

3446
	if (*compact_priority > min_priority) {
3447 3448
		(*compact_priority)--;
		*compaction_retries = 0;
3449
		ret = true;
3450
	}
3451 3452 3453
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3454
}
3455 3456 3457
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3458
		unsigned int alloc_flags, const struct alloc_context *ac,
3459
		enum compact_priority prio, enum compact_result *compact_result)
3460
{
3461
	*compact_result = COMPACT_SKIPPED;
3462 3463
	return NULL;
}
3464 3465

static inline bool
3466 3467
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3468
		     enum compact_priority *compact_priority,
3469
		     int *compaction_retries)
3470
{
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3489 3490
	return false;
}
3491
#endif /* CONFIG_COMPACTION */
3492

3493 3494
/* Perform direct synchronous page reclaim */
static int
3495 3496
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3497 3498
{
	struct reclaim_state reclaim_state;
3499
	int progress;
3500
	unsigned int noreclaim_flag;
3501 3502 3503 3504 3505

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3506
	noreclaim_flag = memalloc_noreclaim_save();
3507 3508
	lockdep_set_current_reclaim_state(gfp_mask);
	reclaim_state.reclaimed_slab = 0;
3509
	current->reclaim_state = &reclaim_state;
3510

3511 3512
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3513

3514
	current->reclaim_state = NULL;
3515
	lockdep_clear_current_reclaim_state();
3516
	memalloc_noreclaim_restore(noreclaim_flag);
3517 3518 3519

	cond_resched();

3520 3521 3522 3523 3524 3525
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3526
		unsigned int alloc_flags, const struct alloc_context *ac,
3527
		unsigned long *did_some_progress)
3528 3529 3530 3531
{
	struct page *page = NULL;
	bool drained = false;

3532
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3533 3534
	if (unlikely(!(*did_some_progress)))
		return NULL;
3535

3536
retry:
3537
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3538 3539 3540

	/*
	 * If an allocation failed after direct reclaim, it could be because
3541 3542
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3543 3544
	 */
	if (!page && !drained) {
3545
		unreserve_highatomic_pageblock(ac, false);
3546
		drain_all_pages(NULL);
3547 3548 3549 3550
		drained = true;
		goto retry;
	}

3551 3552 3553
	return page;
}

3554
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3555 3556 3557
{
	struct zoneref *z;
	struct zone *zone;
3558
	pg_data_t *last_pgdat = NULL;
3559

3560
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3561 3562
					ac->high_zoneidx, ac->nodemask) {
		if (last_pgdat != zone->zone_pgdat)
3563
			wakeup_kswapd(zone, order, ac->high_zoneidx);
3564 3565
		last_pgdat = zone->zone_pgdat;
	}
3566 3567
}

3568
static inline unsigned int
3569 3570
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3571
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3572

3573
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3574
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3575

3576 3577 3578 3579
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3580
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3581
	 */
3582
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3583

3584
	if (gfp_mask & __GFP_ATOMIC) {
3585
		/*
3586 3587
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3588
		 */
3589
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3590
			alloc_flags |= ALLOC_HARDER;
3591
		/*
3592
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3593
		 * comment for __cpuset_node_allowed().
3594
		 */
3595
		alloc_flags &= ~ALLOC_CPUSET;
3596
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3597 3598
		alloc_flags |= ALLOC_HARDER;

3599
#ifdef CONFIG_CMA
3600
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3601 3602
		alloc_flags |= ALLOC_CMA;
#endif
3603 3604 3605
	return alloc_flags;
}

3606 3607
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return false;

	if (gfp_mask & __GFP_MEMALLOC)
		return true;
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
		return true;
	if (!in_interrupt() &&
			((current->flags & PF_MEMALLOC) ||
			 unlikely(test_thread_flag(TIF_MEMDIE))))
		return true;

	return false;
3621 3622
}

M
Michal Hocko 已提交
3623 3624 3625
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3626 3627 3628 3629
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3630 3631 3632 3633 3634 3635
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3636
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3637 3638 3639 3640
{
	struct zone *zone;
	struct zoneref *z;

3641 3642 3643 3644 3645 3646 3647 3648 3649 3650
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3651 3652 3653 3654
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3655 3656
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3657
		return unreserve_highatomic_pageblock(ac, true);
3658
	}
M
Michal Hocko 已提交
3659

3660 3661 3662 3663 3664
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3665 3666 3667 3668
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3669
		unsigned long reclaimable;
3670 3671
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3672

3673 3674
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3675 3676

		/*
3677 3678
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3679
		 */
3680 3681 3682 3683 3684
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3685 3686 3687 3688 3689 3690 3691
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3692
				unsigned long write_pending;
3693

3694 3695
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3696

3697
				if (2 * write_pending > reclaimable) {
3698 3699 3700 3701
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3702

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3717 3718 3719 3720 3721 3722 3723
			return true;
		}
	}

	return false;
}

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

3757 3758
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3759
						struct alloc_context *ac)
3760
{
3761
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3762
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3763
	struct page *page = NULL;
3764
	unsigned int alloc_flags;
3765
	unsigned long did_some_progress;
3766
	enum compact_priority compact_priority;
3767
	enum compact_result compact_result;
3768 3769
	int compaction_retries;
	int no_progress_loops;
3770 3771
	unsigned long alloc_start = jiffies;
	unsigned int stall_timeout = 10 * HZ;
3772
	unsigned int cpuset_mems_cookie;
L
Linus Torvalds 已提交
3773

3774 3775 3776 3777 3778 3779
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
3780 3781
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3782
		return NULL;
3783
	}
L
Linus Torvalds 已提交
3784

3785 3786 3787 3788 3789 3790 3791 3792
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

3793 3794 3795 3796 3797
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
3798 3799 3800 3801 3802 3803 3804 3805

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

3828 3829
	/*
	 * For costly allocations, try direct compaction first, as it's likely
3830 3831 3832 3833 3834 3835
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3836
	 */
3837 3838 3839 3840
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3841 3842
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
3843
						INIT_COMPACT_PRIORITY,
3844 3845 3846 3847
						&compact_result);
		if (page)
			goto got_pg;

3848 3849 3850 3851
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
3852
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
3865 3866
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
3867
			 * using async compaction.
3868
			 */
3869
			compact_priority = INIT_COMPACT_PRIORITY;
3870 3871
		}
	}
3872

3873
retry:
3874
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3875 3876 3877
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

3878 3879 3880
	if (gfp_pfmemalloc_allowed(gfp_mask))
		alloc_flags = ALLOC_NO_WATERMARKS;

3881 3882 3883 3884 3885
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
3886
	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3887 3888 3889 3890 3891
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

3892
	/* Attempt with potentially adjusted zonelist and alloc_flags */
3893
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
3894 3895
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
3896

3897
	/* Caller is not willing to reclaim, we can't balance anything */
3898
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
3899 3900
		goto nopage;

3901 3902
	/* Make sure we know about allocations which stall for too long */
	if (time_after(jiffies, alloc_start + stall_timeout)) {
3903
		warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3904 3905 3906
			"page allocation stalls for %ums, order:%u",
			jiffies_to_msecs(jiffies-alloc_start), order);
		stall_timeout += 10 * HZ;
3907
	}
3908

3909 3910
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
3911 3912
		goto nopage;

3913 3914 3915 3916 3917 3918 3919
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
3920
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3921
					compact_priority, &compact_result);
3922 3923
	if (page)
		goto got_pg;
3924

3925 3926
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
3927
		goto nopage;
3928

M
Michal Hocko 已提交
3929 3930
	/*
	 * Do not retry costly high order allocations unless they are
3931
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
3932
	 */
3933
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
3934
		goto nopage;
M
Michal Hocko 已提交
3935 3936

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3937
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
3938 3939
		goto retry;

3940 3941 3942 3943 3944 3945 3946
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
3947
			should_compact_retry(ac, order, alloc_flags,
3948
				compact_result, &compact_priority,
3949
				&compaction_retries))
3950 3951
		goto retry;

3952 3953 3954

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
3955 3956
		goto retry_cpuset;

