tick-broadcast.c 25.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * linux/kernel/time/tick-broadcast.c
 *
 * This file contains functions which emulate a local clock-event
 * device via a broadcast event source.
 *
 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 *
 * This code is licenced under the GPL version 2. For details see
 * kernel-base/COPYING.
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
17
#include <linux/interrupt.h>
18 19 20
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
21
#include <linux/smp.h>
22
#include <linux/module.h>
23 24 25 26 27 28 29 30

#include "tick-internal.h"

/*
 * Broadcast support for broken x86 hardware, where the local apic
 * timer stops in C3 state.
 */

31
static struct tick_device tick_broadcast_device;
32
static cpumask_var_t tick_broadcast_mask;
33
static cpumask_var_t tick_broadcast_on;
34
static cpumask_var_t tmpmask;
35
static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36
static int tick_broadcast_forced;
37

38 39
#ifdef CONFIG_TICK_ONESHOT
static void tick_broadcast_clear_oneshot(int cpu);
40
static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 42
#else
static inline void tick_broadcast_clear_oneshot(int cpu) { }
43
static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 45
#endif

46 47 48 49 50 51 52 53
/*
 * Debugging: see timer_list.c
 */
struct tick_device *tick_get_broadcast_device(void)
{
	return &tick_broadcast_device;
}

54
struct cpumask *tick_get_broadcast_mask(void)
55
{
56
	return tick_broadcast_mask;
57 58
}

59 60 61 62 63
/*
 * Start the device in periodic mode
 */
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
{
T
Thomas Gleixner 已提交
64
	if (bc)
65 66 67 68 69 70
		tick_setup_periodic(bc, 1);
}

/*
 * Check, if the device can be utilized as broadcast device:
 */
71 72 73 74
static bool tick_check_broadcast_device(struct clock_event_device *curdev,
					struct clock_event_device *newdev)
{
	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75
	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76 77 78 79 80 81 82 83 84 85 86 87 88
	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
		return false;

	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
		return false;

	return !curdev || newdev->rating > curdev->rating;
}

/*
 * Conditionally install/replace broadcast device
 */
89
void tick_install_broadcast_device(struct clock_event_device *dev)
90
{
91 92
	struct clock_event_device *cur = tick_broadcast_device.evtdev;

93
	if (!tick_check_broadcast_device(cur, dev))
94
		return;
95

96 97
	if (!try_module_get(dev->owner))
		return;
98

99
	clockevents_exchange_device(cur, dev);
100 101
	if (cur)
		cur->event_handler = clockevents_handle_noop;
102
	tick_broadcast_device.evtdev = dev;
103
	if (!cpumask_empty(tick_broadcast_mask))
104
		tick_broadcast_start_periodic(dev);
105 106 107 108 109 110 111 112 113 114
	/*
	 * Inform all cpus about this. We might be in a situation
	 * where we did not switch to oneshot mode because the per cpu
	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
	 * of a oneshot capable broadcast device. Without that
	 * notification the systems stays stuck in periodic mode
	 * forever.
	 */
	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
		tick_clock_notify();
115 116 117 118 119 120 121 122 123 124
}

/*
 * Check, if the device is the broadcast device
 */
int tick_is_broadcast_device(struct clock_event_device *dev)
{
	return (dev && tick_broadcast_device.evtdev == dev);
}

125 126 127 128 129 130 131 132 133 134 135 136 137
int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
{
	int ret = -ENODEV;

	if (tick_is_broadcast_device(dev)) {
		raw_spin_lock(&tick_broadcast_lock);
		ret = __clockevents_update_freq(dev, freq);
		raw_spin_unlock(&tick_broadcast_lock);
	}
	return ret;
}


138 139 140 141 142
static void err_broadcast(const struct cpumask *mask)
{
	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
}

143 144 145 146 147 148 149 150 151 152 153
static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
{
	if (!dev->broadcast)
		dev->broadcast = tick_broadcast;
	if (!dev->broadcast) {
		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
			     dev->name);
		dev->broadcast = err_broadcast;
	}
}

