mmu.c 56.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */
18 19 20 21

#include <linux/mman.h>
#include <linux/kvm_host.h>
#include <linux/io.h>
22
#include <linux/hugetlb.h>
23
#include <linux/sched/signal.h>
C
Christoffer Dall 已提交
24
#include <trace/events/kvm.h>
25
#include <asm/pgalloc.h>
26
#include <asm/cacheflush.h>
27 28
#include <asm/kvm_arm.h>
#include <asm/kvm_mmu.h>
C
Christoffer Dall 已提交
29
#include <asm/kvm_mmio.h>
30
#include <asm/kvm_asm.h>
31
#include <asm/kvm_emulate.h>
32
#include <asm/virt.h>
33
#include <asm/system_misc.h>
34 35

#include "trace.h"
36

37
static pgd_t *boot_hyp_pgd;
38
static pgd_t *hyp_pgd;
39
static pgd_t *merged_hyp_pgd;
40 41
static DEFINE_MUTEX(kvm_hyp_pgd_mutex);

42 43 44 45
static unsigned long hyp_idmap_start;
static unsigned long hyp_idmap_end;
static phys_addr_t hyp_idmap_vector;

46 47
static unsigned long io_map_base;

48
#define S2_PGD_SIZE	(PTRS_PER_S2_PGD * sizeof(pgd_t))
49
#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
50

51 52 53 54 55 56
#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)

static bool memslot_is_logging(struct kvm_memory_slot *memslot)
{
	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
57 58 59 60 61 62 63 64 65 66 67
}

/**
 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
 * @kvm:	pointer to kvm structure.
 *
 * Interface to HYP function to flush all VM TLB entries
 */
void kvm_flush_remote_tlbs(struct kvm *kvm)
{
	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
68
}
69

70
static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
71
{
72
	kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
73 74
}

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * D-Cache management functions. They take the page table entries by
 * value, as they are flushing the cache using the kernel mapping (or
 * kmap on 32bit).
 */
static void kvm_flush_dcache_pte(pte_t pte)
{
	__kvm_flush_dcache_pte(pte);
}

static void kvm_flush_dcache_pmd(pmd_t pmd)
{
	__kvm_flush_dcache_pmd(pmd);
}

static void kvm_flush_dcache_pud(pud_t pud)
{
	__kvm_flush_dcache_pud(pud);
}

95 96 97 98 99
static bool kvm_is_device_pfn(unsigned long pfn)
{
	return !pfn_valid(pfn);
}

100 101 102 103 104 105 106 107 108 109 110
/**
 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 * @kvm:	pointer to kvm structure.
 * @addr:	IPA
 * @pmd:	pmd pointer for IPA
 *
 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 * pages in the range dirty.
 */
static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
{
111
	if (!pmd_thp_or_huge(*pmd))
112 113 114 115 116 117 118
		return;

	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	put_page(virt_to_page(pmd));
}

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
				  int min, int max)
{
	void *page;

	BUG_ON(max > KVM_NR_MEM_OBJS);
	if (cache->nobjs >= min)
		return 0;
	while (cache->nobjs < max) {
		page = (void *)__get_free_page(PGALLOC_GFP);
		if (!page)
			return -ENOMEM;
		cache->objects[cache->nobjs++] = page;
	}
	return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
	while (mc->nobjs)
		free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
{
	void *p;

	BUG_ON(!mc || !mc->nobjs);
	p = mc->objects[--mc->nobjs];
	return p;
}

151
static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
152
{
153 154
	pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
	stage2_pgd_clear(pgd);
155
	kvm_tlb_flush_vmid_ipa(kvm, addr);
156
	stage2_pud_free(pud_table);
157
	put_page(virt_to_page(pgd));
158 159
}

160
static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
161
{
162 163 164
	pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
	VM_BUG_ON(stage2_pud_huge(*pud));
	stage2_pud_clear(pud);
165
	kvm_tlb_flush_vmid_ipa(kvm, addr);
166
	stage2_pmd_free(pmd_table);
167 168
	put_page(virt_to_page(pud));
}
169

170
static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
171
{
172
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
173
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
174 175 176
	pmd_clear(pmd);
	kvm_tlb_flush_vmid_ipa(kvm, addr);
	pte_free_kernel(NULL, pte_table);
177 178 179
	put_page(virt_to_page(pmd));
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
/*
 * Unmapping vs dcache management:
 *
 * If a guest maps certain memory pages as uncached, all writes will
 * bypass the data cache and go directly to RAM.  However, the CPUs
 * can still speculate reads (not writes) and fill cache lines with
 * data.
 *
 * Those cache lines will be *clean* cache lines though, so a
 * clean+invalidate operation is equivalent to an invalidate
 * operation, because no cache lines are marked dirty.
 *
 * Those clean cache lines could be filled prior to an uncached write
 * by the guest, and the cache coherent IO subsystem would therefore
 * end up writing old data to disk.
 *
 * This is why right after unmapping a page/section and invalidating
 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 * the IO subsystem will never hit in the cache.
 */
200
static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
201
		       phys_addr_t addr, phys_addr_t end)
202
{
203 204 205 206 207 208
	phys_addr_t start_addr = addr;
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
209 210
			pte_t old_pte = *pte;

