mmu.c 55.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
23
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
24
#include <trace/events/kvm.h>
25
#include <asm/pgalloc.h>
26
#include <asm/cacheflush.h>
27 28
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
29
#include <asm/kvm_mmio.h>
30
#include <asm/kvm_asm.h>
31
#include <asm/kvm_emulate.h>
32
#include <asm/virt.h>
33
#include <asm/system_misc.h>
34 35

#include "trace.h"
36

37
static pgd_t *boot_hyp_pgd;
38
static pgd_t *hyp_pgd;
39
static pgd_t *merged_hyp_pgd;
40 41
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

42 43 44 45
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

46 47
static unsigned long io_map_base;

48
#define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
49
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
50

51 52 53 54 55 56
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
57 58 59 60 61 62 63 64 65 66 67
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
68
}
69

70
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
71
{
72
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
73 74
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

95 96 97 98 99
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

100 101 102 103 104 105 106 107 108 109 110
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
111
	if (!pmd_thp_or_huge(*pmd))
112 113 114 115 116 117 118
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

151
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
152
{
153 154
	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
	stage2_pgd_clear(pgd);
155
	kvm_tlb_flush_vmid_ipa(kvm, addr);
156
	stage2_pud_free(pud_table);
157
	put_page(virt_to_page(pgd));
158 159
}

160
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
161
{
162 163 164
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
	VM_BUG_ON(stage2_pud_huge(*pud));
	stage2_pud_clear(pud);
165
	kvm_tlb_flush_vmid_ipa(kvm, addr);
166
	stage2_pmd_free(pmd_table);
167 168
	put_page(virt_to_page(pud));
}
169

170
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
171
{
172
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
173
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
174 175 176
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
177 178 179
	put_page(virt_to_page(pmd));
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
 */
200
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
201
		       phys_addr_t addr, phys_addr_t end)
202
{
203 204 205 206 207 208
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
209 210
			pte_t old_pte = *pte;

211 212
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
213 214

			/* No need to invalidate the cache for device mappings */
215
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
216 217 218
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
219 220 221
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

222 223
	if (stage2_pte_table_empty(start_pte))
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
224 225
}

226
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
227
		       phys_addr_t addr, phys_addr_t end)
228
{
229 230
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
231

232
	start_pmd = pmd = stage2_pmd_offset(pud, addr);
233
	do {
234
		next = stage2_pmd_addr_end(addr, end);
235
		if (!pmd_none(*pmd)) {
236
			if (pmd_thp_or_huge(*pmd)) {
237 238
				pmd_t old_pmd = *pmd;

239 240
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
241 242 243

				kvm_flush_dcache_pmd(old_pmd);

244 245
				put_page(virt_to_page(pmd));
			} else {
246
				unmap_stage2_ptes(kvm, pmd, addr, next);
247
			}
248
		}
249
	} while (pmd++, addr = next, addr != end);
250

251 252
	if (stage2_pmd_table_empty(start_pmd))
		clear_stage2_pud_entry(kvm, pud, start_addr);
253
}
254

255
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
256 257 258 259
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
260

261
	start_pud = pud = stage2_pud_offset(pgd, addr);
262
	do {
263 264 265
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud)) {
266 267
				pud_t old_pud = *pud;

268
				stage2_pud_clear(pud);
269
				kvm_tlb_flush_vmid_ipa(kvm, addr);
270
				kvm_flush_dcache_pud(old_pud);
271 272
				put_page(virt_to_page(pud));
			} else {
273
				unmap_stage2_pmds(kvm, pud, addr, next);
274 275
			}
		}
276
	} while (pud++, addr = next, addr != end);
277

278 279
	if (stage2_pud_table_empty(start_pud))
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
280 281
}

282 283 284 285 286 287 288 289 290 291 292 293
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
294 295 296 297 298
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

299
	assert_spin_locked(&kvm->mmu_lock);
300
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
301
	do {
302 303 304 305 306 307 308
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
309 310 311
		next = stage2_pgd_addr_end(addr, end);
		if (!stage2_pgd_none(*pgd))
			unmap_stage2_puds(kvm, pgd, addr, next);
312 313 314 315 316 317
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
318
	} while (pgd++, addr = next, addr != end);
319 320
}

321 322 323 324 325 326 327
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
328
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
329
			kvm_flush_dcache_pte(*pte);
330 331 332 333 334 335 336 337 338
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