154 155 156 157 158 159
/*
 * Check, if the device is disfunctional and a place holder, which
 * needs to be handled by the broadcast device.
 */
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
{
160
	struct clock_event_device *bc = tick_broadcast_device.evtdev;
161
	unsigned long flags;
162
	int ret;
163

164
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165 166 167 168 169 170 171 172 173

	/*
	 * Devices might be registered with both periodic and oneshot
	 * mode disabled. This signals, that the device needs to be
	 * operated from the broadcast device and is a placeholder for
	 * the cpu local device.
	 */
	if (!tick_device_is_functional(dev)) {
		dev->event_handler = tick_handle_periodic;
174
		tick_device_setup_broadcast_func(dev);
175
		cpumask_set_cpu(cpu, tick_broadcast_mask);
176 177 178 179
		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
			tick_broadcast_start_periodic(bc);
		else
			tick_broadcast_setup_oneshot(bc);
180
		ret = 1;
181 182
	} else {
		/*
183 184
		 * Clear the broadcast bit for this cpu if the
		 * device is not power state affected.
185
		 */
186
		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187
			cpumask_clear_cpu(cpu, tick_broadcast_mask);
188
		else
189
			tick_device_setup_broadcast_func(dev);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

		/*
		 * Clear the broadcast bit if the CPU is not in
		 * periodic broadcast on state.
		 */
		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
			cpumask_clear_cpu(cpu, tick_broadcast_mask);

		switch (tick_broadcast_device.mode) {
		case TICKDEV_MODE_ONESHOT:
			/*
			 * If the system is in oneshot mode we can
			 * unconditionally clear the oneshot mask bit,
			 * because the CPU is running and therefore
			 * not in an idle state which causes the power
			 * state affected device to stop. Let the
			 * caller initialize the device.
			 */
			tick_broadcast_clear_oneshot(cpu);
			ret = 0;
			break;

		case TICKDEV_MODE_PERIODIC:
			/*
			 * If the system is in periodic mode, check
			 * whether the broadcast device can be
			 * switched off now.
			 */
			if (cpumask_empty(tick_broadcast_mask) && bc)
				clockevents_shutdown(bc);
			/*
			 * If we kept the cpu in the broadcast mask,
			 * tell the caller to leave the per cpu device
			 * in shutdown state. The periodic interrupt
			 * is delivered by the broadcast device.
			 */
			ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
			break;
		default:
			/* Nothing to do */
			ret = 0;
			break;
232 233
		}
	}
234
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
235 236 237
	return ret;
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
int tick_receive_broadcast(void)
{
	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
	struct clock_event_device *evt = td->evtdev;

	if (!evt)
		return -ENODEV;

	if (!evt->event_handler)
		return -EINVAL;

	evt->event_handler(evt);
	return 0;
}
#endif

255
/*
256
 * Broadcast the event to the cpus, which are set in the mask (mangled).
257
 */
258
static bool tick_do_broadcast(struct cpumask *mask)
259
{
260
	int cpu = smp_processor_id();
261
	struct tick_device *td;
262
	bool local = false;
263 264 265 266

	/*
	 * Check, if the current cpu is in the mask
	 */
267
	if (cpumask_test_cpu(cpu, mask)) {
268 269
		struct clock_event_device *bc = tick_broadcast_device.evtdev;

270
		cpumask_clear_cpu(cpu, mask);
271 272 273 274 275 276 277 278 279 280 281 282 283
		/*
		 * We only run the local handler, if the broadcast
		 * device is not hrtimer based. Otherwise we run into
		 * a hrtimer recursion.
		 *
		 * local timer_interrupt()
		 *   local_handler()
		 *     expire_hrtimers()
		 *       bc_handler()
		 *         local_handler()
		 *	     expire_hrtimers()
		 */
		local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
284 285
	}

