tick-broadcast.c 22.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * linux/kernel/time/tick-broadcast.c
 *
 * This file contains functions which emulate a local clock-event
 * device via a broadcast event source.
 *
 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 *
 * This code is licenced under the GPL version 2. For details see
 * kernel-base/COPYING.
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
17
#include <linux/interrupt.h>
18 19 20
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
21
#include <linux/smp.h>
22
#include <linux/module.h>
23 24 25 26 27 28 29 30

#include "tick-internal.h"

/*
 * Broadcast support for broken x86 hardware, where the local apic
 * timer stops in C3 state.
 */

31
static struct tick_device tick_broadcast_device;
32
static cpumask_var_t tick_broadcast_mask;
33
static cpumask_var_t tick_broadcast_on;
34
static cpumask_var_t tmpmask;
35
static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36
static int tick_broadcast_force;
37

38 39 40 41 42 43
#ifdef CONFIG_TICK_ONESHOT
static void tick_broadcast_clear_oneshot(int cpu);
#else
static inline void tick_broadcast_clear_oneshot(int cpu) { }
#endif

44 45 46 47 48 49 50 51
/*
 * Debugging: see timer_list.c
 */
struct tick_device *tick_get_broadcast_device(void)
{
	return &tick_broadcast_device;
}

52
struct cpumask *tick_get_broadcast_mask(void)
53
{
54
	return tick_broadcast_mask;
55 56
}

57 58 59 60 61
/*
 * Start the device in periodic mode
 */
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
{
T
Thomas Gleixner 已提交
62
	if (bc)
63 64 65 66 67 68
		tick_setup_periodic(bc, 1);
}

/*
 * Check, if the device can be utilized as broadcast device:
 */
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
static bool tick_check_broadcast_device(struct clock_event_device *curdev,
					struct clock_event_device *newdev)
{
	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
		return false;

	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
		return false;

	return !curdev || newdev->rating > curdev->rating;
}

/*
 * Conditionally install/replace broadcast device
 */
86
void tick_install_broadcast_device(struct clock_event_device *dev)
87
{
88 89
	struct clock_event_device *cur = tick_broadcast_device.evtdev;

90
	if (!tick_check_broadcast_device(cur, dev))
91
		return;
92

93 94
	if (!try_module_get(dev->owner))
		return;
95

96
	clockevents_exchange_device(cur, dev);
97 98
	if (cur)
		cur->event_handler = clockevents_handle_noop;
99
	tick_broadcast_device.evtdev = dev;
100
	if (!cpumask_empty(tick_broadcast_mask))
101
		tick_broadcast_start_periodic(dev);
102 103 104 105 106 107 108 109 110 111
	/*
	 * Inform all cpus about this. We might be in a situation
	 * where we did not switch to oneshot mode because the per cpu
	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
	 * of a oneshot capable broadcast device. Without that
	 * notification the systems stays stuck in periodic mode
	 * forever.
	 */
	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
		tick_clock_notify();
112 113 114 115 116 117 118 119 120 121
}

/*
 * Check, if the device is the broadcast device
 */
int tick_is_broadcast_device(struct clock_event_device *dev)
{
	return (dev && tick_broadcast_device.evtdev == dev);
}

122 123 124 125 126
static void err_broadcast(const struct cpumask *mask)
{
	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
}

127 128 129 130 131 132 133 134 135 136 137
static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
{
	if (!dev->broadcast)
		dev->broadcast = tick_broadcast;
	if (!dev->broadcast) {
		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
			     dev->name);
		dev->broadcast = err_broadcast;
	}
}

138 139 140 141 142 143
/*
 * Check, if the device is disfunctional and a place holder, which
 * needs to be handled by the broadcast device.
 */
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
{
144
	struct clock_event_device *bc = tick_broadcast_device.evtdev;
145
	unsigned long flags;
146
	int ret;
147

148
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
149 150 151 152 153 154 155 156 157