339
	pmd = stage2_pmd_offset(pud, addr);
340
	do {
341
		next = stage2_pmd_addr_end(addr, end);
342
		if (!pmd_none(*pmd)) {
343
			if (pmd_thp_or_huge(*pmd))
344 345
				kvm_flush_dcache_pmd(*pmd);
			else
346 347 348 349 350 351 352 353 354 355 356
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

357
	pud = stage2_pud_offset(pgd, addr);
358
	do {
359 360 361
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud))
362 363
				kvm_flush_dcache_pud(*pud);
			else
364 365 366 367 368 369 370 371 372 373 374 375 376
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

377
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
378
	do {
379
		next = stage2_pgd_addr_end(addr, end);
380 381 382 383 384 385 386 387 388 389 390
		stage2_flush_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
391
static void stage2_flush_vm(struct kvm *kvm)
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

484 485 486 487 488 489 490
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
{
	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
}

static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
			      phys_addr_t start, u64 size)
491 492 493 494 495 496 497 498 499
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
500
	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
501 502 503 504 505 506 507
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

508 509 510 511 512 513 514 515 516 517
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
}

static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
}

518
/**
519
 * free_hyp_pgds - free Hyp-mode page tables
520
 *
521 522
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
523
 * PAGE_OFFSET), or device mappings in the idmap range.
524
 *
525 526
 * boot_hyp_pgd should only map the idmap range, and is only used in
 * the extended idmap case.
527
 */
528
void free_hyp_pgds(void)
529
{
530 531
	pgd_t *id_pgd;

532
	mutex_lock(&kvm_hyp_pgd_mutex);
533

534 535 536 537 538 539 540 541 542 543
	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;

	if (id_pgd) {
		/* In case we never called hyp_mmu_init() */
		if (!io_map_base)
			io_map_base = hyp_idmap_start;
		unmap_hyp_idmap_range(id_pgd, io_map_base,
				      hyp_idmap_start + PAGE_SIZE - io_map_base);
	}

544 545 546 547 548
	if (boot_hyp_pgd) {
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

549
	if (hyp_pgd) {
550 551
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
552

553
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
554
		hyp_pgd = NULL;
555
	}
556 557 558 559 560
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
561

562 563 564 565
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
566 567
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
568 569 570 571
{
	pte_t *pte;
	unsigned long addr;

572 573
	addr = start;
	do {
574 575
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
576
		get_page(virt_to_page(pte));
577
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
578
		pfn++;
579
	} while (addr += PAGE_SIZE, addr != end);
580 581 582
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
583 584
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
585 586 587 588 589
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

590 591
	addr = start;
	do {
592
		pmd = pmd_offset(pud, addr);
593 594 595 596

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
597
			pte = pte_alloc_one_kernel(NULL, addr);
598 599 600 601 602
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
603
			get_page(virt_to_page(pmd));
604
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
605 606 607 608
		}

		next = pmd_addr_end(addr, end);

609 610
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
611
	} while (addr = next, addr != end);
612 613 614 615

	return 0;
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
			pud_populate(NULL, pud, pmd);
			get_page(virt_to_page(pud));
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

650
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
651 652
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
653 654 655 656 657 658 659
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
660 661 662
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
663
		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
664

665 666 667 668
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
669 670 671
				err = -ENOMEM;
				goto out;
			}
672 673 674
			pgd_populate(NULL, pgd, pud);
			get_page(virt_to_page(pgd));
			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
675 676 677
		}

		next = pgd_addr_end(addr, end);
678
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
679 680
		if (err)
			goto out;
681
		pfn += (next - addr) >> PAGE_SHIFT;
682
	} while (addr = next, addr != end);
683 684 685 686 687
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

688 689 690 691 692 693 694 695 696 697 698
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

699
/**
700
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
701 702
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
703
 * @prot:	The protection to be applied to this range
704
 *
705 706 707
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
708
 */
709
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
710
{
711 712
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
713 714
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
715

716 717 718
	if (is_kernel_in_hyp_mode())
		return 0;

719 720
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
721

722 723
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
724

725
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
726 727
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
728
					    __phys_to_pfn(phys_addr),
729
					    prot);
730 731 732 733 734
		if (err)
			return err;
	}

	return 0;
735 736 737
}

/**
738
 * create_hyp_io_mappings - Map IO into both kernel and HYP
739
 * @phys_addr:	The physical start address which gets mapped
740 741
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
742
 * @haddr:	HYP VA for this mapping
743
 */
744
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
745 746
			   void __iomem **kaddr,
			   void __iomem **haddr)
747
{
748 749 750
	pgd_t *pgd = hyp_pgd;
	unsigned long base;
	int ret = 0;
751

