sched_rt.c 41.9 KB
Newer Older
I
Ingo Molnar 已提交
1 2 3 4 5
/*
 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
 * policies)
 */

6 7 8 9
#ifdef CONFIG_RT_GROUP_SCHED

#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)

10 11
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
12 13 14
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
#endif
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
	return container_of(rt_se, struct task_struct, rt);
}

static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return rt_rq->rq;
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	return rt_se->rt_rq;
}

#else /* CONFIG_RT_GROUP_SCHED */

30 31
#define rt_entity_is_task(rt_se) (1)

32 33 34 35 36
static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
{
	return container_of(rt_se, struct task_struct, rt);
}

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
{
	return container_of(rt_rq, struct rq, rt);
}

static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
{
	struct task_struct *p = rt_task_of(rt_se);
	struct rq *rq = task_rq(p);

	return &rq->rt;
}

#endif /* CONFIG_RT_GROUP_SCHED */

S
Steven Rostedt 已提交
52
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
53

54
static inline int rt_overloaded(struct rq *rq)
S
Steven Rostedt 已提交
55
{
56
	return atomic_read(&rq->rd->rto_count);
S
Steven Rostedt 已提交
57
}
I
Ingo Molnar 已提交
58

S
Steven Rostedt 已提交
59 60
static inline void rt_set_overload(struct rq *rq)
{
61 62 63
	if (!rq->online)
		return;

64
	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
65 66 67 68 69 70 71 72
	/*
	 * Make sure the mask is visible before we set
	 * the overload count. That is checked to determine
	 * if we should look at the mask. It would be a shame
	 * if we looked at the mask, but the mask was not
	 * updated yet.
	 */
	wmb();
73
	atomic_inc(&rq->rd->rto_count);
S
Steven Rostedt 已提交
74
}
I
Ingo Molnar 已提交
75

S
Steven Rostedt 已提交
76 77
static inline void rt_clear_overload(struct rq *rq)
{
78 79 80
	if (!rq->online)
		return;

S
Steven Rostedt 已提交
81
	/* the order here really doesn't matter */
82
	atomic_dec(&rq->rd->rto_count);
83
	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
S
Steven Rostedt 已提交
84
}
85

86
static void update_rt_migration(struct rt_rq *rt_rq)
87
{
88
	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 90 91
		if (!rt_rq->overloaded) {
			rt_set_overload(rq_of_rt_rq(rt_rq));
			rt_rq->overloaded = 1;
92
		}
93 94 95
	} else if (rt_rq->overloaded) {
		rt_clear_overload(rq_of_rt_rq(rt_rq));
		rt_rq->overloaded = 0;
96
	}
97
}
S
Steven Rostedt 已提交
98

99 100
static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
101 102 103 104 105 106
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total++;
107 108 109 110 111 112 113 114
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory++;

	update_rt_migration(rt_rq);
}

static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
115 116 117 118 119 120
	if (!rt_entity_is_task(rt_se))
		return;

	rt_rq = &rq_of_rt_rq(rt_rq)->rt;

	rt_rq->rt_nr_total--;
121 122 123 124 125 126
	if (rt_se->nr_cpus_allowed > 1)
		rt_rq->rt_nr_migratory--;

	update_rt_migration(rt_rq);
}

127 128 129 130 131
static inline int has_pushable_tasks(struct rq *rq)
{
	return !plist_head_empty(&rq->rt.pushable_tasks);
}

132 133 134 135 136
static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
	plist_node_init(&p->pushable_tasks, p->prio);
	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
137 138 139 140

	/* Update the highest prio pushable task */
	if (p->prio < rq->rt.highest_prio.next)
		rq->rt.highest_prio.next = p->prio;
141 142 143 144 145 146
}

static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);

147 148 149 150 151 152 153
	/* Update the new highest prio pushable task */
	if (has_pushable_tasks(rq)) {
		p = plist_first_entry(&rq->rt.pushable_tasks,
				      struct task_struct, pushable_tasks);
		rq->rt.highest_prio.next = p->prio;
	} else
		rq->rt.highest_prio.next = MAX_RT_PRIO;
154 155
}

156 157
#else

158
static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
P
Peter Zijlstra 已提交
159
{
P
Peter Zijlstra 已提交
160 161
}

162 163 164 165
static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
{
}

166
static inline
167 168 169 170
void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}

171
static inline
172 173 174
void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
}
175

S
Steven Rostedt 已提交
176 177
#endif /* CONFIG_SMP */

P
Peter Zijlstra 已提交
178 179 180 181 182
static inline int on_rt_rq(struct sched_rt_entity *rt_se)
{
	return !list_empty(&rt_se->run_list);
}

183
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
184

P
Peter Zijlstra 已提交
185
static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
186 187
{
	if (!rt_rq->tg)
P
Peter Zijlstra 已提交
188
		return RUNTIME_INF;
P
Peter Zijlstra 已提交
189

P
Peter Zijlstra 已提交
190 191 192 193 194 195
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
196 197
}

C
Cheng Xu 已提交
198 199
typedef struct task_group *rt_rq_iter_t;

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
static inline struct task_group *next_task_group(struct task_group *tg)
{
	do {
		tg = list_entry_rcu(tg->list.next,
			typeof(struct task_group), list);
	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));

	if (&tg->list == &task_groups)
		tg = NULL;

	return tg;
}

#define for_each_rt_rq(rt_rq, iter, rq)					\
	for (iter = container_of(&task_groups, typeof(*iter), list);	\
		(iter = next_task_group(iter)) &&			\
		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
C
Cheng Xu 已提交
217

218 219 220 221 222 223 224 225 226 227 228
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_add_rcu(&rt_rq->leaf_rt_rq_list,
			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
	list_del_rcu(&rt_rq->leaf_rt_rq_list);
}

P
Peter Zijlstra 已提交
229
#define for_each_leaf_rt_rq(rt_rq, rq) \
230
	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
P
Peter Zijlstra 已提交
231 232 233 234 235 236 237 238 239

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = rt_se->parent)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return rt_se->my_q;
}

240
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
P
Peter Zijlstra 已提交
241 242
static void dequeue_rt_entity(struct sched_rt_entity *rt_se);

P
Peter Zijlstra 已提交
243
static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
244
{
245
	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
246 247
	struct sched_rt_entity *rt_se;

248 249 250
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));

	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
251

252 253
	if (rt_rq->rt_nr_running) {
		if (rt_se && !on_rt_rq(rt_se))
254
			enqueue_rt_entity(rt_se, false);
255
		if (rt_rq->highest_prio.curr < curr->prio)
256
			resched_task(curr);
P
Peter Zijlstra 已提交
257 258 259
	}
}

P
Peter Zijlstra 已提交
260
static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
261
{
262
	struct sched_rt_entity *rt_se;
263
	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
264

265
	rt_se = rt_rq->tg->rt_se[cpu];
P
Peter Zijlstra 已提交
266 267 268 269 270

	if (rt_se && on_rt_rq(rt_se))
		dequeue_rt_entity(rt_se);
}

P
Peter Zijlstra 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
}

static int rt_se_boosted(struct sched_rt_entity *rt_se)
{
	struct rt_rq *rt_rq = group_rt_rq(rt_se);
	struct task_struct *p;

	if (rt_rq)
		return !!rt_rq->rt_nr_boosted;

	p = rt_task_of(rt_se);
	return p->prio != p->normal_prio;
}

288
#ifdef CONFIG_SMP
289
static inline const struct cpumask *sched_rt_period_mask(void)
290 291 292
{
	return cpu_rq(smp_processor_id())->rd->span;
}
P
Peter Zijlstra 已提交
293
#else
294
static inline const struct cpumask *sched_rt_period_mask(void)
295
{
296
	return cpu_online_mask;
297 298
}
#endif
P
Peter Zijlstra 已提交
299