211 212
			kvm_set_pte(pte, __pte(0));
			kvm_tlb_flush_vmid_ipa(kvm, addr);
213 214

			/* No need to invalidate the cache for device mappings */
215
			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
216 217 218
				kvm_flush_dcache_pte(old_pte);

			put_page(virt_to_page(pte));
219 220 221
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

222 223
	if (stage2_pte_table_empty(start_pte))
		clear_stage2_pmd_entry(kvm, pmd, start_addr);
224 225
}

226
static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
227
		       phys_addr_t addr, phys_addr_t end)
228
{
229 230
	phys_addr_t next, start_addr = addr;
	pmd_t *pmd, *start_pmd;
231

232
	start_pmd = pmd = stage2_pmd_offset(pud, addr);
233
	do {
234
		next = stage2_pmd_addr_end(addr, end);
235
		if (!pmd_none(*pmd)) {
236
			if (pmd_thp_or_huge(*pmd)) {
237 238
				pmd_t old_pmd = *pmd;

239 240
				pmd_clear(pmd);
				kvm_tlb_flush_vmid_ipa(kvm, addr);
241 242 243

				kvm_flush_dcache_pmd(old_pmd);

244 245
				put_page(virt_to_page(pmd));
			} else {
246
				unmap_stage2_ptes(kvm, pmd, addr, next);
247
			}
248
		}
249
	} while (pmd++, addr = next, addr != end);
250

251 252
	if (stage2_pmd_table_empty(start_pmd))
		clear_stage2_pud_entry(kvm, pud, start_addr);
253
}
254

255
static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
256 257 258 259
		       phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next, start_addr = addr;
	pud_t *pud, *start_pud;
260

261
	start_pud = pud = stage2_pud_offset(pgd, addr);
262
	do {
263 264 265
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud)) {
266 267
				pud_t old_pud = *pud;

268
				stage2_pud_clear(pud);
269
				kvm_tlb_flush_vmid_ipa(kvm, addr);
270
				kvm_flush_dcache_pud(old_pud);
271 272
				put_page(virt_to_page(pud));
			} else {
273
				unmap_stage2_pmds(kvm, pud, addr, next);
274 275
			}
		}
276
	} while (pud++, addr = next, addr != end);
277

278 279
	if (stage2_pud_table_empty(start_pud))
		clear_stage2_pgd_entry(kvm, pgd, start_addr);
280 281
}

282 283 284 285 286 287 288 289 290 291 292 293
/**
 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 * @kvm:   The VM pointer
 * @start: The intermediate physical base address of the range to unmap
 * @size:  The size of the area to unmap
 *
 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 * destroying the VM), otherwise another faulting VCPU may come in and mess
 * with things behind our backs.
 */
static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
294 295 296 297 298
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

299
	assert_spin_locked(&kvm->mmu_lock);
300 301
	WARN_ON(size & ~PAGE_MASK);

302
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
303
	do {
304 305 306 307 308 309 310
		/*
		 * Make sure the page table is still active, as another thread
		 * could have possibly freed the page table, while we released
		 * the lock.
		 */
		if (!READ_ONCE(kvm->arch.pgd))
			break;
311 312 313
		next = stage2_pgd_addr_end(addr, end);
		if (!stage2_pgd_none(*pgd))
			unmap_stage2_puds(kvm, pgd, addr, next);
314 315 316 317 318 319
		/*
		 * If the range is too large, release the kvm->mmu_lock
		 * to prevent starvation and lockup detector warnings.
		 */
		if (next != end)
			cond_resched_lock(&kvm->mmu_lock);
320
	} while (pgd++, addr = next, addr != end);
321 322
}

323 324 325 326 327 328 329
static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
			      phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
330
		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
331
			kvm_flush_dcache_pte(*pte);
332 333 334 335 336 337 338 339 340
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
			      phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

341
	pmd = stage2_pmd_offset(pud, addr);
342
	do {
343
		next = stage2_pmd_addr_end(addr, end);
344
		if (!pmd_none(*pmd)) {
345
			if (pmd_thp_or_huge(*pmd))
346 347
				kvm_flush_dcache_pmd(*pmd);
			else
348 349 350 351 352 353 354 355 356 357 358
				stage2_flush_ptes(kvm, pmd, addr, next);
		}
	} while (pmd++, addr = next, addr != end);
}

static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
			      phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

359
	pud = stage2_pud_offset(pgd, addr);
360
	do {
361 362 363
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
			if (stage2_pud_huge(*pud))
364 365
				kvm_flush_dcache_pud(*pud);
			else
366 367 368 369 370 371 372 373 374 375 376 377 378
				stage2_flush_pmds(kvm, pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

static void stage2_flush_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
	phys_addr_t next;
	pgd_t *pgd;