752 753 754 755 756
	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
757
		*haddr = *kaddr;
758
		return 0;
759
	}
760

761
	mutex_lock(&kvm_hyp_pgd_mutex);
762

763 764 765 766 767 768 769 770 771 772
	/*
	 * This assumes that we we have enough space below the idmap
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

	if (__kvm_cpu_uses_extended_idmap())
		pgd = boot_hyp_pgd;

	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
				    base, base + size,
				    __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
	if (ret)
		goto out;

	*haddr = (void __iomem *)base + offset_in_page(phys_addr);

out:
801 802 803 804 805 806 807
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
		return ret;
	}

	return 0;
808 809
}

810 811 812 813
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
814 815 816
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
817 818 819 820 821 822 823 824 825 826 827 828 829
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

830 831 832
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
	if (!pgd)
833 834
		return -ENOMEM;

835 836 837 838
	kvm->arch.pgd = pgd;
	return 0;
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
894
	down_read(&current->mm->mmap_sem);
895 896 897 898 899 900 901
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
902
	up_read(&current->mm->mmap_sem);
903 904 905
	srcu_read_unlock(&kvm->srcu, idx);
}

906 907 908 909 910 911 912 913 914 915
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
916
	void *pgd = NULL;
917

918
	spin_lock(&kvm->mmu_lock);
919 920
	if (kvm->arch.pgd) {
		unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
921
		pgd = READ_ONCE(kvm->arch.pgd);
922 923
		kvm->arch.pgd = NULL;
	}
924 925
	spin_unlock(&kvm->mmu_lock);

926
	/* Free the HW pgd, one page at a time */
927 928
	if (pgd)
		free_pages_exact(pgd, S2_PGD_SIZE);
929 930
}

931
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
932
			     phys_addr_t addr)
933 934 935 936
{
	pgd_t *pgd;
	pud_t *pud;

937 938
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
	if (WARN_ON(stage2_pgd_none(*pgd))) {
939 940 941
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
942
		stage2_pgd_populate(pgd, pud);
943 944 945
		get_page(virt_to_page(pgd));
	}

946
	return stage2_pud_offset(pgd, addr);
947 948 949 950 951 952 953 954 955
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
956 957 958
	if (!pud)
		return NULL;

959
	if (stage2_pud_none(*pud)) {
960
		if (!cache)
961
			return NULL;
962
		pmd = mmu_memory_cache_alloc(cache);
963
		stage2_pud_populate(pud, pmd);
964
		get_page(virt_to_page(pud));
965 966
	}

967
	return stage2_pmd_offset(pud, addr);
968 969 970 971 972 973 974 975 976
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
977

978 979 980 981 982 983 984 985 986 987 988 989
	/*
	 * Mapping in huge pages should only happen through a fault.  If a
	 * page is merged into a transparent huge page, the individual
	 * subpages of that huge page should be unmapped through MMU
	 * notifiers before we get here.
	 *
	 * Merging of CompoundPages is not supported; they should become
	 * splitting first, unmapped, merged, and mapped back in on-demand.
	 */
	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));

	old_pmd = *pmd;
990 991
	if (pmd_present(old_pmd)) {
		pmd_clear(pmd);
992
		kvm_tlb_flush_vmid_ipa(kvm, addr);
993
	} else {
994
		get_page(virt_to_page(pmd));
995 996 997
	}

	kvm_set_pmd(pmd, *new_pmd);
998 999 1000
	return 0;
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
	pmd_t *pmdp;
	pte_t *ptep;

	pmdp = stage2_get_pmd(kvm, NULL, addr);
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

	if (pmd_thp_or_huge(*pmdp))
		return kvm_s2pmd_exec(pmdp);

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

	return kvm_s2pte_exec(ptep);
}

1020
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1021 1022
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
1023 1024 1025
{
	pmd_t *pmd;
	pte_t *pte, old_pte;
1026 1027 1028 1029
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
1030

1031
	/* Create stage-2 page table mapping - Levels 0 and 1 */
1032 1033 1034 1035 1036 1037 1038 1039 1040
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