286
	if (!cpumask_empty(mask)) {
287 288 289 290 291 292
		/*
		 * It might be necessary to actually check whether the devices
		 * have different broadcast functions. For now, just use the
		 * one of the first device. This works as long as we have this
		 * misfeature only on x86 (lapic)
		 */
293 294
		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
		td->evtdev->broadcast(mask);
295
	}
296
	return local;
297 298 299 300 301 302
}

/*
 * Periodic broadcast:
 * - invoke the broadcast handlers
 */
303
static bool tick_do_periodic_broadcast(void)
304
{
305
	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
306
	return tick_do_broadcast(tmpmask);
307 308 309 310 311 312 313
}

/*
 * Event handler for periodic broadcast ticks
 */
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
{
314 315
	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
	bool bc_local;
316

317
	raw_spin_lock(&tick_broadcast_lock);
318
	bc_local = tick_do_periodic_broadcast();
319

320
	if (clockevent_state_oneshot(dev)) {
321
		ktime_t next = ktime_add(dev->next_event, tick_period);
322

323 324 325
		clockevents_program_event(dev, next, true);
	}
	raw_spin_unlock(&tick_broadcast_lock);
326 327

	/*
328 329 330
	 * We run the handler of the local cpu after dropping
	 * tick_broadcast_lock because the handler might deadlock when
	 * trying to switch to oneshot mode.
331
	 */
332 333
	if (bc_local)
		td->evtdev->event_handler(td->evtdev);
334 335
}

336 337 338 339 340 341 342 343 344 345
/**
 * tick_broadcast_control - Enable/disable or force broadcast mode
 * @mode:	The selected broadcast mode
 *
 * Called when the system enters a state where affected tick devices
 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
 *
 * Called with interrupts disabled, so clockevents_lock is not
 * required here because the local clock event device cannot go away
 * under us.
346
 */
347
void tick_broadcast_control(enum tick_broadcast_mode mode)
348 349 350
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
351
	int cpu, bc_stopped;
352

353
	td = this_cpu_ptr(&tick_cpu_device);
354 355 356
	dev = td->evtdev;

	/*
357
	 * Is the device not affected by the powerstate ?
358
	 */
359
	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
360
		return;
361

362
	if (!tick_device_is_functional(dev))
363
		return;
364

365 366 367
	raw_spin_lock(&tick_broadcast_lock);
	cpu = smp_processor_id();
	bc = tick_broadcast_device.evtdev;
368
	bc_stopped = cpumask_empty(tick_broadcast_mask);
369

370 371 372 373
	switch (mode) {
	case TICK_BROADCAST_FORCE:
		tick_broadcast_forced = 1;
	case TICK_BROADCAST_ON:
374
		cpumask_set_cpu(cpu, tick_broadcast_on);
375
		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
376 377
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
378
				clockevents_shutdown(dev);
379
		}
380
		break;
381 382 383

	case TICK_BROADCAST_OFF:
		if (tick_broadcast_forced)
384 385 386 387 388
			break;
		cpumask_clear_cpu(cpu, tick_broadcast_on);
		if (!tick_device_is_functional(dev))
			break;
		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
389 390
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
391 392
				tick_setup_periodic(dev, 0);
		}
393
		break;
394 395
	}

396
	if (cpumask_empty(tick_broadcast_mask)) {
397
		if (!bc_stopped)
398
			clockevents_shutdown(bc);
399
	} else if (bc_stopped) {
400 401
		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
			tick_broadcast_start_periodic(bc);
402 403
		else
			tick_broadcast_setup_oneshot(bc);
404
	}
405
	raw_spin_unlock(&tick_broadcast_lock);
406
}
407
EXPORT_SYMBOL_GPL(tick_broadcast_control);
408 409 410 411 412 413 414 415 416 417 418 419

/*
 * Set the periodic handler depending on broadcast on/off
 */
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
{
	if (!broadcast)
		dev->event_handler = tick_handle_periodic;
	else
		dev->event_handler = tick_handle_periodic_broadcast;
}

