mmu.c 60.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
23
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
24
#include <trace/events/kvm.h>
25
#include <asm/pgalloc.h>
26
#include <asm/cacheflush.h>
27 28
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
29
#include <asm/kvm_mmio.h>
30
#include <asm/kvm_asm.h>
31
#include <asm/kvm_emulate.h>
32
#include <asm/virt.h>
33
#include <asm/system_misc.h>
34 35

#include "trace.h"
36

37
static pgd_t *boot_hyp_pgd;
38
static pgd_t *hyp_pgd;
39
static pgd_t *merged_hyp_pgd;
40 41
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

42 43 44 45
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

46 47
static unsigned long io_map_base;

48
#define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
49
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
50

51 52 53 54 55 56
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
57 58 59 60 61 62 63 64 65 66 67
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
68
}
69

70
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
71
{
72
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
73 74
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

95 96 97 98 99
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

100 101 102 103 104 105 106 107 108 109 110
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
111
	if (!pmd_thp_or_huge(*pmd))
112 113 114 115 116 117 118
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/**
 * stage2_dissolve_pud() - clear and flush huge PUD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pud:	pud pointer for IPA
 *
 * Function clears a PUD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pud(struct kvm *kvm, phys_addr_t addr, pud_t *pudp)
{
	if (!stage2_pud_huge(*pudp))
		return;

	stage2_pud_clear(pudp);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pudp));
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

170
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
171
{
172 173
	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
	stage2_pgd_clear(pgd);
174
	kvm_tlb_flush_vmid_ipa(kvm, addr);
175
	stage2_pud_free(pud_table);
176
	put_page(virt_to_page(pgd));
177 178
}

179
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
180
{
181 182 183
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
	VM_BUG_ON(stage2_pud_huge(*pud));
	stage2_pud_clear(pud);
184
	kvm_tlb_flush_vmid_ipa(kvm, addr);
185
	stage2_pmd_free(pmd_table);
186 187
	put_page(virt_to_page(pud));
}
188

189
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
190
{
191
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
192
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
193 194 195
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
196 197 198
	put_page(virt_to_page(pmd));
}

199 200 201 202 203 204 205 206 207 208 209 210
static inline void kvm_set_pte(pte_t *ptep, pte_t new_pte)
{
	WRITE_ONCE(*ptep, new_pte);
	dsb(ishst);
}

static inline void kvm_set_pmd(pmd_t *pmdp, pmd_t new_pmd)
{
	WRITE_ONCE(*pmdp, new_pmd);
	dsb(ishst);
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static inline void kvm_pmd_populate(pmd_t *pmdp, pte_t *ptep)
{
	kvm_set_pmd(pmdp, kvm_mk_pmd(ptep));
}

static inline void kvm_pud_populate(pud_t *pudp, pmd_t *pmdp)
{
	WRITE_ONCE(*pudp, kvm_mk_pud(pmdp));
	dsb(ishst);
}

static inline void kvm_pgd_populate(pgd_t *pgdp, pud_t *pudp)
{
	WRITE_ONCE(*pgdp, kvm_mk_pgd(pudp));
	dsb(ishst);
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
247 248 249 250
 *
 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
 * we then fully enforce cacheability of RAM, no matter what the guest
 * does.
251
 */
252
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
253
		       phys_addr_t addr, phys_addr_t end)
254
{
255 256 257 258 259 260
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
261 262
			pte_t old_pte = *pte;

263 264
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
265 266

			/* No need to invalidate the cache for device mappings */
267
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
268 269 270
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
271 272 273
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

274 275
	if (stage2_pte_table_empty(start_pte))
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
276 277
}

278
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
279
		       phys_addr_t addr, phys_addr_t end)
280
{
281 282
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
283

284
	start_pmd = pmd = stage2_pmd_offset(pud, addr);
285
	do {
286
		next = stage2_pmd_addr_end(addr, end);
287
		if (!pmd_none(*pmd)) {
288
			if (pmd_thp_or_huge(*pmd)) {
289 290
				pmd_t old_pmd = *pmd;

291 292
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
293 294 295

				kvm_flush_dcache_pmd(old_pmd);

296 297
				put_page(virt_to_page(pmd));
			} else {
298
				unmap_stage2_ptes(kvm, pmd, addr, next);
299
			}
300
		}
301
	} while (pmd++, addr = next, addr != end);
302

