tick-broadcast.c 25.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * linux/kernel/time/tick-broadcast.c
 *
 * This file contains functions which emulate a local clock-event
 * device via a broadcast event source.
 *
 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
 *
 * This code is licenced under the GPL version 2. For details see
 * kernel-base/COPYING.
 */
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/hrtimer.h>
17
#include <linux/interrupt.h>
18 19 20
#include <linux/percpu.h>
#include <linux/profile.h>
#include <linux/sched.h>
21
#include <linux/smp.h>
22
#include <linux/module.h>
23 24 25 26 27 28 29 30

#include "tick-internal.h"

/*
 * Broadcast support for broken x86 hardware, where the local apic
 * timer stops in C3 state.
 */

31
static struct tick_device tick_broadcast_device;
32
static cpumask_var_t tick_broadcast_mask;
33
static cpumask_var_t tick_broadcast_on;
34
static cpumask_var_t tmpmask;
35
static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
36
static int tick_broadcast_forced;
37

38 39
#ifdef CONFIG_TICK_ONESHOT
static void tick_broadcast_clear_oneshot(int cpu);
40
static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
41 42
#else
static inline void tick_broadcast_clear_oneshot(int cpu) { }
43
static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
44 45
#endif

46 47 48 49 50 51 52 53
/*
 * Debugging: see timer_list.c
 */
struct tick_device *tick_get_broadcast_device(void)
{
	return &tick_broadcast_device;
}

54
struct cpumask *tick_get_broadcast_mask(void)
55
{
56
	return tick_broadcast_mask;
57 58
}

59 60 61 62 63
/*
 * Start the device in periodic mode
 */
static void tick_broadcast_start_periodic(struct clock_event_device *bc)
{
T
Thomas Gleixner 已提交
64
	if (bc)
65 66 67 68 69 70
		tick_setup_periodic(bc, 1);
}

/*
 * Check, if the device can be utilized as broadcast device:
 */
71 72 73 74
static bool tick_check_broadcast_device(struct clock_event_device *curdev,
					struct clock_event_device *newdev)
{
	if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
75
	    (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
76 77 78 79 80 81 82 83 84 85 86 87 88
	    (newdev->features & CLOCK_EVT_FEAT_C3STOP))
		return false;

	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
	    !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
		return false;

	return !curdev || newdev->rating > curdev->rating;
}

/*
 * Conditionally install/replace broadcast device
 */
89
void tick_install_broadcast_device(struct clock_event_device *dev)
90
{
91 92
	struct clock_event_device *cur = tick_broadcast_device.evtdev;

93
	if (!tick_check_broadcast_device(cur, dev))
94
		return;
95

96 97
	if (!try_module_get(dev->owner))
		return;
98

99
	clockevents_exchange_device(cur, dev);
100 101
	if (cur)
		cur->event_handler = clockevents_handle_noop;
102
	tick_broadcast_device.evtdev = dev;
103
	if (!cpumask_empty(tick_broadcast_mask))
104
		tick_broadcast_start_periodic(dev);
105 106 107 108 109 110 111 112 113 114
	/*
	 * Inform all cpus about this. We might be in a situation
	 * where we did not switch to oneshot mode because the per cpu
	 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
	 * of a oneshot capable broadcast device. Without that
	 * notification the systems stays stuck in periodic mode
	 * forever.
	 */
	if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
		tick_clock_notify();
115 116 117 118 119 120 121 122 123 124
}

/*
 * Check, if the device is the broadcast device
 */
int tick_is_broadcast_device(struct clock_event_device *dev)
{
	return (dev && tick_broadcast_device.evtdev == dev);
}

125 126 127 128 129 130 131 132 133 134 135 136 137
int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
{
	int ret = -ENODEV;

	if (tick_is_broadcast_device(dev)) {
		raw_spin_lock(&tick_broadcast_lock);
		ret = __clockevents_update_freq(dev, freq);
		raw_spin_unlock(&tick_broadcast_lock);
	}
	return ret;
}


138 139 140 141 142
static void err_broadcast(const struct cpumask *mask)
{
	pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
}