	/*
	 * Devices might be registered with both periodic and oneshot
	 * mode disabled. This signals, that the device needs to be
	 * operated from the broadcast device and is a placeholder for
	 * the cpu local device.
	 */
	if (!tick_device_is_functional(dev)) {
		dev->event_handler = tick_handle_periodic;
158
		tick_device_setup_broadcast_func(dev);
159
		cpumask_set_cpu(cpu, tick_broadcast_mask);
160
		tick_broadcast_start_periodic(bc);
161
		ret = 1;
162 163
	} else {
		/*
164 165
		 * Clear the broadcast bit for this cpu if the
		 * device is not power state affected.
166
		 */
167
		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
168
			cpumask_clear_cpu(cpu, tick_broadcast_mask);
169
		else
170
			tick_device_setup_broadcast_func(dev);
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

		/*
		 * Clear the broadcast bit if the CPU is not in
		 * periodic broadcast on state.
		 */
		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
			cpumask_clear_cpu(cpu, tick_broadcast_mask);

		switch (tick_broadcast_device.mode) {
		case TICKDEV_MODE_ONESHOT:
			/*
			 * If the system is in oneshot mode we can
			 * unconditionally clear the oneshot mask bit,
			 * because the CPU is running and therefore
			 * not in an idle state which causes the power
			 * state affected device to stop. Let the
			 * caller initialize the device.
			 */
			tick_broadcast_clear_oneshot(cpu);
			ret = 0;
			break;

		case TICKDEV_MODE_PERIODIC:
			/*
			 * If the system is in periodic mode, check
			 * whether the broadcast device can be
			 * switched off now.
			 */
			if (cpumask_empty(tick_broadcast_mask) && bc)
				clockevents_shutdown(bc);
			/*
			 * If we kept the cpu in the broadcast mask,
			 * tell the caller to leave the per cpu device
			 * in shutdown state. The periodic interrupt
			 * is delivered by the broadcast device.
			 */
			ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
			break;
		default:
			/* Nothing to do */
			ret = 0;
			break;
213 214
		}
	}
215
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
216 217 218
	return ret;
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
int tick_receive_broadcast(void)
{
	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
	struct clock_event_device *evt = td->evtdev;

	if (!evt)
		return -ENODEV;

	if (!evt->event_handler)
		return -EINVAL;

	evt->event_handler(evt);
	return 0;
}
#endif

236
/*
237
 * Broadcast the event to the cpus, which are set in the mask (mangled).
238
 */
239
static void tick_do_broadcast(struct cpumask *mask)
240
{
241
	int cpu = smp_processor_id();
242 243 244 245 246
	struct tick_device *td;

	/*
	 * Check, if the current cpu is in the mask
	 */
247 248
	if (cpumask_test_cpu(cpu, mask)) {
		cpumask_clear_cpu(cpu, mask);
249 250 251 252
		td = &per_cpu(tick_cpu_device, cpu);
		td->evtdev->event_handler(td->evtdev);
	}

253
	if (!cpumask_empty(mask)) {
254 255 256 257 258 259
		/*
		 * It might be necessary to actually check whether the devices
		 * have different broadcast functions. For now, just use the
		 * one of the first device. This works as long as we have this
		 * misfeature only on x86 (lapic)
		 */
260 261
		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
		td->evtdev->broadcast(mask);
262 263 264 265 266 267 268 269 270
	}
}

/*
 * Periodic broadcast:
 * - invoke the broadcast handlers
 */
static void tick_do_periodic_broadcast(void)
{
271
	raw_spin_lock(&tick_broadcast_lock);
272

273 274
	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
	tick_do_broadcast(tmpmask);
275

276
	raw_spin_unlock(&tick_broadcast_lock);
277 278 279 280 281 282 283
}

/*
 * Event handler for periodic broadcast ticks
 */
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
{
284 285
	ktime_t next;

286 287 288 289 290 291 292 293 294 295
	tick_do_periodic_broadcast();

	/*
	 * The device is in periodic mode. No reprogramming necessary:
	 */
	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
		return;

	/*
	 * Setup the next period for devices, which do not have
296
	 * periodic mode. We read dev->next_event first and add to it
297
	 * when the event already expired. clockevents_program_event()
298 299
	 * sets dev->next_event only when the event is really
	 * programmed to the device.
300
	 */
301 302
	for (next = dev->next_event; ;) {
		next = ktime_add(next, tick_period);
303