300 301
static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
P
Peter Zijlstra 已提交
302
{
303 304
	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
}
P
Peter Zijlstra 已提交
305

P
Peter Zijlstra 已提交
306 307 308 309 310
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &rt_rq->tg->rt_bandwidth;
}

311
#else /* !CONFIG_RT_GROUP_SCHED */
312 313 314

static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
315 316 317 318 319 320
	return rt_rq->rt_runtime;
}

static inline u64 sched_rt_period(struct rt_rq *rt_rq)
{
	return ktime_to_ns(def_rt_bandwidth.rt_period);
P
Peter Zijlstra 已提交
321 322
}

C
Cheng Xu 已提交
323 324 325 326 327
typedef struct rt_rq *rt_rq_iter_t;

#define for_each_rt_rq(rt_rq, iter, rq) \
	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

328 329 330 331 332 333 334 335
static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
{
}

P
Peter Zijlstra 已提交
336 337 338 339 340 341 342 343 344 345 346
#define for_each_leaf_rt_rq(rt_rq, rq) \
	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)

#define for_each_sched_rt_entity(rt_se) \
	for (; rt_se; rt_se = NULL)

static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
{
	return NULL;
}

P
Peter Zijlstra 已提交
347
static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
348
{
349 350
	if (rt_rq->rt_nr_running)
		resched_task(rq_of_rt_rq(rt_rq)->curr);
P
Peter Zijlstra 已提交
351 352
}

P
Peter Zijlstra 已提交
353
static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
354 355 356
{
}

P
Peter Zijlstra 已提交
357 358 359 360
static inline int rt_rq_throttled(struct rt_rq *rt_rq)
{
	return rt_rq->rt_throttled;
}
361

362
static inline const struct cpumask *sched_rt_period_mask(void)
363
{
364
	return cpu_online_mask;
365 366 367 368 369 370 371 372
}

static inline
struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
{
	return &cpu_rq(cpu)->rt;
}

P
Peter Zijlstra 已提交
373 374 375 376 377
static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
{
	return &def_rt_bandwidth;
}

378
#endif /* CONFIG_RT_GROUP_SCHED */
379

P
Peter Zijlstra 已提交
380
#ifdef CONFIG_SMP
381 382 383
/*
 * We ran out of runtime, see if we can borrow some from our neighbours.
 */
384
static int do_balance_runtime(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
385 386 387 388 389 390
{
	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
	int i, weight, more = 0;
	u64 rt_period;

391
	weight = cpumask_weight(rd->span);
P
Peter Zijlstra 已提交
392

393
	raw_spin_lock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
394
	rt_period = ktime_to_ns(rt_b->rt_period);
395
	for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
396 397 398 399 400 401
		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
		s64 diff;

		if (iter == rt_rq)
			continue;

402
		raw_spin_lock(&iter->rt_runtime_lock);
403 404 405 406 407
		/*
		 * Either all rqs have inf runtime and there's nothing to steal
		 * or __disable_runtime() below sets a specific rq to inf to
		 * indicate its been disabled and disalow stealing.
		 */
P
Peter Zijlstra 已提交
408 409 410
		if (iter->rt_runtime == RUNTIME_INF)
			goto next;

411 412 413 414
		/*
		 * From runqueues with spare time, take 1/n part of their
		 * spare time, but no more than our period.
		 */
P
Peter Zijlstra 已提交
415 416
		diff = iter->rt_runtime - iter->rt_time;
		if (diff > 0) {
417
			diff = div_u64((u64)diff, weight);
P
Peter Zijlstra 已提交
418 419 420 421 422 423
			if (rt_rq->rt_runtime + diff > rt_period)
				diff = rt_period - rt_rq->rt_runtime;
			iter->rt_runtime -= diff;
			rt_rq->rt_runtime += diff;
			more = 1;
			if (rt_rq->rt_runtime == rt_period) {
424
				raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
425 426 427
				break;
			}
		}
P
Peter Zijlstra 已提交
428
next:
429
		raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
430
	}
431
	raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
432 433 434

	return more;
}
P
Peter Zijlstra 已提交
435

436 437 438
/*
 * Ensure this RQ takes back all the runtime it lend to its neighbours.
 */
P
Peter Zijlstra 已提交
439 440 441
static void __disable_runtime(struct rq *rq)
{
	struct root_domain *rd = rq->rd;
C
Cheng Xu 已提交
442
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
443 444 445 446 447
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

C
Cheng Xu 已提交
448
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
449 450 451 452
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
		s64 want;
		int i;

453 454
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
455 456 457 458 459
		/*
		 * Either we're all inf and nobody needs to borrow, or we're
		 * already disabled and thus have nothing to do, or we have
		 * exactly the right amount of runtime to take out.
		 */
P
Peter Zijlstra 已提交
460 461 462
		if (rt_rq->rt_runtime == RUNTIME_INF ||
				rt_rq->rt_runtime == rt_b->rt_runtime)
			goto balanced;
463
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
464

465 466 467 468 469
		/*
		 * Calculate the difference between what we started out with
		 * and what we current have, that's the amount of runtime
		 * we lend and now have to reclaim.
		 */
P
Peter Zijlstra 已提交
470 471
		want = rt_b->rt_runtime - rt_rq->rt_runtime;

472 473 474
		/*
		 * Greedy reclaim, take back as much as we can.
		 */
475
		for_each_cpu(i, rd->span) {
P
Peter Zijlstra 已提交
476 477 478
			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
			s64 diff;

479 480 481
			/*
			 * Can't reclaim from ourselves or disabled runqueues.
			 */
482
			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
P
Peter Zijlstra 已提交
483 484
				continue;

485
			raw_spin_lock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
486 487 488 489 490 491 492 493
			if (want > 0) {
				diff = min_t(s64, iter->rt_runtime, want);
				iter->rt_runtime -= diff;
				want -= diff;
			} else {
				iter->rt_runtime -= want;
				want -= want;
			}
494
			raw_spin_unlock(&iter->rt_runtime_lock);
P
Peter Zijlstra 已提交
495 496 497 498 499

			if (!want)
				break;
		}

500
		raw_spin_lock(&rt_rq->rt_runtime_lock);
501 502 503 504
		/*
		 * We cannot be left wanting - that would mean some runtime
		 * leaked out of the system.
		 */
P
Peter Zijlstra 已提交
505 506
		BUG_ON(want);
balanced:
507 508 509 510
		/*
		 * Disable all the borrow logic by pretending we have inf
		 * runtime - in which case borrowing doesn't make sense.
		 */
P
Peter Zijlstra 已提交
511
		rt_rq->rt_runtime = RUNTIME_INF;
512 513
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
514 515 516 517 518 519 520
	}
}

static void disable_runtime(struct rq *rq)
{
	unsigned long flags;

521
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
522
	__disable_runtime(rq);
523
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
524 525 526 527
}

static void __enable_runtime(struct rq *rq)
{
C
Cheng Xu 已提交
528
	rt_rq_iter_t iter;
P
Peter Zijlstra 已提交
529 530 531 532 533
	struct rt_rq *rt_rq;

	if (unlikely(!scheduler_running))
		return;

534 535 536
	/*
	 * Reset each runqueue's bandwidth settings
	 */
C
Cheng Xu 已提交
537
	for_each_rt_rq(rt_rq, iter, rq) {
P
Peter Zijlstra 已提交
538 539
		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);