379
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
380
	do {
381
		next = stage2_pgd_addr_end(addr, end);
382 383 384 385 386 387 388 389 390 391 392
		stage2_flush_puds(kvm, pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 * @kvm: The struct kvm pointer
 *
 * Go through the stage 2 page tables and invalidate any cache lines
 * backing memory already mapped to the VM.
 */
393
static void stage2_flush_vm(struct kvm *kvm)
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_flush_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
	srcu_read_unlock(&kvm->srcu, idx);
}

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
static void clear_hyp_pgd_entry(pgd_t *pgd)
{
	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
	pgd_clear(pgd);
	pud_free(NULL, pud_table);
	put_page(virt_to_page(pgd));
}

static void clear_hyp_pud_entry(pud_t *pud)
{
	pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
	VM_BUG_ON(pud_huge(*pud));
	pud_clear(pud);
	pmd_free(NULL, pmd_table);
	put_page(virt_to_page(pud));
}

static void clear_hyp_pmd_entry(pmd_t *pmd)
{
	pte_t *pte_table = pte_offset_kernel(pmd, 0);
	VM_BUG_ON(pmd_thp_or_huge(*pmd));
	pmd_clear(pmd);
	pte_free_kernel(NULL, pte_table);
	put_page(virt_to_page(pmd));
}

static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte, *start_pte;

	start_pte = pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			kvm_set_pte(pte, __pte(0));
			put_page(virt_to_page(pte));
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);

	if (hyp_pte_table_empty(start_pte))
		clear_hyp_pmd_entry(pmd);
}

static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pmd_t *pmd, *start_pmd;

	start_pmd = pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		/* Hyp doesn't use huge pmds */
		if (!pmd_none(*pmd))
			unmap_hyp_ptes(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);

	if (hyp_pmd_table_empty(start_pmd))
		clear_hyp_pud_entry(pud);
}

static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	phys_addr_t next;
	pud_t *pud, *start_pud;

	start_pud = pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		/* Hyp doesn't use huge puds */
		if (!pud_none(*pud))
			unmap_hyp_pmds(pud, addr, next);
	} while (pud++, addr = next, addr != end);

	if (hyp_pud_table_empty(start_pud))
		clear_hyp_pgd_entry(pgd);
}

486 487 488 489 490 491 492
static unsigned int kvm_pgd_index(unsigned long addr, unsigned int ptrs_per_pgd)
{
	return (addr >> PGDIR_SHIFT) & (ptrs_per_pgd - 1);
}

static void __unmap_hyp_range(pgd_t *pgdp, unsigned long ptrs_per_pgd,
			      phys_addr_t start, u64 size)
493 494 495 496 497 498 499 500 501
{
	pgd_t *pgd;
	phys_addr_t addr = start, end = start + size;
	phys_addr_t next;

	/*
	 * We don't unmap anything from HYP, except at the hyp tear down.
	 * Hence, we don't have to invalidate the TLBs here.
	 */
502
	pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
503 504 505 506 507 508 509
	do {
		next = pgd_addr_end(addr, end);
		if (!pgd_none(*pgd))
			unmap_hyp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

510 511 512 513 514 515 516 517 518 519
static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, PTRS_PER_PGD, start, size);
}

static void unmap_hyp_idmap_range(pgd_t *pgdp, phys_addr_t start, u64 size)
{
	__unmap_hyp_range(pgdp, __kvm_idmap_ptrs_per_pgd(), start, size);
}

520
/**
521
 * free_hyp_pgds - free Hyp-mode page tables
522
 *
523 524
 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 * therefore contains either mappings in the kernel memory area (above
525
 * PAGE_OFFSET), or device mappings in the idmap range.
526
 *
527 528
 * boot_hyp_pgd should only map the idmap range, and is only used in
 * the extended idmap case.
529
 */
530
void free_hyp_pgds(void)
531
{
532 533
	pgd_t *id_pgd;

534
	mutex_lock(&kvm_hyp_pgd_mutex);
535

536 537 538 539 540 541 542 543 544 545
	id_pgd = boot_hyp_pgd ? boot_hyp_pgd : hyp_pgd;

	if (id_pgd) {
		/* In case we never called hyp_mmu_init() */
		if (!io_map_base)
			io_map_base = hyp_idmap_start;
		unmap_hyp_idmap_range(id_pgd, io_map_base,
				      hyp_idmap_start + PAGE_SIZE - io_map_base);
	}

546 547 548 549 550
	if (boot_hyp_pgd) {
		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
		boot_hyp_pgd = NULL;
	}

551
	if (hyp_pgd) {
552 553
		unmap_hyp_range(hyp_pgd, kern_hyp_va(PAGE_OFFSET),
				(uintptr_t)high_memory - PAGE_OFFSET);
554

555
		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
556
		hyp_pgd = NULL;
557
	}
558 559 560 561 562
	if (merged_hyp_pgd) {
		clear_page(merged_hyp_pgd);
		free_page((unsigned long)merged_hyp_pgd);
		merged_hyp_pgd = NULL;
	}
563