143 144 145 146 147 148 149 150 151 152 153
static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
{
	if (!dev->broadcast)
		dev->broadcast = tick_broadcast;
	if (!dev->broadcast) {
		pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
			     dev->name);
		dev->broadcast = err_broadcast;
	}
}

154 155 156 157 158 159
/*
 * Check, if the device is disfunctional and a place holder, which
 * needs to be handled by the broadcast device.
 */
int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
{
160
	struct clock_event_device *bc = tick_broadcast_device.evtdev;
161
	unsigned long flags;
162
	int ret;
163

164
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
165 166 167 168 169 170 171 172 173

	/*
	 * Devices might be registered with both periodic and oneshot
	 * mode disabled. This signals, that the device needs to be
	 * operated from the broadcast device and is a placeholder for
	 * the cpu local device.
	 */
	if (!tick_device_is_functional(dev)) {
		dev->event_handler = tick_handle_periodic;
174
		tick_device_setup_broadcast_func(dev);
175
		cpumask_set_cpu(cpu, tick_broadcast_mask);
176 177 178 179
		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
			tick_broadcast_start_periodic(bc);
		else
			tick_broadcast_setup_oneshot(bc);
180
		ret = 1;
181 182
	} else {
		/*
183 184
		 * Clear the broadcast bit for this cpu if the
		 * device is not power state affected.
185
		 */
186
		if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
187
			cpumask_clear_cpu(cpu, tick_broadcast_mask);
188
		else
189
			tick_device_setup_broadcast_func(dev);
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

		/*
		 * Clear the broadcast bit if the CPU is not in
		 * periodic broadcast on state.
		 */
		if (!cpumask_test_cpu(cpu, tick_broadcast_on))
			cpumask_clear_cpu(cpu, tick_broadcast_mask);

		switch (tick_broadcast_device.mode) {
		case TICKDEV_MODE_ONESHOT:
			/*
			 * If the system is in oneshot mode we can
			 * unconditionally clear the oneshot mask bit,
			 * because the CPU is running and therefore
			 * not in an idle state which causes the power
			 * state affected device to stop. Let the
			 * caller initialize the device.
			 */
			tick_broadcast_clear_oneshot(cpu);
			ret = 0;
			break;

		case TICKDEV_MODE_PERIODIC:
			/*
			 * If the system is in periodic mode, check
			 * whether the broadcast device can be
			 * switched off now.
			 */
			if (cpumask_empty(tick_broadcast_mask) && bc)
				clockevents_shutdown(bc);
			/*
			 * If we kept the cpu in the broadcast mask,
			 * tell the caller to leave the per cpu device
			 * in shutdown state. The periodic interrupt
			 * is delivered by the broadcast device.
			 */
			ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
			break;
		default:
			/* Nothing to do */
			ret = 0;
			break;
232 233
		}
	}
234
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
235 236 237
	return ret;
}

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
int tick_receive_broadcast(void)
{
	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
	struct clock_event_device *evt = td->evtdev;

	if (!evt)
		return -ENODEV;

	if (!evt->event_handler)
		return -EINVAL;

	evt->event_handler(evt);
	return 0;
}
#endif

255
/*
256
 * Broadcast the event to the cpus, which are set in the mask (mangled).
257
 */
258
static bool tick_do_broadcast(struct cpumask *mask)
259
{
260
	int cpu = smp_processor_id();
261
	struct tick_device *td;
262
	bool local = false;
263 264 265 266

	/*
	 * Check, if the current cpu is in the mask
	 */
267 268
	if (cpumask_test_cpu(cpu, mask)) {
		cpumask_clear_cpu(cpu, mask);
269
		local = true;
270 271
	}

272
	if (!cpumask_empty(mask)) {
273 274 275 276 277 278
		/*
		 * It might be necessary to actually check whether the devices
		 * have different broadcast functions. For now, just use the
		 * one of the first device. This works as long as we have this
		 * misfeature only on x86 (lapic)
		 */
279 280
		td = &per_cpu(tick_cpu_device, cpumask_first(mask));
		td->evtdev->broadcast(mask);
281
	}
282
	return local;
283 284 285 286 287 288
}