540 541
		raw_spin_lock(&rt_b->rt_runtime_lock);
		raw_spin_lock(&rt_rq->rt_runtime_lock);
P
Peter Zijlstra 已提交
542 543
		rt_rq->rt_runtime = rt_b->rt_runtime;
		rt_rq->rt_time = 0;
544
		rt_rq->rt_throttled = 0;
545 546
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
		raw_spin_unlock(&rt_b->rt_runtime_lock);
P
Peter Zijlstra 已提交
547 548 549 550 551 552 553
	}
}

static void enable_runtime(struct rq *rq)
{
	unsigned long flags;

554
	raw_spin_lock_irqsave(&rq->lock, flags);
P
Peter Zijlstra 已提交
555
	__enable_runtime(rq);
556
	raw_spin_unlock_irqrestore(&rq->lock, flags);
P
Peter Zijlstra 已提交
557 558
}

559 560 561 562 563
static int balance_runtime(struct rt_rq *rt_rq)
{
	int more = 0;

	if (rt_rq->rt_time > rt_rq->rt_runtime) {
564
		raw_spin_unlock(&rt_rq->rt_runtime_lock);
565
		more = do_balance_runtime(rt_rq);
566
		raw_spin_lock(&rt_rq->rt_runtime_lock);
567 568 569 570
	}

	return more;
}
571
#else /* !CONFIG_SMP */
572 573 574 575
static inline int balance_runtime(struct rt_rq *rt_rq)
{
	return 0;
}
576
#endif /* CONFIG_SMP */
P
Peter Zijlstra 已提交
577

578 579 580
static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
{
	int i, idle = 1;
581
	const struct cpumask *span;
582

583
	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
584 585 586
		return 1;

	span = sched_rt_period_mask();
587
	for_each_cpu(i, span) {
588 589 590 591
		int enqueue = 0;
		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
		struct rq *rq = rq_of_rt_rq(rt_rq);

592
		raw_spin_lock(&rq->lock);
593 594 595
		if (rt_rq->rt_time) {
			u64 runtime;

596
			raw_spin_lock(&rt_rq->rt_runtime_lock);
597 598 599 600 601 602 603
			if (rt_rq->rt_throttled)
				balance_runtime(rt_rq);
			runtime = rt_rq->rt_runtime;
			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
				rt_rq->rt_throttled = 0;
				enqueue = 1;
604 605 606 607 608 609 610

				/*
				 * Force a clock update if the CPU was idle,
				 * lest wakeup -> unthrottle time accumulate.
				 */
				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
					rq->skip_clock_update = -1;
611 612 613
			}
			if (rt_rq->rt_time || rt_rq->rt_nr_running)
				idle = 0;
614
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
615
		} else if (rt_rq->rt_nr_running) {
616
			idle = 0;
617 618 619
			if (!rt_rq_throttled(rt_rq))
				enqueue = 1;
		}
620 621 622

		if (enqueue)
			sched_rt_rq_enqueue(rt_rq);
623
		raw_spin_unlock(&rq->lock);
624 625 626 627
	}

	return idle;
}
P
Peter Zijlstra 已提交
628

P
Peter Zijlstra 已提交
629 630
static inline int rt_se_prio(struct sched_rt_entity *rt_se)
{
631
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
632 633 634
	struct rt_rq *rt_rq = group_rt_rq(rt_se);

	if (rt_rq)
635
		return rt_rq->highest_prio.curr;
P
Peter Zijlstra 已提交
636 637 638 639 640
#endif

	return rt_task_of(rt_se)->prio;
}

P
Peter Zijlstra 已提交
641
static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
P
Peter Zijlstra 已提交
642
{
P
Peter Zijlstra 已提交
643
	u64 runtime = sched_rt_runtime(rt_rq);
P
Peter Zijlstra 已提交
644 645

	if (rt_rq->rt_throttled)
P
Peter Zijlstra 已提交
646
		return rt_rq_throttled(rt_rq);
P
Peter Zijlstra 已提交
647

P
Peter Zijlstra 已提交
648 649 650
	if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
		return 0;

651 652 653 654
	balance_runtime(rt_rq);
	runtime = sched_rt_runtime(rt_rq);
	if (runtime == RUNTIME_INF)
		return 0;
P
Peter Zijlstra 已提交
655

P
Peter Zijlstra 已提交
656
	if (rt_rq->rt_time > runtime) {
P
Peter Zijlstra 已提交
657
		rt_rq->rt_throttled = 1;
T
Thomas Gleixner 已提交
658
		printk_once(KERN_WARNING "sched: RT throttling activated\n");
P
Peter Zijlstra 已提交
659
		if (rt_rq_throttled(rt_rq)) {
P
Peter Zijlstra 已提交
660
			sched_rt_rq_dequeue(rt_rq);
P
Peter Zijlstra 已提交
661 662
			return 1;
		}
P
Peter Zijlstra 已提交
663 664 665 666 667
	}

	return 0;
}

I
Ingo Molnar 已提交
668 669 670 671
/*
 * Update the current task's runtime statistics. Skip current tasks that
 * are not in our scheduling class.
 */
A
Alexey Dobriyan 已提交
672
static void update_curr_rt(struct rq *rq)
I
Ingo Molnar 已提交
673 674
{
	struct task_struct *curr = rq->curr;
P
Peter Zijlstra 已提交
675 676
	struct sched_rt_entity *rt_se = &curr->rt;
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
I
Ingo Molnar 已提交
677 678
	u64 delta_exec;

P
Peter Zijlstra 已提交
679
	if (curr->sched_class != &rt_sched_class)
I
Ingo Molnar 已提交
680 681
		return;

682
	delta_exec = rq->clock_task - curr->se.exec_start;
I
Ingo Molnar 已提交
683 684
	if (unlikely((s64)delta_exec < 0))
		delta_exec = 0;
I
Ingo Molnar 已提交
685

686
	schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
I
Ingo Molnar 已提交
687 688

	curr->se.sum_exec_runtime += delta_exec;
689 690
	account_group_exec_runtime(curr, delta_exec);

691
	curr->se.exec_start = rq->clock_task;
692
	cpuacct_charge(curr, delta_exec);
P
Peter Zijlstra 已提交
693

694 695
	sched_rt_avg_update(rq, delta_exec);

696 697 698
	if (!rt_bandwidth_enabled())
		return;

D
Dhaval Giani 已提交
699 700 701
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);

702
		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
703
			raw_spin_lock(&rt_rq->rt_runtime_lock);
704 705 706
			rt_rq->rt_time += delta_exec;
			if (sched_rt_runtime_exceeded(rt_rq))
				resched_task(curr);
707
			raw_spin_unlock(&rt_rq->rt_runtime_lock);
708
		}
D
Dhaval Giani 已提交
709
	}
I
Ingo Molnar 已提交
710 711
}

712
#if defined CONFIG_SMP
713

714 715
static void
inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
716
{
G
Gregory Haskins 已提交
717
	struct rq *rq = rq_of_rt_rq(rt_rq);
718

719 720
	if (rq->online && prio < prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
721
}
722

723 724 725 726
static void
dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
{
	struct rq *rq = rq_of_rt_rq(rt_rq);
727

728 729
	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
730 731
}

732 733
#else /* CONFIG_SMP */

P
Peter Zijlstra 已提交
734
static inline
735 736 737 738 739
void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
static inline
void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}

#endif /* CONFIG_SMP */
740

741
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
static void
inc_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

	if (prio < prev_prio)
		rt_rq->highest_prio.curr = prio;

	inc_rt_prio_smp(rt_rq, prio, prev_prio);
}

static void
dec_rt_prio(struct rt_rq *rt_rq, int prio)
{
	int prev_prio = rt_rq->highest_prio.curr;