303 304
	if (stage2_pmd_table_empty(start_pmd))
		clear_stage2_pud_entry(kvm, pud, start_addr);
305
}
306

307
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
308 309 310 311
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
312

313
	start_pud = pud = stage2_pud_offset(pgd, addr);
314
	do {
315 316 317
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud)) {
318 319
				pud_t old_pud = *pud;

320
				stage2_pud_clear(pud);
321
				kvm_tlb_flush_vmid_ipa(kvm, addr);
322
				kvm_flush_dcache_pud(old_pud);
323 324
				put_page(virt_to_page(pud));
			} else {
325
				unmap_stage2_pmds(kvm, pud, addr, next);
326 327
			}
		}
328
	} while (pud++, addr = next, addr != end);
329

330 331
	if (stage2_pud_table_empty(start_pud))
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
332 333
}

334 335 336 337 338 339 340 341 342 343 344 345
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
346 347 348 349 350
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

351
	assert_spin_locked(&kvm->mmu_lock);
352 353
	WARN_ON(size & ~PAGE_MASK);

354
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
355
	do {
356 357 358 359 360 361 362
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
363 364 365
		next = stage2_pgd_addr_end(addr, end);
		if (!stage2_pgd_none(*pgd))
			unmap_stage2_puds(kvm, pgd, addr, next);
366 367 368 369 370 371
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
372
	} while (pgd++, addr = next, addr != end);
373 374
}

375 376 377 378 379 380 381
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
382
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
383
			kvm_flush_dcache_pte(*pte);
384 385 386 387 388 389 390 391 392
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

393
	pmd = stage2_pmd_offset(pud, addr);
394
	do {
395
		next = stage2_pmd_addr_end(addr, end);
396
		if (!pmd_none(*pmd)) {
397
			if (pmd_thp_or_huge(*pmd))
398 399
				kvm_flush_dcache_pmd(*pmd);
			else
400 401 402 403 404 405 406 407 408 409 410
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

411
	pud = stage2_pud_offset(pgd, addr);
412
	do {
413 414 415
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud))
416 417
				kvm_flush_dcache_pud(*pud);
			else
418 419 420 421 422 423 424 425 426 427 428 429 430
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

431
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
432
	do {
433
		next = stage2_pgd_addr_end(addr, end);
434 435
		if (!stage2_pgd_none(*pgd))
			stage2_flush_puds(kvm, pgd, addr, next);
436 437 438 439 440 441 442 443 444 445
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
446
static void stage2_flush_vm(struct kvm *kvm)
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

539 540 541 542 543 544 545
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
{
	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
}

static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
			      phys_addr_t start, u64 size)
546 547 548 549 550 551 552 553 554
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
555
	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
556 557 558 559 560 561 562
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

563 564 565 566 567 568 569 570 571 572
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
}

static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
}

573
/**
574
 * free_hyp_pgds - free Hyp-mode page tables
575
 *
576 577
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
578
 * PAGE_OFFSET), or device mappings in the idmap range.
579
 *
580 581
 * boot_hyp_pgd should only map the idmap range, and is only used in
 * the extended idmap case.
582
 */
583
void free_hyp_pgds(void)
584
{
585 586
	pgd_t *id_pgd;

587
	mutex_lock(&kvm_hyp_pgd_mutex);
588

589 590 591 592 593 594 595 596 597 598
	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;

	if (id_pgd) {
		/* In case we never called hyp_mmu_init() */
		if (!io_map_base)
			io_map_base = hyp_idmap_start;
		unmap_hyp_idmap_range(id_pgd, io_map_base,
				      hyp_idmap_start + PAGE_SIZE - io_map_base);
	}

599 600 601 602 603
	if (boot_hyp_pgd) {
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

604
	if (hyp_pgd) {
605 606
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
607

608
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
609
		hyp_pgd = NULL;
610
	}
611 612 613 614 615
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
616

617 618 619 620
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
621 622
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
623 624 625 626
{
	pte_t *pte;
	unsigned long addr;

627 628
	addr = start;
	do {
629
		pte = pte_offset_kernel(pmd, addr);
630
		kvm_set_pte(pte, kvm_pfn_pte(pfn, prot));
631
		get_page(virt_to_page(pte));
632
		pfn++;
633
	} while (addr += PAGE_SIZE, addr != end);
634 635 636
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
637 638
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
639 640 641 642 643
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