3957 3958 3959 3960 3961
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

3962
	/* Avoid allocations with no watermarks from looping endlessly */
3963 3964 3965
	if (test_thread_flag(TIF_MEMDIE) &&
	    (alloc_flags == ALLOC_NO_WATERMARKS ||
	     (gfp_mask & __GFP_NOMEMALLOC)))
3966 3967
		goto nopage;

3968
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
3969 3970
	if (did_some_progress) {
		no_progress_loops = 0;
3971
		goto retry;
M
Michal Hocko 已提交
3972
	}
3973

L
Linus Torvalds 已提交
3974
nopage:
3975 3976
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
3977 3978
		goto retry_cpuset;

3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4016 4017 4018 4019
		cond_resched();
		goto retry;
	}
fail:
4020
	warn_alloc(gfp_mask, ac->nodemask,
4021
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4022
got_pg:
4023
	return page;
L
Linus Torvalds 已提交
4024
}
4025

4026
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4027
		int preferred_nid, nodemask_t *nodemask,
4028 4029
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4030
{
4031
	ac->high_zoneidx = gfp_zone(gfp_mask);
4032
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4033 4034
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4035

4036
	if (cpusets_enabled()) {
4037 4038 4039
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4040 4041
		else
			*alloc_flags |= ALLOC_CPUSET;
4042 4043
	}

4044 4045
	lockdep_trace_alloc(gfp_mask);

4046
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4047 4048

	if (should_fail_alloc_page(gfp_mask, order))
4049
		return false;
4050

4051 4052 4053 4054 4055
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

	return true;
}
4056

4057 4058 4059 4060
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
4061
	/* Dirty zone balancing only done in the fast path */
4062
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4063

4064 4065 4066 4067 4068
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4069 4070 4071 4072 4073 4074 4075 4076
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4077 4078
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4079 4080 4081 4082 4083 4084 4085
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4086
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4087 4088 4089
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
4090

4091
	/* First allocation attempt */
4092
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4093 4094
	if (likely(page))
		goto out;
4095

4096
	/*
4097 4098 4099 4100
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4101
	 */
4102
	alloc_mask = current_gfp_context(gfp_mask);
4103
	ac.spread_dirty_pages = false;
4104

4105 4106 4107 4108
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4109
	if (unlikely(ac.nodemask != nodemask))
4110
		ac.nodemask = nodemask;
4111

4112
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4113

4114
out:
4115 4116 4117 4118
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4119 4120
	}

4121 4122 4123 4124 4125
	if (kmemcheck_enabled && page)
		kmemcheck_pagealloc_alloc(page, order, gfp_mask);

	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4126
	return page;
L
Linus Torvalds 已提交
4127
}
4128
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4129 4130 4131 4132

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4133
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4134
{
4135 4136 4137 4138 4139 4140 4141 4142
	struct page *page;

	/*
	 * __get_free_pages() returns a 32-bit address, which cannot represent
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4143 4144 4145 4146 4147 4148 4149
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4150
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4151
{
4152
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4153 4154 4155
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4156
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4157
{
N
Nick Piggin 已提交
4158
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4159
		if (order == 0)
4160
			free_hot_cold_page(page, false);
L
Linus Torvalds 已提交
4161 4162 4163 4164 4165 4166 4167
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4168
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4169 4170
{
	if (addr != 0) {
N
Nick Piggin 已提交
4171
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4172 4173 4174 4175 4176 4177
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4189 4190
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4210
void __page_frag_cache_drain(struct page *page, unsigned int count)
4211 4212 4213 4214
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4215 4216
		unsigned int order = compound_order(page);

4217 4218 4219 4220 4221 4222
		if (order == 0)
			free_hot_cold_page(page, false);
		else
			__free_pages_ok(page, order);
	}
}
4223
EXPORT_SYMBOL(__page_frag_cache_drain);
4224

4225 4226
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4227 4228 4229 4230 4231 4232 4233
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4234
		page = __page_frag_cache_refill(nc, gfp_mask);
4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4245
		page_ref_add(page, size - 1);
4246 4247

		/* reset page count bias and offset to start of new frag */
4248
		nc->pfmemalloc = page_is_pfmemalloc(page);
4249 4250 4251 4252 4253 4254 4255 4256
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4257
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4258 4259 4260 4261 4262 4263 4264
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4265
		set_page_count(page, size);
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4277
EXPORT_SYMBOL(page_frag_alloc);
4278 4279 4280 4281

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4282
void page_frag_free(void *addr)
4283 4284 4285 4286 4287 4288
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4289
EXPORT_SYMBOL(page_frag_free);
4290

4291 4292
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4326
	return make_alloc_exact(addr, order, size);
4327 4328 4329
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4330 4331 4332
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4333
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4334 4335 4336 4337 4338 4339
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4340
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4341
{
4342
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4343 4344 4345 4346 4347 4348
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4368 4369 4370 4371 4372 4373 4374
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4375 4376
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4377
 */
4378
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4379
{
4380
	struct zoneref *z;
4381 4382
	struct zone *zone;

4383
	/* Just pick one node, since fallback list is circular */
4384
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4385

4386
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4387

4388
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4389
		unsigned long size = zone->managed_pages;
4390
		unsigned long high = high_wmark_pages(zone);
4391 4392
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4393 4394 4395 4396 4397
	}

	return sum;
}

4398 4399 4400 4401 4402
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4403
 */
4404
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4405
{
A
Al Viro 已提交
4406
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4407
}
4408
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4409

4410 4411 4412 4413 4414
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4415
 */
4416
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4417
{
M
Mel Gorman 已提交
4418
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4419
}
4420 4421

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4422
{
4423
	if (IS_ENABLED(CONFIG_NUMA))
4424
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4425 4426
}

4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4437
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
	available += global_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);

	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4470 4471 4472
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4473
	val->sharedram = global_node_page_state(NR_SHMEM);
4474
	val->freeram = global_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4486 4487
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4488 4489
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4490 4491
	pg_data_t *pgdat = NODE_DATA(nid);

4492 4493 4494
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4495
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4496
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4497
#ifdef CONFIG_HIGHMEM
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4508
#else
4509 4510
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4511
#endif
L
Linus Torvalds 已提交
4512 4513 4514 4515
	val->mem_unit = PAGE_SIZE;
}
#endif

4516
/*
4517 4518
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4519
 */
4520
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4521 4522
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4523
		return false;
4524

4525 4526 4527 4528 4529 4530 4531 4532 4533
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4534 4535
}

L
Linus Torvalds 已提交
4536 4537
#define K(x) ((x) << (PAGE_SHIFT-10))

4538 4539 4540 4541 4542
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4543 4544
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4545 4546 4547
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4548
#ifdef CONFIG_MEMORY_ISOLATION
4549
		[MIGRATE_ISOLATE]	= 'I',
4550
#endif
4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4562
	printk(KERN_CONT "(%s) ", tmp);
4563 4564
}

L
Linus Torvalds 已提交
4565 4566 4567 4568
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4569 4570 4571 4572
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4573
 */
4574
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4575
{
4576
	unsigned long free_pcp = 0;
4577
	int cpu;
L
Linus Torvalds 已提交
4578
	struct zone *zone;
M
Mel Gorman 已提交
4579
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4580

4581
	for_each_populated_zone(zone) {
4582
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4583
			continue;
4584

4585 4586
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4587 4588
	}

K
KOSAKI Motohiro 已提交
4589 4590
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4591 4592
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4593
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4594
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4595 4596 4597 4598 4599 4600 4601
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4602 4603 4604
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4605 4606
		global_page_state(NR_SLAB_RECLAIMABLE),
		global_page_state(NR_SLAB_UNRECLAIMABLE),
4607
		global_node_page_state(NR_FILE_MAPPED),
4608
		global_node_page_state(NR_SHMEM),
4609
		global_page_state(NR_PAGETABLE),
4610
		global_page_state(NR_BOUNCE),
4611 4612
		global_page_state(NR_FREE_PAGES),
		free_pcp,
4613
		global_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4614