420
#ifdef CONFIG_HOTPLUG_CPU
421 422 423
/*
 * Remove a CPU from broadcasting
 */
424
void tick_shutdown_broadcast(unsigned int cpu)
425 426 427 428
{
	struct clock_event_device *bc;
	unsigned long flags;

429
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
430 431

	bc = tick_broadcast_device.evtdev;
432
	cpumask_clear_cpu(cpu, tick_broadcast_mask);
433
	cpumask_clear_cpu(cpu, tick_broadcast_on);
434 435

	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
436
		if (bc && cpumask_empty(tick_broadcast_mask))
437
			clockevents_shutdown(bc);
438 439
	}

440
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
441
}
442
#endif
443

444 445 446 447 448
void tick_suspend_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

449
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
450 451

	bc = tick_broadcast_device.evtdev;
T
Thomas Gleixner 已提交
452
	if (bc)
453
		clockevents_shutdown(bc);
454

455
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
456 457
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
/*
 * This is called from tick_resume_local() on a resuming CPU. That's
 * called from the core resume function, tick_unfreeze() and the magic XEN
 * resume hackery.
 *
 * In none of these cases the broadcast device mode can change and the
 * bit of the resuming CPU in the broadcast mask is safe as well.
 */
bool tick_resume_check_broadcast(void)
{
	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
		return false;
	else
		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
}

void tick_resume_broadcast(void)
475 476 477 478
{
	struct clock_event_device *bc;
	unsigned long flags;

479
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
480 481 482

	bc = tick_broadcast_device.evtdev;

483
	if (bc) {
484
		clockevents_tick_resume(bc);
T
Thomas Gleixner 已提交
485

486 487
		switch (tick_broadcast_device.mode) {
		case TICKDEV_MODE_PERIODIC:
488
			if (!cpumask_empty(tick_broadcast_mask))
489 490 491
				tick_broadcast_start_periodic(bc);
			break;
		case TICKDEV_MODE_ONESHOT:
492
			if (!cpumask_empty(tick_broadcast_mask))
493
				tick_resume_broadcast_oneshot(bc);
494 495
			break;
		}
496
	}
497
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
498 499
}

500 501
#ifdef CONFIG_TICK_ONESHOT

502
static cpumask_var_t tick_broadcast_oneshot_mask;
503
static cpumask_var_t tick_broadcast_pending_mask;
504
static cpumask_var_t tick_broadcast_force_mask;
505

506
/*
507
 * Exposed for debugging: see timer_list.c
508
 */
509
struct cpumask *tick_get_broadcast_oneshot_mask(void)
510
{
511
	return tick_broadcast_oneshot_mask;
512 513
}

514 515 516 517 518 519 520 521 522 523 524 525
/*
 * Called before going idle with interrupts disabled. Checks whether a
 * broadcast event from the other core is about to happen. We detected
 * that in tick_broadcast_oneshot_control(). The callsite can use this
 * to avoid a deep idle transition as we are about to get the
 * broadcast IPI right away.
 */
int tick_check_broadcast_expired(void)
{
	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
/*
 * Set broadcast interrupt affinity
 */
static void tick_broadcast_set_affinity(struct clock_event_device *bc,
					const struct cpumask *cpumask)
{
	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
		return;

	if (cpumask_equal(bc->cpumask, cpumask))
		return;

	bc->cpumask = cpumask;
	irq_set_affinity(bc->irq, bc->cpumask);
}

542 543
static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
				     ktime_t expires)
544
{
545
	if (!clockevent_state_oneshot(bc))
546
		clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
547

548 549
	clockevents_program_event(bc, expires, 1);
	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
550 551
}

552
static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
553
{
554
	clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
555 556
}

557 558 559 560
/*
 * Called from irq_enter() when idle was interrupted to reenable the
 * per cpu device.
 */
561
void tick_check_oneshot_broadcast_this_cpu(void)
562
{
563
	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
564
		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
565

