e1000_82575.c 61.3 KB
Newer Older
1 2 3
/*******************************************************************************

  Intel(R) Gigabit Ethernet Linux driver
4
  Copyright(c) 2007-2012 Intel Corporation.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

  This program is free software; you can redistribute it and/or modify it
  under the terms and conditions of the GNU General Public License,
  version 2, as published by the Free Software Foundation.

  This program is distributed in the hope it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc.,
  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.

  The full GNU General Public License is included in this distribution in
  the file called "COPYING".

  Contact Information:
  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/

/* e1000_82575
 * e1000_82576
 */

32 33
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

34
#include <linux/types.h>
A
Alexander Duyck 已提交
35
#include <linux/if_ether.h>
36 37 38

#include "e1000_mac.h"
#include "e1000_82575.h"
39
#include "e1000_i210.h"
40 41 42 43 44 45 46 47 48 49 50

static s32  igb_get_invariants_82575(struct e1000_hw *);
static s32  igb_acquire_phy_82575(struct e1000_hw *);
static void igb_release_phy_82575(struct e1000_hw *);
static s32  igb_acquire_nvm_82575(struct e1000_hw *);
static void igb_release_nvm_82575(struct e1000_hw *);
static s32  igb_check_for_link_82575(struct e1000_hw *);
static s32  igb_get_cfg_done_82575(struct e1000_hw *);
static s32  igb_init_hw_82575(struct e1000_hw *);
static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
A
Alexander Duyck 已提交
51 52
static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
53
static s32  igb_reset_hw_82575(struct e1000_hw *);
A
Alexander Duyck 已提交
54
static s32  igb_reset_hw_82580(struct e1000_hw *);
55
static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
56 57
static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
58
static s32  igb_setup_copper_link_82575(struct e1000_hw *);
59
static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
60 61 62 63 64 65 66 67 68 69
static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
						 u16 *);
static s32  igb_get_phy_id_82575(struct e1000_hw *);
static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
static bool igb_sgmii_active_82575(struct e1000_hw *);
static s32  igb_reset_init_script_82575(struct e1000_hw *);
static s32  igb_read_mac_addr_82575(struct e1000_hw *);
70
static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
71
static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
72 73 74 75
static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
A
Alexander Duyck 已提交
76 77 78 79 80 81
static const u16 e1000_82580_rxpbs_table[] =
	{ 36, 72, 144, 1, 2, 4, 8, 16,
	  35, 70, 140 };
#define E1000_82580_RXPBS_TABLE_SIZE \
	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/**
 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
 *  @hw: pointer to the HW structure
 *
 *  Called to determine if the I2C pins are being used for I2C or as an
 *  external MDIO interface since the two options are mutually exclusive.
 **/
static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
{
	u32 reg = 0;
	bool ext_mdio = false;

	switch (hw->mac.type) {
	case e1000_82575:
	case e1000_82576:
		reg = rd32(E1000_MDIC);
		ext_mdio = !!(reg & E1000_MDIC_DEST);
		break;
	case e1000_82580:
	case e1000_i350:
102 103
	case e1000_i210:
	case e1000_i211:
104 105 106 107 108 109 110 111 112
		reg = rd32(E1000_MDICNFG);
		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
		break;
	default:
		break;
	}
	return ext_mdio;
}

113 114 115 116 117
static s32 igb_get_invariants_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	struct e1000_nvm_info *nvm = &hw->nvm;
	struct e1000_mac_info *mac = &hw->mac;
118
	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
119 120 121 122 123 124 125 126 127 128 129
	u32 eecd;
	s32 ret_val;
	u16 size;
	u32 ctrl_ext = 0;

	switch (hw->device_id) {
	case E1000_DEV_ID_82575EB_COPPER:
	case E1000_DEV_ID_82575EB_FIBER_SERDES:
	case E1000_DEV_ID_82575GB_QUAD_COPPER:
		mac->type = e1000_82575;
		break;
A
Alexander Duyck 已提交
130
	case E1000_DEV_ID_82576:
131
	case E1000_DEV_ID_82576_NS:
132
	case E1000_DEV_ID_82576_NS_SERDES:
A
Alexander Duyck 已提交
133 134
	case E1000_DEV_ID_82576_FIBER:
	case E1000_DEV_ID_82576_SERDES:
135
	case E1000_DEV_ID_82576_QUAD_COPPER:
136
	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
137
	case E1000_DEV_ID_82576_SERDES_QUAD:
A
Alexander Duyck 已提交
138 139
		mac->type = e1000_82576;
		break;
A
Alexander Duyck 已提交
140 141
	case E1000_DEV_ID_82580_COPPER:
	case E1000_DEV_ID_82580_FIBER:
142
	case E1000_DEV_ID_82580_QUAD_FIBER:
A
Alexander Duyck 已提交
143 144 145
	case E1000_DEV_ID_82580_SERDES:
	case E1000_DEV_ID_82580_SGMII:
	case E1000_DEV_ID_82580_COPPER_DUAL:
146 147
	case E1000_DEV_ID_DH89XXCC_SGMII:
	case E1000_DEV_ID_DH89XXCC_SERDES:
G
Gasparakis, Joseph 已提交
148 149
	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
	case E1000_DEV_ID_DH89XXCC_SFP:
A
Alexander Duyck 已提交
150 151
		mac->type = e1000_82580;
		break;
152 153 154 155 156 157
	case E1000_DEV_ID_I350_COPPER:
	case E1000_DEV_ID_I350_FIBER:
	case E1000_DEV_ID_I350_SERDES:
	case E1000_DEV_ID_I350_SGMII:
		mac->type = e1000_i350;
		break;
158 159 160 161 162 163 164 165 166 167 168
	case E1000_DEV_ID_I210_COPPER:
	case E1000_DEV_ID_I210_COPPER_OEM1:
	case E1000_DEV_ID_I210_COPPER_IT:
	case E1000_DEV_ID_I210_FIBER:
	case E1000_DEV_ID_I210_SERDES:
	case E1000_DEV_ID_I210_SGMII:
		mac->type = e1000_i210;
		break;
	case E1000_DEV_ID_I211_COPPER:
		mac->type = e1000_i211;
		break;
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
	default:
		return -E1000_ERR_MAC_INIT;
		break;
	}

	/* Set media type */
	/*
	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
	 * based on the EEPROM. We cannot rely upon device ID. There
	 * is no distinguishable difference between fiber and internal
	 * SerDes mode on the 82575. There can be an external PHY attached
	 * on the SGMII interface. For this, we'll set sgmii_active to true.
	 */
	phy->media_type = e1000_media_type_copper;
	dev_spec->sgmii_active = false;

	ctrl_ext = rd32(E1000_CTRL_EXT);
186 187
	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
	case E1000_CTRL_EXT_LINK_MODE_SGMII:
188
		dev_spec->sgmii_active = true;
189
		break;
A
Alexander Duyck 已提交
190
	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
191 192 193 194 195
	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
		hw->phy.media_type = e1000_media_type_internal_serdes;
		break;
	default:
		break;
196
	}
197

198 199 200
	/* Set mta register count */
	mac->mta_reg_count = 128;
	/* Set rar entry count */
201 202
	switch (mac->type) {
	case e1000_82576:
A
Alexander Duyck 已提交
203
		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
204 205
		break;
	case e1000_82580:
A
Alexander Duyck 已提交
206
		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
207 208
		break;
	case e1000_i350:
209
		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
210 211 212 213 214
		break;
	default:
		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
		break;
	}
A
Alexander Duyck 已提交
215
	/* reset */
216
	if (mac->type >= e1000_82580)
A
Alexander Duyck 已提交
217 218 219
		mac->ops.reset_hw = igb_reset_hw_82580;
	else
		mac->ops.reset_hw = igb_reset_hw_82575;
220 221 222 223 224 225 226 227 228

	if (mac->type >= e1000_i210) {
		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
	} else {
		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
	}