M
Mel Gorman 已提交
4615
	for_each_online_pgdat(pgdat) {
4616
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4617 4618
			continue;

M
Mel Gorman 已提交
4619 4620 4621 4622 4623 4624 4625 4626
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4627
			" mapped:%lukB"
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4638 4639 4640 4641 4642 4643 4644 4645 4646 4647
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4648
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4649 4650
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4651
			K(node_page_state(pgdat, NR_SHMEM)),
4652 4653 4654 4655 4656 4657 4658 4659
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4660 4661
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4662 4663
	}

4664
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4665 4666
		int i;

4667
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4668
			continue;
4669 4670 4671 4672 4673

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4674
		show_node(zone);
4675 4676
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4677 4678 4679 4680
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4681 4682 4683 4684 4685
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4686
			" writepending:%lukB"
L
Linus Torvalds 已提交
4687
			" present:%lukB"
4688
			" managed:%lukB"
4689
			" mlocked:%lukB"
4690
			" kernel_stack:%lukB"
4691 4692
			" pagetables:%lukB"
			" bounce:%lukB"
4693 4694
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4695
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4696 4697
			"\n",
			zone->name,
4698
			K(zone_page_state(zone, NR_FREE_PAGES)),
4699 4700 4701
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4702 4703 4704 4705 4706
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4707
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4708
			K(zone->present_pages),
4709
			K(zone->managed_pages),
4710
			K(zone_page_state(zone, NR_MLOCK)),
4711
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4712 4713
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4714 4715
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4716
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4717 4718
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4719 4720
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4721 4722
	}

4723
	for_each_populated_zone(zone) {
4724 4725
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4726
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
4727

4728
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4729
			continue;
L
Linus Torvalds 已提交
4730
		show_node(zone);
4731
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
4732 4733 4734

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
4735 4736 4737 4738
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
4739
			total += nr[order] << order;
4740 4741 4742 4743 4744 4745

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
4746 4747
		}
		spin_unlock_irqrestore(&zone->lock, flags);
4748
		for (order = 0; order < MAX_ORDER; order++) {
4749 4750
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
4751 4752 4753
			if (nr[order])
				show_migration_types(types[order]);
		}
4754
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
4755 4756
	}

4757 4758
	hugetlb_show_meminfo();

4759
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4760

L
Linus Torvalds 已提交
4761 4762 4763
	show_swap_cache_info();
}

4764 4765 4766 4767 4768 4769
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
4770 4771
/*
 * Builds allocation fallback zone lists.
4772 4773
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
4774
 */
4775
static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4776
				int nr_zones)
L
Linus Torvalds 已提交
4777
{
4778
	struct zone *zone;
4779
	enum zone_type zone_type = MAX_NR_ZONES;
4780 4781

	do {
4782
		zone_type--;
4783
		zone = pgdat->node_zones + zone_type;
4784
		if (managed_zone(zone)) {
4785 4786
			zoneref_set_zone(zone,
				&zonelist->_zonerefs[nr_zones++]);
4787
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
4788
		}
4789
	} while (zone_type);
4790

4791
	return nr_zones;
L
Linus Torvalds 已提交
4792 4793
}

4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814

/*
 *  zonelist_order:
 *  0 = automatic detection of better ordering.
 *  1 = order by ([node] distance, -zonetype)
 *  2 = order by (-zonetype, [node] distance)
 *
 *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
 *  the same zonelist. So only NUMA can configure this param.
 */
#define ZONELIST_ORDER_DEFAULT  0
#define ZONELIST_ORDER_NODE     1
#define ZONELIST_ORDER_ZONE     2

/* zonelist order in the kernel.
 * set_zonelist_order() will set this to NODE or ZONE.
 */
static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};


L
Linus Torvalds 已提交
4815
#ifdef CONFIG_NUMA
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838
/* The value user specified ....changed by config */
static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
/* string for sysctl */
#define NUMA_ZONELIST_ORDER_LEN	16
char numa_zonelist_order[16] = "default";

/*
 * interface for configure zonelist ordering.
 * command line option "numa_zonelist_order"
 *	= "[dD]efault	- default, automatic configuration.
 *	= "[nN]ode 	- order by node locality, then by zone within node
 *	= "[zZ]one      - order by zone, then by locality within zone
 */

static int __parse_numa_zonelist_order(char *s)
{
	if (*s == 'd' || *s == 'D') {
		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
	} else if (*s == 'n' || *s == 'N') {
		user_zonelist_order = ZONELIST_ORDER_NODE;
	} else if (*s == 'z' || *s == 'Z') {
		user_zonelist_order = ZONELIST_ORDER_ZONE;
	} else {
4839
		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4840 4841 4842 4843 4844 4845 4846
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856
	int ret;

	if (!s)
		return 0;

	ret = __parse_numa_zonelist_order(s);
	if (ret == 0)
		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);

	return ret;
4857 4858 4859 4860 4861 4862
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

/*
 * sysctl handler for numa_zonelist_order
 */
4863
int numa_zonelist_order_handler(struct ctl_table *table, int write,
4864
		void __user *buffer, size_t *length,
4865 4866 4867 4868
		loff_t *ppos)
{
	char saved_string[NUMA_ZONELIST_ORDER_LEN];
	int ret;
4869
	static DEFINE_MUTEX(zl_order_mutex);
4870

4871
	mutex_lock(&zl_order_mutex);
4872 4873 4874 4875 4876 4877 4878
	if (write) {
		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
			ret = -EINVAL;
			goto out;
		}
		strcpy(saved_string, (char *)table->data);
	}
4879
	ret = proc_dostring(table, write, buffer, length, ppos);
4880
	if (ret)
4881
		goto out;
4882 4883
	if (write) {
		int oldval = user_zonelist_order;
4884 4885 4886

		ret = __parse_numa_zonelist_order((char *)table->data);
		if (ret) {
4887 4888 4889
			/*
			 * bogus value.  restore saved string
			 */
4890
			strncpy((char *)table->data, saved_string,
4891 4892
				NUMA_ZONELIST_ORDER_LEN);
			user_zonelist_order = oldval;
4893
		} else if (oldval != user_zonelist_order) {
4894
			mem_hotplug_begin();
4895
			mutex_lock(&zonelists_mutex);
4896
			build_all_zonelists(NULL, NULL);
4897
			mutex_unlock(&zonelists_mutex);
4898
			mem_hotplug_done();
4899
		}
4900
	}
4901 4902 4903
out:
	mutex_unlock(&zl_order_mutex);
	return ret;
4904 4905 4906
}


4907
#define MAX_NODE_LOAD (nr_online_nodes)
4908 4909
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
4910
/**
4911
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
4924
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
4925
{
4926
	int n, val;
L
Linus Torvalds 已提交
4927
	int min_val = INT_MAX;
D
David Rientjes 已提交
4928
	int best_node = NUMA_NO_NODE;
4929
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
4930

4931 4932 4933 4934 4935
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
4936

4937
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
4938 4939 4940 4941 4942 4943 4944 4945

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

4946 4947 4948
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
4949
		/* Give preference to headless and unused nodes */
4950 4951
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

4970 4971 4972 4973 4974 4975 4976

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
L
Linus Torvalds 已提交
4977
{
4978
	int j;
L
Linus Torvalds 已提交
4979
	struct zonelist *zonelist;
4980

4981
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4982
	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4983
		;
4984
	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4985 4986
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
4987 4988
}

4989 4990 4991 4992 4993 4994 4995 4996
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
	int j;
	struct zonelist *zonelist;

4997
	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4998
	j = build_zonelists_node(pgdat, zonelist, 0);
4999 5000
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
5001 5002
}

5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */
static int node_order[MAX_NUMNODES];

static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
{
	int pos, j, node;
	int zone_type;		/* needs to be signed */
	struct zone *z;
	struct zonelist *zonelist;