P
Peter Zijlstra 已提交
758
	if (rt_rq->rt_nr_running) {
759

760
		WARN_ON(prio < prev_prio);
761

762
		/*
763 764
		 * This may have been our highest task, and therefore
		 * we may have some recomputation to do
765
		 */
766
		if (prio == prev_prio) {
767 768 769
			struct rt_prio_array *array = &rt_rq->active;

			rt_rq->highest_prio.curr =
770
				sched_find_first_bit(array->bitmap);
771 772
		}

773
	} else
774
		rt_rq->highest_prio.curr = MAX_RT_PRIO;
775

776 777
	dec_rt_prio_smp(rt_rq, prio, prev_prio);
}
778

779 780 781 782 783 784
#else

static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}

#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
785

786
#ifdef CONFIG_RT_GROUP_SCHED
787 788 789 790 791 792 793 794 795 796 797 798 799 800

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted++;

	if (rt_rq->tg)
		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
}

static void
dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
P
Peter Zijlstra 已提交
801 802 803 804
	if (rt_se_boosted(rt_se))
		rt_rq->rt_nr_boosted--;

	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
}

#else /* CONFIG_RT_GROUP_SCHED */

static void
inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	start_rt_bandwidth(&def_rt_bandwidth);
}

static inline
void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}

#endif /* CONFIG_RT_GROUP_SCHED */

static inline
void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	int prio = rt_se_prio(rt_se);

	WARN_ON(!rt_prio(prio));
	rt_rq->rt_nr_running++;

	inc_rt_prio(rt_rq, prio);
	inc_rt_migration(rt_se, rt_rq);
	inc_rt_group(rt_se, rt_rq);
}

static inline
void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
{
	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
	WARN_ON(!rt_rq->rt_nr_running);
	rt_rq->rt_nr_running--;

	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
	dec_rt_migration(rt_se, rt_rq);
	dec_rt_group(rt_se, rt_rq);
843 844
}

845
static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
I
Ingo Molnar 已提交
846
{
P
Peter Zijlstra 已提交
847 848 849
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;
	struct rt_rq *group_rq = group_rt_rq(rt_se);
850
	struct list_head *queue = array->queue + rt_se_prio(rt_se);
I
Ingo Molnar 已提交
851

852 853 854 855 856 857 858
	/*
	 * Don't enqueue the group if its throttled, or when empty.
	 * The latter is a consequence of the former when a child group
	 * get throttled and the current group doesn't have any other
	 * active members.
	 */
	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
P
Peter Zijlstra 已提交
859
		return;
860

861 862 863
	if (!rt_rq->rt_nr_running)
		list_add_leaf_rt_rq(rt_rq);

864 865 866 867
	if (head)
		list_add(&rt_se->run_list, queue);
	else
		list_add_tail(&rt_se->run_list, queue);
P
Peter Zijlstra 已提交
868
	__set_bit(rt_se_prio(rt_se), array->bitmap);
869

P
Peter Zijlstra 已提交
870 871 872
	inc_rt_tasks(rt_se, rt_rq);
}

873
static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
874 875 876 877 878 879 880 881 882
{
	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
	struct rt_prio_array *array = &rt_rq->active;

	list_del_init(&rt_se->run_list);
	if (list_empty(array->queue + rt_se_prio(rt_se)))
		__clear_bit(rt_se_prio(rt_se), array->bitmap);

	dec_rt_tasks(rt_se, rt_rq);
883 884
	if (!rt_rq->rt_nr_running)
		list_del_leaf_rt_rq(rt_rq);
P
Peter Zijlstra 已提交
885 886 887 888 889 890
}

/*
 * Because the prio of an upper entry depends on the lower
 * entries, we must remove entries top - down.
 */
891
static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
P
Peter Zijlstra 已提交
892
{
893
	struct sched_rt_entity *back = NULL;
P
Peter Zijlstra 已提交
894

895 896 897 898 899 900 901
	for_each_sched_rt_entity(rt_se) {
		rt_se->back = back;
		back = rt_se;
	}

	for (rt_se = back; rt_se; rt_se = rt_se->back) {
		if (on_rt_rq(rt_se))
902 903 904 905
			__dequeue_rt_entity(rt_se);
	}
}

906
static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
907 908 909
{
	dequeue_rt_stack(rt_se);
	for_each_sched_rt_entity(rt_se)
910
		__enqueue_rt_entity(rt_se, head);
911 912 913 914 915 916 917 918 919 920
}

static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
{
	dequeue_rt_stack(rt_se);

	for_each_sched_rt_entity(rt_se) {
		struct rt_rq *rt_rq = group_rt_rq(rt_se);

		if (rt_rq && rt_rq->rt_nr_running)
921
			__enqueue_rt_entity(rt_se, false);
922
	}
I
Ingo Molnar 已提交
923 924 925 926 927
}

/*
 * Adding/removing a task to/from a priority array:
 */
928
static void
929
enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
P
Peter Zijlstra 已提交
930 931 932
{
	struct sched_rt_entity *rt_se = &p->rt;

933
	if (flags & ENQUEUE_WAKEUP)
P
Peter Zijlstra 已提交
934 935
		rt_se->timeout = 0;

936
	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
937

938 939
	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
		enqueue_pushable_task(rq, p);
940 941

	inc_nr_running(rq);
P
Peter Zijlstra 已提交
942 943
}

944
static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
945
{
P
Peter Zijlstra 已提交
946
	struct sched_rt_entity *rt_se = &p->rt;
I
Ingo Molnar 已提交
947

948
	update_curr_rt(rq);
949
	dequeue_rt_entity(rt_se);
950

951
	dequeue_pushable_task(rq, p);
952 953

	dec_nr_running(rq);
I
Ingo Molnar 已提交
954 955 956 957 958 959
}

/*
 * Put task to the end of the run list without the overhead of dequeue
 * followed by enqueue.
 */
960 961
static void
requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
P
Peter Zijlstra 已提交
962
{
963
	if (on_rt_rq(rt_se)) {
964 965 966 967 968 969 970
		struct rt_prio_array *array = &rt_rq->active;
		struct list_head *queue = array->queue + rt_se_prio(rt_se);

		if (head)
			list_move(&rt_se->run_list, queue);
		else
			list_move_tail(&rt_se->run_list, queue);
971
	}
P
Peter Zijlstra 已提交
972 973
}

974
static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
I
Ingo Molnar 已提交
975
{
P
Peter Zijlstra 已提交
976 977
	struct sched_rt_entity *rt_se = &p->rt;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
978

P
Peter Zijlstra 已提交
979 980
	for_each_sched_rt_entity(rt_se) {
		rt_rq = rt_rq_of_se(rt_se);
981
		requeue_rt_entity(rt_rq, rt_se, head);
P
Peter Zijlstra 已提交
982
	}
I
Ingo Molnar 已提交
983 984
}

P
Peter Zijlstra 已提交
985
static void yield_task_rt(struct rq *rq)
I
Ingo Molnar 已提交
986
{
987
	requeue_task_rt(rq, rq->curr, 0);
I
Ingo Molnar 已提交
988 989
}

990
#ifdef CONFIG_SMP
991 992
static int find_lowest_rq(struct task_struct *task);

993
static int
994
select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
995
{
996 997 998 999 1000
	struct task_struct *curr;
	struct rq *rq;
	int cpu;

	cpu = task_cpu(p);
1001 1002 1003 1004 1005

	/* For anything but wake ups, just return the task_cpu */
	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
		goto out;