229 230 231 232 233 234
	/* Set if part includes ASF firmware */
	mac->asf_firmware_present = true;
	/* Set if manageability features are enabled. */
	mac->arc_subsystem_valid =
		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
			? true : false;
235 236
	/* enable EEE on i350 parts and later parts */
	if (mac->type >= e1000_i350)
237 238 239
		dev_spec->eee_disable = false;
	else
		dev_spec->eee_disable = true;
240 241 242 243
	/* physical interface link setup */
	mac->ops.setup_physical_interface =
		(hw->phy.media_type == e1000_media_type_copper)
			? igb_setup_copper_link_82575
244
			: igb_setup_serdes_link_82575;
245 246 247 248 249 250 251 252 253 254 255

	/* NVM initialization */
	eecd = rd32(E1000_EECD);
	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
		     E1000_EECD_SIZE_EX_SHIFT);

	/*
	 * Added to a constant, "size" becomes the left-shift value
	 * for setting word_size.
	 */
	size += NVM_WORD_SIZE_BASE_SHIFT;
J
Jeff Kirsher 已提交
256

257 258 259 260 261 262 263 264
	/*
	 * Check for invalid size
	 */
	if ((hw->mac.type == e1000_82576) && (size > 15)) {
		pr_notice("The NVM size is not valid, defaulting to 32K\n");
		size = 15;
	}

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
	nvm->word_size = 1 << size;
	if (hw->mac.type < e1000_i210) {
		nvm->opcode_bits        = 8;
		nvm->delay_usec         = 1;
		switch (nvm->override) {
		case e1000_nvm_override_spi_large:
			nvm->page_size    = 32;
			nvm->address_bits = 16;
			break;
		case e1000_nvm_override_spi_small:
			nvm->page_size    = 8;
			nvm->address_bits = 8;
			break;
		default:
			nvm->page_size    = eecd
				& E1000_EECD_ADDR_BITS ? 32 : 8;
			nvm->address_bits = eecd
				& E1000_EECD_ADDR_BITS ? 16 : 8;
			break;
		}
		if (nvm->word_size == (1 << 15))
			nvm->page_size = 128;

		nvm->type = e1000_nvm_eeprom_spi;
	} else
		nvm->type = e1000_nvm_flash_hw;

292 293 294 295 296
	/* NVM Function Pointers */
	switch (hw->mac.type) {
	case e1000_82580:
		nvm->ops.validate = igb_validate_nvm_checksum_82580;
		nvm->ops.update = igb_update_nvm_checksum_82580;
297 298 299 300 301 302 303
		nvm->ops.acquire = igb_acquire_nvm_82575;
		nvm->ops.release = igb_release_nvm_82575;
		if (nvm->word_size < (1 << 15))
			nvm->ops.read = igb_read_nvm_eerd;
		else
			nvm->ops.read = igb_read_nvm_spi;
		nvm->ops.write = igb_write_nvm_spi;
304 305 306 307
		break;
	case e1000_i350:
		nvm->ops.validate = igb_validate_nvm_checksum_i350;
		nvm->ops.update = igb_update_nvm_checksum_i350;
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
		nvm->ops.acquire = igb_acquire_nvm_82575;
		nvm->ops.release = igb_release_nvm_82575;
		if (nvm->word_size < (1 << 15))
			nvm->ops.read = igb_read_nvm_eerd;
		else
			nvm->ops.read = igb_read_nvm_spi;
		nvm->ops.write = igb_write_nvm_spi;
		break;
	case e1000_i210:
		nvm->ops.validate = igb_validate_nvm_checksum_i210;
		nvm->ops.update   = igb_update_nvm_checksum_i210;
		nvm->ops.acquire = igb_acquire_nvm_i210;
		nvm->ops.release = igb_release_nvm_i210;
		nvm->ops.read    = igb_read_nvm_srrd_i210;
		nvm->ops.valid_led_default = igb_valid_led_default_i210;
		break;
	case e1000_i211:
		nvm->ops.acquire  = igb_acquire_nvm_i210;
		nvm->ops.release  = igb_release_nvm_i210;
		nvm->ops.read     = igb_read_nvm_i211;
		nvm->ops.valid_led_default = igb_valid_led_default_i210;
		nvm->ops.validate = NULL;
		nvm->ops.update   = NULL;
		nvm->ops.write    = NULL;
332 333 334 335
		break;
	default:
		nvm->ops.validate = igb_validate_nvm_checksum;
		nvm->ops.update = igb_update_nvm_checksum;
336 337 338 339 340 341 342 343
		nvm->ops.acquire = igb_acquire_nvm_82575;
		nvm->ops.release = igb_release_nvm_82575;
		if (nvm->word_size < (1 << 15))
			nvm->ops.read = igb_read_nvm_eerd;
		else
			nvm->ops.read = igb_read_nvm_spi;
		nvm->ops.write = igb_write_nvm_spi;
		break;
344
	}
345

346 347 348 349
	/* if part supports SR-IOV then initialize mailbox parameters */
	switch (mac->type) {
	case e1000_82576:
	case e1000_i350:
350
		igb_init_mbx_params_pf(hw);
351 352 353 354
		break;
	default:
		break;
	}
355

356 357 358 359 360 361 362 363 364
	/* setup PHY parameters */
	if (phy->media_type != e1000_media_type_copper) {
		phy->type = e1000_phy_none;
		return 0;
	}

	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
	phy->reset_delay_us      = 100;

365 366
	ctrl_ext = rd32(E1000_CTRL_EXT);

367
	/* PHY function pointers */
368
	if (igb_sgmii_active_82575(hw)) {
369
		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
370 371
		ctrl_ext |= E1000_CTRL_I2C_ENA;
	} else {
372
		phy->ops.reset      = igb_phy_hw_reset;
373 374 375 376 377
		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
	}

	wr32(E1000_CTRL_EXT, ctrl_ext);
	igb_reset_mdicnfg_82580(hw);
378 379 380 381

	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
382 383
	} else if ((hw->mac.type == e1000_82580)
		|| (hw->mac.type == e1000_i350)) {
384 385
		phy->ops.read_reg   = igb_read_phy_reg_82580;
		phy->ops.write_reg  = igb_write_phy_reg_82580;
386 387 388
	} else if (hw->phy.type >= e1000_phy_i210) {
		phy->ops.read_reg   = igb_read_phy_reg_gs40g;
		phy->ops.write_reg  = igb_write_phy_reg_gs40g;
389
	} else {
390 391
		phy->ops.read_reg   = igb_read_phy_reg_igp;
		phy->ops.write_reg  = igb_write_phy_reg_igp;
392 393
	}

394 395 396 397
	/* set lan id */
	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
	               E1000_STATUS_FUNC_SHIFT;

398 399 400 401 402 403 404
	/* Set phy->phy_addr and phy->id. */
	ret_val = igb_get_phy_id_82575(hw);
	if (ret_val)
		return ret_val;

	/* Verify phy id and set remaining function pointers */
	switch (phy->id) {
405 406
	case I347AT4_E_PHY_ID:
	case M88E1112_E_PHY_ID:
407 408 409
	case M88E1111_I_PHY_ID:
		phy->type                   = e1000_phy_m88;
		phy->ops.get_phy_info       = igb_get_phy_info_m88;
410 411 412 413 414 415 416

		if (phy->id == I347AT4_E_PHY_ID ||
		    phy->id == M88E1112_E_PHY_ID)
			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
		else
			phy->ops.get_cable_length = igb_get_cable_length_m88;

417 418 419 420 421 422 423 424
		if (phy->id == I210_I_PHY_ID) {
			phy->ops.get_cable_length =
					 igb_get_cable_length_m88_gen2;
			phy->ops.set_d0_lplu_state =
					igb_set_d0_lplu_state_82580;
			phy->ops.set_d3_lplu_state =
					igb_set_d3_lplu_state_82580;
		}
425 426 427 428 429 430 431 432 433 434
		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
		break;
	case IGP03E1000_E_PHY_ID:
		phy->type                   = e1000_phy_igp_3;
		phy->ops.get_phy_info       = igb_get_phy_info_igp;
		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
		break;
A
Alexander Duyck 已提交
435
	case I82580_I_PHY_ID:
436
	case I350_I_PHY_ID:
A
Alexander Duyck 已提交
437 438 439 440
		phy->type                   = e1000_phy_82580;
		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
		phy->ops.get_cable_length   = igb_get_cable_length_82580;
		phy->ops.get_phy_info       = igb_get_phy_info_82580;
441 442
		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
A
Alexander Duyck 已提交
443
		break;
444 445 446 447 448 449 450 451 452
	case I210_I_PHY_ID:
		phy->type                   = e1000_phy_i210;
		phy->ops.get_phy_info       = igb_get_phy_info_m88;
		phy->ops.check_polarity     = igb_check_polarity_m88;
		phy->ops.get_cable_length   = igb_get_cable_length_m88_gen2;
		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
		break;
453 454 455 456 457 458 459 460
	default:
		return -E1000_ERR_PHY;
	}

	return 0;
}

/**
461
 *  igb_acquire_phy_82575 - Acquire rights to access PHY
462 463 464 465 466 467 468
 *  @hw: pointer to the HW structure
 *
 *  Acquire access rights to the correct PHY.  This is a
 *  function pointer entry point called by the api module.
 **/
static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
{
469
	u16 mask = E1000_SWFW_PHY0_SM;
470