/*
 * Periodic broadcast:
 * - invoke the broadcast handlers
 */
289
static bool tick_do_periodic_broadcast(void)
290
{
291
	cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
292
	return tick_do_broadcast(tmpmask);
293 294 295 296 297 298 299
}

/*
 * Event handler for periodic broadcast ticks
 */
static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
{
300 301
	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
	bool bc_local;
302

303
	raw_spin_lock(&tick_broadcast_lock);
304
	bc_local = tick_do_periodic_broadcast();
305

306 307
	if (dev->state == CLOCK_EVT_STATE_ONESHOT) {
		ktime_t next = ktime_add(dev->next_event, tick_period);
308

309 310 311
		clockevents_program_event(dev, next, true);
	}
	raw_spin_unlock(&tick_broadcast_lock);
312 313

	/*
314 315 316
	 * We run the handler of the local cpu after dropping
	 * tick_broadcast_lock because the handler might deadlock when
	 * trying to switch to oneshot mode.
317
	 */
318 319
	if (bc_local)
		td->evtdev->event_handler(td->evtdev);
320 321
}

322 323 324 325 326 327 328 329 330 331
/**
 * tick_broadcast_control - Enable/disable or force broadcast mode
 * @mode:	The selected broadcast mode
 *
 * Called when the system enters a state where affected tick devices
 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
 *
 * Called with interrupts disabled, so clockevents_lock is not
 * required here because the local clock event device cannot go away
 * under us.
332
 */
333
void tick_broadcast_control(enum tick_broadcast_mode mode)
334 335 336
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
337
	int cpu, bc_stopped;
338

339
	td = this_cpu_ptr(&tick_cpu_device);
340 341 342
	dev = td->evtdev;

	/*
343
	 * Is the device not affected by the powerstate ?
344
	 */
345
	if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
346
		return;
347

348
	if (!tick_device_is_functional(dev))
349
		return;
350

351 352 353
	raw_spin_lock(&tick_broadcast_lock);
	cpu = smp_processor_id();
	bc = tick_broadcast_device.evtdev;
354
	bc_stopped = cpumask_empty(tick_broadcast_mask);
355

356 357 358 359
	switch (mode) {
	case TICK_BROADCAST_FORCE:
		tick_broadcast_forced = 1;
	case TICK_BROADCAST_ON:
360
		cpumask_set_cpu(cpu, tick_broadcast_on);
361
		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
362 363
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
364
				clockevents_shutdown(dev);
365
		}
366
		break;
367 368 369

	case TICK_BROADCAST_OFF:
		if (tick_broadcast_forced)
370 371 372 373 374
			break;
		cpumask_clear_cpu(cpu, tick_broadcast_on);
		if (!tick_device_is_functional(dev))
			break;
		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
375 376
			if (tick_broadcast_device.mode ==
			    TICKDEV_MODE_PERIODIC)
377 378
				tick_setup_periodic(dev, 0);
		}
379
		break;
380 381
	}

382
	if (cpumask_empty(tick_broadcast_mask)) {
383
		if (!bc_stopped)
384
			clockevents_shutdown(bc);
385
	} else if (bc_stopped) {
386 387
		if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
			tick_broadcast_start_periodic(bc);
388 389
		else
			tick_broadcast_setup_oneshot(bc);
390
	}
391
	raw_spin_unlock(&tick_broadcast_lock);
392
}
393
EXPORT_SYMBOL_GPL(tick_broadcast_control);
394 395 396 397 398 399 400 401 402 403 404 405

/*
 * Set the periodic handler depending on broadcast on/off
 */
void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
{
	if (!broadcast)
		dev->event_handler = tick_handle_periodic;
	else
		dev->event_handler = tick_handle_periodic_broadcast;
}

406
#ifdef CONFIG_HOTPLUG_CPU
407 408 409
/*
 * Remove a CPU from broadcasting
 */
410
void tick_shutdown_broadcast(unsigned int cpu)
411 412 413 414
{
	struct clock_event_device *bc;
	unsigned long flags;