566 567 568 569 570 571
		/*
		 * We might be in the middle of switching over from
		 * periodic to oneshot. If the CPU has not yet
		 * switched over, leave the device alone.
		 */
		if (td->mode == TICKDEV_MODE_ONESHOT) {
572
			clockevents_switch_state(td->evtdev,
573
					      CLOCK_EVT_STATE_ONESHOT);
574
		}
575 576 577
	}
}

578 579 580 581 582 583
/*
 * Handle oneshot mode broadcasting
 */
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
{
	struct tick_device *td;
584
	ktime_t now, next_event;
585
	int cpu, next_cpu = 0;
586
	bool bc_local;
587

588
	raw_spin_lock(&tick_broadcast_lock);
589
	dev->next_event.tv64 = KTIME_MAX;
590
	next_event.tv64 = KTIME_MAX;
591
	cpumask_clear(tmpmask);
592 593
	now = ktime_get();
	/* Find all expired events */
594
	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
595
		td = &per_cpu(tick_cpu_device, cpu);
596
		if (td->evtdev->next_event.tv64 <= now.tv64) {
597
			cpumask_set_cpu(cpu, tmpmask);
598 599 600 601 602 603
			/*
			 * Mark the remote cpu in the pending mask, so
			 * it can avoid reprogramming the cpu local
			 * timer in tick_broadcast_oneshot_control().
			 */
			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
604
		} else if (td->evtdev->next_event.tv64 < next_event.tv64) {
605
			next_event.tv64 = td->evtdev->next_event.tv64;
606 607
			next_cpu = cpu;
		}
608 609
	}

610 611 612 613 614 615
	/*
	 * Remove the current cpu from the pending mask. The event is
	 * delivered immediately in tick_do_broadcast() !
	 */
	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);

616 617 618 619
	/* Take care of enforced broadcast requests */
	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
	cpumask_clear(tick_broadcast_force_mask);

620 621 622 623 624 625 626
	/*
	 * Sanity check. Catch the case where we try to broadcast to
	 * offline cpus.
	 */
	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
		cpumask_and(tmpmask, tmpmask, cpu_online_mask);

627
	/*
628
	 * Wakeup the cpus which have an expired event.
629
	 */
630
	bc_local = tick_do_broadcast(tmpmask);
631 632 633 634 635 636 637 638 639 640

	/*
	 * Two reasons for reprogram:
	 *
	 * - The global event did not expire any CPU local
	 * events. This happens in dyntick mode, as the maximum PIT
	 * delta is quite small.
	 *
	 * - There are pending events on sleeping CPUs which were not
	 * in the event mask
641
	 */
642 643 644
	if (next_event.tv64 != KTIME_MAX)
		tick_broadcast_set_event(dev, next_cpu, next_event);

645
	raw_spin_unlock(&tick_broadcast_lock);
646 647 648 649 650

	if (bc_local) {
		td = this_cpu_ptr(&tick_cpu_device);
		td->evtdev->event_handler(td->evtdev);
	}
651 652
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
{
	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
		return 0;
	if (bc->next_event.tv64 == KTIME_MAX)
		return 0;
	return bc->bound_on == cpu ? -EBUSY : 0;
}

static void broadcast_shutdown_local(struct clock_event_device *bc,
				     struct clock_event_device *dev)
{
	/*
	 * For hrtimer based broadcasting we cannot shutdown the cpu
	 * local device if our own event is the first one to expire or
	 * if we own the broadcast timer.
	 */
	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
		if (broadcast_needs_cpu(bc, smp_processor_id()))
			return;
		if (dev->next_event.tv64 < bc->next_event.tv64)
			return;
	}
676
	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
677 678
}

679 680 681 682 683
/**
 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
 * @state:	The target state (enter/exit)
 *
 * The system enters/leaves a state, where affected devices might stop
684
 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
685 686 687 688
 *
 * Called with interrupts disabled, so clockevents_lock is not
 * required here because the local clock event device cannot go away
 * under us.
689
 */
690
int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
691 692 693
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
694
	int cpu, ret = 0;
695
	ktime_t now;
696 697 698 699 700 701