471 472
	if (hw->bus.func == E1000_FUNC_1)
		mask = E1000_SWFW_PHY1_SM;
473 474 475 476
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_SWFW_PHY2_SM;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_SWFW_PHY3_SM;
477

478
	return hw->mac.ops.acquire_swfw_sync(hw, mask);
479 480 481
}

/**
482
 *  igb_release_phy_82575 - Release rights to access PHY
483 484 485 486 487 488 489
 *  @hw: pointer to the HW structure
 *
 *  A wrapper to release access rights to the correct PHY.  This is a
 *  function pointer entry point called by the api module.
 **/
static void igb_release_phy_82575(struct e1000_hw *hw)
{
490 491 492 493
	u16 mask = E1000_SWFW_PHY0_SM;

	if (hw->bus.func == E1000_FUNC_1)
		mask = E1000_SWFW_PHY1_SM;
494 495 496 497
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_SWFW_PHY2_SM;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_SWFW_PHY3_SM;
498

499
	hw->mac.ops.release_swfw_sync(hw, mask);
500 501 502
}

/**
503
 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
504 505 506 507 508 509 510 511 512 513
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the PHY register at offset using the serial gigabit media independent
 *  interface and stores the retrieved information in data.
 **/
static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
					  u16 *data)
{
514
	s32 ret_val = -E1000_ERR_PARAM;
515 516

	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
517
		hw_dbg("PHY Address %u is out of range\n", offset);
518
		goto out;
519 520
	}

521 522 523
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;
524

525
	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
526

527 528 529 530
	hw->phy.ops.release(hw);

out:
	return ret_val;
531 532 533
}

/**
534
 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
535 536 537 538 539 540 541 542 543 544
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write at register offset
 *
 *  Writes the data to PHY register at the offset using the serial gigabit
 *  media independent interface.
 **/
static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
					   u16 data)
{
545 546
	s32 ret_val = -E1000_ERR_PARAM;

547 548

	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
549
		hw_dbg("PHY Address %d is out of range\n", offset);
550
		goto out;
551 552
	}

553 554 555
	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;
556

557
	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
558

559 560 561 562
	hw->phy.ops.release(hw);

out:
	return ret_val;
563 564 565
}

/**
566
 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
567 568
 *  @hw: pointer to the HW structure
 *
569
 *  Retrieves the PHY address and ID for both PHY's which do and do not use
570 571 572 573 574 575 576
 *  sgmi interface.
 **/
static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32  ret_val = 0;
	u16 phy_id;
577
	u32 ctrl_ext;
578
	u32 mdic;
579 580 581 582 583 584 585 586 587 588 589 590 591 592

	/*
	 * For SGMII PHYs, we try the list of possible addresses until
	 * we find one that works.  For non-SGMII PHYs
	 * (e.g. integrated copper PHYs), an address of 1 should
	 * work.  The result of this function should mean phy->phy_addr
	 * and phy->id are set correctly.
	 */
	if (!(igb_sgmii_active_82575(hw))) {
		phy->addr = 1;
		ret_val = igb_get_phy_id(hw);
		goto out;
	}

593 594 595 596 597 598 599 600 601 602
	if (igb_sgmii_uses_mdio_82575(hw)) {
		switch (hw->mac.type) {
		case e1000_82575:
		case e1000_82576:
			mdic = rd32(E1000_MDIC);
			mdic &= E1000_MDIC_PHY_MASK;
			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
			break;
		case e1000_82580:
		case e1000_i350:
603 604
		case e1000_i210:
		case e1000_i211:
605 606 607 608 609 610 611 612 613 614 615 616 617
			mdic = rd32(E1000_MDICNFG);
			mdic &= E1000_MDICNFG_PHY_MASK;
			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
			break;
		default:
			ret_val = -E1000_ERR_PHY;
			goto out;
			break;
		}
		ret_val = igb_get_phy_id(hw);
		goto out;
	}

618 619 620 621 622 623
	/* Power on sgmii phy if it is disabled */
	ctrl_ext = rd32(E1000_CTRL_EXT);
	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
	wrfl();
	msleep(300);

624 625 626 627 628 629 630
	/*
	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
	 * Therefore, we need to test 1-7
	 */
	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
		if (ret_val == 0) {
631 632
			hw_dbg("Vendor ID 0x%08X read at address %u\n",
			       phy_id, phy->addr);
633 634 635 636 637 638 639
			/*
			 * At the time of this writing, The M88 part is
			 * the only supported SGMII PHY product.
			 */
			if (phy_id == M88_VENDOR)
				break;
		} else {
640
			hw_dbg("PHY address %u was unreadable\n", phy->addr);
641 642 643 644 645 646 647 648
		}
	}

	/* A valid PHY type couldn't be found. */
	if (phy->addr == 8) {
		phy->addr = 0;
		ret_val = -E1000_ERR_PHY;
		goto out;
649 650
	} else {
		ret_val = igb_get_phy_id(hw);
651 652
	}

653 654
	/* restore previous sfp cage power state */
	wr32(E1000_CTRL_EXT, ctrl_ext);
655 656 657 658 659 660

out:
	return ret_val;
}

/**
661
 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
662 663 664 665 666 667 668 669 670 671 672 673 674
 *  @hw: pointer to the HW structure
 *
 *  Resets the PHY using the serial gigabit media independent interface.
 **/
static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
{
	s32 ret_val;

	/*
	 * This isn't a true "hard" reset, but is the only reset
	 * available to us at this time.
	 */

675
	hw_dbg("Soft resetting SGMII attached PHY...\n");
676 677 678 679 680

	/*
	 * SFP documentation requires the following to configure the SPF module
	 * to work on SGMII.  No further documentation is given.
	 */
A
Alexander Duyck 已提交
681
	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
682 683 684 685 686 687 688 689 690 691
	if (ret_val)
		goto out;

	ret_val = igb_phy_sw_reset(hw);

out:
	return ret_val;
}

/**
692
 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val;
	u16 data;

A
Alexander Duyck 已提交
710
	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
711 712 713 714 715
	if (ret_val)
		goto out;

	if (active) {
		data |= IGP02E1000_PM_D0_LPLU;
A
Alexander Duyck 已提交
716
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
717
						 data);
718 719 720 721
		if (ret_val)
			goto out;

		/* When LPLU is enabled, we should disable SmartSpeed */
A
Alexander Duyck 已提交
722
		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
723
						&data);
724
		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
A
Alexander Duyck 已提交
725
		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
726
						 data);
727 728 729 730
		if (ret_val)
			goto out;
	} else {
		data &= ~IGP02E1000_PM_D0_LPLU;
A
Alexander Duyck 已提交
731
		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
732
						 data);
733 734 735 736 737 738 739
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on) {
A
Alexander Duyck 已提交
740
			ret_val = phy->ops.read_reg(hw,
741
					IGP01E1000_PHY_PORT_CONFIG, &data);
742 743 744 745
			if (ret_val)
				goto out;

			data |= IGP01E1000_PSCFR_SMART_SPEED;
A
Alexander Duyck 已提交
746
			ret_val = phy->ops.write_reg(hw,
747
					IGP01E1000_PHY_PORT_CONFIG, data);
748 749 750
			if (ret_val)
				goto out;
		} else if (phy->smart_speed == e1000_smart_speed_off) {
A
Alexander Duyck 已提交
751
			ret_val = phy->ops.read_reg(hw,
752
					IGP01E1000_PHY_PORT_CONFIG, &data);
753 754 755 756
			if (ret_val)
				goto out;