644 645
	addr = start;
	do {
646
		pmd = pmd_offset(pud, addr);
647 648 649 650

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
651
			pte = pte_alloc_one_kernel(NULL, addr);
652 653 654 655
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
656
			kvm_pmd_populate(pmd, pte);
657
			get_page(virt_to_page(pmd));
658 659 660 661
		}

		next = pmd_addr_end(addr, end);

662 663
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
664
	} while (addr = next, addr != end);
665 666 667 668

	return 0;
}

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
688
			kvm_pud_populate(pud, pmd);
689 690 691 692 693 694 695 696 697 698 699 700 701
			get_page(virt_to_page(pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

702
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
703 704
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
705 706 707 708 709 710 711
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
712 713 714
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
715
		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
716

717 718 719 720
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
721 722 723
				err = -ENOMEM;
				goto out;
			}
724
			kvm_pgd_populate(pgd, pud);
725
			get_page(virt_to_page(pgd));
726 727 728
		}

		next = pgd_addr_end(addr, end);
729
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
730 731
		if (err)
			goto out;
732
		pfn += (next - addr) >> PAGE_SHIFT;
733
	} while (addr = next, addr != end);
734 735 736 737 738
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

739 740 741 742 743 744 745 746 747 748 749
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

750
/**
751
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
752 753
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
754
 * @prot:	The protection to be applied to this range
755
 *
756 757 758
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
759
 */
760
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
761
{
762 763
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
764 765
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
766

767 768 769
	if (is_kernel_in_hyp_mode())
		return 0;

770 771
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
772

773 774
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
775

776
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
777 778
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
779
					    __phys_to_pfn(phys_addr),
780
					    prot);
781 782 783 784 785
		if (err)
			return err;
	}

	return 0;
786 787
}

788 789
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
					unsigned long *haddr, pgprot_t prot)
790
{
791 792 793
	pgd_t *pgd = hyp_pgd;
	unsigned long base;
	int ret = 0;
794

795
	mutex_lock(&kvm_hyp_pgd_mutex);
796

797 798 799 800 801 802 803 804 805 806
	/*
	 * This assumes that we we have enough space below the idmap
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
807

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

	if (__kvm_cpu_uses_extended_idmap())
		pgd = boot_hyp_pgd;

	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
				    base, base + size,
828
				    __phys_to_pfn(phys_addr), prot);
829 830 831
	if (ret)
		goto out;

832
	*haddr = base + offset_in_page(phys_addr);
833 834

out:
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
863 864 865
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
892 893 894
		return ret;
	}

895
	*haddr = (void *)addr;
896
	return 0;
897 898
}

899 900 901 902
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
903 904 905
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
906 907 908 909 910 911 912 913 914 915 916 917 918
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

919 920 921
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
	if (!pgd)
922 923
		return -ENOMEM;

924 925 926 927
	kvm->arch.pgd = pgd;
	return 0;
}

928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
983
	down_read(&current->mm->mmap_sem);
984 985 986 987 988 989 990
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
991
	up_read(&current->mm->mmap_sem);
992 993 994
	srcu_read_unlock(&kvm->srcu, idx);
}

995 996 997 998 999 1000 1001 1002 1003 1004
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
1005
	void *pgd = NULL;
1006

1007
	spin_lock(&kvm->mmu_lock);
1008 1009
	if (kvm->arch.pgd) {
		unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
1010
		pgd = READ_ONCE(kvm->arch.pgd);
1011 1012
		kvm->arch.pgd = NULL;
	}
1013 1014
	spin_unlock(&kvm->mmu_lock);

1015
	/* Free the HW pgd, one page at a time */
1016 1017
	if (pgd)
		free_pages_exact(pgd, S2_PGD_SIZE);
1018 1019
}

1020
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1021
			     phys_addr_t addr)
1022 1023 1024 1025
{
	pgd_t *pgd;
	pud_t *pud;

1026 1027
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
	if (WARN_ON(stage2_pgd_none(*pgd))) {
1028 1029 1030
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
1031
		stage2_pgd_populate(pgd, pud);
1032 1033 1034
		get_page(virt_to_page(pgd));
	}

1035
	return stage2_pud_offset(pgd, addr);
1036 1037 1038 1039 1040 1041 1042 1043 1044
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
1045
	if (!pud || stage2_pud_huge(*pud))
1046 1047
		return NULL;