564 565 566 567
	mutex_unlock(&kvm_hyp_pgd_mutex);
}

static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
568 569
				    unsigned long end, unsigned long pfn,
				    pgprot_t prot)
570 571 572 573
{
	pte_t *pte;
	unsigned long addr;

574 575
	addr = start;
	do {
576 577
		pte = pte_offset_kernel(pmd, addr);
		kvm_set_pte(pte, pfn_pte(pfn, prot));
578
		get_page(virt_to_page(pte));
579
		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
580
		pfn++;
581
	} while (addr += PAGE_SIZE, addr != end);
582 583 584
}

static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
585 586
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
587 588 589 590 591
{
	pmd_t *pmd;
	pte_t *pte;
	unsigned long addr, next;

592 593
	addr = start;
	do {
594
		pmd = pmd_offset(pud, addr);
595 596 597 598

		BUG_ON(pmd_sect(*pmd));

		if (pmd_none(*pmd)) {
599
			pte = pte_alloc_one_kernel(NULL, addr);
600 601 602 603 604
			if (!pte) {
				kvm_err("Cannot allocate Hyp pte\n");
				return -ENOMEM;
			}
			pmd_populate_kernel(NULL, pmd, pte);
605
			get_page(virt_to_page(pmd));
606
			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
607 608 609 610
		}

		next = pmd_addr_end(addr, end);

611 612
		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
		pfn += (next - addr) >> PAGE_SHIFT;
613
	} while (addr = next, addr != end);
614 615 616 617

	return 0;
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
				   unsigned long end, unsigned long pfn,
				   pgprot_t prot)
{
	pud_t *pud;
	pmd_t *pmd;
	unsigned long addr, next;
	int ret;

	addr = start;
	do {
		pud = pud_offset(pgd, addr);

		if (pud_none_or_clear_bad(pud)) {
			pmd = pmd_alloc_one(NULL, addr);
			if (!pmd) {
				kvm_err("Cannot allocate Hyp pmd\n");
				return -ENOMEM;
			}
			pud_populate(NULL, pud, pmd);
			get_page(virt_to_page(pud));
			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
		}

		next = pud_addr_end(addr, end);
		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
		if (ret)
			return ret;
		pfn += (next - addr) >> PAGE_SHIFT;
	} while (addr = next, addr != end);

	return 0;
}

652
static int __create_hyp_mappings(pgd_t *pgdp, unsigned long ptrs_per_pgd,
653 654
				 unsigned long start, unsigned long end,
				 unsigned long pfn, pgprot_t prot)
655 656 657 658 659 660 661
{
	pgd_t *pgd;
	pud_t *pud;
	unsigned long addr, next;
	int err = 0;

	mutex_lock(&kvm_hyp_pgd_mutex);
662 663 664
	addr = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
	do {
665
		pgd = pgdp + kvm_pgd_index(addr, ptrs_per_pgd);
666

667 668 669 670
		if (pgd_none(*pgd)) {
			pud = pud_alloc_one(NULL, addr);
			if (!pud) {
				kvm_err("Cannot allocate Hyp pud\n");
671 672 673
				err = -ENOMEM;
				goto out;
			}
674 675 676
			pgd_populate(NULL, pgd, pud);
			get_page(virt_to_page(pgd));
			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
677 678 679
		}

		next = pgd_addr_end(addr, end);
680
		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
681 682
		if (err)
			goto out;
683
		pfn += (next - addr) >> PAGE_SHIFT;
684
	} while (addr = next, addr != end);
685 686 687 688 689
out:
	mutex_unlock(&kvm_hyp_pgd_mutex);
	return err;
}

690 691 692 693 694 695 696 697 698 699 700
static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
{
	if (!is_vmalloc_addr(kaddr)) {
		BUG_ON(!virt_addr_valid(kaddr));
		return __pa(kaddr);
	} else {
		return page_to_phys(vmalloc_to_page(kaddr)) +
		       offset_in_page(kaddr);
	}
}

701
/**
702
 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
703 704
 * @from:	The virtual kernel start address of the range
 * @to:		The virtual kernel end address of the range (exclusive)
705
 * @prot:	The protection to be applied to this range
706
 *
707 708 709
 * The same virtual address as the kernel virtual address is also used
 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 * physical pages.
710
 */
711
int create_hyp_mappings(void *from, void *to, pgprot_t prot)
712
{
713 714
	phys_addr_t phys_addr;
	unsigned long virt_addr;
M
Marc Zyngier 已提交
715 716
	unsigned long start = kern_hyp_va((unsigned long)from);
	unsigned long end = kern_hyp_va((unsigned long)to);
717

718 719 720
	if (is_kernel_in_hyp_mode())
		return 0;

721 722
	start = start & PAGE_MASK;
	end = PAGE_ALIGN(end);
723

724 725
	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
		int err;
726

727
		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
728 729
		err = __create_hyp_mappings(hyp_pgd, PTRS_PER_PGD,
					    virt_addr, virt_addr + PAGE_SIZE,
730
					    __phys_to_pfn(phys_addr),
731
					    prot);
732 733 734 735 736
		if (err)
			return err;
	}

	return 0;
737 738
}

739 740
static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
					unsigned long *haddr, pgprot_t prot)
741
{
742 743 744
	pgd_t *pgd = hyp_pgd;
	unsigned long base;
	int ret = 0;
745