415
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
416 417

	bc = tick_broadcast_device.evtdev;
418
	cpumask_clear_cpu(cpu, tick_broadcast_mask);
419
	cpumask_clear_cpu(cpu, tick_broadcast_on);
420 421

	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
422
		if (bc && cpumask_empty(tick_broadcast_mask))
423
			clockevents_shutdown(bc);
424 425
	}

426
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
427
}
428
#endif
429

430 431 432 433 434
void tick_suspend_broadcast(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

435
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
436 437

	bc = tick_broadcast_device.evtdev;
T
Thomas Gleixner 已提交
438
	if (bc)
439
		clockevents_shutdown(bc);
440

441
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
/*
 * This is called from tick_resume_local() on a resuming CPU. That's
 * called from the core resume function, tick_unfreeze() and the magic XEN
 * resume hackery.
 *
 * In none of these cases the broadcast device mode can change and the
 * bit of the resuming CPU in the broadcast mask is safe as well.
 */
bool tick_resume_check_broadcast(void)
{
	if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
		return false;
	else
		return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
}

void tick_resume_broadcast(void)
461 462 463 464
{
	struct clock_event_device *bc;
	unsigned long flags;

465
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
466 467 468

	bc = tick_broadcast_device.evtdev;

469
	if (bc) {
470
		clockevents_tick_resume(bc);
T
Thomas Gleixner 已提交
471

472 473
		switch (tick_broadcast_device.mode) {
		case TICKDEV_MODE_PERIODIC:
474
			if (!cpumask_empty(tick_broadcast_mask))
475 476 477
				tick_broadcast_start_periodic(bc);
			break;
		case TICKDEV_MODE_ONESHOT:
478
			if (!cpumask_empty(tick_broadcast_mask))
479
				tick_resume_broadcast_oneshot(bc);
480 481
			break;
		}
482
	}
483
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
484 485
}

486 487
#ifdef CONFIG_TICK_ONESHOT

488
static cpumask_var_t tick_broadcast_oneshot_mask;
489
static cpumask_var_t tick_broadcast_pending_mask;
490
static cpumask_var_t tick_broadcast_force_mask;
491

492
/*
493
 * Exposed for debugging: see timer_list.c
494
 */
495
struct cpumask *tick_get_broadcast_oneshot_mask(void)
496
{
497
	return tick_broadcast_oneshot_mask;
498 499
}

500 501 502 503 504 505 506 507 508 509 510 511
/*
 * Called before going idle with interrupts disabled. Checks whether a
 * broadcast event from the other core is about to happen. We detected
 * that in tick_broadcast_oneshot_control(). The callsite can use this
 * to avoid a deep idle transition as we are about to get the
 * broadcast IPI right away.
 */
int tick_check_broadcast_expired(void)
{
	return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
}

512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/*
 * Set broadcast interrupt affinity
 */
static void tick_broadcast_set_affinity(struct clock_event_device *bc,
					const struct cpumask *cpumask)
{
	if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
		return;

	if (cpumask_equal(bc->cpumask, cpumask))
		return;

	bc->cpumask = cpumask;
	irq_set_affinity(bc->irq, bc->cpumask);
}

528 529
static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
				     ktime_t expires)
530
{
531 532
	if (bc->state != CLOCK_EVT_STATE_ONESHOT)
		clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
533

534 535
	clockevents_program_event(bc, expires, 1);
	tick_broadcast_set_affinity(bc, cpumask_of(cpu));
536 537
}

538
static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
539
{
540
	clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
541 542
}

543 544 545 546
/*
 * Called from irq_enter() when idle was interrupted to reenable the
 * per cpu device.
 */
547
void tick_check_oneshot_broadcast_this_cpu(void)
548
{
549
	if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
550
		struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
551

552 553 554 555 556 557
		/*
		 * We might be in the middle of switching over from
		 * periodic to oneshot. If the CPU has not yet
		 * switched over, leave the device alone.
		 */
		if (td->mode == TICKDEV_MODE_ONESHOT) {
558 559
			clockevents_set_state(td->evtdev,
					      CLOCK_EVT_STATE_ONESHOT);
560
		}
561 562 563
	}
}