1006 1007 1008 1009 1010
	rq = cpu_rq(cpu);

	rcu_read_lock();
	curr = ACCESS_ONCE(rq->curr); /* unlocked access */

1011
	/*
1012
	 * If the current task on @p's runqueue is an RT task, then
1013 1014 1015 1016
	 * try to see if we can wake this RT task up on another
	 * runqueue. Otherwise simply start this RT task
	 * on its current runqueue.
	 *
1017 1018 1019 1020 1021 1022 1023 1024 1025
	 * We want to avoid overloading runqueues. If the woken
	 * task is a higher priority, then it will stay on this CPU
	 * and the lower prio task should be moved to another CPU.
	 * Even though this will probably make the lower prio task
	 * lose its cache, we do not want to bounce a higher task
	 * around just because it gave up its CPU, perhaps for a
	 * lock?
	 *
	 * For equal prio tasks, we just let the scheduler sort it out.
1026 1027 1028 1029 1030 1031
	 *
	 * Otherwise, just let it ride on the affined RQ and the
	 * post-schedule router will push the preempted task away
	 *
	 * This test is optimistic, if we get it wrong the load-balancer
	 * will have to sort it out.
1032
	 */
1033 1034
	if (curr && unlikely(rt_task(curr)) &&
	    (curr->rt.nr_cpus_allowed < 2 ||
1035
	     curr->prio <= p->prio) &&
P
Peter Zijlstra 已提交
1036
	    (p->rt.nr_cpus_allowed > 1)) {
1037
		int target = find_lowest_rq(p);
1038

1039 1040
		if (target != -1)
			cpu = target;
1041
	}
1042
	rcu_read_unlock();
1043

1044
out:
1045
	return cpu;
1046
}
1047 1048 1049 1050 1051 1052

static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
{
	if (rq->curr->rt.nr_cpus_allowed == 1)
		return;

1053
	if (p->rt.nr_cpus_allowed != 1
1054 1055
	    && cpupri_find(&rq->rd->cpupri, p, NULL))
		return;
1056

1057 1058
	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
		return;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068

	/*
	 * There appears to be other cpus that can accept
	 * current and none to run 'p', so lets reschedule
	 * to try and push current away:
	 */
	requeue_task_rt(rq, p, 1);
	resched_task(rq->curr);
}

1069 1070
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1071 1072 1073
/*
 * Preempt the current task with a newly woken task if needed:
 */
P
Peter Zijlstra 已提交
1074
static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
I
Ingo Molnar 已提交
1075
{
1076
	if (p->prio < rq->curr->prio) {
I
Ingo Molnar 已提交
1077
		resched_task(rq->curr);
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		return;
	}

#ifdef CONFIG_SMP
	/*
	 * If:
	 *
	 * - the newly woken task is of equal priority to the current task
	 * - the newly woken task is non-migratable while current is migratable
	 * - current will be preempted on the next reschedule
	 *
	 * we should check to see if current can readily move to a different
	 * cpu.  If so, we will reschedule to allow the push logic to try
	 * to move current somewhere else, making room for our non-migratable
	 * task.
	 */
1094
	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1095
		check_preempt_equal_prio(rq, p);
1096
#endif
I
Ingo Molnar 已提交
1097 1098
}

P
Peter Zijlstra 已提交
1099 1100
static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
						   struct rt_rq *rt_rq)
I
Ingo Molnar 已提交
1101
{
P
Peter Zijlstra 已提交
1102 1103
	struct rt_prio_array *array = &rt_rq->active;
	struct sched_rt_entity *next = NULL;
I
Ingo Molnar 已提交
1104 1105 1106 1107
	struct list_head *queue;
	int idx;

	idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1108
	BUG_ON(idx >= MAX_RT_PRIO);
I
Ingo Molnar 已提交
1109 1110

	queue = array->queue + idx;
P
Peter Zijlstra 已提交
1111
	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1112

P
Peter Zijlstra 已提交
1113 1114
	return next;
}
I
Ingo Molnar 已提交
1115

1116
static struct task_struct *_pick_next_task_rt(struct rq *rq)
P
Peter Zijlstra 已提交
1117 1118 1119 1120
{
	struct sched_rt_entity *rt_se;
	struct task_struct *p;
	struct rt_rq *rt_rq;
I
Ingo Molnar 已提交
1121

P
Peter Zijlstra 已提交
1122 1123
	rt_rq = &rq->rt;

1124
	if (!rt_rq->rt_nr_running)
P
Peter Zijlstra 已提交
1125 1126
		return NULL;

P
Peter Zijlstra 已提交
1127
	if (rt_rq_throttled(rt_rq))
P
Peter Zijlstra 已提交
1128 1129 1130 1131
		return NULL;

	do {
		rt_se = pick_next_rt_entity(rq, rt_rq);
1132
		BUG_ON(!rt_se);
P
Peter Zijlstra 已提交
1133 1134 1135 1136
		rt_rq = group_rt_rq(rt_se);
	} while (rt_rq);

	p = rt_task_of(rt_se);
1137
	p->se.exec_start = rq->clock_task;
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

	return p;
}

static struct task_struct *pick_next_task_rt(struct rq *rq)
{
	struct task_struct *p = _pick_next_task_rt(rq);

	/* The running task is never eligible for pushing */
	if (p)
		dequeue_pushable_task(rq, p);

1150
#ifdef CONFIG_SMP
1151 1152 1153 1154 1155
	/*
	 * We detect this state here so that we can avoid taking the RQ
	 * lock again later if there is no need to push
	 */
	rq->post_schedule = has_pushable_tasks(rq);
1156
#endif
1157

P
Peter Zijlstra 已提交
1158
	return p;
I
Ingo Molnar 已提交
1159 1160
}

1161
static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
I
Ingo Molnar 已提交
1162
{
1163
	update_curr_rt(rq);
1164 1165 1166 1167 1168

	/*
	 * The previous task needs to be made eligible for pushing
	 * if it is still active
	 */
P
Peter Zijlstra 已提交
1169
	if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1)
1170
		enqueue_pushable_task(rq, p);
I
Ingo Molnar 已提交
1171 1172
}

1173
#ifdef CONFIG_SMP
P
Peter Zijlstra 已提交
1174

S
Steven Rostedt 已提交
1175 1176 1177 1178 1179
/* Only try algorithms three times */
#define RT_MAX_TRIES 3

static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);

1180 1181 1182
static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
{
	if (!task_running(rq, p) &&
1183
	    (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
P
Peter Zijlstra 已提交
1184
	    (p->rt.nr_cpus_allowed > 1))
1185 1186 1187 1188
		return 1;
	return 0;
}

S
Steven Rostedt 已提交
1189
/* Return the second highest RT task, NULL otherwise */
1190
static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
S
Steven Rostedt 已提交
1191
{
P
Peter Zijlstra 已提交
1192 1193 1194 1195
	struct task_struct *next = NULL;
	struct sched_rt_entity *rt_se;
	struct rt_prio_array *array;
	struct rt_rq *rt_rq;
S
Steven Rostedt 已提交
1196 1197
	int idx;

P
Peter Zijlstra 已提交
1198 1199 1200
	for_each_leaf_rt_rq(rt_rq, rq) {
		array = &rt_rq->active;
		idx = sched_find_first_bit(array->bitmap);
P
Peter Zijlstra 已提交
1201
next_idx:
P
Peter Zijlstra 已提交
1202 1203 1204 1205 1206
		if (idx >= MAX_RT_PRIO)
			continue;
		if (next && next->prio < idx)
			continue;
		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1207 1208 1209 1210 1211 1212
			struct task_struct *p;

			if (!rt_entity_is_task(rt_se))
				continue;

			p = rt_task_of(rt_se);
P
Peter Zijlstra 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221
			if (pick_rt_task(rq, p, cpu)) {
				next = p;
				break;
			}
		}
		if (!next) {
			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
			goto next_idx;
		}
1222 1223
	}