304
		if (!clockevents_program_event(dev, next, false))
305 306 307 308 309 310 311 312 313
			return;
		tick_do_periodic_broadcast();
	}
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop
 */
314
static void tick_do_broadcast_on_off(unsigned long *reason)
315 316 317
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
318
	unsigned long flags;
319
	int cpu, bc_stopped;
320

321
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
322 323 324 325 326 327 328

	cpu = smp_processor_id();
	td = &per_cpu(tick_cpu_device, cpu);
	dev = td->evtdev;
	bc = tick_broadcast_device.evtdev;

	/*
329
	 * Is the device not affected by the powerstate ?
330
	 */
331
	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
332 333
		goto out;

334 335
	if (!tick_device_is_functional(dev))
		goto out;
336

337
	bc_stopped = cpumask_empty(tick_broadcast_mask);
338

339 340 341
	switch (*reason) {
	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
342
		cpumask_set_cpu(cpu, tick_broadcast_on);
343
		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
344 345
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
346
				clockevents_shutdown(dev);
347
		}
348
		if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
349
			tick_broadcast_force = 1;
350 351
		break;
	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
352 353 354 355 356 357
		if (tick_broadcast_force)
			break;
		cpumask_clear_cpu(cpu, tick_broadcast_on);
		if (!tick_device_is_functional(dev))
			break;
		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
358 359
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
360 361
				tick_setup_periodic(dev, 0);
		}
362
		break;
363 364
	}

365
	if (cpumask_empty(tick_broadcast_mask)) {
366
		if (!bc_stopped)
367
			clockevents_shutdown(bc);
368
	} else if (bc_stopped) {
369 370
		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
			tick_broadcast_start_periodic(bc);
371 372
		else
			tick_broadcast_setup_oneshot(bc);
373 374
	}
out:
375
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
376 377 378 379 380 381 382 383
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop.
 */
void tick_broadcast_on_off(unsigned long reason, int *oncpu)
{
384
	if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
385
		printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
386
		       "offline CPU #%d\n", *oncpu);
387
	else
388
		tick_do_broadcast_on_off(&reason);
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
}

/*
 * Set the periodic handler depending on broadcast on/off
 */
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
{
	if (!broadcast)
		dev->event_handler = tick_handle_periodic;
	else
		dev->event_handler = tick_handle_periodic_broadcast;
}

/*
 * Remove a CPU from broadcasting
 */
void tick_shutdown_broadcast(unsigned int *cpup)
{
	struct clock_event_device *bc;
	unsigned long flags;
	unsigned int cpu = *cpup;

411
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
412 413

	bc = tick_broadcast_device.evtdev;
414
	cpumask_clear_cpu(cpu, tick_broadcast_mask);
415
	cpumask_clear_cpu(cpu, tick_broadcast_on);
416 417

	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
418
		if (bc && cpumask_empty(tick_broadcast_mask))
419
			clockevents_shutdown(bc);
420 421
	}

422
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
423
}
424

425 426 427 428 429
void tick_suspend_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

430
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
431 432

	bc = tick_broadcast_device.evtdev;
T
Thomas Gleixner 已提交
433
	if (bc)
434
		clockevents_shutdown(bc);
435

436
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
437 438 439 440 441 442 443 444
}

int tick_resume_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;
	int broadcast = 0;

445
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
446 447 448

	bc = tick_broadcast_device.evtdev;

449
	if (bc) {
T
Thomas Gleixner 已提交
450 451
		clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);

452 453
		switch (tick_broadcast_device.mode) {
		case TICKDEV_MODE_PERIODIC:
454
			if (!cpumask_empty(tick_broadcast_mask))
455
				tick_broadcast_start_periodic(bc);
456
			broadcast = cpumask_test_cpu(smp_processor_id(),
457
						     tick_broadcast_mask);
458 459
			break;
		case TICKDEV_MODE_ONESHOT:
460
			if (!cpumask_empty(tick_broadcast_mask))
461
				broadcast = tick_resume_broadcast_oneshot(bc);
462 463
			break;
		}
464
	}
465
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
466 467 468 469 470

	return broadcast;
}


471 472
#ifdef CONFIG_TICK_ONESHOT

473
static cpumask_var_t tick_broadcast_oneshot_mask;
474
static cpumask_var_t tick_broadcast_pending_mask;
475
static cpumask_var_t tick_broadcast_force_mask;
476