			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
A
Alexander Duyck 已提交
757
			ret_val = phy->ops.write_reg(hw,
758
					IGP01E1000_PHY_PORT_CONFIG, data);
759 760 761 762 763 764 765 766 767
			if (ret_val)
				goto out;
		}
	}

out:
	return ret_val;
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
/**
 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
 *  @hw: pointer to the HW structure
 *  @active: true to enable LPLU, false to disable
 *
 *  Sets the LPLU D0 state according to the active flag.  When
 *  activating LPLU this function also disables smart speed
 *  and vice versa.  LPLU will not be activated unless the
 *  device autonegotiation advertisement meets standards of
 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 *  This is a function pointer entry point only called by
 *  PHY setup routines.
 **/
static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 data;

	data = rd32(E1000_82580_PHY_POWER_MGMT);

	if (active) {
		data |= E1000_82580_PM_D0_LPLU;

		/* When LPLU is enabled, we should disable SmartSpeed */
		data &= ~E1000_82580_PM_SPD;
	} else {
		data &= ~E1000_82580_PM_D0_LPLU;

		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on)
			data |= E1000_82580_PM_SPD;
		else if (phy->smart_speed == e1000_smart_speed_off)
			data &= ~E1000_82580_PM_SPD; }

	wr32(E1000_82580_PHY_POWER_MGMT, data);
	return ret_val;
}

/**
 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
 *  @hw: pointer to the HW structure
 *  @active: boolean used to enable/disable lplu
 *
 *  Success returns 0, Failure returns 1
 *
 *  The low power link up (lplu) state is set to the power management level D3
 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
 *  is used during Dx states where the power conservation is most important.
 *  During driver activity, SmartSpeed should be enabled so performance is
 *  maintained.
 **/
s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
{
	struct e1000_phy_info *phy = &hw->phy;
	s32 ret_val = 0;
	u16 data;

	data = rd32(E1000_82580_PHY_POWER_MGMT);

	if (!active) {
		data &= ~E1000_82580_PM_D3_LPLU;
		/*
		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
		 * during Dx states where the power conservation is most
		 * important.  During driver activity we should enable
		 * SmartSpeed, so performance is maintained.
		 */
		if (phy->smart_speed == e1000_smart_speed_on)
			data |= E1000_82580_PM_SPD;
		else if (phy->smart_speed == e1000_smart_speed_off)
			data &= ~E1000_82580_PM_SPD;
	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
		data |= E1000_82580_PM_D3_LPLU;
		/* When LPLU is enabled, we should disable SmartSpeed */
		data &= ~E1000_82580_PM_SPD;
	}

	wr32(E1000_82580_PHY_POWER_MGMT, data);
	return ret_val;
}

858
/**
859
 *  igb_acquire_nvm_82575 - Request for access to EEPROM
860 861
 *  @hw: pointer to the HW structure
 *
862
 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
863 864 865 866 867 868 869 870
 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 *  Return successful if access grant bit set, else clear the request for
 *  EEPROM access and return -E1000_ERR_NVM (-1).
 **/
static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
{
	s32 ret_val;

871
	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
872 873 874 875 876 877
	if (ret_val)
		goto out;

	ret_val = igb_acquire_nvm(hw);

	if (ret_val)
878
		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
879 880 881 882 883 884

out:
	return ret_val;
}

/**
885
 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
886 887 888 889 890 891 892 893
 *  @hw: pointer to the HW structure
 *
 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 *  then release the semaphores acquired.
 **/
static void igb_release_nvm_82575(struct e1000_hw *hw)
{
	igb_release_nvm(hw);
894
	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
895 896 897
}

/**
898
 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 *  will also specify which port we're acquiring the lock for.
 **/
static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;
	u32 swmask = mask;
	u32 fwmask = mask << 16;
	s32 ret_val = 0;
	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */

	while (i < timeout) {
		if (igb_get_hw_semaphore(hw)) {
			ret_val = -E1000_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = rd32(E1000_SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

		/*
		 * Firmware currently using resource (fwmask)
		 * or other software thread using resource (swmask)
		 */
		igb_put_hw_semaphore(hw);
		mdelay(5);
		i++;
	}

	if (i == timeout) {
933
		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
934 935 936 937 938 939 940 941 942 943 944 945 946 947
		ret_val = -E1000_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

	igb_put_hw_semaphore(hw);

out:
	return ret_val;
}

/**
948
 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
 *  @hw: pointer to the HW structure
 *  @mask: specifies which semaphore to acquire
 *
 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 *  will also specify which port we're releasing the lock for.
 **/
static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
{
	u32 swfw_sync;

	while (igb_get_hw_semaphore(hw) != 0);
	/* Empty */

	swfw_sync = rd32(E1000_SW_FW_SYNC);
	swfw_sync &= ~mask;
	wr32(E1000_SW_FW_SYNC, swfw_sync);

	igb_put_hw_semaphore(hw);
}

/**
970
 *  igb_get_cfg_done_82575 - Read config done bit
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
 *  @hw: pointer to the HW structure
 *
 *  Read the management control register for the config done bit for
 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 *  to read the config done bit, so an error is *ONLY* logged and returns
 *  0.  If we were to return with error, EEPROM-less silicon
 *  would not be able to be reset or change link.
 **/
static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
{
	s32 timeout = PHY_CFG_TIMEOUT;
	s32 ret_val = 0;
	u32 mask = E1000_NVM_CFG_DONE_PORT_0;

	if (hw->bus.func == 1)
		mask = E1000_NVM_CFG_DONE_PORT_1;
A
Alexander Duyck 已提交
987 988 989 990
	else if (hw->bus.func == E1000_FUNC_2)
		mask = E1000_NVM_CFG_DONE_PORT_2;
	else if (hw->bus.func == E1000_FUNC_3)
		mask = E1000_NVM_CFG_DONE_PORT_3;
991 992 993 994 995 996 997 998

	while (timeout) {
		if (rd32(E1000_EEMNGCTL) & mask)
			break;
		msleep(1);
		timeout--;
	}
	if (!timeout)
999
		hw_dbg("MNG configuration cycle has not completed.\n");
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	/* If EEPROM is not marked present, init the PHY manually */
	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
	    (hw->phy.type == e1000_phy_igp_3))
		igb_phy_init_script_igp3(hw);

	return ret_val;
}

/**
1010
 *  igb_check_for_link_82575 - Check for link
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
 *  @hw: pointer to the HW structure
 *
 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
 *  use the generic interface for determining link.
 **/
static s32 igb_check_for_link_82575(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 speed, duplex;

1021
	if (hw->phy.media_type != e1000_media_type_copper) {
1022
		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
A
Alexander Duyck 已提交
1023
		                                             &duplex);
1024 1025 1026 1027 1028 1029 1030
		/*
		 * Use this flag to determine if link needs to be checked or
		 * not.  If  we have link clear the flag so that we do not
		 * continue to check for link.
		 */
		hw->mac.get_link_status = !hw->mac.serdes_has_link;
	} else {
1031
		ret_val = igb_check_for_copper_link(hw);
1032
	}
1033 1034 1035

	return ret_val;
}
1036

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
/**
 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
 *  @hw: pointer to the HW structure
 **/
void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
{
	u32 reg;


	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
	    !igb_sgmii_active_82575(hw))
		return;

	/* Enable PCS to turn on link */
	reg = rd32(E1000_PCS_CFG0);
	reg |= E1000_PCS_CFG_PCS_EN;
	wr32(E1000_PCS_CFG0, reg);

	/* Power up the laser */
	reg = rd32(E1000_CTRL_EXT);
	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
	wr32(E1000_CTRL_EXT, reg);

	/* flush the write to verify completion */
	wrfl();
	msleep(1);
}

1065
/**
1066
 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1067 1068 1069 1070
 *  @hw: pointer to the HW structure
 *  @speed: stores the current speed
 *  @duplex: stores the current duplex
 *
1071
 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
 *  duplex, then store the values in the pointers provided.
 **/
static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
						u16 *duplex)
{
	struct e1000_mac_info *mac = &hw->mac;
	u32 pcs;