1048
	if (stage2_pud_none(*pud)) {
1049
		if (!cache)
1050
			return NULL;
1051
		pmd = mmu_memory_cache_alloc(cache);
1052
		stage2_pud_populate(pud, pmd);
1053
		get_page(virt_to_page(pud));
1054 1055
	}

1056
	return stage2_pmd_offset(pud, addr);
1057 1058 1059 1060 1061 1062 1063 1064 1065
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
1066

1067
	old_pmd = *pmd;
1068
	if (pmd_present(old_pmd)) {
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
		/*
		 * Multiple vcpus faulting on the same PMD entry, can
		 * lead to them sequentially updating the PMD with the
		 * same value. Following the break-before-make
		 * (pmd_clear() followed by tlb_flush()) process can
		 * hinder forward progress due to refaults generated
		 * on missing translations.
		 *
		 * Skip updating the page table if the entry is
		 * unchanged.
		 */
		if (pmd_val(old_pmd) == pmd_val(*new_pmd))
			return 0;

		/*
		 * Mapping in huge pages should only happen through a
		 * fault.  If a page is merged into a transparent huge
		 * page, the individual subpages of that huge page
		 * should be unmapped through MMU notifiers before we
		 * get here.
		 *
		 * Merging of CompoundPages is not supported; they
		 * should become splitting first, unmapped, merged,
		 * and mapped back in on-demand.
		 */
		VM_BUG_ON(pmd_pfn(old_pmd) != pmd_pfn(*new_pmd));

1096
		pmd_clear(pmd);
1097
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1098
	} else {
1099
		get_page(virt_to_page(pmd));
1100 1101 1102
	}

	kvm_set_pmd(pmd, *new_pmd);
1103 1104 1105
	return 0;
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
static int stage2_set_pud_huge(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			       phys_addr_t addr, const pud_t *new_pudp)
{
	pud_t *pudp, old_pud;

	pudp = stage2_get_pud(kvm, cache, addr);
	VM_BUG_ON(!pudp);

	old_pud = *pudp;

	/*
	 * A large number of vcpus faulting on the same stage 2 entry,
	 * can lead to a refault due to the
	 * stage2_pud_clear()/tlb_flush(). Skip updating the page
	 * tables if there is no change.
	 */
	if (pud_val(old_pud) == pud_val(*new_pudp))
		return 0;

	if (stage2_pud_present(old_pud)) {
		stage2_pud_clear(pudp);
		kvm_tlb_flush_vmid_ipa(kvm, addr);
	} else {
		get_page(virt_to_page(pudp));
	}

	kvm_set_pud(pudp, *new_pudp);
	return 0;
}

1136 1137 1138 1139 1140 1141 1142 1143
/*
 * stage2_get_leaf_entry - walk the stage2 VM page tables and return
 * true if a valid and present leaf-entry is found. A pointer to the
 * leaf-entry is returned in the appropriate level variable - pudpp,
 * pmdpp, ptepp.
 */
static bool stage2_get_leaf_entry(struct kvm *kvm, phys_addr_t addr,
				  pud_t **pudpp, pmd_t **pmdpp, pte_t **ptepp)
1144
{
1145
	pud_t *pudp;
1146 1147 1148
	pmd_t *pmdp;
	pte_t *ptep;

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
	*pudpp = NULL;
	*pmdpp = NULL;
	*ptepp = NULL;

	pudp = stage2_get_pud(kvm, NULL, addr);
	if (!pudp || stage2_pud_none(*pudp) || !stage2_pud_present(*pudp))
		return false;

	if (stage2_pud_huge(*pudp)) {
		*pudpp = pudp;
		return true;
	}

	pmdp = stage2_pmd_offset(pudp, addr);
1163 1164 1165
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

1166 1167 1168 1169
	if (pmd_thp_or_huge(*pmdp)) {
		*pmdpp = pmdp;
		return true;
	}
1170 1171 1172 1173 1174

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	*ptepp = ptep;
	return true;
}

static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
	pud_t *pudp;
	pmd_t *pmdp;
	pte_t *ptep;
	bool found;

	found = stage2_get_leaf_entry(kvm, addr, &pudp, &pmdp, &ptep);
	if (!found)
		return false;

	if (pudp)
		return kvm_s2pud_exec(pudp);
	else if (pmdp)
		return kvm_s2pmd_exec(pmdp);
	else
		return kvm_s2pte_exec(ptep);
1196 1197
}

1198
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1199 1200
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
1201
{
1202
	pud_t *pud;
1203 1204
	pmd_t *pmd;
	pte_t *pte, old_pte;
1205 1206 1207 1208
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
1209