477
/*
478
 * Exposed for debugging: see timer_list.c
479
 */
480
struct cpumask *tick_get_broadcast_oneshot_mask(void)
481
{
482
	return tick_broadcast_oneshot_mask;
483 484
}

485 486 487 488 489 490 491 492 493 494 495 496
/*
 * Called before going idle with interrupts disabled. Checks whether a
 * broadcast event from the other core is about to happen. We detected
 * that in tick_broadcast_oneshot_control(). The callsite can use this
 * to avoid a deep idle transition as we are about to get the
 * broadcast IPI right away.
 */
int tick_check_broadcast_expired(void)
{
	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
}

497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
/*
 * Set broadcast interrupt affinity
 */
static void tick_broadcast_set_affinity(struct clock_event_device *bc,
					const struct cpumask *cpumask)
{
	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
		return;

	if (cpumask_equal(bc->cpumask, cpumask))
		return;

	bc->cpumask = cpumask;
	irq_set_affinity(bc->irq, bc->cpumask);
}

static int tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
514
				    ktime_t expires, int force)
515
{
516 517
	int ret;

518 519 520
	if (bc->mode != CLOCK_EVT_MODE_ONESHOT)
		clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);

521 522 523 524
	ret = clockevents_program_event(bc, expires, force);
	if (!ret)
		tick_broadcast_set_affinity(bc, cpumask_of(cpu));
	return ret;
525 526
}

527 528 529
int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
{
	clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
530
	return 0;
531 532
}

533 534 535 536 537 538
/*
 * Called from irq_enter() when idle was interrupted to reenable the
 * per cpu device.
 */
void tick_check_oneshot_broadcast(int cpu)
{
539
	if (cpumask_test_cpu(cpu, tick_broadcast_oneshot_mask)) {
540 541
		struct tick_device *td = &per_cpu(tick_cpu_device, cpu);

542 543 544 545 546 547 548 549 550
		/*
		 * We might be in the middle of switching over from
		 * periodic to oneshot. If the CPU has not yet
		 * switched over, leave the device alone.
		 */
		if (td->mode == TICKDEV_MODE_ONESHOT) {
			clockevents_set_mode(td->evtdev,
					     CLOCK_EVT_MODE_ONESHOT);
		}
551 552 553
	}
}

554 555 556 557 558 559
/*
 * Handle oneshot mode broadcasting
 */
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
{
	struct tick_device *td;
560
	ktime_t now, next_event;
561
	int cpu, next_cpu = 0;
562

563
	raw_spin_lock(&tick_broadcast_lock);
564 565
again:
	dev->next_event.tv64 = KTIME_MAX;
566
	next_event.tv64 = KTIME_MAX;
567
	cpumask_clear(tmpmask);
568 569
	now = ktime_get();
	/* Find all expired events */
570
	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
571
		td = &per_cpu(tick_cpu_device, cpu);
572
		if (td->evtdev->next_event.tv64 <= now.tv64) {
573
			cpumask_set_cpu(cpu, tmpmask);
574 575 576 577 578 579
			/*
			 * Mark the remote cpu in the pending mask, so
			 * it can avoid reprogramming the cpu local
			 * timer in tick_broadcast_oneshot_control().
			 */
			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
580
		} else if (td->evtdev->next_event.tv64 < next_event.tv64) {
581
			next_event.tv64 = td->evtdev->next_event.tv64;
582 583
			next_cpu = cpu;
		}
584 585
	}

586 587 588 589 590 591
	/*
	 * Remove the current cpu from the pending mask. The event is
	 * delivered immediately in tick_do_broadcast() !
	 */
	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);

592 593 594 595
	/* Take care of enforced broadcast requests */
	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
	cpumask_clear(tick_broadcast_force_mask);