564 565 566 567 568 569
/*
 * Handle oneshot mode broadcasting
 */
static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
{
	struct tick_device *td;
570
	ktime_t now, next_event;
571
	int cpu, next_cpu = 0;
572
	bool bc_local;
573

574
	raw_spin_lock(&tick_broadcast_lock);
575
	dev->next_event.tv64 = KTIME_MAX;
576
	next_event.tv64 = KTIME_MAX;
577
	cpumask_clear(tmpmask);
578 579
	now = ktime_get();
	/* Find all expired events */
580
	for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
581
		td = &per_cpu(tick_cpu_device, cpu);
582
		if (td->evtdev->next_event.tv64 <= now.tv64) {
583
			cpumask_set_cpu(cpu, tmpmask);
584 585 586 587 588 589
			/*
			 * Mark the remote cpu in the pending mask, so
			 * it can avoid reprogramming the cpu local
			 * timer in tick_broadcast_oneshot_control().
			 */
			cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
590
		} else if (td->evtdev->next_event.tv64 < next_event.tv64) {
591
			next_event.tv64 = td->evtdev->next_event.tv64;
592 593
			next_cpu = cpu;
		}
594 595
	}

596 597 598 599 600 601
	/*
	 * Remove the current cpu from the pending mask. The event is
	 * delivered immediately in tick_do_broadcast() !
	 */
	cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);

602 603 604 605
	/* Take care of enforced broadcast requests */
	cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
	cpumask_clear(tick_broadcast_force_mask);

606 607 608 609 610 611 612
	/*
	 * Sanity check. Catch the case where we try to broadcast to
	 * offline cpus.
	 */
	if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
		cpumask_and(tmpmask, tmpmask, cpu_online_mask);

613
	/*
614
	 * Wakeup the cpus which have an expired event.
615
	 */
616
	bc_local = tick_do_broadcast(tmpmask);
617 618 619 620 621 622 623 624 625 626

	/*
	 * Two reasons for reprogram:
	 *
	 * - The global event did not expire any CPU local
	 * events. This happens in dyntick mode, as the maximum PIT
	 * delta is quite small.
	 *
	 * - There are pending events on sleeping CPUs which were not
	 * in the event mask
627
	 */
628 629 630
	if (next_event.tv64 != KTIME_MAX)
		tick_broadcast_set_event(dev, next_cpu, next_event);

631
	raw_spin_unlock(&tick_broadcast_lock);
632 633 634 635 636

	if (bc_local) {
		td = this_cpu_ptr(&tick_cpu_device);
		td->evtdev->event_handler(td->evtdev);
	}
637 638
}

639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
{
	if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
		return 0;
	if (bc->next_event.tv64 == KTIME_MAX)
		return 0;
	return bc->bound_on == cpu ? -EBUSY : 0;
}

static void broadcast_shutdown_local(struct clock_event_device *bc,
				     struct clock_event_device *dev)
{
	/*
	 * For hrtimer based broadcasting we cannot shutdown the cpu
	 * local device if our own event is the first one to expire or
	 * if we own the broadcast timer.
	 */
	if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
		if (broadcast_needs_cpu(bc, smp_processor_id()))
			return;
		if (dev->next_event.tv64 < bc->next_event.tv64)
			return;
	}
662
	clockevents_set_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
663 664
}

665 666 667 668 669
/**
 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
 * @state:	The target state (enter/exit)
 *
 * The system enters/leaves a state, where affected devices might stop
670
 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
671 672 673 674
 *
 * Called with interrupts disabled, so clockevents_lock is not
 * required here because the local clock event device cannot go away
 * under us.
675
 */
676
int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
677 678 679
{
	struct clock_event_device *bc, *dev;
	struct tick_device *td;
680
	int cpu, ret = 0;
681
	ktime_t now;
682 683 684 685 686 687

	/*
	 * Periodic mode does not care about the enter/exit of power
	 * states
	 */
	if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
688
		return 0;
689

690 691 692 693
	/*
	 * We are called with preemtion disabled from the depth of the
	 * idle code, so we can't be moved away.
	 */
694
	td = this_cpu_ptr(&tick_cpu_device);
695 696 697
	dev = td->evtdev;