	/*
	 * Periodic mode does not care about the enter/exit of power
	 * states
	 */
	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
702
		return 0;
703

704 705 706 707
	/*
	 * We are called with preemtion disabled from the depth of the
	 * idle code, so we can't be moved away.
	 */
708
	td = this_cpu_ptr(&tick_cpu_device);
709 710 711
	dev = td->evtdev;

	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
712
		return 0;
713

714
	raw_spin_lock(&tick_broadcast_lock);
715
	bc = tick_broadcast_device.evtdev;
716
	cpu = smp_processor_id();
717

718
	if (state == TICK_BROADCAST_ENTER) {
719
		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
720
			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
721
			broadcast_shutdown_local(bc, dev);
722 723 724 725 726 727 728 729 730 731
			/*
			 * We only reprogram the broadcast timer if we
			 * did not mark ourself in the force mask and
			 * if the cpu local event is earlier than the
			 * broadcast event. If the current CPU is in
			 * the force mask, then we are going to be
			 * woken by the IPI right away.
			 */
			if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
			    dev->next_event.tv64 < bc->next_event.tv64)
732
				tick_broadcast_set_event(bc, cpu, dev->next_event);
733
		}
734 735 736 737 738 739 740 741 742 743
		/*
		 * If the current CPU owns the hrtimer broadcast
		 * mechanism, it cannot go deep idle and we remove the
		 * CPU from the broadcast mask. We don't have to go
		 * through the EXIT path as the local timer is not
		 * shutdown.
		 */
		ret = broadcast_needs_cpu(bc, cpu);
		if (ret)
			cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
744
	} else {
745
		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
746
			clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
747 748 749 750 751 752 753 754 755 756 757 758 759
			/*
			 * The cpu which was handling the broadcast
			 * timer marked this cpu in the broadcast
			 * pending mask and fired the broadcast
			 * IPI. So we are going to handle the expired
			 * event anyway via the broadcast IPI
			 * handler. No need to reprogram the timer
			 * with an already expired event.
			 */
			if (cpumask_test_and_clear_cpu(cpu,
				       tick_broadcast_pending_mask))
				goto out;

760 761 762 763 764
			/*
			 * Bail out if there is no next event.
			 */
			if (dev->next_event.tv64 == KTIME_MAX)
				goto out;
765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
			/*
			 * If the pending bit is not set, then we are
			 * either the CPU handling the broadcast
			 * interrupt or we got woken by something else.
			 *
			 * We are not longer in the broadcast mask, so
			 * if the cpu local expiry time is already
			 * reached, we would reprogram the cpu local
			 * timer with an already expired event.
			 *
			 * This can lead to a ping-pong when we return
			 * to idle and therefor rearm the broadcast
			 * timer before the cpu local timer was able
			 * to fire. This happens because the forced
			 * reprogramming makes sure that the event
			 * will happen in the future and depending on
			 * the min_delta setting this might be far
			 * enough out that the ping-pong starts.
			 *
			 * If the cpu local next_event has expired
			 * then we know that the broadcast timer
			 * next_event has expired as well and
			 * broadcast is about to be handled. So we
			 * avoid reprogramming and enforce that the
			 * broadcast handler, which did not run yet,
			 * will invoke the cpu local handler.
			 *
			 * We cannot call the handler directly from
			 * here, because we might be in a NOHZ phase
			 * and we did not go through the irq_enter()
			 * nohz fixups.
			 */
			now = ktime_get();
			if (dev->next_event.tv64 <= now.tv64) {
				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
				goto out;
			}
			/*
			 * We got woken by something else. Reprogram
			 * the cpu local timer device.
			 */
806
			tick_program_event(dev->next_event, 1);
807 808
		}
	}
809
out:
810
	raw_spin_unlock(&tick_broadcast_lock);
811
	return ret;
812
}
813
EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
814