5018
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5019 5020 5021 5022 5023
	pos = 0;
	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
		for (j = 0; j < nr_nodes; j++) {
			node = node_order[j];
			z = &NODE_DATA(node)->node_zones[zone_type];
5024
			if (managed_zone(z)) {
5025 5026
				zoneref_set_zone(z,
					&zonelist->_zonerefs[pos++]);
5027
				check_highest_zone(zone_type);
5028 5029 5030
			}
		}
	}
5031 5032
	zonelist->_zonerefs[pos].zone = NULL;
	zonelist->_zonerefs[pos].zone_idx = 0;
5033 5034
}

5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
#if defined(CONFIG_64BIT)
/*
 * Devices that require DMA32/DMA are relatively rare and do not justify a
 * penalty to every machine in case the specialised case applies. Default
 * to Node-ordering on 64-bit NUMA machines
 */
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_NODE;
}
#else
/*
 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
 * by the kernel. If processes running on node 0 deplete the low memory zone
 * then reclaim will occur more frequency increasing stalls and potentially
 * be easier to OOM if a large percentage of the zone is under writeback or
 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
 * Hence, default to zone ordering on 32-bit.
 */
5054 5055 5056 5057
static int default_zonelist_order(void)
{
	return ZONELIST_ORDER_ZONE;
}
5058
#endif /* CONFIG_64BIT */
5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069

static void set_zonelist_order(void)
{
	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
		current_zonelist_order = default_zonelist_order();
	else
		current_zonelist_order = user_zonelist_order;
}

static void build_zonelists(pg_data_t *pgdat)
{
5070
	int i, node, load;
L
Linus Torvalds 已提交
5071
	nodemask_t used_mask;
5072 5073
	int local_node, prev_node;
	struct zonelist *zonelist;
5074
	unsigned int order = current_zonelist_order;
L
Linus Torvalds 已提交
5075 5076

	/* initialize zonelists */
5077
	for (i = 0; i < MAX_ZONELISTS; i++) {
L
Linus Torvalds 已提交
5078
		zonelist = pgdat->node_zonelists + i;
5079 5080
		zonelist->_zonerefs[0].zone = NULL;
		zonelist->_zonerefs[0].zone_idx = 0;
L
Linus Torvalds 已提交
5081 5082 5083 5084
	}

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5085
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5086 5087
	prev_node = local_node;
	nodes_clear(used_mask);
5088 5089

	memset(node_order, 0, sizeof(node_order));
5090
	i = 0;
5091

L
Linus Torvalds 已提交
5092 5093 5094 5095 5096 5097
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5098 5099
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5100 5101
			node_load[node] = load;

L
Linus Torvalds 已提交
5102 5103
		prev_node = node;
		load--;
5104 5105 5106
		if (order == ZONELIST_ORDER_NODE)
			build_zonelists_in_node_order(pgdat, node);
		else
5107
			node_order[i++] = node;	/* remember order */
5108
	}
L
Linus Torvalds 已提交
5109

5110 5111
	if (order == ZONELIST_ORDER_ZONE) {
		/* calculate node order -- i.e., DMA last! */
5112
		build_zonelists_in_zone_order(pgdat, i);
L
Linus Torvalds 已提交
5113
	}
5114 5115

	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5116 5117
}

5118 5119 5120 5121 5122 5123 5124 5125 5126
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5127
	struct zoneref *z;
5128

5129
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5130
				   gfp_zone(GFP_KERNEL),
5131 5132
				   NULL);
	return z->zone->node;
5133 5134
}
#endif
5135

5136 5137
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5138 5139
#else	/* CONFIG_NUMA */

5140 5141 5142 5143 5144 5145
static void set_zonelist_order(void)
{
	current_zonelist_order = ZONELIST_ORDER_ZONE;
}

static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5146
{
5147
	int node, local_node;
5148 5149
	enum zone_type j;
	struct zonelist *zonelist;
L
Linus Torvalds 已提交
5150 5151 5152

	local_node = pgdat->node_id;

5153
	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5154
	j = build_zonelists_node(pgdat, zonelist, 0);
L
Linus Torvalds 已提交
5155

5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5167
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
L
Linus Torvalds 已提交
5168
	}
5169 5170 5171
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5172
		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5173 5174
	}

5175 5176
	zonelist->_zonerefs[j].zone = NULL;
	zonelist->_zonerefs[j].zone_idx = 0;
L
Linus Torvalds 已提交
5177 5178 5179 5180
}

#endif	/* CONFIG_NUMA */

5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5198
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5199
static void setup_zone_pageset(struct zone *zone);
5200

5201 5202 5203 5204 5205 5206
/*
 * Global mutex to protect against size modification of zonelists
 * as well as to serialize pageset setup for the new populated zone.
 */
DEFINE_MUTEX(zonelists_mutex);

5207
/* return values int ....just for stop_machine() */
5208
static int __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5209
{
5210
	int nid;
5211
	int cpu;
5212
	pg_data_t *self = data;
5213

5214 5215 5216
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5217 5218 5219 5220 5221

	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
	}

5222
	for_each_online_node(nid) {
5223 5224 5225
		pg_data_t *pgdat = NODE_DATA(nid);

		build_zonelists(pgdat);
5226
	}
5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
5241
	for_each_possible_cpu(cpu) {
5242 5243
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
		if (cpu_online(cpu))
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
#endif
	}

5258 5259 5260
	return 0;
}

5261 5262 5263 5264 5265 5266 5267 5268
static noinline void __init
build_all_zonelists_init(void)
{
	__build_all_zonelists(NULL);
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5269 5270 5271
/*
 * Called with zonelists_mutex held always
 * unless system_state == SYSTEM_BOOTING.
5272 5273 5274 5275 5276
 *
 * __ref due to (1) call of __meminit annotated setup_zone_pageset
 * [we're only called with non-NULL zone through __meminit paths] and
 * (2) call of __init annotated helper build_all_zonelists_init
 * [protected by SYSTEM_BOOTING].
5277
 */
5278
void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5279
{
5280 5281
	set_zonelist_order();

5282
	if (system_state == SYSTEM_BOOTING) {
5283
		build_all_zonelists_init();
5284
	} else {
5285
#ifdef CONFIG_MEMORY_HOTPLUG
5286 5287
		if (zone)
			setup_zone_pageset(zone);
5288
#endif
5289 5290
		/* we have to stop all cpus to guarantee there is no user
		   of zonelist */
5291
		stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL);
5292 5293
		/* cpuset refresh routine should be here */
	}
5294
	vm_total_pages = nr_free_pagecache_pages();
5295 5296 5297 5298 5299 5300 5301
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5302
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5303 5304 5305 5306
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

J
Joe Perches 已提交
5307 5308 5309 5310 5311
	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
		nr_online_nodes,
		zonelist_order_name[current_zonelist_order],
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5312
#ifdef CONFIG_NUMA
5313
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5314
#endif
L
Linus Torvalds 已提交
5315 5316 5317 5318 5319 5320 5321
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5322
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
D
Dave Hansen 已提交
5323
		unsigned long start_pfn, enum memmap_context context)
L
Linus Torvalds 已提交
5324
{
5325
	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
A
Andy Whitcroft 已提交
5326
	unsigned long end_pfn = start_pfn + size;
5327
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5328
	unsigned long pfn;
5329
	unsigned long nr_initialised = 0;
5330 5331 5332
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5333

5334 5335 5336
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5337 5338 5339 5340 5341 5342 5343
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5344
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5345
		/*
5346 5347
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5348
		 */
5349 5350 5351
		if (context != MEMMAP_EARLY)
			goto not_early;

5352 5353 5354 5355 5356 5357 5358 5359 5360
		if (!early_pfn_valid(pfn)) {
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
			/*
			 * Skip to the pfn preceding the next valid one (or
			 * end_pfn), such that we hit a valid pfn (or end_pfn)
			 * on our next iteration of the loop.
			 */
			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
#endif
5361
			continue;
5362
		}
5363 5364 5365 5366
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5367 5368

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5386
			}
D
Dave Hansen 已提交
5387
		}
5388
#endif
5389

5390
not_early:
5391 5392 5393 5394 5395
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5396
		 * kernel allocations are made.
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			struct page *page = pfn_to_page(pfn);