1041 1042 1043 1044 1045 1046 1047
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

1048
	/* Create stage-2 page mappings - Level 2 */
1049 1050 1051 1052 1053 1054
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
1055 1056 1057
	}

	pte = pte_offset_kernel(pmd, addr);
1058 1059 1060 1061 1062 1063

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
1064 1065
	if (pte_present(old_pte)) {
		kvm_set_pte(pte, __pte(0));
1066
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1067
	} else {
1068
		get_page(virt_to_page(pte));
1069
	}
1070

1071
	kvm_set_pte(pte, *new_pte);
1072 1073 1074
	return 0;
}

1075 1076 1077 1078 1079 1080 1081
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1082 1083
	return 0;
}
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1105
			  phys_addr_t pa, unsigned long size, bool writable)
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1116
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1117

1118
		if (writable)
1119
			pte = kvm_s2pte_mkwrite(pte);
1120

1121 1122
		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
						KVM_NR_MEM_OBJS);
1123 1124 1125
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1126 1127
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1140
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1141
{
D
Dan Williams 已提交
1142
	kvm_pfn_t pfn = *pfnp;
1143 1144
	gfn_t gfn = *ipap >> PAGE_SHIFT;

1145
	if (PageTransCompoundMap(pfn_to_page(pfn))) {
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1181 1182 1183 1184 1185 1186 1187 1188
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

1219
	pmd = stage2_pmd_offset(pud, addr);
1220 1221

	do {
1222
		next = stage2_pmd_addr_end(addr, end);
1223
		if (!pmd_none(*pmd)) {
1224
			if (pmd_thp_or_huge(*pmd)) {
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

1247
	pud = stage2_pud_offset(pgd, addr);
1248
	do {
1249 1250
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
1251
			/* TODO:PUD not supported, revisit later if supported */
1252
			BUG_ON(stage2_pud_huge(*pud));
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
			stage2_wp_pmds(pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1269
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1270 1271 1272 1273
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1274 1275
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1276 1277 1278
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1279
		 */
1280 1281 1282
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1283 1284
		next = stage2_pgd_addr_end(addr, end);
		if (stage2_pgd_present(*pgd))
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
			stage2_wp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 * all present PMD and PTEs are write protected in the memory region.
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1304 1305
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1306 1307 1308 1309 1310 1311 1312 1313
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1314 1315

/**
1316
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1317 1318 1319 1320 1321 1322 1323 1324 1325
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1326
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1327 1328 1329 1330 1331 1332 1333 1334 1335
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1351
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1352
{
1353
	__clean_dcache_guest_page(pfn, size);
1354 1355
}

1356
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1357
{
1358
	__invalidate_icache_guest_page(pfn, size);
1359 1360
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
static void kvm_send_hwpoison_signal(unsigned long address,
				     struct vm_area_struct *vma)
{
	siginfo_t info;

	info.si_signo   = SIGBUS;
	info.si_errno   = 0;
	info.si_code    = BUS_MCEERR_AR;
	info.si_addr    = (void __user *)address;

	if (is_vm_hugetlb_page(vma))
		info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
	else
		info.si_addr_lsb = PAGE_SHIFT;

	send_sig_info(SIGBUS, &info, current);
}

1379
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1380
			  struct kvm_memory_slot *memslot, unsigned long hva,
1381 1382 1383
			  unsigned long fault_status)
{
	int ret;
1384
	bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
1385
	unsigned long mmu_seq;
1386 1387
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1388
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1389
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1390
	kvm_pfn_t pfn;
1391
	pgprot_t mem_type = PAGE_S2;
1392 1393
	bool logging_active = memslot_is_logging(memslot);
	unsigned long flags = 0;
1394

1395
	write_fault = kvm_is_write_fault(vcpu);
1396 1397 1398 1399
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1400 1401 1402 1403
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1404 1405 1406
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1407 1408 1409 1410 1411 1412
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1413
	if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1414 1415
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1416 1417
	} else {
		/*
1418 1419 1420 1421 1422 1423 1424
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
1425
		 */
1426 1427
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1428
			force_pte = true;
1429 1430 1431
	}
	up_read(&current->mm->mmap_sem);

1432
	/* We need minimum second+third level pages */
1433 1434
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1450
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1451 1452 1453 1454
	if (pfn == KVM_PFN_ERR_HWPOISON) {
		kvm_send_hwpoison_signal(hva, vma);
		return 0;
	}
1455
	if (is_error_noslot_pfn(pfn))
1456 1457
		return -EFAULT;