	/* Set up defaults for the return values of this function */
	mac->serdes_has_link = false;
	*speed = 0;
	*duplex = 0;

	/*
	 * Read the PCS Status register for link state. For non-copper mode,
	 * the status register is not accurate. The PCS status register is
	 * used instead.
	 */
	pcs = rd32(E1000_PCS_LSTAT);

	/*
	 * The link up bit determines when link is up on autoneg. The sync ok
	 * gets set once both sides sync up and agree upon link. Stable link
	 * can be determined by checking for both link up and link sync ok
	 */
	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
		mac->serdes_has_link = true;

		/* Detect and store PCS speed */
		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
			*speed = SPEED_1000;
		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
			*speed = SPEED_100;
		} else {
			*speed = SPEED_10;
		}

		/* Detect and store PCS duplex */
		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
			*duplex = FULL_DUPLEX;
		} else {
			*duplex = HALF_DUPLEX;
		}
	}

	return 0;
}

A
Alexander Duyck 已提交
1120
/**
1121
 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1122 1123
 *  @hw: pointer to the HW structure
 *
A
Alexander Duyck 已提交
1124 1125
 *  In the case of fiber serdes, shut down optics and PCS on driver unload
 *  when management pass thru is not enabled.
1126
 **/
1127
void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1128
{
A
Alexander Duyck 已提交
1129 1130
	u32 reg;

1131
	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1132
	    igb_sgmii_active_82575(hw))
A
Alexander Duyck 已提交
1133 1134
		return;

1135
	if (!igb_enable_mng_pass_thru(hw)) {
A
Alexander Duyck 已提交
1136 1137 1138 1139 1140 1141 1142
		/* Disable PCS to turn off link */
		reg = rd32(E1000_PCS_CFG0);
		reg &= ~E1000_PCS_CFG_PCS_EN;
		wr32(E1000_PCS_CFG0, reg);

		/* shutdown the laser */
		reg = rd32(E1000_CTRL_EXT);
1143
		reg |= E1000_CTRL_EXT_SDP3_DATA;
A
Alexander Duyck 已提交
1144 1145 1146 1147 1148 1149
		wr32(E1000_CTRL_EXT, reg);

		/* flush the write to verify completion */
		wrfl();
		msleep(1);
	}
1150 1151 1152
}

/**
1153
 *  igb_reset_hw_82575 - Reset hardware
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
 *  @hw: pointer to the HW structure
 *
 *  This resets the hardware into a known state.  This is a
 *  function pointer entry point called by the api module.
 **/
static s32 igb_reset_hw_82575(struct e1000_hw *hw)
{
	u32 ctrl, icr;
	s32 ret_val;

	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = igb_disable_pcie_master(hw);
	if (ret_val)
1170
		hw_dbg("PCI-E Master disable polling has failed.\n");
1171

1172 1173 1174 1175 1176 1177
	/* set the completion timeout for interface */
	ret_val = igb_set_pcie_completion_timeout(hw);
	if (ret_val) {
		hw_dbg("PCI-E Set completion timeout has failed.\n");
	}

1178
	hw_dbg("Masking off all interrupts\n");
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	wr32(E1000_IMC, 0xffffffff);

	wr32(E1000_RCTL, 0);
	wr32(E1000_TCTL, E1000_TCTL_PSP);
	wrfl();

	msleep(10);

	ctrl = rd32(E1000_CTRL);

1189
	hw_dbg("Issuing a global reset to MAC\n");
1190 1191 1192 1193 1194 1195 1196 1197 1198
	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);

	ret_val = igb_get_auto_rd_done(hw);
	if (ret_val) {
		/*
		 * When auto config read does not complete, do not
		 * return with an error. This can happen in situations
		 * where there is no eeprom and prevents getting link.
		 */
1199
		hw_dbg("Auto Read Done did not complete\n");
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	}

	/* If EEPROM is not present, run manual init scripts */
	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
		igb_reset_init_script_82575(hw);

	/* Clear any pending interrupt events. */
	wr32(E1000_IMC, 0xffffffff);
	icr = rd32(E1000_ICR);

1210 1211
	/* Install any alternate MAC address into RAR0 */
	ret_val = igb_check_alt_mac_addr(hw);
1212 1213 1214 1215 1216

	return ret_val;
}

/**
1217
 *  igb_init_hw_82575 - Initialize hardware
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
 *  @hw: pointer to the HW structure
 *
 *  This inits the hardware readying it for operation.
 **/
static s32 igb_init_hw_82575(struct e1000_hw *hw)
{
	struct e1000_mac_info *mac = &hw->mac;
	s32 ret_val;
	u16 i, rar_count = mac->rar_entry_count;

	/* Initialize identification LED */
	ret_val = igb_id_led_init(hw);
	if (ret_val) {
1231
		hw_dbg("Error initializing identification LED\n");
1232 1233 1234 1235
		/* This is not fatal and we should not stop init due to this */
	}

	/* Disabling VLAN filtering */
1236
	hw_dbg("Initializing the IEEE VLAN\n");
1237 1238 1239 1240
	if (hw->mac.type == e1000_i350)
		igb_clear_vfta_i350(hw);
	else
		igb_clear_vfta(hw);
1241 1242

	/* Setup the receive address */
1243 1244
	igb_init_rx_addrs(hw, rar_count);

1245
	/* Zero out the Multicast HASH table */
1246
	hw_dbg("Zeroing the MTA\n");
1247 1248 1249
	for (i = 0; i < mac->mta_reg_count; i++)
		array_wr32(E1000_MTA, i, 0);

1250 1251 1252 1253 1254
	/* Zero out the Unicast HASH table */
	hw_dbg("Zeroing the UTA\n");
	for (i = 0; i < mac->uta_reg_count; i++)
		array_wr32(E1000_UTA, i, 0);

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
	/* Setup link and flow control */
	ret_val = igb_setup_link(hw);

	/*
	 * Clear all of the statistics registers (clear on read).  It is
	 * important that we do this after we have tried to establish link
	 * because the symbol error count will increment wildly if there
	 * is no link.
	 */
	igb_clear_hw_cntrs_82575(hw);
	return ret_val;
}

/**
1269
 *  igb_setup_copper_link_82575 - Configure copper link settings
1270 1271 1272 1273 1274 1275 1276 1277
 *  @hw: pointer to the HW structure
 *
 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
 *  for link, once link is established calls to configure collision distance
 *  and flow control are called.
 **/
static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
{
1278
	u32 ctrl;
1279 1280 1281 1282 1283 1284 1285
	s32  ret_val;

	ctrl = rd32(E1000_CTRL);
	ctrl |= E1000_CTRL_SLU;
	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	wr32(E1000_CTRL, ctrl);

1286 1287 1288 1289 1290
	ret_val = igb_setup_serdes_link_82575(hw);
	if (ret_val)
		goto out;

	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
A
Alexander Duyck 已提交
1291 1292 1293
		/* allow time for SFP cage time to power up phy */
		msleep(300);

1294 1295 1296 1297 1298 1299
		ret_val = hw->phy.ops.reset(hw);
		if (ret_val) {
			hw_dbg("Error resetting the PHY.\n");
			goto out;
		}
	}
1300
	switch (hw->phy.type) {
1301
	case e1000_phy_i210:
1302
	case e1000_phy_m88:
1303 1304 1305 1306 1307
		if (hw->phy.id == I347AT4_E_PHY_ID ||
		    hw->phy.id == M88E1112_E_PHY_ID)
			ret_val = igb_copper_link_setup_m88_gen2(hw);
		else
			ret_val = igb_copper_link_setup_m88(hw);
1308 1309 1310 1311
		break;
	case e1000_phy_igp_3:
		ret_val = igb_copper_link_setup_igp(hw);
		break;
A
Alexander Duyck 已提交
1312 1313 1314
	case e1000_phy_82580:
		ret_val = igb_copper_link_setup_82580(hw);
		break;
1315 1316 1317 1318 1319 1320 1321 1322
	default:
		ret_val = -E1000_ERR_PHY;
		break;
	}

	if (ret_val)
		goto out;