			__init_single_page(page, pfn, zone, nid);
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
		} else {
			__init_single_pfn(pfn, zone, nid);
		}
L
Linus Torvalds 已提交
5411 5412 5413
	}
}

5414
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5415
{
5416
	unsigned int order, t;
5417 5418
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5419 5420 5421 5422 5423 5424
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
D
Dave Hansen 已提交
5425
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
L
Linus Torvalds 已提交
5426 5427
#endif

5428
static int zone_batchsize(struct zone *zone)
5429
{
5430
#ifdef CONFIG_MMU
5431 5432 5433 5434
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5435
	 * size of the zone.  But no more than 1/2 of a meg.
5436 5437 5438
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5439
	batch = zone->managed_pages / 1024;
5440 5441
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5442 5443 5444 5445 5446
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5447 5448 5449
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5450
	 *
5451 5452 5453 5454
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5455
	 */
5456
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5457

5458
	return batch;
5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5476 5477
}

5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5505
/* a companion to pageset_set_high() */
5506 5507
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5508
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5509 5510
}

5511
static void pageset_init(struct per_cpu_pageset *p)
5512 5513
{
	struct per_cpu_pages *pcp;
5514
	int migratetype;
5515

5516 5517
	memset(p, 0, sizeof(*p));

5518
	pcp = &p->pcp;
5519
	pcp->count = 0;
5520 5521
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5522 5523
}

5524 5525 5526 5527 5528 5529
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5530
/*
5531
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5532 5533
 * to the value high for the pageset p.
 */
5534
static void pageset_set_high(struct per_cpu_pageset *p,
5535 5536
				unsigned long high)
{
5537 5538 5539
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5540

5541
	pageset_update(&p->pcp, high, batch);
5542 5543
}

5544 5545
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5546 5547
{
	if (percpu_pagelist_fraction)
5548
		pageset_set_high(pcp,
5549 5550 5551 5552 5553 5554
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5555 5556 5557 5558 5559 5560 5561 5562
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5563
static void __meminit setup_zone_pageset(struct zone *zone)
5564 5565 5566
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5567 5568
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5569 5570
}

5571
/*
5572 5573
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5574
 */
5575
void __init setup_per_cpu_pageset(void)
5576
{
5577
	struct pglist_data *pgdat;
5578
	struct zone *zone;
5579

5580 5581
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5582 5583 5584 5585

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5586 5587
}

5588
static __meminit void zone_pcp_init(struct zone *zone)
5589
{
5590 5591 5592 5593 5594 5595
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5596

5597
	if (populated_zone(zone))
5598 5599 5600
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5601 5602
}

5603
void __meminit init_currently_empty_zone(struct zone *zone,
5604
					unsigned long zone_start_pfn,
5605
					unsigned long size)
5606 5607
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5608

5609 5610 5611 5612
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5613 5614 5615 5616 5617 5618
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5619
	zone_init_free_lists(zone);
5620
	zone->initialized = 1;
5621 5622
}

T
Tejun Heo 已提交
5623
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5624
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5625

5626 5627 5628
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5629 5630
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5631
{
5632
	unsigned long start_pfn, end_pfn;
5633
	int nid;
5634

5635 5636
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5637

5638 5639
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5640 5641 5642
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5643 5644 5645
	}

	return nid;
5646 5647 5648 5649
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5650
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5651
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5652
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5653
 *
5654 5655 5656
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5657
 */
5658
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5659
{
5660 5661
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5662

5663 5664 5665
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5666

5667
		if (start_pfn < end_pfn)
5668 5669 5670
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5671 5672 5673
	}
}

5674 5675
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5676
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5677
 *
5678 5679
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5680 5681 5682
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5683 5684
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5685

5686 5687
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5688 5689 5690 5691
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5692 5693 5694
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5695 5696
 *
 * It returns the start and end page frame of a node based on information
5697
 * provided by memblock_set_node(). If called for a node
5698
 * with no available memory, a warning is printed and the start and end
5699
 * PFNs will be 0.
5700
 */
5701
void __meminit get_pfn_range_for_nid(unsigned int nid,
5702 5703
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5704
	unsigned long this_start_pfn, this_end_pfn;
5705
	int i;
5706

5707 5708 5709
	*start_pfn = -1UL;
	*end_pfn = 0;

5710 5711 5712
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5713 5714
	}

5715
	if (*start_pfn == -1UL)
5716 5717 5718
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5719 5720 5721 5722 5723
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5724
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5742
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5743 5744 5745 5746 5747 5748 5749
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5750
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5765 5766 5767 5768 5769 5770
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5771 5772 5773 5774 5775 5776
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5777 5778 5779 5780
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5781
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5782
					unsigned long zone_type,
5783 5784
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5785 5786
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5787 5788
					unsigned long *ignored)
{
5789
	/* When hotadd a new node from cpu_up(), the node should be empty */
5790 5791 5792
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5793
	/* Get the start and end of the zone */
5794 5795
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5796 5797
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5798
				zone_start_pfn, zone_end_pfn);
5799 5800

	/* Check that this node has pages within the zone's required range */
5801
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5802 5803 5804
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5805 5806
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5807 5808

	/* Return the spanned pages */
5809
	return *zone_end_pfn - *zone_start_pfn;
5810 5811 5812 5813
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5814
 * then all holes in the requested range will be accounted for.
5815
 */
5816
unsigned long __meminit __absent_pages_in_range(int nid,
5817 5818 5819
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5820 5821 5822
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5823

5824 5825 5826 5827
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5828
	}
5829
	return nr_absent;
5830 5831 5832 5833 5834 5835 5836
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5837
 * It returns the number of pages frames in memory holes within a range.
5838 5839 5840 5841 5842 5843 5844 5845
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5846
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5847
					unsigned long zone_type,
5848 5849
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5850 5851
					unsigned long *ignored)
{
5852 5853
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5854
	unsigned long zone_start_pfn, zone_end_pfn;
5855
	unsigned long nr_absent;
5856

5857
	/* When hotadd a new node from cpu_up(), the node should be empty */
5858 5859 5860
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5861 5862
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5863

M
Mel Gorman 已提交
5864 5865 5866
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5867 5868 5869 5870 5871 5872 5873
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
5891 5892 5893 5894
		}
	}

	return nr_absent;
5895
}
5896

T
Tejun Heo 已提交
5897
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
5898
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5899
					unsigned long zone_type,
5900 5901
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5902 5903
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5904 5905
					unsigned long *zones_size)
{
5906 5907 5908 5909 5910 5911 5912 5913
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

5914 5915 5916
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
5917
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5918
						unsigned long zone_type,
5919 5920
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
5921 5922 5923 5924 5925 5926 5927
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
5928

T
Tejun Heo 已提交
5929
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5930

5931
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5932 5933 5934 5935
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
5936
{
5937
	unsigned long realtotalpages = 0, totalpages = 0;
5938 5939
	enum zone_type i;

5940 5941
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
5942
		unsigned long zone_start_pfn, zone_end_pfn;
5943
		unsigned long size, real_size;
5944

5945 5946 5947
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
5948 5949
						  &zone_start_pfn,
						  &zone_end_pfn,
5950 5951
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5952 5953
						  node_start_pfn, node_end_pfn,
						  zholes_size);
5954 5955 5956 5957
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
5958 5959 5960 5961 5962 5963 5964 5965
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
5966 5967 5968 5969 5970
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

5971 5972 5973
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
5974 5975
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5976 5977 5978
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
5979
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5980 5981 5982
{
	unsigned long usemapsize;

5983
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5984 5985
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
5986 5987 5988 5989 5990 5991 5992
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
5993 5994 5995
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
5996
{
5997
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5998
	zone->pageblock_flags = NULL;
5999
	if (usemapsize)
6000 6001 6002
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6003 6004
}
#else
6005 6006
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6007 6008
#endif /* CONFIG_SPARSEMEM */

6009
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6010

6011
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6012
void __paginginit set_pageblock_order(void)
6013
{
6014 6015
	unsigned int order;