596 597 598 599 600 601 602
	/*
	 * Sanity check. Catch the case where we try to broadcast to
	 * offline cpus.
	 */
	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
		cpumask_and(tmpmask, tmpmask, cpu_online_mask);

603
	/*
604 605
	 * Wakeup the cpus which have an expired event.
	 */
606
	tick_do_broadcast(tmpmask);
607 608 609 610 611 612 613 614 615 616

	/*
	 * Two reasons for reprogram:
	 *
	 * - The global event did not expire any CPU local
	 * events. This happens in dyntick mode, as the maximum PIT
	 * delta is quite small.
	 *
	 * - There are pending events on sleeping CPUs which were not
	 * in the event mask
617
	 */
618
	if (next_event.tv64 != KTIME_MAX) {
619
		/*
620 621
		 * Rearm the broadcast device. If event expired,
		 * repeat the above
622
		 */
623
		if (tick_broadcast_set_event(dev, next_cpu, next_event, 0))
624 625
			goto again;
	}
626
	raw_spin_unlock(&tick_broadcast_lock);
627 628 629 630 631 632 633 634 635 636 637
}

/*
 * Powerstate information: The system enters/leaves a state, where
 * affected devices might stop
 */
void tick_broadcast_oneshot_control(unsigned long reason)
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
	unsigned long flags;
638
	ktime_t now;
639 640 641 642 643 644 645
	int cpu;

	/*
	 * Periodic mode does not care about the enter/exit of power
	 * states
	 */
	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
646
		return;
647

648 649 650 651
	/*
	 * We are called with preemtion disabled from the depth of the
	 * idle code, so we can't be moved away.
	 */
652 653 654 655 656
	cpu = smp_processor_id();
	td = &per_cpu(tick_cpu_device, cpu);
	dev = td->evtdev;

	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
657 658 659
		return;

	bc = tick_broadcast_device.evtdev;
660

661
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
662
	if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
663
		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
664
			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
665
			clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
666 667 668 669 670 671 672 673 674 675
			/*
			 * We only reprogram the broadcast timer if we
			 * did not mark ourself in the force mask and
			 * if the cpu local event is earlier than the
			 * broadcast event. If the current CPU is in
			 * the force mask, then we are going to be
			 * woken by the IPI right away.
			 */
			if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
			    dev->next_event.tv64 < bc->next_event.tv64)
676
				tick_broadcast_set_event(bc, cpu, dev->next_event, 1);
677 678
		}
	} else {
679
		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
680
			clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
681 682 683 684 685 686 687 688 689 690 691 692 693
			/*
			 * The cpu which was handling the broadcast
			 * timer marked this cpu in the broadcast
			 * pending mask and fired the broadcast
			 * IPI. So we are going to handle the expired
			 * event anyway via the broadcast IPI
			 * handler. No need to reprogram the timer
			 * with an already expired event.
			 */
			if (cpumask_test_and_clear_cpu(cpu,
				       tick_broadcast_pending_mask))
				goto out;

694 695 696 697 698
			/*
			 * Bail out if there is no next event.
			 */
			if (dev->next_event.tv64 == KTIME_MAX)
				goto out;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
			/*
			 * If the pending bit is not set, then we are
			 * either the CPU handling the broadcast
			 * interrupt or we got woken by something else.
			 *
			 * We are not longer in the broadcast mask, so
			 * if the cpu local expiry time is already
			 * reached, we would reprogram the cpu local
			 * timer with an already expired event.
			 *
			 * This can lead to a ping-pong when we return
			 * to idle and therefor rearm the broadcast
			 * timer before the cpu local timer was able
			 * to fire. This happens because the forced
			 * reprogramming makes sure that the event
			 * will happen in the future and depending on
			 * the min_delta setting this might be far
			 * enough out that the ping-pong starts.
			 *
			 * If the cpu local next_event has expired
			 * then we know that the broadcast timer
			 * next_event has expired as well and
			 * broadcast is about to be handled. So we
			 * avoid reprogramming and enforce that the
			 * broadcast handler, which did not run yet,
			 * will invoke the cpu local handler.
			 *
			 * We cannot call the handler directly from
			 * here, because we might be in a NOHZ phase
			 * and we did not go through the irq_enter()
			 * nohz fixups.
			 */
			now = ktime_get();
			if (dev->next_event.tv64 <= now.tv64) {
				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
				goto out;
			}
			/*
			 * We got woken by something else. Reprogram
			 * the cpu local timer device.
			 */
740
			tick_program_event(dev->next_event, 1);
741 742
		}
	}
743
out:
744
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
745 746
}