746
	mutex_lock(&kvm_hyp_pgd_mutex);
747

748 749 750 751 752 753 754 755 756 757
	/*
	 * This assumes that we we have enough space below the idmap
	 * page to allocate our VAs. If not, the check below will
	 * kick. A potential alternative would be to detect that
	 * overflow and switch to an allocation above the idmap.
	 *
	 * The allocated size is always a multiple of PAGE_SIZE.
	 */
	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
	base = io_map_base - size;
758

759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
	/*
	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
	 * allocating the new area, as it would indicate we've
	 * overflowed the idmap/IO address range.
	 */
	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
		ret = -ENOMEM;
	else
		io_map_base = base;

	mutex_unlock(&kvm_hyp_pgd_mutex);

	if (ret)
		goto out;

	if (__kvm_cpu_uses_extended_idmap())
		pgd = boot_hyp_pgd;

	ret = __create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
				    base, base + size,
779
				    __phys_to_pfn(phys_addr), prot);
780 781 782
	if (ret)
		goto out;

783
	*haddr = base + offset_in_page(phys_addr);
784 785

out:
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	return ret;
}

/**
 * create_hyp_io_mappings - Map IO into both kernel and HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @kaddr:	Kernel VA for this mapping
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
			   void __iomem **kaddr,
			   void __iomem **haddr)
{
	unsigned long addr;
	int ret;

	*kaddr = ioremap(phys_addr, size);
	if (!*kaddr)
		return -ENOMEM;

	if (is_kernel_in_hyp_mode()) {
		*haddr = *kaddr;
		return 0;
	}

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_DEVICE);
814 815 816
	if (ret) {
		iounmap(*kaddr);
		*kaddr = NULL;
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
		*haddr = NULL;
		return ret;
	}

	*haddr = (void __iomem *)addr;
	return 0;
}

/**
 * create_hyp_exec_mappings - Map an executable range into HYP
 * @phys_addr:	The physical start address which gets mapped
 * @size:	Size of the region being mapped
 * @haddr:	HYP VA for this mapping
 */
int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
			     void **haddr)
{
	unsigned long addr;
	int ret;

	BUG_ON(is_kernel_in_hyp_mode());

	ret = __create_hyp_private_mapping(phys_addr, size,
					   &addr, PAGE_HYP_EXEC);
	if (ret) {
		*haddr = NULL;
843 844 845
		return ret;
	}

846
	*haddr = (void *)addr;
847
	return 0;
848 849
}

850 851 852 853
/**
 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 * @kvm:	The KVM struct pointer for the VM.
 *
854 855 856
 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 * allocated pages.
857 858 859 860 861 862 863 864 865 866 867 868 869
 *
 * Note we don't need locking here as this is only called when the VM is
 * created, which can only be done once.
 */
int kvm_alloc_stage2_pgd(struct kvm *kvm)
{
	pgd_t *pgd;

	if (kvm->arch.pgd != NULL) {
		kvm_err("kvm_arch already initialized?\n");
		return -EINVAL;
	}

870 871 872
	/* Allocate the HW PGD, making sure that each page gets its own refcount */
	pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
	if (!pgd)
873 874
		return -ENOMEM;

875 876 877 878
	kvm->arch.pgd = pgd;
	return 0;
}

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
static void stage2_unmap_memslot(struct kvm *kvm,
				 struct kvm_memory_slot *memslot)
{
	hva_t hva = memslot->userspace_addr;
	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = PAGE_SIZE * memslot->npages;
	hva_t reg_end = hva + size;

	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we should
	 * unmap any of them.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (!(vma->vm_flags & VM_PFNMAP)) {
			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
		}
		hva = vm_end;
	} while (hva < reg_end);
}

/**
 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 * @kvm: The struct kvm pointer
 *
 * Go through the memregions and unmap any reguler RAM
 * backing memory already mapped to the VM.
 */
void stage2_unmap_vm(struct kvm *kvm)
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
	int idx;

	idx = srcu_read_lock(&kvm->srcu);
934
	down_read(&current->mm->mmap_sem);
935 936 937 938 939 940 941
	spin_lock(&kvm->mmu_lock);

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots)
		stage2_unmap_memslot(kvm, memslot);

	spin_unlock(&kvm->mmu_lock);
942
	up_read(&current->mm->mmap_sem);
943 944 945
	srcu_read_unlock(&kvm->srcu, idx);
}

946 947 948 949 950 951 952 953 954 955
/**
 * kvm_free_stage2_pgd - free all stage-2 tables
 * @kvm:	The KVM struct pointer for the VM.
 *
 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 * and setting the struct pointer to NULL.
 */
void kvm_free_stage2_pgd(struct kvm *kvm)
{
956
	void *pgd = NULL;
957