6016 6017 6018 6019
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6020 6021 6022 6023 6024
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6025 6026
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6027 6028
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6029 6030 6031 6032 6033
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6034 6035
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6036 6037 6038
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6039
 */
6040
void __paginginit set_pageblock_order(void)
6041 6042
{
}
6043 6044 6045

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6056
	 * populated regions may not be naturally aligned on page boundary.
6057 6058 6059 6060 6061 6062 6063 6064 6065
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
6066 6067 6068 6069 6070
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
6071 6072
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
6073
 */
6074
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6075
{
6076
	enum zone_type j;
6077
	int nid = pgdat->node_id;
L
Linus Torvalds 已提交
6078

6079
	pgdat_resize_init(pgdat);
6080 6081 6082 6083
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
6084 6085 6086 6087 6088
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
6089
#endif
L
Linus Torvalds 已提交
6090
	init_waitqueue_head(&pgdat->kswapd_wait);
6091
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6092 6093 6094
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
6095
	pgdat_page_ext_init(pgdat);
6096
	spin_lock_init(&pgdat->lru_lock);
6097
	lruvec_init(node_lruvec(pgdat));
6098

6099 6100
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6101 6102
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6103
		unsigned long size, realsize, freesize, memmap_pages;
6104
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6105

6106 6107
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
L
Linus Torvalds 已提交
6108

6109
		/*
6110
		 * Adjust freesize so that it accounts for how much memory
6111 6112 6113
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6114
		memmap_pages = calc_memmap_size(size, realsize);
6115 6116 6117 6118 6119 6120 6121 6122
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6123
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6124 6125
					zone_names[j], memmap_pages, freesize);
		}
6126

6127
		/* Account for reserved pages */
6128 6129
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6130
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6131
					zone_names[0], dma_reserve);
6132 6133
		}

6134
		if (!is_highmem_idx(j))
6135
			nr_kernel_pages += freesize;
6136 6137 6138
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6139
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6140

6141 6142 6143 6144 6145 6146
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6147
#ifdef CONFIG_NUMA
6148
		zone->node = nid;
6149
#endif
L
Linus Torvalds 已提交
6150
		zone->name = zone_names[j];
6151
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6152
		spin_lock_init(&zone->lock);
6153
		zone_seqlock_init(zone);
6154
		zone_pcp_init(zone);
6155

L
Linus Torvalds 已提交
6156 6157 6158
		if (!size)
			continue;

6159
		set_pageblock_order();
6160
		setup_usemap(pgdat, zone, zone_start_pfn, size);
6161
		init_currently_empty_zone(zone, zone_start_pfn, size);
6162
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6163 6164 6165
	}
}

6166
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6167
{
6168
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6169 6170
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6171 6172 6173 6174
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

A
Andy Whitcroft 已提交
6175
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6176 6177
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6178 6179
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6180
		unsigned long size, end;
A
Andy Whitcroft 已提交
6181 6182
		struct page *map;

6183 6184 6185 6186 6187
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6188
		end = pgdat_end_pfn(pgdat);
6189 6190
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6191 6192
		map = alloc_remap(pgdat->node_id, size);
		if (!map)
6193 6194
			map = memblock_virt_alloc_node_nopanic(size,
							       pgdat->node_id);
L
Laura Abbott 已提交
6195
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6196
	}
6197
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6198 6199 6200
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6201
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6202
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6203
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6204
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6205
			mem_map -= offset;
T
Tejun Heo 已提交
6206
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6207
	}
L
Linus Torvalds 已提交
6208
#endif
A
Andy Whitcroft 已提交
6209
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6210 6211
}

6212 6213
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6214
{
6215
	pg_data_t *pgdat = NODE_DATA(nid);
6216 6217
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6218

6219
	/* pg_data_t should be reset to zero when it's allocated */
6220
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6221

L
Linus Torvalds 已提交
6222 6223
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6224
	pgdat->per_cpu_nodestats = NULL;
6225 6226
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6227
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6228 6229
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6230 6231
#else
	start_pfn = node_start_pfn;
6232 6233 6234
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6235 6236

	alloc_node_mem_map(pgdat);
6237 6238 6239 6240 6241
#ifdef CONFIG_FLAT_NODE_MEM_MAP
	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
		nid, (unsigned long)pgdat,
		(unsigned long)pgdat->node_mem_map);
#endif
L
Linus Torvalds 已提交
6242

6243
	reset_deferred_meminit(pgdat);
6244
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6245 6246
}

T
Tejun Heo 已提交
6247
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6248 6249 6250 6251 6252

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6253
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6254
{
6255
	unsigned int highest;
M
Miklos Szeredi 已提交
6256

6257
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6258 6259 6260 6261
	nr_node_ids = highest + 1;
}
#endif

6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6284
	unsigned long start, end, mask;
6285
	int last_nid = -1;
6286
	int i, nid;
6287

6288
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6312
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6313
static unsigned long __init find_min_pfn_for_node(int nid)
6314
{
6315
	unsigned long min_pfn = ULONG_MAX;
6316 6317
	unsigned long start_pfn;
	int i;
6318

6319 6320
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6321

6322
	if (min_pfn == ULONG_MAX) {
6323
		pr_warn("Could not find start_pfn for node %d\n", nid);
6324 6325 6326 6327
		return 0;
	}

	return min_pfn;
6328 6329 6330 6331 6332 6333
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6334
 * memblock_set_node().
6335 6336 6337 6338 6339 6340
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6341 6342 6343
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6344
 * Populate N_MEMORY for calculating usable_nodes.
6345
 */
A
Adrian Bunk 已提交
6346
static unsigned long __init early_calculate_totalpages(void)
6347 6348
{
	unsigned long totalpages = 0;
6349 6350 6351 6352 6353
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6354

6355 6356
		totalpages += pages;
		if (pages)
6357
			node_set_state(nid, N_MEMORY);
6358
	}
6359
	return totalpages;
6360 6361
}

M
Mel Gorman 已提交
6362 6363 6364 6365 6366 6367
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6368
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6369 6370 6371 6372
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6373
	/* save the state before borrow the nodemask */
6374
	nodemask_t saved_node_state = node_states[N_MEMORY];
6375
	unsigned long totalpages = early_calculate_totalpages();
6376
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6377
	struct memblock_region *r;
6378 6379 6380 6381 6382 6383 6384 6385 6386

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6387 6388
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6389 6390
				continue;

E
Emil Medve 已提交
6391
			nid = r->nid;
6392

E
Emil Medve 已提交
6393
			usable_startpfn = PFN_DOWN(r->base);
6394 6395 6396 6397 6398 6399 6400
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6401

6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6432
	/*
6433
	 * If movablecore=nn[KMG] was specified, calculate what size of
6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6449
		required_movablecore = min(totalpages, required_movablecore);
6450 6451 6452 6453 6454
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6455 6456 6457 6458 6459
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6460
		goto out;
M
Mel Gorman 已提交
6461 6462 6463 6464 6465 6466 6467

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6468
	for_each_node_state(nid, N_MEMORY) {
6469 6470
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6487
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6488 6489
			unsigned long size_pages;

6490
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6533
			 * satisfied
M
Mel Gorman 已提交
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6547
	 * satisfied
M
Mel Gorman 已提交
6548 6549 6550 6551 6552
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6553
out2:
M
Mel Gorman 已提交
6554 6555 6556 6557
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6558

6559
out:
6560
	/* restore the node_state */
6561
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6562 6563
}

6564 6565
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6566 6567 6568
{
	enum zone_type zone_type;

6569 6570 6571 6572
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6573
		struct zone *zone = &pgdat->node_zones[zone_type];
6574
		if (populated_zone(zone)) {
6575 6576 6577 6578
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6579 6580
			break;
		}
6581 6582 6583
	}
}

6584 6585
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6586
 * @max_zone_pfn: an array of max PFNs for each zone
6587 6588
 *
 * This will call free_area_init_node() for each active node in the system.
6589
 * Using the page ranges provided by memblock_set_node(), the size of each
6590 6591 6592 6593 6594 6595 6596 6597 6598
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6599 6600
	unsigned long start_pfn, end_pfn;
	int i, nid;
6601