1210
	/* Create stage-2 page table mapping - Levels 0 and 1 */
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	pud = stage2_get_pud(kvm, cache, addr);
	if (!pud) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

	/*
	 * While dirty page logging - dissolve huge PUD, then continue
	 * on to allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pud(kvm, addr, pud);

	if (stage2_pud_none(*pud)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pmd = mmu_memory_cache_alloc(cache);
		stage2_pud_populate(pud, pmd);
		get_page(virt_to_page(pud));
	}

	pmd = stage2_pmd_offset(pud, addr);
1236 1237 1238 1239 1240 1241 1242 1243
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

1244 1245 1246 1247 1248 1249 1250
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

1251
	/* Create stage-2 page mappings - Level 2 */
1252 1253 1254 1255
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
1256
		kvm_pmd_populate(pmd, pte);
1257
		get_page(virt_to_page(pmd));
1258 1259 1260
	}

	pte = pte_offset_kernel(pmd, addr);
1261 1262 1263 1264 1265 1266

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
1267
	if (pte_present(old_pte)) {
1268 1269 1270 1271
		/* Skip page table update if there is no change */
		if (pte_val(old_pte) == pte_val(*new_pte))
			return 0;

1272
		kvm_set_pte(pte, __pte(0));
1273
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1274
	} else {
1275
		get_page(virt_to_page(pte));
1276
	}
1277

1278
	kvm_set_pte(pte, *new_pte);
1279 1280 1281
	return 0;
}

1282 1283 1284 1285 1286 1287 1288
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1289 1290
	return 0;
}
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1302

1303 1304 1305 1306 1307
static int stage2_pudp_test_and_clear_young(pud_t *pud)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pud);
}

1308 1309 1310 1311 1312 1313 1314 1315 1316
/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1317
			  phys_addr_t pa, unsigned long size, bool writable)
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1328
		pte_t pte = kvm_pfn_pte(pfn, PAGE_S2_DEVICE);
1329

1330
		if (writable)
1331
			pte = kvm_s2pte_mkwrite(pte);
1332

1333 1334
		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
						KVM_NR_MEM_OBJS);
1335 1336 1337
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1338 1339
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1352
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1353
{
D
Dan Williams 已提交
1354
	kvm_pfn_t pfn = *pfnp;
1355
	gfn_t gfn = *ipap >> PAGE_SHIFT;
1356
	struct page *page = pfn_to_page(pfn);
1357

1358 1359 1360 1361 1362 1363
	/*
	 * PageTransCompoungMap() returns true for THP and
	 * hugetlbfs. Make sure the adjustment is done only for THP
	 * pages.
	 */
	if (!PageHuge(page) && PageTransCompoundMap(page)) {
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1399 1400 1401 1402 1403 1404 1405 1406
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

1437
	pmd = stage2_pmd_offset(pud, addr);
1438 1439

	do {
1440
		next = stage2_pmd_addr_end(addr, end);
1441
		if (!pmd_none(*pmd)) {
1442
			if (pmd_thp_or_huge(*pmd)) {
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

1465
	pud = stage2_pud_offset(pgd, addr);
1466
	do {
1467 1468
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
1469 1470 1471 1472 1473 1474
			if (stage2_pud_huge(*pud)) {
				if (!kvm_s2pud_readonly(pud))
					kvm_set_s2pud_readonly(pud);
			} else {
				stage2_wp_pmds(pud, addr, next);
			}
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1490
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1491 1492 1493 1494
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1495 1496
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1497 1498 1499
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1500
		 */
1501 1502 1503
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1504 1505
		next = stage2_pgd_addr_end(addr, end);
		if (stage2_pgd_present(*pgd))
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
			stage2_wp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1517
 * all present PUD, PMD and PTEs are write protected in the memory region.
1518 1519 1520 1521 1522 1523 1524
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1525 1526
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1527 1528 1529 1530 1531 1532 1533 1534
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1535 1536

/**
1537
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1538 1539 1540 1541 1542 1543 1544 1545 1546
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1547
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1548 1549 1550 1551 1552 1553 1554 1555 1556
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1557

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1572
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1573
{
1574
	__clean_dcache_guest_page(pfn, size);
1575 1576
}

1577
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1578
{
1579
	__invalidate_icache_guest_page(pfn, size);
1580 1581
}