1458
	if (kvm_is_device_pfn(pfn)) {
1459
		mem_type = PAGE_S2_DEVICE;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		force_pte = true;
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1477

1478 1479
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1480
		goto out_unlock;
1481

1482 1483
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1484 1485

	if (hugetlb) {
1486
		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1487 1488
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
1489
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1490 1491
			kvm_set_pfn_dirty(pfn);
		}
1492 1493

		if (fault_status != FSC_PERM)
1494
			clean_dcache_guest_page(pfn, PMD_SIZE);
1495 1496 1497

		if (exec_fault) {
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1498
			invalidate_icache_guest_page(pfn, PMD_SIZE);
1499 1500 1501 1502
		} else if (fault_status == FSC_PERM) {
			/* Preserve execute if XN was already cleared */
			if (stage2_is_exec(kvm, fault_ipa))
				new_pmd = kvm_s2pmd_mkexec(new_pmd);
1503
		}
1504

1505 1506
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1507
		pte_t new_pte = pfn_pte(pfn, mem_type);
1508

1509
		if (writable) {
1510
			new_pte = kvm_s2pte_mkwrite(new_pte);
1511
			kvm_set_pfn_dirty(pfn);
1512
			mark_page_dirty(kvm, gfn);
1513
		}
1514 1515

		if (fault_status != FSC_PERM)
1516
			clean_dcache_guest_page(pfn, PAGE_SIZE);
1517 1518 1519

		if (exec_fault) {
			new_pte = kvm_s2pte_mkexec(new_pte);
1520
			invalidate_icache_guest_page(pfn, PAGE_SIZE);
1521 1522 1523 1524
		} else if (fault_status == FSC_PERM) {
			/* Preserve execute if XN was already cleared */
			if (stage2_is_exec(kvm, fault_ipa))
				new_pte = kvm_s2pte_mkexec(new_pte);
1525
		}
1526

1527
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1528
	}
1529

1530
out_unlock:
1531
	spin_unlock(&kvm->mmu_lock);
1532
	kvm_set_pfn_accessed(pfn);
1533
	kvm_release_pfn_clean(pfn);
1534
	return ret;
1535 1536
}

1537 1538 1539 1540
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1541 1542
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1543 1544 1545 1546 1547
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1548
	kvm_pfn_t pfn;
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		goto out;

1559
	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
		goto out;
	}

	pte = pte_offset_kernel(pmd, fault_ipa);
	if (pte_none(*pte))		/* Nothing there either */
		goto out;

	*pte = pte_mkyoung(*pte);	/* Just a page... */
	pfn = pte_pfn(*pte);
	pfn_valid = true;
out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1591 1592
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1593 1594 1595
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1596 1597
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1598 1599 1600
	gfn_t gfn;
	int ret, idx;

1601 1602 1603
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1604
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1605

1606 1607 1608 1609 1610 1611
	/* Synchronous External Abort? */
	if (kvm_vcpu_dabt_isextabt(vcpu)) {
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1612 1613 1614
		if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
			return 1;

1615 1616 1617 1618
		if (unlikely(!is_iabt)) {
			kvm_inject_vabt(vcpu);
			return 1;
		}
1619 1620
	}

1621 1622
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1623 1624

	/* Check the stage-2 fault is trans. fault or write fault */
1625 1626
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1627 1628 1629 1630
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1631 1632 1633 1634 1635 1636
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1637 1638
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1639
	write_fault = kvm_is_write_fault(vcpu);
1640
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1641 1642
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1643
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1644 1645 1646 1647
			ret = 1;
			goto out_unlock;
		}

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1664 1665 1666 1667 1668 1669 1670
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1671
		ret = io_mem_abort(vcpu, run, fault_ipa);
1672 1673 1674
		goto out_unlock;
	}

1675 1676 1677
	/* Userspace should not be able to register out-of-bounds IPAs */
	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);

1678 1679 1680 1681 1682 1683
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1684
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1685 1686 1687 1688 1689
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1690 1691
}

1692 1693 1694 1695
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
1696 1697
					    gpa_t gpa, u64 size,
					    void *data),
1698
			     void *data)
1699 1700 1701
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1702
	int ret = 0;
1703 1704 1705 1706 1707 1708

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
1709
		gfn_t gpa;
1710 1711 1712 1713 1714 1715 1716