6602 6603 6604 6605 6606
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6607 6608 6609 6610

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6611 6612
		if (i == ZONE_MOVABLE)
			continue;
6613 6614 6615 6616 6617 6618

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6619
	}
M
Mel Gorman 已提交
6620 6621 6622

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6623
	find_zone_movable_pfns_for_nodes();
6624 6625

	/* Print out the zone ranges */
6626
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6627 6628 6629
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6630
		pr_info("  %-8s ", zone_names[i]);
6631 6632
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6633
			pr_cont("empty\n");
6634
		else
6635 6636 6637 6638
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6639
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6640 6641 6642
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6643
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6644 6645
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6646 6647
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6648
	}
6649

6650
	/* Print out the early node map */
6651
	pr_info("Early memory node ranges\n");
6652
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6653 6654 6655
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6656 6657

	/* Initialise every node */
6658
	mminit_verify_pageflags_layout();
6659
	setup_nr_node_ids();
6660 6661
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6662
		free_area_init_node(nid, NULL,
6663
				find_min_pfn_for_node(nid), NULL);
6664 6665 6666

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6667 6668
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6669 6670
	}
}
M
Mel Gorman 已提交
6671

6672
static int __init cmdline_parse_core(char *p, unsigned long *core)
M
Mel Gorman 已提交
6673 6674 6675 6676 6677 6678
{
	unsigned long long coremem;
	if (!p)
		return -EINVAL;

	coremem = memparse(p, &p);
6679
	*core = coremem >> PAGE_SHIFT;
M
Mel Gorman 已提交
6680

6681
	/* Paranoid check that UL is enough for the coremem value */
M
Mel Gorman 已提交
6682 6683 6684 6685
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);

	return 0;
}
M
Mel Gorman 已提交
6686

6687 6688 6689 6690 6691 6692
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6693 6694 6695 6696 6697 6698
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
	return cmdline_parse_core(p, &required_kernelcore);
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
	return cmdline_parse_core(p, &required_movablecore);
}

M
Mel Gorman 已提交
6711
early_param("kernelcore", cmdline_parse_kernelcore);
6712
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6713

T
Tejun Heo 已提交
6714
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6715

6716 6717 6718 6719 6720
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6721 6722 6723 6724
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6725 6726
	spin_unlock(&managed_page_count_lock);
}
6727
EXPORT_SYMBOL(adjust_managed_page_count);
6728

6729
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6730
{
6731 6732
	void *pos;
	unsigned long pages = 0;
6733

6734 6735 6736
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6737
		if ((unsigned int)poison <= 0xFF)
6738 6739
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6740 6741 6742
	}

	if (pages && s)
6743 6744
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6745 6746 6747

	return pages;
}
6748
EXPORT_SYMBOL(free_reserved_area);
6749

6750 6751 6752 6753 6754
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6755
	page_zone(page)->managed_pages++;
6756 6757 6758 6759
	totalhigh_pages++;
}
#endif

6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
6782 6783 6784 6785
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
6796
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6797
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6798
		", %luK highmem"
6799
#endif
J
Joe Perches 已提交
6800 6801 6802 6803 6804 6805 6806
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
6807
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6808
		totalhigh_pages << (PAGE_SHIFT - 10),
6809
#endif
J
Joe Perches 已提交
6810
		str ? ", " : "", str ? str : "");
6811 6812
}

6813
/**
6814 6815
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
6816
 *
6817
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6818 6819
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
6820 6821 6822
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
6823 6824 6825 6826 6827 6828
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
6829 6830
void __init free_area_init(unsigned long *zones_size)
{
6831
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
6832 6833 6834
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
}

6835
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
6836 6837
{

6838 6839
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
6840

6841 6842 6843 6844 6845 6846 6847
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
6848

6849 6850 6851 6852 6853 6854 6855 6856 6857
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
6858 6859 6860 6861
}

void __init page_alloc_init(void)
{
6862 6863 6864 6865 6866 6867
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
6868 6869
}

6870
/*
6871
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6872 6873 6874 6875 6876 6877
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
6878
	enum zone_type i, j;
6879 6880

	for_each_online_pgdat(pgdat) {
6881 6882 6883

		pgdat->totalreserve_pages = 0;

6884 6885
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
6886
			long max = 0;
6887 6888 6889 6890 6891 6892 6893

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

6894 6895
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
6896

6897 6898
			if (max > zone->managed_pages)
				max = zone->managed_pages;
6899

6900
			pgdat->totalreserve_pages += max;
6901

6902 6903 6904 6905 6906 6907
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
6908 6909
/*
 * setup_per_zone_lowmem_reserve - called whenever
6910
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
6911 6912 6913 6914 6915 6916
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
6917
	enum zone_type j, idx;
L
Linus Torvalds 已提交
6918

6919
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
6920 6921
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
6922
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
6923 6924 6925

			zone->lowmem_reserve[j] = 0;

6926 6927
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
6928 6929
				struct zone *lower_zone;

6930 6931
				idx--;

L
Linus Torvalds 已提交
6932 6933 6934 6935
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
6936
				lower_zone->lowmem_reserve[j] = managed_pages /
L
Linus Torvalds 已提交
6937
					sysctl_lowmem_reserve_ratio[idx];
6938
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
6939 6940 6941
			}
		}
	}
6942 6943 6944

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
6945 6946
}

6947
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
6948 6949 6950 6951 6952 6953 6954 6955 6956
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
6957
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
6958 6959 6960
	}

	for_each_zone(zone) {
6961 6962
		u64 tmp;

6963
		spin_lock_irqsave(&zone->lock, flags);
6964
		tmp = (u64)pages_min * zone->managed_pages;
6965
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
6966 6967
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
6968 6969 6970 6971
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
6972
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
6973
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
6974
			 * not be capped for highmem.
L
Linus Torvalds 已提交
6975
			 */
6976
			unsigned long min_pages;
L
Linus Torvalds 已提交
6977

6978
			min_pages = zone->managed_pages / 1024;
6979
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6980
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
6981
		} else {
N
Nick Piggin 已提交
6982 6983
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
6984 6985
			 * proportionate to the zone's size.
			 */
6986
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
6987 6988
		}

6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7000

7001
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7002
	}
7003 7004 7005

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7006 7007
}

7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
	mutex_lock(&zonelists_mutex);
	__setup_per_zone_wmarks();
	mutex_unlock(&zonelists_mutex);
}

L
Linus Torvalds 已提交
7022 7023 7024 7025 7026 7027 7028
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7029
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7046
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7047 7048
{
	unsigned long lowmem_kbytes;
7049
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7050 7051

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7064
	setup_per_zone_wmarks();
7065
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7066
	setup_per_zone_lowmem_reserve();
7067 7068 7069 7070 7071 7072

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7073 7074
	return 0;
}
7075
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7076 7077

/*
7078
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7079 7080 7081
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7082
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7083
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7084
{
7085 7086 7087 7088 7089 7090
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7091 7092
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7093
		setup_per_zone_wmarks();
7094
	}
L
Linus Torvalds 已提交
7095 7096 7097
	return 0;
}

7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7113
#ifdef CONFIG_NUMA
7114
static void setup_min_unmapped_ratio(void)
7115
{
7116
	pg_data_t *pgdat;
7117 7118
	struct zone *zone;

7119
	for_each_online_pgdat(pgdat)
7120
		pgdat->min_unmapped_pages = 0;
7121

7122
	for_each_zone(zone)
7123
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7124 7125
				sysctl_min_unmapped_ratio) / 100;
}
7126

7127 7128

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7129
	void __user *buffer, size_t *length, loff_t *ppos)
7130 7131 7132
{
	int rc;

7133
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7134 7135 7136
	if (rc)
		return rc;

7137 7138 7139 7140 7141 7142 7143 7144 7145 7146
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7147 7148 7149
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7150
	for_each_zone(zone)
7151
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7152
				sysctl_min_slab_ratio) / 100;
7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7166 7167
	return 0;
}
7168 7169
#endif