1582 1583 1584 1585 1586
static void kvm_send_hwpoison_signal(unsigned long address,
				     struct vm_area_struct *vma)
{
	siginfo_t info;

1587
	clear_siginfo(&info);
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	info.si_signo   = SIGBUS;
	info.si_errno   = 0;
	info.si_code    = BUS_MCEERR_AR;
	info.si_addr    = (void __user *)address;

	if (is_vm_hugetlb_page(vma))
		info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
	else
		info.si_addr_lsb = PAGE_SHIFT;

	send_sig_info(SIGBUS, &info, current);
}

1601
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1602
			  struct kvm_memory_slot *memslot, unsigned long hva,
1603 1604 1605
			  unsigned long fault_status)
{
	int ret;
1606 1607
	bool write_fault, writable, force_pte = false;
	bool exec_fault, needs_exec;
1608
	unsigned long mmu_seq;
1609 1610
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1611
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1612
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1613
	kvm_pfn_t pfn;
1614
	pgprot_t mem_type = PAGE_S2;
1615
	bool logging_active = memslot_is_logging(memslot);
1616
	unsigned long vma_pagesize, flags = 0;
1617

1618
	write_fault = kvm_is_write_fault(vcpu);
1619 1620 1621 1622
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1623 1624 1625 1626
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1627 1628 1629
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1630 1631 1632 1633 1634 1635
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1636
	vma_pagesize = vma_kernel_pagesize(vma);
1637 1638 1639 1640 1641 1642 1643 1644
	/*
	 * PUD level may not exist for a VM but PMD is guaranteed to
	 * exist.
	 */
	if ((vma_pagesize == PMD_SIZE ||
	     (vma_pagesize == PUD_SIZE && STAGE2_PGTABLE_LEVELS > 3)) &&
	    !logging_active) {
		gfn = (fault_ipa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
1645
	} else {
1646 1647
		/*
		 * Fallback to PTE if it's not one of the Stage 2
1648 1649
		 * supported hugepage sizes or the corresponding level
		 * doesn't exist
1650 1651 1652
		 */
		vma_pagesize = PAGE_SIZE;

1653
		/*
1654 1655 1656 1657 1658 1659 1660
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
1661
		 */
1662 1663
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1664
			force_pte = true;
1665 1666 1667
	}
	up_read(&current->mm->mmap_sem);

1668
	/* We need minimum second+third level pages */
1669 1670
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1686
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1687 1688 1689 1690
	if (pfn == KVM_PFN_ERR_HWPOISON) {
		kvm_send_hwpoison_signal(hva, vma);
		return 0;
	}
1691
	if (is_error_noslot_pfn(pfn))
1692 1693
		return -EFAULT;

1694
	if (kvm_is_device_pfn(pfn)) {
1695
		mem_type = PAGE_S2_DEVICE;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		force_pte = true;
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1713

1714 1715
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1716
		goto out_unlock;
1717

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	if (vma_pagesize == PAGE_SIZE && !force_pte) {
		/*
		 * Only PMD_SIZE transparent hugepages(THP) are
		 * currently supported. This code will need to be
		 * updated to support other THP sizes.
		 */
		if (transparent_hugepage_adjust(&pfn, &fault_ipa))
			vma_pagesize = PMD_SIZE;
	}

	if (writable)
		kvm_set_pfn_dirty(pfn);
1730

1731 1732 1733 1734 1735 1736
	if (fault_status != FSC_PERM)
		clean_dcache_guest_page(pfn, vma_pagesize);

	if (exec_fault)
		invalidate_icache_guest_page(pfn, vma_pagesize);

1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
	/*
	 * If we took an execution fault we have made the
	 * icache/dcache coherent above and should now let the s2
	 * mapping be executable.
	 *
	 * Write faults (!exec_fault && FSC_PERM) are orthogonal to
	 * execute permissions, and we preserve whatever we have.
	 */
	needs_exec = exec_fault ||
		(fault_status == FSC_PERM && stage2_is_exec(kvm, fault_ipa));

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	if (vma_pagesize == PUD_SIZE) {
		pud_t new_pud = kvm_pfn_pud(pfn, mem_type);

		new_pud = kvm_pud_mkhuge(new_pud);
		if (writable)
			new_pud = kvm_s2pud_mkwrite(new_pud);

		if (needs_exec)
			new_pud = kvm_s2pud_mkexec(new_pud);

		ret = stage2_set_pud_huge(kvm, memcache, fault_ipa, &new_pud);
	} else if (vma_pagesize == PMD_SIZE) {
1760 1761 1762 1763
		pmd_t new_pmd = kvm_pfn_pmd(pfn, mem_type);

		new_pmd = kvm_pmd_mkhuge(new_pmd);