	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
698
		return 0;
699

700
	raw_spin_lock(&tick_broadcast_lock);
701
	bc = tick_broadcast_device.evtdev;
702
	cpu = smp_processor_id();
703

704
	if (state == TICK_BROADCAST_ENTER) {
705
		if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
706
			WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
707
			broadcast_shutdown_local(bc, dev);
708 709 710 711 712 713 714 715 716 717
			/*
			 * We only reprogram the broadcast timer if we
			 * did not mark ourself in the force mask and
			 * if the cpu local event is earlier than the
			 * broadcast event. If the current CPU is in
			 * the force mask, then we are going to be
			 * woken by the IPI right away.
			 */
			if (!cpumask_test_cpu(cpu, tick_broadcast_force_mask) &&
			    dev->next_event.tv64 < bc->next_event.tv64)
718
				tick_broadcast_set_event(bc, cpu, dev->next_event);
719
		}
720 721 722 723 724 725 726 727 728 729
		/*
		 * If the current CPU owns the hrtimer broadcast
		 * mechanism, it cannot go deep idle and we remove the
		 * CPU from the broadcast mask. We don't have to go
		 * through the EXIT path as the local timer is not
		 * shutdown.
		 */
		ret = broadcast_needs_cpu(bc, cpu);
		if (ret)
			cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
730
	} else {
731
		if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
732
			clockevents_set_state(dev, CLOCK_EVT_STATE_ONESHOT);
733 734 735 736 737 738 739 740 741 742 743 744 745
			/*
			 * The cpu which was handling the broadcast
			 * timer marked this cpu in the broadcast
			 * pending mask and fired the broadcast
			 * IPI. So we are going to handle the expired
			 * event anyway via the broadcast IPI
			 * handler. No need to reprogram the timer
			 * with an already expired event.
			 */
			if (cpumask_test_and_clear_cpu(cpu,
				       tick_broadcast_pending_mask))
				goto out;

746 747 748 749 750
			/*
			 * Bail out if there is no next event.
			 */
			if (dev->next_event.tv64 == KTIME_MAX)
				goto out;
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
			/*
			 * If the pending bit is not set, then we are
			 * either the CPU handling the broadcast
			 * interrupt or we got woken by something else.
			 *
			 * We are not longer in the broadcast mask, so
			 * if the cpu local expiry time is already
			 * reached, we would reprogram the cpu local
			 * timer with an already expired event.
			 *
			 * This can lead to a ping-pong when we return
			 * to idle and therefor rearm the broadcast
			 * timer before the cpu local timer was able
			 * to fire. This happens because the forced
			 * reprogramming makes sure that the event
			 * will happen in the future and depending on
			 * the min_delta setting this might be far
			 * enough out that the ping-pong starts.
			 *
			 * If the cpu local next_event has expired
			 * then we know that the broadcast timer
			 * next_event has expired as well and
			 * broadcast is about to be handled. So we
			 * avoid reprogramming and enforce that the
			 * broadcast handler, which did not run yet,
			 * will invoke the cpu local handler.
			 *
			 * We cannot call the handler directly from
			 * here, because we might be in a NOHZ phase
			 * and we did not go through the irq_enter()
			 * nohz fixups.
			 */
			now = ktime_get();
			if (dev->next_event.tv64 <= now.tv64) {
				cpumask_set_cpu(cpu, tick_broadcast_force_mask);
				goto out;
			}
			/*
			 * We got woken by something else. Reprogram
			 * the cpu local timer device.
			 */
792
			tick_program_event(dev->next_event, 1);
793 794
		}
	}
795
out:
796
	raw_spin_unlock(&tick_broadcast_lock);
797
	return ret;
798
}
799
EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
800

801 802 803 804 805 806 807
/*
 * Reset the one shot broadcast for a cpu
 *
 * Called with tick_broadcast_lock held
 */
static void tick_broadcast_clear_oneshot(int cpu)
{
808
	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
809
	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
810 811
}

812 813
static void tick_broadcast_init_next_event(struct cpumask *mask,
					   ktime_t expires)
814 815 816 817
{
	struct tick_device *td;
	int cpu;