1323
	ret_val = igb_setup_copper_link(hw);
1324 1325 1326 1327 1328
out:
	return ret_val;
}

/**
1329
 *  igb_setup_serdes_link_82575 - Setup link for serdes
1330 1331
 *  @hw: pointer to the HW structure
 *
1332 1333 1334 1335
 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
 *  used on copper connections where the serialized gigabit media independent
 *  interface (sgmii), or serdes fiber is being used.  Configures the link
 *  for auto-negotiation or forces speed/duplex.
1336
 **/
1337
static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1338
{
A
Alexander Duyck 已提交
1339 1340
	u32 ctrl_ext, ctrl_reg, reg;
	bool pcs_autoneg;
1341 1342
	s32 ret_val = E1000_SUCCESS;
	u16 data;
1343 1344 1345

	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
	    !igb_sgmii_active_82575(hw))
1346 1347
		return ret_val;

1348 1349 1350 1351 1352 1353 1354 1355 1356

	/*
	 * On the 82575, SerDes loopback mode persists until it is
	 * explicitly turned off or a power cycle is performed.  A read to
	 * the register does not indicate its status.  Therefore, we ensure
	 * loopback mode is disabled during initialization.
	 */
	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);

1357
	/* power on the sfp cage if present */
A
Alexander Duyck 已提交
1358 1359 1360
	ctrl_ext = rd32(E1000_CTRL_EXT);
	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
	wr32(E1000_CTRL_EXT, ctrl_ext);
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

	ctrl_reg = rd32(E1000_CTRL);
	ctrl_reg |= E1000_CTRL_SLU;

	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
		/* set both sw defined pins */
		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;

		/* Set switch control to serdes energy detect */
		reg = rd32(E1000_CONNSW);
		reg |= E1000_CONNSW_ENRGSRC;
		wr32(E1000_CONNSW, reg);
	}

	reg = rd32(E1000_PCS_LCTL);

A
Alexander Duyck 已提交
1377 1378
	/* default pcs_autoneg to the same setting as mac autoneg */
	pcs_autoneg = hw->mac.autoneg;
1379

A
Alexander Duyck 已提交
1380 1381 1382 1383 1384
	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
	case E1000_CTRL_EXT_LINK_MODE_SGMII:
		/* sgmii mode lets the phy handle forcing speed/duplex */
		pcs_autoneg = true;
		/* autoneg time out should be disabled for SGMII mode */
1385
		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
A
Alexander Duyck 已提交
1386 1387 1388 1389 1390
		break;
	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
		/* disable PCS autoneg and support parallel detect only */
		pcs_autoneg = false;
	default:
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		if (hw->mac.type == e1000_82575 ||
		    hw->mac.type == e1000_82576) {
			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
			if (ret_val) {
				printk(KERN_DEBUG "NVM Read Error\n\n");
				return ret_val;
			}

			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
				pcs_autoneg = false;
		}

A
Alexander Duyck 已提交
1403 1404 1405 1406 1407
		/*
		 * non-SGMII modes only supports a speed of 1000/Full for the
		 * link so it is best to just force the MAC and let the pcs
		 * link either autoneg or be forced to 1000/Full
		 */
1408 1409
		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
A
Alexander Duyck 已提交
1410 1411 1412 1413

		/* set speed of 1000/Full if speed/duplex is forced */
		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
		break;
1414 1415
	}

1416
	wr32(E1000_CTRL, ctrl_reg);
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

	/*
	 * New SerDes mode allows for forcing speed or autonegotiating speed
	 * at 1gb. Autoneg should be default set by most drivers. This is the
	 * mode that will be compatible with older link partners and switches.
	 * However, both are supported by the hardware and some drivers/tools.
	 */
	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);

1427 1428 1429 1430 1431 1432
	/*
	 * We force flow control to prevent the CTRL register values from being
	 * overwritten by the autonegotiated flow control values
	 */
	reg |= E1000_PCS_LCTL_FORCE_FCTRL;

A
Alexander Duyck 已提交
1433
	if (pcs_autoneg) {
1434
		/* Set PCS register for autoneg */
A
Alexander Duyck 已提交
1435
		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1436
		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
A
Alexander Duyck 已提交
1437
		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1438
	} else {
A
Alexander Duyck 已提交
1439
		/* Set PCS register for forced link */
1440
		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
A
Alexander Duyck 已提交
1441 1442

		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1443
	}
1444

1445 1446
	wr32(E1000_PCS_LCTL, reg);

1447 1448
	if (!igb_sgmii_active_82575(hw))
		igb_force_mac_fc(hw);
1449

1450
	return ret_val;
1451 1452 1453
}

/**
1454
 *  igb_sgmii_active_82575 - Return sgmii state
1455 1456 1457 1458 1459 1460 1461 1462
 *  @hw: pointer to the HW structure
 *
 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
 *  which can be enabled for use in the embedded applications.  Simply
 *  return the current state of the sgmii interface.
 **/
static bool igb_sgmii_active_82575(struct e1000_hw *hw)
{
1463 1464
	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
	return dev_spec->sgmii_active;
1465 1466 1467
}

/**
1468
 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1469 1470 1471 1472 1473 1474 1475 1476
 *  @hw: pointer to the HW structure
 *
 *  Inits recommended HW defaults after a reset when there is no EEPROM
 *  detected. This is only for the 82575.
 **/
static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
{
	if (hw->mac.type == e1000_82575) {
1477
		hw_dbg("Running reset init script for 82575\n");
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
		/* SerDes configuration via SERDESCTRL */
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);

		/* CCM configuration via CCMCTL register */
		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);

		/* PCIe lanes configuration */
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);

		/* PCIe PLL Configuration */
		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
	}

	return 0;
}

/**
1504
 *  igb_read_mac_addr_82575 - Read device MAC address
1505 1506 1507 1508 1509 1510
 *  @hw: pointer to the HW structure
 **/
static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
{
	s32 ret_val = 0;

1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
	/*
	 * If there's an alternate MAC address place it in RAR0
	 * so that it will override the Si installed default perm
	 * address.
	 */
	ret_val = igb_check_alt_mac_addr(hw);
	if (ret_val)
		goto out;

	ret_val = igb_read_mac_addr(hw);
1521

1522
out:
1523 1524 1525
	return ret_val;
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/**
 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
 * @hw: pointer to the HW structure
 *
 * In the case of a PHY power down to save power, or to turn off link during a
 * driver unload, or wake on lan is not enabled, remove the link.
 **/
void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
{
	/* If the management interface is not enabled, then power down */
	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
		igb_power_down_phy_copper(hw);
}

1540
/**
1541
 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1542 1543 1544 1545 1546 1547 1548 1549
 *  @hw: pointer to the HW structure
 *
 *  Clears the hardware counters by reading the counter registers.
 **/
static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
{
	igb_clear_hw_cntrs_base(hw);

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	rd32(E1000_PRC64);
	rd32(E1000_PRC127);
	rd32(E1000_PRC255);
	rd32(E1000_PRC511);
	rd32(E1000_PRC1023);
	rd32(E1000_PRC1522);
	rd32(E1000_PTC64);
	rd32(E1000_PTC127);
	rd32(E1000_PTC255);
	rd32(E1000_PTC511);
	rd32(E1000_PTC1023);
	rd32(E1000_PTC1522);

	rd32(E1000_ALGNERRC);
	rd32(E1000_RXERRC);
	rd32(E1000_TNCRS);
	rd32(E1000_CEXTERR);
	rd32(E1000_TSCTC);
	rd32(E1000_TSCTFC);

	rd32(E1000_MGTPRC);
	rd32(E1000_MGTPDC);
	rd32(E1000_MGTPTC);

	rd32(E1000_IAC);
	rd32(E1000_ICRXOC);

	rd32(E1000_ICRXPTC);
	rd32(E1000_ICRXATC);
	rd32(E1000_ICTXPTC);
	rd32(E1000_ICTXATC);
	rd32(E1000_ICTXQEC);
	rd32(E1000_ICTXQMTC);
	rd32(E1000_ICRXDMTC);

	rd32(E1000_CBTMPC);
	rd32(E1000_HTDPMC);
	rd32(E1000_CBRMPC);
	rd32(E1000_RPTHC);
	rd32(E1000_HGPTC);
	rd32(E1000_HTCBDPC);
	rd32(E1000_HGORCL);
	rd32(E1000_HGORCH);
	rd32(E1000_HGOTCL);
	rd32(E1000_HGOTCH);
	rd32(E1000_LENERRS);
1596 1597