1764
		if (writable)
1765
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1766

1767
		if (needs_exec)
1768
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1769

1770 1771
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1772
		pte_t new_pte = kvm_pfn_pte(pfn, mem_type);
1773

1774
		if (writable) {
1775
			new_pte = kvm_s2pte_mkwrite(new_pte);
1776
			mark_page_dirty(kvm, gfn);
1777
		}
1778

1779
		if (needs_exec)
1780
			new_pte = kvm_s2pte_mkexec(new_pte);
1781

1782
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1783
	}
1784

1785
out_unlock:
1786
	spin_unlock(&kvm->mmu_lock);
1787
	kvm_set_pfn_accessed(pfn);
1788
	kvm_release_pfn_clean(pfn);
1789
	return ret;
1790 1791
}

1792 1793 1794 1795
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1796 1797
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1798 1799 1800
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
1801
	pud_t *pud;
1802 1803
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1804
	kvm_pfn_t pfn;
1805 1806 1807 1808 1809 1810
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

1811
	if (!stage2_get_leaf_entry(vcpu->kvm, fault_ipa, &pud, &pmd, &pte))
1812 1813
		goto out;

1814 1815 1816 1817 1818
	if (pud) {		/* HugeTLB */
		*pud = kvm_s2pud_mkyoung(*pud);
		pfn = kvm_pud_pfn(*pud);
		pfn_valid = true;
	} else	if (pmd) {	/* THP, HugeTLB */
1819 1820 1821
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
1822 1823 1824 1825
	} else {
		*pte = pte_mkyoung(*pte);	/* Just a page... */
		pfn = pte_pfn(*pte);
		pfn_valid = true;
1826 1827 1828 1829 1830 1831 1832 1833
	}

out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1846 1847
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1848 1849 1850
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1851 1852
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1853 1854 1855
	gfn_t gfn;
	int ret, idx;

1856 1857 1858
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1859
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1860

1861 1862 1863 1864 1865 1866
	/* Synchronous External Abort? */
	if (kvm_vcpu_dabt_isextabt(vcpu)) {
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1867 1868 1869
		if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
			return 1;

1870 1871 1872 1873
		if (unlikely(!is_iabt)) {
			kvm_inject_vabt(vcpu);
			return 1;
		}
1874 1875
	}

1876 1877
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1878 1879

	/* Check the stage-2 fault is trans. fault or write fault */
1880 1881
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1882 1883 1884 1885
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1886 1887 1888 1889 1890 1891
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1892 1893
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1894
	write_fault = kvm_is_write_fault(vcpu);
1895
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1896 1897
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1898
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1899 1900 1901 1902
			ret = 1;
			goto out_unlock;
		}

1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1919 1920 1921 1922 1923 1924 1925
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1926
		ret = io_mem_abort(vcpu, run, fault_ipa);
1927 1928 1929
		goto out_unlock;
	}

1930 1931 1932
	/* Userspace should not be able to register out-of-bounds IPAs */
	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);

1933 1934 1935 1936 1937 1938
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1939
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1940 1941 1942 1943 1944
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1945 1946
}

1947 1948 1949 1950
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
1951 1952
					    gpa_t gpa, u64 size,
					    void *data),
1953
			     void *data)
1954 1955 1956
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1957
	int ret = 0;
1958 1959 1960 1961 1962 1963

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
1964
		gfn_t gpa;
1965 1966 1967 1968 1969 1970 1971

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

1972 1973
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1974
	}
1975 1976

	return ret;
1977 1978
}

1979
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1980
{
1981
	unmap_stage2_range(kvm, gpa, size);
1982
	return 0;
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

1996
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1997 1998 1999
{
	pte_t *pte = (pte_t *)data;

2000
	WARN_ON(size != PAGE_SIZE);
2001 2002 2003 2004 2005 2006 2007 2008
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
2009
	return 0;
2010 2011 2012 2013 2014 2015
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
2016
	kvm_pfn_t pfn = pte_pfn(pte);
2017 2018 2019 2020 2021 2022
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
2023 2024 2025 2026 2027 2028