S
Steven Rostedt 已提交
1224 1225 1226
	return next;
}

1227
static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
S
Steven Rostedt 已提交
1228

G
Gregory Haskins 已提交
1229 1230 1231
static int find_lowest_rq(struct task_struct *task)
{
	struct sched_domain *sd;
1232
	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
G
Gregory Haskins 已提交
1233 1234
	int this_cpu = smp_processor_id();
	int cpu      = task_cpu(task);
G
Gregory Haskins 已提交
1235

1236 1237 1238 1239
	/* Make sure the mask is initialized first */
	if (unlikely(!lowest_mask))
		return -1;

1240 1241
	if (task->rt.nr_cpus_allowed == 1)
		return -1; /* No other targets possible */
G
Gregory Haskins 已提交
1242

1243 1244
	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
		return -1; /* No targets found */
G
Gregory Haskins 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253

	/*
	 * At this point we have built a mask of cpus representing the
	 * lowest priority tasks in the system.  Now we want to elect
	 * the best one based on our affinity and topology.
	 *
	 * We prioritize the last cpu that the task executed on since
	 * it is most likely cache-hot in that location.
	 */
1254
	if (cpumask_test_cpu(cpu, lowest_mask))
G
Gregory Haskins 已提交
1255 1256 1257 1258 1259 1260
		return cpu;

	/*
	 * Otherwise, we consult the sched_domains span maps to figure
	 * out which cpu is logically closest to our hot cache data.
	 */
R
Rusty Russell 已提交
1261 1262
	if (!cpumask_test_cpu(this_cpu, lowest_mask))
		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
G
Gregory Haskins 已提交
1263

1264
	rcu_read_lock();
R
Rusty Russell 已提交
1265 1266 1267
	for_each_domain(cpu, sd) {
		if (sd->flags & SD_WAKE_AFFINE) {
			int best_cpu;
G
Gregory Haskins 已提交
1268

R
Rusty Russell 已提交
1269 1270 1271 1272 1273
			/*
			 * "this_cpu" is cheaper to preempt than a
			 * remote processor.
			 */
			if (this_cpu != -1 &&
1274 1275
			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1276
				return this_cpu;
1277
			}
R
Rusty Russell 已提交
1278 1279 1280

			best_cpu = cpumask_first_and(lowest_mask,
						     sched_domain_span(sd));
1281 1282
			if (best_cpu < nr_cpu_ids) {
				rcu_read_unlock();
R
Rusty Russell 已提交
1283
				return best_cpu;
1284
			}
G
Gregory Haskins 已提交
1285 1286
		}
	}
1287
	rcu_read_unlock();
G
Gregory Haskins 已提交
1288 1289 1290 1291 1292 1293

	/*
	 * And finally, if there were no matches within the domains
	 * just give the caller *something* to work with from the compatible
	 * locations.
	 */
R
Rusty Russell 已提交
1294 1295 1296 1297 1298 1299 1300
	if (this_cpu != -1)
		return this_cpu;

	cpu = cpumask_any(lowest_mask);
	if (cpu < nr_cpu_ids)
		return cpu;
	return -1;
1301 1302 1303
}

/* Will lock the rq it finds */
1304
static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1305 1306 1307
{
	struct rq *lowest_rq = NULL;
	int tries;
1308
	int cpu;
S
Steven Rostedt 已提交
1309

1310 1311 1312
	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
		cpu = find_lowest_rq(task);

1313
		if ((cpu == -1) || (cpu == rq->cpu))
S
Steven Rostedt 已提交
1314 1315
			break;

1316 1317
		lowest_rq = cpu_rq(cpu);

S
Steven Rostedt 已提交
1318
		/* if the prio of this runqueue changed, try again */
1319
		if (double_lock_balance(rq, lowest_rq)) {
S
Steven Rostedt 已提交
1320 1321 1322 1323 1324 1325
			/*
			 * We had to unlock the run queue. In
			 * the mean time, task could have
			 * migrated already or had its affinity changed.
			 * Also make sure that it wasn't scheduled on its rq.
			 */
1326
			if (unlikely(task_rq(task) != rq ||
1327
				     !cpumask_test_cpu(lowest_rq->cpu,
1328
						       tsk_cpus_allowed(task)) ||
1329
				     task_running(rq, task) ||
P
Peter Zijlstra 已提交
1330
				     !task->on_rq)) {
1331

1332
				raw_spin_unlock(&lowest_rq->lock);
S
Steven Rostedt 已提交
1333 1334 1335 1336 1337 1338
				lowest_rq = NULL;
				break;
			}
		}

		/* If this rq is still suitable use it. */
1339
		if (lowest_rq->rt.highest_prio.curr > task->prio)
S
Steven Rostedt 已提交
1340 1341 1342
			break;

		/* try again */
1343
		double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1344 1345 1346 1347 1348 1349
		lowest_rq = NULL;
	}

	return lowest_rq;
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
static struct task_struct *pick_next_pushable_task(struct rq *rq)
{
	struct task_struct *p;

	if (!has_pushable_tasks(rq))
		return NULL;

	p = plist_first_entry(&rq->rt.pushable_tasks,
			      struct task_struct, pushable_tasks);

	BUG_ON(rq->cpu != task_cpu(p));
	BUG_ON(task_current(rq, p));
	BUG_ON(p->rt.nr_cpus_allowed <= 1);

P
Peter Zijlstra 已提交
1364
	BUG_ON(!p->on_rq);
1365 1366 1367 1368 1369
	BUG_ON(!rt_task(p));

	return p;
}

S
Steven Rostedt 已提交
1370 1371 1372 1373 1374
/*
 * If the current CPU has more than one RT task, see if the non
 * running task can migrate over to a CPU that is running a task
 * of lesser priority.
 */
1375
static int push_rt_task(struct rq *rq)
S
Steven Rostedt 已提交
1376 1377 1378
{
	struct task_struct *next_task;
	struct rq *lowest_rq;
1379
	int ret = 0;
S
Steven Rostedt 已提交
1380

G
Gregory Haskins 已提交
1381 1382 1383
	if (!rq->rt.overloaded)
		return 0;

1384
	next_task = pick_next_pushable_task(rq);
S
Steven Rostedt 已提交
1385 1386 1387
	if (!next_task)
		return 0;

P
Peter Zijlstra 已提交
1388
retry:
1389
	if (unlikely(next_task == rq->curr)) {
1390
		WARN_ON(1);
S
Steven Rostedt 已提交
1391
		return 0;
1392
	}
S
Steven Rostedt 已提交
1393 1394 1395 1396 1397 1398

	/*
	 * It's possible that the next_task slipped in of
	 * higher priority than current. If that's the case
	 * just reschedule current.
	 */
1399 1400
	if (unlikely(next_task->prio < rq->curr->prio)) {
		resched_task(rq->curr);
S
Steven Rostedt 已提交
1401 1402 1403
		return 0;
	}

1404
	/* We might release rq lock */
S
Steven Rostedt 已提交
1405 1406 1407
	get_task_struct(next_task);