747 748 749 750 751 752 753
/*
 * Reset the one shot broadcast for a cpu
 *
 * Called with tick_broadcast_lock held
 */
static void tick_broadcast_clear_oneshot(int cpu)
{
754
	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
755 756
}

757 758
static void tick_broadcast_init_next_event(struct cpumask *mask,
					   ktime_t expires)
759 760 761 762
{
	struct tick_device *td;
	int cpu;

763
	for_each_cpu(cpu, mask) {
764 765 766 767 768 769
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev)
			td->evtdev->next_event = expires;
	}
}

770
/**
771
 * tick_broadcast_setup_oneshot - setup the broadcast device
772 773 774
 */
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
{
775 776
	int cpu = smp_processor_id();

777 778
	/* Set it up only once ! */
	if (bc->event_handler != tick_handle_oneshot_broadcast) {
779 780
		int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;

781
		bc->event_handler = tick_handle_oneshot_broadcast;
782 783 784 785 786 787 788

		/*
		 * We must be careful here. There might be other CPUs
		 * waiting for periodic broadcast. We need to set the
		 * oneshot_mask bits for those and program the
		 * broadcast device to fire.
		 */
789 790 791 792
		cpumask_copy(tmpmask, tick_broadcast_mask);
		cpumask_clear_cpu(cpu, tmpmask);
		cpumask_or(tick_broadcast_oneshot_mask,
			   tick_broadcast_oneshot_mask, tmpmask);
793

794
		if (was_periodic && !cpumask_empty(tmpmask)) {
795
			clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
796
			tick_broadcast_init_next_event(tmpmask,
797
						       tick_next_period);
798
			tick_broadcast_set_event(bc, cpu, tick_next_period, 1);
799 800
		} else
			bc->next_event.tv64 = KTIME_MAX;
801 802 803 804 805 806 807 808 809
	} else {
		/*
		 * The first cpu which switches to oneshot mode sets
		 * the bit for all other cpus which are in the general
		 * (periodic) broadcast mask. So the bit is set and
		 * would prevent the first broadcast enter after this
		 * to program the bc device.
		 */
		tick_broadcast_clear_oneshot(cpu);
810
	}
811 812 813 814 815 816 817 818 819 820
}

/*
 * Select oneshot operating mode for the broadcast device
 */
void tick_broadcast_switch_to_oneshot(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

821
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
822 823

	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
824 825 826
	bc = tick_broadcast_device.evtdev;
	if (bc)
		tick_broadcast_setup_oneshot(bc);
827

828
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
829 830 831 832 833 834 835 836 837 838 839
}


/*
 * Remove a dead CPU from broadcasting
 */
void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
{
	unsigned long flags;
	unsigned int cpu = *cpup;

840
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
841

842
	/*
843 844
	 * Clear the broadcast masks for the dead cpu, but do not stop
	 * the broadcast device!
845
	 */
846
	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
847 848
	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
849

850
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
851 852
}

853 854 855 856 857 858 859 860
/*
 * Check, whether the broadcast device is in one shot mode
 */
int tick_broadcast_oneshot_active(void)
{
	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
}

861 862 863 864 865 866 867 868 869 870
/*
 * Check whether the broadcast device supports oneshot.
 */
bool tick_broadcast_oneshot_available(void)
{
	struct clock_event_device *bc = tick_broadcast_device.evtdev;

	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
}

871
#endif
872 873 874

void __init tick_broadcast_init(void)
{
875
	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
876
	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
877
	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
878
#ifdef CONFIG_TICK_ONESHOT
879 880 881
	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
882 883
#endif
}