958
	spin_lock(&kvm->mmu_lock);
959 960
	if (kvm->arch.pgd) {
		unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
961
		pgd = READ_ONCE(kvm->arch.pgd);
962 963
		kvm->arch.pgd = NULL;
	}
964 965
	spin_unlock(&kvm->mmu_lock);

966
	/* Free the HW pgd, one page at a time */
967 968
	if (pgd)
		free_pages_exact(pgd, S2_PGD_SIZE);
969 970
}

971
static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
972
			     phys_addr_t addr)
973 974 975 976
{
	pgd_t *pgd;
	pud_t *pud;

977 978
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
	if (WARN_ON(stage2_pgd_none(*pgd))) {
979 980 981
		if (!cache)
			return NULL;
		pud = mmu_memory_cache_alloc(cache);
982
		stage2_pgd_populate(pgd, pud);
983 984 985
		get_page(virt_to_page(pgd));
	}

986
	return stage2_pud_offset(pgd, addr);
987 988 989 990 991 992 993 994 995
}

static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
			     phys_addr_t addr)
{
	pud_t *pud;
	pmd_t *pmd;

	pud = stage2_get_pud(kvm, cache, addr);
996 997 998
	if (!pud)
		return NULL;

999
	if (stage2_pud_none(*pud)) {
1000
		if (!cache)
1001
			return NULL;
1002
		pmd = mmu_memory_cache_alloc(cache);
1003
		stage2_pud_populate(pud, pmd);
1004
		get_page(virt_to_page(pud));
1005 1006
	}

1007
	return stage2_pmd_offset(pud, addr);
1008 1009 1010 1011 1012 1013 1014 1015 1016
}

static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
{
	pmd_t *pmd, old_pmd;

	pmd = stage2_get_pmd(kvm, cache, addr);
	VM_BUG_ON(!pmd);
1017

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
	/*
	 * Mapping in huge pages should only happen through a fault.  If a
	 * page is merged into a transparent huge page, the individual
	 * subpages of that huge page should be unmapped through MMU
	 * notifiers before we get here.
	 *
	 * Merging of CompoundPages is not supported; they should become
	 * splitting first, unmapped, merged, and mapped back in on-demand.
	 */
	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));

	old_pmd = *pmd;
1030 1031
	if (pmd_present(old_pmd)) {
		pmd_clear(pmd);
1032
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1033
	} else {
1034
		get_page(virt_to_page(pmd));
1035 1036 1037
	}

	kvm_set_pmd(pmd, *new_pmd);
1038 1039 1040
	return 0;
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
static bool stage2_is_exec(struct kvm *kvm, phys_addr_t addr)
{
	pmd_t *pmdp;
	pte_t *ptep;

	pmdp = stage2_get_pmd(kvm, NULL, addr);
	if (!pmdp || pmd_none(*pmdp) || !pmd_present(*pmdp))
		return false;

	if (pmd_thp_or_huge(*pmdp))
		return kvm_s2pmd_exec(pmdp);

	ptep = pte_offset_kernel(pmdp, addr);
	if (!ptep || pte_none(*ptep) || !pte_present(*ptep))
		return false;

	return kvm_s2pte_exec(ptep);
}

1060
static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
1061 1062
			  phys_addr_t addr, const pte_t *new_pte,
			  unsigned long flags)
1063 1064 1065
{
	pmd_t *pmd;
	pte_t *pte, old_pte;
1066 1067 1068 1069
	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;

	VM_BUG_ON(logging_active && !cache);
1070

1071
	/* Create stage-2 page table mapping - Levels 0 and 1 */
1072 1073 1074 1075 1076 1077 1078 1079 1080
	pmd = stage2_get_pmd(kvm, cache, addr);
	if (!pmd) {
		/*
		 * Ignore calls from kvm_set_spte_hva for unallocated
		 * address ranges.
		 */
		return 0;
	}

1081 1082 1083 1084 1085 1086 1087
	/*
	 * While dirty page logging - dissolve huge PMD, then continue on to
	 * allocate page.
	 */
	if (logging_active)
		stage2_dissolve_pmd(kvm, addr, pmd);

1088
	/* Create stage-2 page mappings - Level 2 */
1089 1090 1091 1092 1093 1094
	if (pmd_none(*pmd)) {
		if (!cache)
			return 0; /* ignore calls from kvm_set_spte_hva */
		pte = mmu_memory_cache_alloc(cache);
		pmd_populate_kernel(NULL, pmd, pte);
		get_page(virt_to_page(pmd));
1095 1096 1097
	}

	pte = pte_offset_kernel(pmd, addr);
1098 1099 1100 1101 1102 1103

	if (iomap && pte_present(*pte))
		return -EFAULT;

	/* Create 2nd stage page table mapping - Level 3 */
	old_pte = *pte;
1104 1105
	if (pte_present(old_pte)) {
		kvm_set_pte(pte, __pte(0));
1106
		kvm_tlb_flush_vmid_ipa(kvm, addr);
1107
	} else {
1108
		get_page(virt_to_page(pte));
1109
	}
1110