	/* find_lock_lowest_rq locks the rq if found */
1408
	lowest_rq = find_lock_lowest_rq(next_task, rq);
S
Steven Rostedt 已提交
1409 1410 1411
	if (!lowest_rq) {
		struct task_struct *task;
		/*
1412
		 * find_lock_lowest_rq releases rq->lock
1413 1414 1415 1416 1417
		 * so it is possible that next_task has migrated.
		 *
		 * We need to make sure that the task is still on the same
		 * run-queue and is also still the next task eligible for
		 * pushing.
S
Steven Rostedt 已提交
1418
		 */
1419
		task = pick_next_pushable_task(rq);
1420 1421
		if (task_cpu(next_task) == rq->cpu && task == next_task) {
			/*
1422 1423 1424 1425
			 * The task hasn't migrated, and is still the next
			 * eligible task, but we failed to find a run-queue
			 * to push it to.  Do not retry in this case, since
			 * other cpus will pull from us when ready.
1426 1427
			 */
			goto out;
S
Steven Rostedt 已提交
1428
		}
1429

1430 1431 1432 1433
		if (!task)
			/* No more tasks, just exit */
			goto out;

1434
		/*
1435
		 * Something has shifted, try again.
1436
		 */
1437 1438 1439
		put_task_struct(next_task);
		next_task = task;
		goto retry;
S
Steven Rostedt 已提交
1440 1441
	}

1442
	deactivate_task(rq, next_task, 0);
S
Steven Rostedt 已提交
1443 1444
	set_task_cpu(next_task, lowest_rq->cpu);
	activate_task(lowest_rq, next_task, 0);
1445
	ret = 1;
S
Steven Rostedt 已提交
1446 1447 1448

	resched_task(lowest_rq->curr);

1449
	double_unlock_balance(rq, lowest_rq);
S
Steven Rostedt 已提交
1450 1451 1452 1453

out:
	put_task_struct(next_task);

1454
	return ret;
S
Steven Rostedt 已提交
1455 1456 1457 1458 1459 1460 1461 1462 1463
}

static void push_rt_tasks(struct rq *rq)
{
	/* push_rt_task will return true if it moved an RT */
	while (push_rt_task(rq))
		;
}

1464 1465
static int pull_rt_task(struct rq *this_rq)
{
I
Ingo Molnar 已提交
1466
	int this_cpu = this_rq->cpu, ret = 0, cpu;
1467
	struct task_struct *p;
1468 1469
	struct rq *src_rq;

1470
	if (likely(!rt_overloaded(this_rq)))
1471 1472
		return 0;

1473
	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1474 1475 1476 1477
		if (this_cpu == cpu)
			continue;

		src_rq = cpu_rq(cpu);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

		/*
		 * Don't bother taking the src_rq->lock if the next highest
		 * task is known to be lower-priority than our current task.
		 * This may look racy, but if this value is about to go
		 * logically higher, the src_rq will push this task away.
		 * And if its going logically lower, we do not care
		 */
		if (src_rq->rt.highest_prio.next >=
		    this_rq->rt.highest_prio.curr)
			continue;

1490 1491 1492
		/*
		 * We can potentially drop this_rq's lock in
		 * double_lock_balance, and another CPU could
1493
		 * alter this_rq
1494
		 */
1495
		double_lock_balance(this_rq, src_rq);
1496 1497 1498 1499

		/*
		 * Are there still pullable RT tasks?
		 */
M
Mike Galbraith 已提交
1500 1501
		if (src_rq->rt.rt_nr_running <= 1)
			goto skip;
1502 1503 1504 1505 1506 1507 1508

		p = pick_next_highest_task_rt(src_rq, this_cpu);

		/*
		 * Do we have an RT task that preempts
		 * the to-be-scheduled task?
		 */
1509
		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1510
			WARN_ON(p == src_rq->curr);
P
Peter Zijlstra 已提交
1511
			WARN_ON(!p->on_rq);
1512 1513 1514 1515 1516 1517 1518

			/*
			 * There's a chance that p is higher in priority
			 * than what's currently running on its cpu.
			 * This is just that p is wakeing up and hasn't
			 * had a chance to schedule. We only pull
			 * p if it is lower in priority than the
1519
			 * current task on the run queue
1520
			 */
1521
			if (p->prio < src_rq->curr->prio)
M
Mike Galbraith 已提交
1522
				goto skip;
1523 1524 1525 1526 1527 1528 1529 1530 1531

			ret = 1;

			deactivate_task(src_rq, p, 0);
			set_task_cpu(p, this_cpu);
			activate_task(this_rq, p, 0);
			/*
			 * We continue with the search, just in
			 * case there's an even higher prio task
L
Lucas De Marchi 已提交
1532
			 * in another runqueue. (low likelihood
1533 1534 1535
			 * but possible)
			 */
		}
P
Peter Zijlstra 已提交
1536
skip:
1537
		double_unlock_balance(this_rq, src_rq);
1538 1539 1540 1541 1542
	}

	return ret;
}

1543
static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1544 1545
{
	/* Try to pull RT tasks here if we lower this rq's prio */
Y
Yong Zhang 已提交
1546
	if (rq->rt.highest_prio.curr > prev->prio)
1547 1548 1549
		pull_rt_task(rq);
}

1550
static void post_schedule_rt(struct rq *rq)
S
Steven Rostedt 已提交
1551
{
1552
	push_rt_tasks(rq);
S
Steven Rostedt 已提交
1553 1554
}

1555 1556 1557 1558
/*
 * If we are not running and we are not going to reschedule soon, we should
 * try to push tasks away now
 */
1559
static void task_woken_rt(struct rq *rq, struct task_struct *p)
1560
{
1561
	if (!task_running(rq, p) &&
1562
	    !test_tsk_need_resched(rq->curr) &&
1563
	    has_pushable_tasks(rq) &&
1564
	    p->rt.nr_cpus_allowed > 1 &&
1565
	    rt_task(rq->curr) &&
1566
	    (rq->curr->rt.nr_cpus_allowed < 2 ||
1567
	     rq->curr->prio <= p->prio))
1568 1569 1570
		push_rt_tasks(rq);
}

1571
static void set_cpus_allowed_rt(struct task_struct *p,
1572
				const struct cpumask *new_mask)
1573
{
1574
	int weight = cpumask_weight(new_mask);
1575 1576 1577 1578 1579 1580 1581

	BUG_ON(!rt_task(p));

	/*
	 * Update the migration status of the RQ if we have an RT task
	 * which is running AND changing its weight value.
	 */
P
Peter Zijlstra 已提交
1582
	if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) {
1583 1584
		struct rq *rq = task_rq(p);

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
		if (!task_current(rq, p)) {
			/*
			 * Make sure we dequeue this task from the pushable list
			 * before going further.  It will either remain off of
			 * the list because we are no longer pushable, or it
			 * will be requeued.
			 */
			if (p->rt.nr_cpus_allowed > 1)
				dequeue_pushable_task(rq, p);

			/*
			 * Requeue if our weight is changing and still > 1
			 */
			if (weight > 1)
				enqueue_pushable_task(rq, p);

		}

P
Peter Zijlstra 已提交
1603
		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1604
			rq->rt.rt_nr_migratory++;
P
Peter Zijlstra 已提交
1605
		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1606 1607 1608 1609
			BUG_ON(!rq->rt.rt_nr_migratory);
			rq->rt.rt_nr_migratory--;
		}

1610
		update_rt_migration(&rq->rt);
1611 1612
	}
}
1613

1614
/* Assumes rq->lock is held */
1615
static void rq_online_rt(struct rq *rq)
1616 1617 1618
{
	if (rq->rt.overloaded)
		rt_set_overload(rq);
1619

P
Peter Zijlstra 已提交
1620 1621
	__enable_runtime(rq);

1622
	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1623 1624 1625
}

/* Assumes rq->lock is held */
1626
static void rq_offline_rt(struct rq *rq)
1627 1628 1629
{
	if (rq->rt.overloaded)
		rt_clear_overload(rq);
1630

P
Peter Zijlstra 已提交
1631 1632
	__disable_runtime(rq);