818
	for_each_cpu(cpu, mask) {
819 820 821 822 823 824
		td = &per_cpu(tick_cpu_device, cpu);
		if (td->evtdev)
			td->evtdev->next_event = expires;
	}
}

825
/**
826
 * tick_broadcast_setup_oneshot - setup the broadcast device
827 828 829
 */
void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
{
830 831
	int cpu = smp_processor_id();

832 833
	/* Set it up only once ! */
	if (bc->event_handler != tick_handle_oneshot_broadcast) {
834
		int was_periodic = bc->state == CLOCK_EVT_STATE_PERIODIC;
835

836
		bc->event_handler = tick_handle_oneshot_broadcast;
837 838 839 840 841 842 843

		/*
		 * We must be careful here. There might be other CPUs
		 * waiting for periodic broadcast. We need to set the
		 * oneshot_mask bits for those and program the
		 * broadcast device to fire.
		 */
844 845 846 847
		cpumask_copy(tmpmask, tick_broadcast_mask);
		cpumask_clear_cpu(cpu, tmpmask);
		cpumask_or(tick_broadcast_oneshot_mask,
			   tick_broadcast_oneshot_mask, tmpmask);
848

849
		if (was_periodic && !cpumask_empty(tmpmask)) {
850
			clockevents_set_state(bc, CLOCK_EVT_STATE_ONESHOT);
851
			tick_broadcast_init_next_event(tmpmask,
852
						       tick_next_period);
853
			tick_broadcast_set_event(bc, cpu, tick_next_period);
854 855
		} else
			bc->next_event.tv64 = KTIME_MAX;
856 857 858 859 860 861 862 863 864
	} else {
		/*
		 * The first cpu which switches to oneshot mode sets
		 * the bit for all other cpus which are in the general
		 * (periodic) broadcast mask. So the bit is set and
		 * would prevent the first broadcast enter after this
		 * to program the bc device.
		 */
		tick_broadcast_clear_oneshot(cpu);
865
	}
866 867 868 869 870 871 872 873 874 875
}

/*
 * Select oneshot operating mode for the broadcast device
 */
void tick_broadcast_switch_to_oneshot(void)
{
	struct clock_event_device *bc;
	unsigned long flags;

876
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
877 878

	tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
879 880 881
	bc = tick_broadcast_device.evtdev;
	if (bc)
		tick_broadcast_setup_oneshot(bc);
882

883
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
884 885
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
#ifdef CONFIG_HOTPLUG_CPU
void hotplug_cpu__broadcast_tick_pull(int deadcpu)
{
	struct clock_event_device *bc;
	unsigned long flags;

	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
	bc = tick_broadcast_device.evtdev;

	if (bc && broadcast_needs_cpu(bc, deadcpu)) {
		/* This moves the broadcast assignment to this CPU: */
		clockevents_program_event(bc, bc->next_event, 1);
	}
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
}
901 902 903 904

/*
 * Remove a dead CPU from broadcasting
 */
905
void tick_shutdown_broadcast_oneshot(unsigned int cpu)
906 907 908
{
	unsigned long flags;

909
	raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
910

911
	/*
912 913
	 * Clear the broadcast masks for the dead cpu, but do not stop
	 * the broadcast device!
914
	 */
915
	cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
916 917
	cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
	cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
918

919
	raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
920
}
921
#endif
922

923 924 925 926 927 928 929 930
/*
 * Check, whether the broadcast device is in one shot mode
 */
int tick_broadcast_oneshot_active(void)
{
	return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
}

931 932 933 934 935 936 937 938 939 940
/*
 * Check whether the broadcast device supports oneshot.
 */
bool tick_broadcast_oneshot_available(void)
{
	struct clock_event_device *bc = tick_broadcast_device.evtdev;

	return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
}

941
#endif
942 943 944

void __init tick_broadcast_init(void)
{
945
	zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
946
	zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
947
	zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
948
#ifdef CONFIG_TICK_ONESHOT
949 950 951
	zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
	zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
	zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
952 953
#endif
}