1111
	kvm_set_pte(pte, *new_pte);
1112 1113 1114
	return 0;
}

1115 1116 1117 1118 1119 1120 1121
#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	if (pte_young(*pte)) {
		*pte = pte_mkold(*pte);
		return 1;
	}
1122 1123
	return 0;
}
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
#else
static int stage2_ptep_test_and_clear_young(pte_t *pte)
{
	return __ptep_test_and_clear_young(pte);
}
#endif

static int stage2_pmdp_test_and_clear_young(pmd_t *pmd)
{
	return stage2_ptep_test_and_clear_young((pte_t *)pmd);
}
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

/**
 * kvm_phys_addr_ioremap - map a device range to guest IPA
 *
 * @kvm:	The KVM pointer
 * @guest_ipa:	The IPA at which to insert the mapping
 * @pa:		The physical address of the device
 * @size:	The size of the mapping
 */
int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
1145
			  phys_addr_t pa, unsigned long size, bool writable)
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
{
	phys_addr_t addr, end;
	int ret = 0;
	unsigned long pfn;
	struct kvm_mmu_memory_cache cache = { 0, };

	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
	pfn = __phys_to_pfn(pa);

	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1156
		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1157

1158
		if (writable)
1159
			pte = kvm_s2pte_mkwrite(pte);
1160

1161 1162
		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
						KVM_NR_MEM_OBJS);
1163 1164 1165
		if (ret)
			goto out;
		spin_lock(&kvm->mmu_lock);
1166 1167
		ret = stage2_set_pte(kvm, &cache, addr, &pte,
						KVM_S2PTE_FLAG_IS_IOMAP);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
		spin_unlock(&kvm->mmu_lock);
		if (ret)
			goto out;

		pfn++;
	}

out:
	mmu_free_memory_cache(&cache);
	return ret;
}

D
Dan Williams 已提交
1180
static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1181
{
D
Dan Williams 已提交
1182
	kvm_pfn_t pfn = *pfnp;
1183 1184
	gfn_t gfn = *ipap >> PAGE_SHIFT;

1185
	if (PageTransCompoundMap(pfn_to_page(pfn))) {
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
		unsigned long mask;
		/*
		 * The address we faulted on is backed by a transparent huge
		 * page.  However, because we map the compound huge page and
		 * not the individual tail page, we need to transfer the
		 * refcount to the head page.  We have to be careful that the
		 * THP doesn't start to split while we are adjusting the
		 * refcounts.
		 *
		 * We are sure this doesn't happen, because mmu_notifier_retry
		 * was successful and we are holding the mmu_lock, so if this
		 * THP is trying to split, it will be blocked in the mmu
		 * notifier before touching any of the pages, specifically
		 * before being able to call __split_huge_page_refcount().
		 *
		 * We can therefore safely transfer the refcount from PG_tail
		 * to PG_head and switch the pfn from a tail page to the head
		 * page accordingly.
		 */
		mask = PTRS_PER_PMD - 1;
		VM_BUG_ON((gfn & mask) != (pfn & mask));
		if (pfn & mask) {
			*ipap &= PMD_MASK;
			kvm_release_pfn_clean(pfn);
			pfn &= ~mask;
			kvm_get_pfn(pfn);
			*pfnp = pfn;
		}

		return true;
	}

	return false;
}

1221 1222 1223 1224 1225 1226 1227 1228
static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
{
	if (kvm_vcpu_trap_is_iabt(vcpu))
		return false;

	return kvm_vcpu_dabt_iswrite(vcpu);
}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
/**
 * stage2_wp_ptes - write protect PMD range
 * @pmd:	pointer to pmd entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		if (!pte_none(*pte)) {
			if (!kvm_s2pte_readonly(pte))
				kvm_set_s2pte_readonly(pte);
		}
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

/**
 * stage2_wp_pmds - write protect PUD range
 * @pud:	pointer to pud entry
 * @addr:	range start address
 * @end:	range end address
 */
static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
{
	pmd_t *pmd;
	phys_addr_t next;

1259
	pmd = stage2_pmd_offset(pud, addr);
1260 1261

	do {
1262
		next = stage2_pmd_addr_end(addr, end);
1263
		if (!pmd_none(*pmd)) {
1264
			if (pmd_thp_or_huge(*pmd)) {
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
				if (!kvm_s2pmd_readonly(pmd))
					kvm_set_s2pmd_readonly(pmd);
			} else {
				stage2_wp_ptes(pmd, addr, next);
			}
		}
	} while (pmd++, addr = next, addr != end);
}

/**
  * stage2_wp_puds - write protect PGD range
  * @pgd:	pointer to pgd entry
  * @addr:	range start address
  * @end:	range end address
  *
  * Process PUD entries, for a huge PUD we cause a panic.
  */
static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
{
	pud_t *pud;
	phys_addr_t next;