	/* This register should not be read in copper configurations */
1598 1599
	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
	    igb_sgmii_active_82575(hw))
1600
		rd32(E1000_SCVPC);
1601 1602
}

1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
/**
 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
 *  @hw: pointer to the HW structure
 *
 *  After rx enable if managability is enabled then there is likely some
 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
 *  function clears the fifos and flushes any packets that came in as rx was
 *  being enabled.
 **/
void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
{
	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
	int i, ms_wait;

	if (hw->mac.type != e1000_82575 ||
	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
		return;

	/* Disable all RX queues */
	for (i = 0; i < 4; i++) {
		rxdctl[i] = rd32(E1000_RXDCTL(i));
		wr32(E1000_RXDCTL(i),
		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
	}
	/* Poll all queues to verify they have shut down */
	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
		msleep(1);
		rx_enabled = 0;
		for (i = 0; i < 4; i++)
			rx_enabled |= rd32(E1000_RXDCTL(i));
		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
			break;
	}

	if (ms_wait == 10)
		hw_dbg("Queue disable timed out after 10ms\n");

	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
	 * incoming packets are rejected.  Set enable and wait 2ms so that
	 * any packet that was coming in as RCTL.EN was set is flushed
	 */
	rfctl = rd32(E1000_RFCTL);
	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);

	rlpml = rd32(E1000_RLPML);
	wr32(E1000_RLPML, 0);

	rctl = rd32(E1000_RCTL);
	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
	temp_rctl |= E1000_RCTL_LPE;

	wr32(E1000_RCTL, temp_rctl);
	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
	wrfl();
	msleep(2);

	/* Enable RX queues that were previously enabled and restore our
	 * previous state
	 */
	for (i = 0; i < 4; i++)
		wr32(E1000_RXDCTL(i), rxdctl[i]);
	wr32(E1000_RCTL, rctl);
	wrfl();

	wr32(E1000_RLPML, rlpml);
	wr32(E1000_RFCTL, rfctl);

	/* Flush receive errors generated by workaround */
	rd32(E1000_ROC);
	rd32(E1000_RNBC);
	rd32(E1000_MPC);
}

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
/**
 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
 *  @hw: pointer to the HW structure
 *
 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
 *  however the hardware default for these parts is 500us to 1ms which is less
 *  than the 10ms recommended by the pci-e spec.  To address this we need to
 *  increase the value to either 10ms to 200ms for capability version 1 config,
 *  or 16ms to 55ms for version 2.
 **/
static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
{
	u32 gcr = rd32(E1000_GCR);
	s32 ret_val = 0;
	u16 pcie_devctl2;

	/* only take action if timeout value is defaulted to 0 */
	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
		goto out;

	/*
	 * if capababilities version is type 1 we can write the
	 * timeout of 10ms to 200ms through the GCR register
	 */
	if (!(gcr & E1000_GCR_CAP_VER2)) {
		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
		goto out;
	}

	/*
	 * for version 2 capabilities we need to write the config space
	 * directly in order to set the completion timeout value for
	 * 16ms to 55ms
	 */
	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
	                                &pcie_devctl2);
	if (ret_val)
		goto out;

	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;

	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
	                                 &pcie_devctl2);
out:
	/* disable completion timeout resend */
	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;

	wr32(E1000_GCR, gcr);
	return ret_val;
}

G
Greg Rose 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
/**
 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
 *
 *  enables/disables L2 switch anti-spoofing functionality.
 **/
void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
{
	u32 dtxswc;

	switch (hw->mac.type) {
	case e1000_82576:
	case e1000_i350:
		dtxswc = rd32(E1000_DTXSWC);
		if (enable) {
			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
				   E1000_DTXSWC_VLAN_SPOOF_MASK);
			/* The PF can spoof - it has to in order to
			 * support emulation mode NICs */
			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
		} else {
			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
				    E1000_DTXSWC_VLAN_SPOOF_MASK);
		}
		wr32(E1000_DTXSWC, dtxswc);
		break;
	default:
		break;
	}
}

1760 1761 1762 1763 1764 1765 1766 1767 1768
/**
 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *
 *  enables/disables L2 switch loopback functionality.
 **/
void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
{
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
	u32 dtxswc;

	switch (hw->mac.type) {
	case e1000_82576:
		dtxswc = rd32(E1000_DTXSWC);
		if (enable)
			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		else
			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		wr32(E1000_DTXSWC, dtxswc);
		break;
	case e1000_i350:
		dtxswc = rd32(E1000_TXSWC);
		if (enable)
			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		else
			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
		wr32(E1000_TXSWC, dtxswc);
		break;
	default:
		/* Currently no other hardware supports loopback */
		break;
	}
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814


}

/**
 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
 *  @hw: pointer to the hardware struct
 *  @enable: state to enter, either enabled or disabled
 *
 *  enables/disables replication of packets across multiple pools.
 **/
void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
{
	u32 vt_ctl = rd32(E1000_VT_CTL);

	if (enable)
		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
	else
		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;

	wr32(E1000_VT_CTL, vt_ctl);
}

A
Alexander Duyck 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
/**
 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to be read
 *  @data: pointer to the read data
 *
 *  Reads the MDI control register in the PHY at offset and stores the
 *  information read to data.
 **/
static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
{
	s32 ret_val;


	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = igb_read_phy_reg_mdic(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return ret_val;
}

/**
 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
 *  @hw: pointer to the HW structure
 *  @offset: register offset to write to
 *  @data: data to write to register at offset
 *
 *  Writes data to MDI control register in the PHY at offset.
 **/
static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
{
	s32 ret_val;


	ret_val = hw->phy.ops.acquire(hw);
	if (ret_val)
		goto out;

	ret_val = igb_write_phy_reg_mdic(hw, offset, data);

	hw->phy.ops.release(hw);

out:
	return ret_val;
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
/**
 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
 *  @hw: pointer to the HW structure
 *
 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
 *  the values found in the EEPROM.  This addresses an issue in which these
 *  bits are not restored from EEPROM after reset.
 **/
static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u32 mdicnfg;
G
Gasparakis, Joseph 已提交
1878
	u16 nvm_data = 0;
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902

	if (hw->mac.type != e1000_82580)
		goto out;
	if (!igb_sgmii_active_82575(hw))
		goto out;

	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
				   &nvm_data);
	if (ret_val) {
		hw_dbg("NVM Read Error\n");
		goto out;
	}

	mdicnfg = rd32(E1000_MDICNFG);
	if (nvm_data & NVM_WORD24_EXT_MDIO)
		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
	if (nvm_data & NVM_WORD24_COM_MDIO)
		mdicnfg |= E1000_MDICNFG_COM_MDIO;
	wr32(E1000_MDICNFG, mdicnfg);
out:
	return ret_val;
}

A
Alexander Duyck 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
/**
 *  igb_reset_hw_82580 - Reset hardware
 *  @hw: pointer to the HW structure
 *
 *  This resets function or entire device (all ports, etc.)
 *  to a known state.
 **/
static s32 igb_reset_hw_82580(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	/* BH SW mailbox bit in SW_FW_SYNC */
	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
	u32 ctrl, icr;
	bool global_device_reset = hw->dev_spec._82575.global_device_reset;


	hw->dev_spec._82575.global_device_reset = false;

	/* Get current control state. */
	ctrl = rd32(E1000_CTRL);

	/*
	 * Prevent the PCI-E bus from sticking if there is no TLP connection
	 * on the last TLP read/write transaction when MAC is reset.
	 */
	ret_val = igb_disable_pcie_master(hw);
	if (ret_val)
		hw_dbg("PCI-E Master disable polling has failed.\n");

	hw_dbg("Masking off all interrupts\n");
	wr32(E1000_IMC, 0xffffffff);
	wr32(E1000_RCTL, 0);
	wr32(E1000_TCTL, E1000_TCTL_PSP);
	wrfl();

	msleep(10);