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

1717 1718
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1719
	}
1720 1721

	return ret;
1722 1723
}

1724
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1725
{
1726
	unmap_stage2_range(kvm, gpa, size);
1727
	return 0;
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

1753
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1754 1755 1756
{
	pte_t *pte = (pte_t *)data;

1757
	WARN_ON(size != PAGE_SIZE);
1758 1759 1760 1761 1762 1763 1764 1765
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1766
	return 0;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

1783
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1784 1785 1786 1787
{
	pmd_t *pmd;
	pte_t *pte;

1788
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1789 1790 1791 1792
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1793 1794
	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
		return stage2_pmdp_test_and_clear_young(pmd);
1795 1796 1797 1798 1799

	pte = pte_offset_kernel(pmd, gpa);
	if (pte_none(*pte))
		return 0;

1800
	return stage2_ptep_test_and_clear_young(pte);
1801 1802
}

1803
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1804 1805 1806 1807
{
	pmd_t *pmd;
	pte_t *pte;

1808
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1809 1810 1811 1812
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1813
	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		return pmd_young(*pmd);

	pte = pte_offset_kernel(pmd, gpa);
	if (!pte_none(*pte))		/* Just a page... */
		return pte_young(*pte);

	return 0;
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
1825 1826
	if (!kvm->arch.pgd)
		return 0;
1827 1828 1829 1830 1831 1832
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1833 1834
	if (!kvm->arch.pgd)
		return 0;
1835 1836 1837 1838
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

1839 1840 1841 1842 1843
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

1844 1845
phys_addr_t kvm_mmu_get_httbr(void)
{
1846 1847 1848 1849
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
1850 1851
}

1852 1853 1854 1855 1856
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1857 1858 1859 1860 1861
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
1862
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

1873 1874
int kvm_mmu_init(void)
{
1875 1876
	int err;

1877
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1878
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1879
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1880
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1881
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1882

1883 1884 1885 1886 1887
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1888

1889 1890 1891 1892
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
1893

M
Marc Zyngier 已提交
1894
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1895 1896
	    hyp_idmap_start <  kern_hyp_va(~0UL) &&
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1897 1898 1899 1900 1901 1902 1903 1904 1905
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

1906
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1907
	if (!hyp_pgd) {
1908
		kvm_err("Hyp mode PGD not allocated\n");
1909 1910 1911 1912
		err = -ENOMEM;
		goto out;
	}

1913 1914 1915 1916 1917 1918 1919 1920
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
1921

1922 1923 1924
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
1925

1926 1927 1928 1929 1930 1931 1932
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
1933 1934 1935 1936
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
1937 1938
	}

1939
	io_map_base = hyp_idmap_start;
1940
	return 0;
1941
out:
1942
	free_hyp_pgds();
1943
	return err;
1944
}
1945 1946

void kvm_arch_commit_memory_region(struct kvm *kvm,
1947
				   const struct kvm_userspace_memory_region *mem,
1948
				   const struct kvm_memory_slot *old,
1949
				   const struct kvm_memory_slot *new,
1950 1951
				   enum kvm_mr_change change)
{
1952 1953 1954 1955 1956 1957 1958
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
1959 1960 1961 1962
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
1963
				   const struct kvm_userspace_memory_region *mem,
1964 1965
				   enum kvm_mr_change change)
{
1966 1967 1968 1969 1970
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

1971 1972
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
1973 1974
		return 0;

1975 1976 1977 1978 1979 1980 1981 1982
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
		return -EFAULT;

1983
	down_read(&current->mm->mmap_sem);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
2021 2022 2023 2024
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
2025

2026
			/* IO region dirty page logging not allowed */
2027 2028 2029 2030
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

2041
	if (change == KVM_MR_FLAGS_ONLY)
2042
		goto out;
2043

2044 2045
	spin_lock(&kvm->mmu_lock);
	if (ret)
2046
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2047 2048 2049
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
2050 2051
out:
	up_read(&current->mm->mmap_sem);
2052
	return ret;
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

2066
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
2067 2068 2069 2070 2071
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
2072
	kvm_free_stage2_pgd(kvm);
2073 2074 2075 2076 2077
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2078 2079 2080 2081 2082 2083
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
2084
}
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
2116
	unsigned long hcr = *vcpu_hcr(vcpu);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
2131
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
2149
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2150 2151 2152

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}