1633
	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1634
}
1635 1636 1637 1638 1639

/*
 * When switch from the rt queue, we bring ourselves to a position
 * that we might want to pull RT tasks from other runqueues.
 */
P
Peter Zijlstra 已提交
1640
static void switched_from_rt(struct rq *rq, struct task_struct *p)
1641 1642 1643 1644 1645 1646 1647 1648
{
	/*
	 * If there are other RT tasks then we will reschedule
	 * and the scheduling of the other RT tasks will handle
	 * the balancing. But if we are the last RT task
	 * we may need to handle the pulling of RT tasks
	 * now.
	 */
P
Peter Zijlstra 已提交
1649
	if (p->on_rq && !rq->rt.rt_nr_running)
1650 1651
		pull_rt_task(rq);
}
1652 1653 1654 1655 1656 1657

static inline void init_sched_rt_class(void)
{
	unsigned int i;

	for_each_possible_cpu(i)
1658
		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1659
					GFP_KERNEL, cpu_to_node(i));
1660
}
1661 1662 1663 1664 1665 1666 1667
#endif /* CONFIG_SMP */

/*
 * When switching a task to RT, we may overload the runqueue
 * with RT tasks. In this case we try to push them off to
 * other runqueues.
 */
P
Peter Zijlstra 已提交
1668
static void switched_to_rt(struct rq *rq, struct task_struct *p)
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
{
	int check_resched = 1;

	/*
	 * If we are already running, then there's nothing
	 * that needs to be done. But if we are not running
	 * we may need to preempt the current running task.
	 * If that current running task is also an RT task
	 * then see if we can move to another run queue.
	 */
P
Peter Zijlstra 已提交
1679
	if (p->on_rq && rq->curr != p) {
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
#ifdef CONFIG_SMP
		if (rq->rt.overloaded && push_rt_task(rq) &&
		    /* Don't resched if we changed runqueues */
		    rq != task_rq(p))
			check_resched = 0;
#endif /* CONFIG_SMP */
		if (check_resched && p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

/*
 * Priority of the task has changed. This may cause
 * us to initiate a push or pull.
 */
P
Peter Zijlstra 已提交
1695 1696
static void
prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1697
{
P
Peter Zijlstra 已提交
1698
	if (!p->on_rq)
P
Peter Zijlstra 已提交
1699 1700 1701
		return;

	if (rq->curr == p) {
1702 1703 1704 1705 1706 1707 1708 1709 1710
#ifdef CONFIG_SMP
		/*
		 * If our priority decreases while running, we
		 * may need to pull tasks to this runqueue.
		 */
		if (oldprio < p->prio)
			pull_rt_task(rq);
		/*
		 * If there's a higher priority task waiting to run
1711 1712 1713
		 * then reschedule. Note, the above pull_rt_task
		 * can release the rq lock and p could migrate.
		 * Only reschedule if p is still on the same runqueue.
1714
		 */
1715
		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1716 1717 1718 1719 1720
			resched_task(p);
#else
		/* For UP simply resched on drop of prio */
		if (oldprio < p->prio)
			resched_task(p);
S
Steven Rostedt 已提交
1721
#endif /* CONFIG_SMP */
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	} else {
		/*
		 * This task is not running, but if it is
		 * greater than the current running task
		 * then reschedule.
		 */
		if (p->prio < rq->curr->prio)
			resched_task(rq->curr);
	}
}

1733 1734 1735 1736
static void watchdog(struct rq *rq, struct task_struct *p)
{
	unsigned long soft, hard;

1737 1738 1739
	/* max may change after cur was read, this will be fixed next tick */
	soft = task_rlimit(p, RLIMIT_RTTIME);
	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1740 1741 1742 1743 1744 1745

	if (soft != RLIM_INFINITY) {
		unsigned long next;

		p->rt.timeout++;
		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1746
		if (p->rt.timeout > next)
1747
			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1748 1749
	}
}
I
Ingo Molnar 已提交
1750

P
Peter Zijlstra 已提交
1751
static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
I
Ingo Molnar 已提交
1752
{
1753 1754
	update_curr_rt(rq);

1755 1756
	watchdog(rq, p);

I
Ingo Molnar 已提交
1757 1758 1759 1760 1761 1762 1763
	/*
	 * RR tasks need a special form of timeslice management.
	 * FIFO tasks have no timeslices.
	 */
	if (p->policy != SCHED_RR)
		return;

P
Peter Zijlstra 已提交
1764
	if (--p->rt.time_slice)
I
Ingo Molnar 已提交
1765 1766
		return;

P
Peter Zijlstra 已提交
1767
	p->rt.time_slice = DEF_TIMESLICE;
I
Ingo Molnar 已提交
1768

1769 1770 1771 1772
	/*
	 * Requeue to the end of queue if we are not the only element
	 * on the queue:
	 */
P
Peter Zijlstra 已提交
1773
	if (p->rt.run_list.prev != p->rt.run_list.next) {
1774
		requeue_task_rt(rq, p, 0);
1775 1776
		set_tsk_need_resched(p);
	}
I
Ingo Molnar 已提交
1777 1778
}

1779 1780 1781 1782
static void set_curr_task_rt(struct rq *rq)
{
	struct task_struct *p = rq->curr;

1783
	p->se.exec_start = rq->clock_task;
1784 1785 1786

	/* The running task is never eligible for pushing */
	dequeue_pushable_task(rq, p);
1787 1788
}

1789
static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
{
	/*
	 * Time slice is 0 for SCHED_FIFO tasks
	 */
	if (task->policy == SCHED_RR)
		return DEF_TIMESLICE;
	else
		return 0;
}

1800
static const struct sched_class rt_sched_class = {
1801
	.next			= &fair_sched_class,
I
Ingo Molnar 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810
	.enqueue_task		= enqueue_task_rt,
	.dequeue_task		= dequeue_task_rt,
	.yield_task		= yield_task_rt,

	.check_preempt_curr	= check_preempt_curr_rt,

	.pick_next_task		= pick_next_task_rt,
	.put_prev_task		= put_prev_task_rt,

1811
#ifdef CONFIG_SMP
L
Li Zefan 已提交
1812 1813
	.select_task_rq		= select_task_rq_rt,

1814
	.set_cpus_allowed       = set_cpus_allowed_rt,
1815 1816
	.rq_online              = rq_online_rt,
	.rq_offline             = rq_offline_rt,
1817 1818
	.pre_schedule		= pre_schedule_rt,
	.post_schedule		= post_schedule_rt,
1819
	.task_woken		= task_woken_rt,
1820
	.switched_from		= switched_from_rt,
1821
#endif
I
Ingo Molnar 已提交
1822

1823
	.set_curr_task          = set_curr_task_rt,
I
Ingo Molnar 已提交
1824
	.task_tick		= task_tick_rt,
1825

1826 1827
	.get_rr_interval	= get_rr_interval_rt,

1828 1829
	.prio_changed		= prio_changed_rt,
	.switched_to		= switched_to_rt,
I
Ingo Molnar 已提交
1830
};
1831 1832 1833 1834 1835 1836

#ifdef CONFIG_SCHED_DEBUG
extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);

static void print_rt_stats(struct seq_file *m, int cpu)
{
C
Cheng Xu 已提交
1837
	rt_rq_iter_t iter;
1838 1839 1840
	struct rt_rq *rt_rq;

	rcu_read_lock();
C
Cheng Xu 已提交
1841
	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
1842 1843 1844
		print_rt_rq(m, cpu, rt_rq);
	rcu_read_unlock();
}
1845
#endif /* CONFIG_SCHED_DEBUG */