	/*
	 * We've moved a page around, probably through CoW, so let's treat it
	 * just like a translation fault and clean the cache to the PoC.
	 */
	clean_dcache_guest_page(pfn, PAGE_SIZE);
2029
	stage2_pte = kvm_pfn_pte(pfn, PAGE_S2);
2030 2031 2032
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

2033
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2034
{
2035
	pud_t *pud;
2036 2037 2038
	pmd_t *pmd;
	pte_t *pte;

2039 2040
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2041 2042
		return 0;

2043 2044 2045
	if (pud)
		return stage2_pudp_test_and_clear_young(pud);
	else if (pmd)
2046
		return stage2_pmdp_test_and_clear_young(pmd);
2047 2048
	else
		return stage2_ptep_test_and_clear_young(pte);
2049 2050
}

2051
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
2052
{
2053
	pud_t *pud;
2054 2055 2056
	pmd_t *pmd;
	pte_t *pte;

2057 2058
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
	if (!stage2_get_leaf_entry(kvm, gpa, &pud, &pmd, &pte))
2059 2060
		return 0;

2061 2062 2063
	if (pud)
		return kvm_s2pud_young(*pud);
	else if (pmd)
2064
		return pmd_young(*pmd);
2065
	else
2066 2067 2068 2069 2070
		return pte_young(*pte);
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
2071 2072
	if (!kvm->arch.pgd)
		return 0;
2073 2074 2075 2076 2077 2078
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
2079 2080
	if (!kvm->arch.pgd)
		return 0;
2081 2082 2083 2084
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

2085 2086 2087 2088 2089
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

2090 2091
phys_addr_t kvm_mmu_get_httbr(void)
{
2092 2093 2094 2095
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
2096 2097
}

2098 2099 2100 2101 2102
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

2103 2104 2105 2106 2107
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
2108
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

2119 2120
int kvm_mmu_init(void)
{
2121 2122
	int err;

2123
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
2124
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
2125
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
2126
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
2127
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
2128

2129 2130 2131 2132 2133
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
2134

2135 2136 2137 2138
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
2139

M
Marc Zyngier 已提交
2140
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
2141
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
2142
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
2143 2144 2145 2146 2147 2148 2149 2150 2151
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

2152
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
2153
	if (!hyp_pgd) {
2154
		kvm_err("Hyp mode PGD not allocated\n");
2155 2156 2157 2158
		err = -ENOMEM;
		goto out;
	}

2159 2160 2161 2162 2163 2164 2165 2166
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
2167

2168 2169 2170
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
2171

2172 2173 2174 2175 2176 2177 2178
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
2179 2180 2181 2182
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
2183 2184
	}

2185
	io_map_base = hyp_idmap_start;
2186
	return 0;
2187
out:
2188
	free_hyp_pgds();
2189
	return err;
2190
}
2191 2192

void kvm_arch_commit_memory_region(struct kvm *kvm,
2193
				   const struct kvm_userspace_memory_region *mem,
2194
				   const struct kvm_memory_slot *old,
2195
				   const struct kvm_memory_slot *new,
2196 2197
				   enum kvm_mr_change change)
{
2198 2199 2200 2201 2202 2203 2204
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
2205 2206 2207 2208
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2209
				   const struct kvm_userspace_memory_region *mem,
2210 2211
				   enum kvm_mr_change change)
{
2212 2213 2214 2215 2216
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

2217 2218
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
2219 2220
		return 0;

2221 2222 2223 2224 2225 2226 2227 2228
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
		return -EFAULT;

2229
	down_read(&current->mm->mmap_sem);
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
2267 2268 2269 2270
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
2271

2272
			/* IO region dirty page logging not allowed */
2273 2274 2275 2276
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
2277

2278 2279 2280 2281 2282 2283 2284 2285 2286
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

2287
	if (change == KVM_MR_FLAGS_ONLY)
2288
		goto out;
2289

2290 2291
	spin_lock(&kvm->mmu_lock);
	if (ret)
2292
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2293 2294 2295
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
2296 2297
out:
	up_read(&current->mm->mmap_sem);
2298
	return ret;
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

2312
void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
2313 2314 2315 2316 2317
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
2318
	kvm_free_stage2_pgd(kvm);
2319 2320 2321 2322 2323
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2324 2325 2326 2327 2328 2329
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
2330
}
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
2362
	unsigned long hcr = *vcpu_hcr(vcpu);
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
2377
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
2395
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2396 2397 2398

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}