815 816 817 818 819 820 821
/*
 * Reset the one shot broadcast for a cpu
 *
 * Called with tick_broadcast_lock held
 */
static void tick_broadcast_clear_oneshot(int cpu)
{
822
	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
823
	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
824 825
}

826 827
static void tick_broadcast_init_next_event(struct cpumask *mask,
					   ktime_t expires)
828 829 830 831
{
	struct tick_device *td;
	int cpu;

832
	for_each_cpu(cpu, mask) {
833 834 835 836 837 838
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev)
			td->evtdev->next_event = expires;
	}
}

839
/**
840
 * tick_broadcast_setup_oneshot - setup the broadcast device
841 842 843
 */
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
{
844 845
	int cpu = smp_processor_id();

846 847
	/* Set it up only once ! */
	if (bc->event_handler != tick_handle_oneshot_broadcast) {
848
		int was_periodic = clockevent_state_periodic(bc);
849

850
		bc->event_handler = tick_handle_oneshot_broadcast;
851 852 853 854 855 856 857

		/*
		 * We must be careful here. There might be other CPUs
		 * waiting for periodic broadcast. We need to set the
		 * oneshot_mask bits for those and program the
		 * broadcast device to fire.
		 */
858 859 860 861
		cpumask_copy(tmpmask, tick_broadcast_mask);
		cpumask_clear_cpu(cpu, tmpmask);
		cpumask_or(tick_broadcast_oneshot_mask,
			   tick_broadcast_oneshot_mask, tmpmask);
862

863
		if (was_periodic && !cpumask_empty(tmpmask)) {
864
			clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
865
			tick_broadcast_init_next_event(tmpmask,
866
						       tick_next_period);
867
			tick_broadcast_set_event(bc, cpu, tick_next_period);
868 869
		} else
			bc->next_event.tv64 = KTIME_MAX;
870 871 872 873 874 875 876 877 878
	} else {
		/*
		 * The first cpu which switches to oneshot mode sets
		 * the bit for all other cpus which are in the general
		 * (periodic) broadcast mask. So the bit is set and
		 * would prevent the first broadcast enter after this
		 * to program the bc device.
		 */
		tick_broadcast_clear_oneshot(cpu);
879
	}
880 881 882 883 884 885 886 887 888 889
}

/*
 * Select oneshot operating mode for the broadcast device
 */
void tick_broadcast_switch_to_oneshot(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

890
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
891 892

	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
893 894 895
	bc = tick_broadcast_device.evtdev;
	if (bc)
		tick_broadcast_setup_oneshot(bc);
896

897
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
898 899
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
#ifdef CONFIG_HOTPLUG_CPU
void hotplug_cpu__broadcast_tick_pull(int deadcpu)
{
	struct clock_event_device *bc;
	unsigned long flags;

	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
	bc = tick_broadcast_device.evtdev;

	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
		/* This moves the broadcast assignment to this CPU: */
		clockevents_program_event(bc, bc->next_event, 1);
	}
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
915 916 917 918

/*
 * Remove a dead CPU from broadcasting
 */
919
void tick_shutdown_broadcast_oneshot(unsigned int cpu)
920 921 922
{
	unsigned long flags;

923
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
924

925
	/*
926 927
	 * Clear the broadcast masks for the dead cpu, but do not stop
	 * the broadcast device!
928
	 */
929
	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
930 931
	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
932

933
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
934
}
935
#endif
936

937 938 939 940 941 942 943 944
/*
 * Check, whether the broadcast device is in one shot mode
 */
int tick_broadcast_oneshot_active(void)
{
	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
}

945 946 947 948 949 950 951 952 953 954
/*
 * Check whether the broadcast device supports oneshot.
 */
bool tick_broadcast_oneshot_available(void)
{
	struct clock_event_device *bc = tick_broadcast_device.evtdev;

	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
}

955
#endif
956 957 958

void __init tick_broadcast_init(void)
{
959
	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
960
	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
961
	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
962
#ifdef CONFIG_TICK_ONESHOT
963 964 965
	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
966 967
#endif
}