L
Linus Torvalds 已提交
7170 7171 7172 7173 7174 7175
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7176
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7177 7178
 * if in function of the boot time zone sizes.
 */
7179
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7180
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7181
{
7182
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7183 7184 7185 7186
	setup_per_zone_lowmem_reserve();
	return 0;
}

7187 7188
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7189 7190
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7191
 */
7192
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7193
	void __user *buffer, size_t *length, loff_t *ppos)
7194 7195
{
	struct zone *zone;
7196
	int old_percpu_pagelist_fraction;
7197 7198
	int ret;

7199 7200 7201
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7202
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7217

7218
	for_each_populated_zone(zone) {
7219 7220
		unsigned int cpu;

7221
		for_each_possible_cpu(cpu)
7222 7223
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7224
	}
7225
out:
7226
	mutex_unlock(&pcp_batch_high_lock);
7227
	return ret;
7228 7229
}

7230
#ifdef CONFIG_NUMA
7231
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7282 7283
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7284
{
7285
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7286 7287
	unsigned long log2qty, size;
	void *table = NULL;
7288
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7289 7290 7291 7292

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7293
		numentries = nr_kernel_pages;
7294
		numentries -= arch_reserved_kernel_pages();
7295 7296 7297 7298

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7299

P
Pavel Tatashin 已提交
7300 7301 7302 7303 7304 7305 7306 7307 7308 7309
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7310 7311 7312 7313 7314
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7315 7316

		/* Make sure we've got at least a 0-order allocation.. */
7317 7318 7319 7320 7321 7322 7323 7324
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7325
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7326
	}
7327
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7328 7329 7330 7331 7332 7333

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7334
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7335

7336 7337
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7338 7339 7340
	if (numentries > max)
		numentries = max;

7341
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7342

7343 7344 7345 7346 7347
	/*
	 * memblock allocator returns zeroed memory already, so HASH_ZERO is
	 * currently not used when HASH_EARLY is specified.
	 */
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7348 7349 7350
	do {
		size = bucketsize << log2qty;
		if (flags & HASH_EARLY)
7351
			table = memblock_virt_alloc_nopanic(size, 0);
L
Linus Torvalds 已提交
7352
		else if (hashdist)
7353
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
L
Linus Torvalds 已提交
7354
		else {
7355 7356
			/*
			 * If bucketsize is not a power-of-two, we may free
7357 7358
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7359
			 */
7360
			if (get_order(size) < MAX_ORDER) {
7361 7362
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7363
			}
L
Linus Torvalds 已提交
7364 7365 7366 7367 7368 7369
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7370 7371
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7372 7373 7374 7375 7376 7377 7378 7379

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7380

K
KAMEZAWA Hiroyuki 已提交
7381
/*
7382 7383 7384
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7385
 * PageLRU check without isolation or lru_lock could race so that
7386 7387 7388
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7389
 */
7390 7391
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
			 bool skip_hwpoisoned_pages)
7392 7393
{
	unsigned long pfn, iter, found;
7394 7395
	int mt;

7396 7397
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7398
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7399 7400
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7401
		return false;
7402 7403
	mt = get_pageblock_migratetype(page);
	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7404
		return false;
7405 7406 7407 7408 7409

	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7410
		if (!pfn_valid_within(check))
7411
			continue;
7412

7413
		page = pfn_to_page(check);
7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424

		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7425 7426 7427 7428
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7429
		 * because their page->_refcount is zero at all time.
7430
		 */
7431
		if (!page_ref_count(page)) {
7432 7433 7434 7435
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7436

7437 7438 7439 7440 7441 7442 7443
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7444 7445 7446
		if (__PageMovable(page))
			continue;

7447 7448 7449
		if (!PageLRU(page))
			found++;
		/*
7450 7451 7452
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7453 7454 7455 7456 7457 7458 7459 7460 7461 7462
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7463
			return true;
7464
	}
7465
	return false;
7466 7467 7468 7469
}

bool is_pageblock_removable_nolock(struct page *page)
{
7470 7471
	struct zone *zone;
	unsigned long pfn;
7472 7473 7474 7475 7476

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7477 7478
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7479
	 */
7480 7481 7482 7483 7484
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7485
	if (!zone_spans_pfn(zone, pfn))
7486 7487
		return false;

7488
	return !has_unmovable_pages(zone, page, 0, true);
K
KAMEZAWA Hiroyuki 已提交
7489
}
K
KAMEZAWA Hiroyuki 已提交
7490

7491
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7506 7507
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7508 7509
{
	/* This function is based on compact_zone() from compaction.c. */
7510
	unsigned long nr_reclaimed;
7511 7512 7513 7514
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7515
	migrate_prep();
7516

7517
	while (pfn < end || !list_empty(&cc->migratepages)) {
7518 7519 7520 7521 7522
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7523 7524
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7525
			pfn = isolate_migratepages_range(cc, pfn, end);
7526 7527 7528 7529 7530 7531 7532 7533 7534 7535
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7536 7537 7538
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7539

7540
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7541
				    NULL, 0, cc->mode, MR_CMA);
7542
	}
7543 7544 7545 7546 7547
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7548 7549 7550 7551 7552 7553
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7554 7555 7556 7557
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7558
 * @gfp_mask:	GFP mask to use during compaction
7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7571
int alloc_contig_range(unsigned long start, unsigned long end,
7572
		       unsigned migratetype, gfp_t gfp_mask)
7573 7574
{
	unsigned long outer_start, outer_end;
7575 7576
	unsigned int order;
	int ret = 0;
7577

7578 7579 7580 7581
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7582
		.mode = MIGRATE_SYNC,
7583
		.ignore_skip_hint = true,
7584
		.gfp_mask = current_gfp_context(gfp_mask),
7585 7586 7587
	};
	INIT_LIST_HEAD(&cc.migratepages);

7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7613 7614
				       pfn_max_align_up(end), migratetype,
				       false);
7615
	if (ret)
7616
		return ret;
7617

7618 7619 7620 7621
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
	 * So, just fall through. We will check it in test_pages_isolated().
	 */
7622
	ret = __alloc_contig_migrate_range(&cc, start, end);
7623
	if (ret && ret != -EBUSY)
7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643
		goto done;

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7644
	drain_all_pages(cc.zone);
7645 7646 7647 7648 7649

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7650 7651
			outer_start = start;
			break;
7652 7653 7654 7655
		}
		outer_start &= ~0UL << order;
	}

7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7669
	/* Make sure the range is really isolated. */
7670
	if (test_pages_isolated(outer_start, end, false)) {
7671 7672
		pr_info("%s: [%lx, %lx) PFNs busy\n",
			__func__, outer_start, end);
7673 7674 7675 7676
		ret = -EBUSY;
		goto done;
	}

7677
	/* Grab isolated pages from freelists. */
7678
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7692
				pfn_max_align_up(end), migratetype);
7693 7694 7695 7696 7697
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7698 7699 7700 7701 7702 7703 7704 7705 7706
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7707 7708 7709
}
#endif

7710
#ifdef CONFIG_MEMORY_HOTPLUG
7711 7712 7713 7714
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7715 7716
void __meminit zone_pcp_update(struct zone *zone)
{
7717
	unsigned cpu;
7718
	mutex_lock(&pcp_batch_high_lock);
7719
	for_each_possible_cpu(cpu)
7720 7721
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7722
	mutex_unlock(&pcp_batch_high_lock);
7723 7724 7725
}
#endif

7726 7727 7728
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7729 7730
	int cpu;
	struct per_cpu_pageset *pset;
7731 7732 7733 7734

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7735 7736 7737 7738
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7739 7740 7741 7742 7743 7744
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7745
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7746
/*
7747 7748
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7749 7750 7751 7752 7753 7754
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7755
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7756 7757 7758 7759 7760 7761 7762 7763
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
7764
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7765 7766 7767 7768 7769 7770 7771 7772 7773
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7774 7775 7776 7777 7778 7779 7780 7781 7782 7783
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
7784 7785 7786 7787
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
7788 7789
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
7801 7802 7803 7804 7805 7806

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
7807
	unsigned int order;
7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}