	/* Determine whether or not a global dev reset is requested */
	if (global_device_reset &&
1942
		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
A
Alexander Duyck 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951
			global_device_reset = false;

	if (global_device_reset &&
		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
		ctrl |= E1000_CTRL_DEV_RST;
	else
		ctrl |= E1000_CTRL_RST;

	wr32(E1000_CTRL, ctrl);
1952
	wrfl();
A
Alexander Duyck 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978

	/* Add delay to insure DEV_RST has time to complete */
	if (global_device_reset)
		msleep(5);

	ret_val = igb_get_auto_rd_done(hw);
	if (ret_val) {
		/*
		 * When auto config read does not complete, do not
		 * return with an error. This can happen in situations
		 * where there is no eeprom and prevents getting link.
		 */
		hw_dbg("Auto Read Done did not complete\n");
	}

	/* If EEPROM is not present, run manual init scripts */
	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
		igb_reset_init_script_82575(hw);

	/* clear global device reset status bit */
	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);

	/* Clear any pending interrupt events. */
	wr32(E1000_IMC, 0xffffffff);
	icr = rd32(E1000_ICR);

1979 1980 1981 1982
	ret_val = igb_reset_mdicnfg_82580(hw);
	if (ret_val)
		hw_dbg("Could not reset MDICNFG based on EEPROM\n");

A
Alexander Duyck 已提交
1983 1984 1985 1986 1987
	/* Install any alternate MAC address into RAR0 */
	ret_val = igb_check_alt_mac_addr(hw);

	/* Release semaphore */
	if (global_device_reset)
1988
		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
A
Alexander Duyck 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

	return ret_val;
}

/**
 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
 *  @data: data received by reading RXPBS register
 *
 *  The 82580 uses a table based approach for packet buffer allocation sizes.
 *  This function converts the retrieved value into the correct table value
 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
 *  0x0 36  72 144   1   2   4   8  16
 *  0x8 35  70 140 rsv rsv rsv rsv rsv
 */
u16 igb_rxpbs_adjust_82580(u32 data)
{
	u16 ret_val = 0;

	if (data < E1000_82580_RXPBS_TABLE_SIZE)
		ret_val = e1000_82580_rxpbs_table[data];

	return ret_val;
}

2013 2014 2015 2016 2017 2018 2019 2020 2021
/**
 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
 *  checksum
 *  @hw: pointer to the HW structure
 *  @offset: offset in words of the checksum protected region
 *
 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 **/
2022 2023
static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
						 u16 offset)
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
{
	s32 ret_val = 0;
	u16 checksum = 0;
	u16 i, nvm_data;

	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
		if (ret_val) {
			hw_dbg("NVM Read Error\n");
			goto out;
		}
		checksum += nvm_data;
	}

	if (checksum != (u16) NVM_SUM) {
		hw_dbg("NVM Checksum Invalid\n");
		ret_val = -E1000_ERR_NVM;
		goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_update_nvm_checksum_with_offset - Update EEPROM
 *  checksum
 *  @hw: pointer to the HW structure
 *  @offset: offset in words of the checksum protected region
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM.
 **/
2058
static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
{
	s32 ret_val;
	u16 checksum = 0;
	u16 i, nvm_data;

	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
		if (ret_val) {
			hw_dbg("NVM Read Error while updating checksum.\n");
			goto out;
		}
		checksum += nvm_data;
	}
	checksum = (u16) NVM_SUM - checksum;
	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
				&checksum);
	if (ret_val)
		hw_dbg("NVM Write Error while updating checksum.\n");

out:
	return ret_val;
}

/**
 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM section checksum by reading/adding each word of
 *  the EEPROM and then verifies that the sum of the EEPROM is
 *  equal to 0xBABA.
 **/
static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 eeprom_regions_count = 1;
	u16 j, nvm_data;
	u16 nvm_offset;

	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
	if (ret_val) {
		hw_dbg("NVM Read Error\n");
		goto out;
	}

	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2104
		/* if checksums compatibility bit is set validate checksums
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
		 * for all 4 ports. */
		eeprom_regions_count = 4;
	}

	for (j = 0; j < eeprom_regions_count; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = igb_validate_nvm_checksum_with_offset(hw,
								nvm_offset);
		if (ret_val != 0)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
 *  checksum and writes the value to the EEPROM.
 **/
static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
{
	s32 ret_val;
	u16 j, nvm_data;
	u16 nvm_offset;

	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
	if (ret_val) {
		hw_dbg("NVM Read Error while updating checksum"
			" compatibility bit.\n");
		goto out;
	}

	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
		/* set compatibility bit to validate checksums appropriately */
		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
					&nvm_data);
		if (ret_val) {
			hw_dbg("NVM Write Error while updating checksum"
				" compatibility bit.\n");
			goto out;
		}
	}

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
		if (ret_val)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Calculates the EEPROM section checksum by reading/adding each word of
 *  the EEPROM and then verifies that the sum of the EEPROM is
 *  equal to 0xBABA.
 **/
static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 j;
	u16 nvm_offset;

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = igb_validate_nvm_checksum_with_offset(hw,
								nvm_offset);
		if (ret_val != 0)
			goto out;
	}

out:
	return ret_val;
}

/**
 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
 *  checksum and writes the value to the EEPROM.
 **/
static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u16 j;
	u16 nvm_offset;

	for (j = 0; j < 4; j++) {
		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
		if (ret_val != 0)
			goto out;
	}

out:
	return ret_val;
}
2215

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
/**
 *  igb_set_eee_i350 - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *
 *  Enable/disable EEE based on setting in dev_spec structure.
 *
 **/
s32 igb_set_eee_i350(struct e1000_hw *hw)
{
	s32 ret_val = 0;
	u32 ipcnfg, eeer, ctrl_ext;

	ctrl_ext = rd32(E1000_CTRL_EXT);
	if ((hw->mac.type != e1000_i350) ||
	    (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
		goto out;
	ipcnfg = rd32(E1000_IPCNFG);
	eeer = rd32(E1000_EEER);

	/* enable or disable per user setting */
	if (!(hw->dev_spec._82575.eee_disable)) {
		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
			E1000_IPCNFG_EEE_100M_AN);
		eeer |= (E1000_EEER_TX_LPI_EN |
			E1000_EEER_RX_LPI_EN |
			E1000_EEER_LPI_FC);

	} else {
		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
			E1000_IPCNFG_EEE_100M_AN);
		eeer &= ~(E1000_EEER_TX_LPI_EN |
			E1000_EEER_RX_LPI_EN |
			E1000_EEER_LPI_FC);
	}
	wr32(E1000_IPCNFG, ipcnfg);
	wr32(E1000_EEER, eeer);
out:

	return ret_val;
}
2256

2257 2258 2259
static struct e1000_mac_operations e1000_mac_ops_82575 = {
	.init_hw              = igb_init_hw_82575,
	.check_for_link       = igb_check_for_link_82575,
A
Alexander Duyck 已提交
2260
	.rar_set              = igb_rar_set,
2261 2262 2263 2264 2265
	.read_mac_addr        = igb_read_mac_addr_82575,
	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
};

static struct e1000_phy_operations e1000_phy_ops_82575 = {
A
Alexander Duyck 已提交
2266
	.acquire              = igb_acquire_phy_82575,
2267
	.get_cfg_done         = igb_get_cfg_done_82575,
A
Alexander Duyck 已提交
2268
	.release              = igb_release_phy_82575,
2269 2270 2271
};

static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
A
Alexander Duyck 已提交
2272 2273 2274 2275
	.acquire              = igb_acquire_nvm_82575,
	.read                 = igb_read_nvm_eerd,
	.release              = igb_release_nvm_82575,
	.write                = igb_write_nvm_spi,
2276 2277 2278 2279 2280 2281 2282 2283 2284
};

const struct e1000_info e1000_82575_info = {
	.get_invariants = igb_get_invariants_82575,
	.mac_ops = &e1000_mac_ops_82575,
	.phy_ops = &e1000_phy_ops_82575,
	.nvm_ops = &e1000_nvm_ops_82575,
};