1287
	pud = stage2_pud_offset(pgd, addr);
1288
	do {
1289 1290
		next = stage2_pud_addr_end(addr, end);
		if (!stage2_pud_none(*pud)) {
1291
			/* TODO:PUD not supported, revisit later if supported */
1292
			BUG_ON(stage2_pud_huge(*pud));
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
			stage2_wp_pmds(pud, addr, next);
		}
	} while (pud++, addr = next, addr != end);
}

/**
 * stage2_wp_range() - write protect stage2 memory region range
 * @kvm:	The KVM pointer
 * @addr:	Start address of range
 * @end:	End address of range
 */
static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
{
	pgd_t *pgd;
	phys_addr_t next;

1309
	pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1310 1311 1312 1313
	do {
		/*
		 * Release kvm_mmu_lock periodically if the memory region is
		 * large. Otherwise, we may see kernel panics with
1314 1315
		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1316 1317 1318
		 * will also starve other vCPUs. We have to also make sure
		 * that the page tables are not freed while we released
		 * the lock.
1319
		 */
1320 1321 1322
		cond_resched_lock(&kvm->mmu_lock);
		if (!READ_ONCE(kvm->arch.pgd))
			break;
1323 1324
		next = stage2_pgd_addr_end(addr, end);
		if (stage2_pgd_present(*pgd))
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
			stage2_wp_puds(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
}

/**
 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
 * @kvm:	The KVM pointer
 * @slot:	The memory slot to write protect
 *
 * Called to start logging dirty pages after memory region
 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
 * all present PMD and PTEs are write protected in the memory region.
 * Afterwards read of dirty page log can be called.
 *
 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
 * serializing operations for VM memory regions.
 */
void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
{
1344 1345
	struct kvm_memslots *slots = kvm_memslots(kvm);
	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1346 1347 1348 1349 1350 1351 1352 1353
	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	stage2_wp_range(kvm, start, end);
	spin_unlock(&kvm->mmu_lock);
	kvm_flush_remote_tlbs(kvm);
}
1354 1355

/**
1356
 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1357 1358 1359 1360 1361 1362 1363 1364 1365
 * @kvm:	The KVM pointer
 * @slot:	The memory slot associated with mask
 * @gfn_offset:	The gfn offset in memory slot
 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
 *		slot to be write protected
 *
 * Walks bits set in mask write protects the associated pte's. Caller must
 * acquire kvm_mmu_lock.
 */
1366
static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1367 1368 1369 1370 1371 1372 1373 1374 1375
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;

	stage2_wp_range(kvm, start, end);
}
1376

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
/*
 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 * dirty pages.
 *
 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 * enable dirty logging for them.
 */
void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
		struct kvm_memory_slot *slot,
		gfn_t gfn_offset, unsigned long mask)
{
	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
}

1391
static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
1392
{
1393
	__clean_dcache_guest_page(pfn, size);
1394 1395
}

1396
static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
1397
{
1398
	__invalidate_icache_guest_page(pfn, size);
1399 1400
}

1401 1402 1403 1404 1405
static void kvm_send_hwpoison_signal(unsigned long address,
				     struct vm_area_struct *vma)
{
	siginfo_t info;

1406
	clear_siginfo(&info);
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	info.si_signo   = SIGBUS;
	info.si_errno   = 0;
	info.si_code    = BUS_MCEERR_AR;
	info.si_addr    = (void __user *)address;

	if (is_vm_hugetlb_page(vma))
		info.si_addr_lsb = huge_page_shift(hstate_vma(vma));
	else
		info.si_addr_lsb = PAGE_SHIFT;

	send_sig_info(SIGBUS, &info, current);
}

1420
static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1421
			  struct kvm_memory_slot *memslot, unsigned long hva,
1422 1423 1424
			  unsigned long fault_status)
{
	int ret;
1425
	bool write_fault, exec_fault, writable, hugetlb = false, force_pte = false;
1426
	unsigned long mmu_seq;
1427 1428
	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
	struct kvm *kvm = vcpu->kvm;
1429
	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1430
	struct vm_area_struct *vma;
D
Dan Williams 已提交
1431
	kvm_pfn_t pfn;
1432
	pgprot_t mem_type = PAGE_S2;
1433 1434
	bool logging_active = memslot_is_logging(memslot);
	unsigned long flags = 0;
1435

1436
	write_fault = kvm_is_write_fault(vcpu);
1437 1438 1439 1440
	exec_fault = kvm_vcpu_trap_is_iabt(vcpu);
	VM_BUG_ON(write_fault && exec_fault);

	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
1441 1442 1443 1444
		kvm_err("Unexpected L2 read permission error\n");
		return -EFAULT;
	}

1445 1446 1447
	/* Let's check if we will get back a huge page backed by hugetlbfs */
	down_read(&current->mm->mmap_sem);
	vma = find_vma_intersection(current->mm, hva, hva + 1);
1448 1449 1450 1451 1452 1453
	if (unlikely(!vma)) {
		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
		up_read(&current->mm->mmap_sem);
		return -EFAULT;
	}

1454
	if (vma_kernel_pagesize(vma) == PMD_SIZE && !logging_active) {
1455 1456
		hugetlb = true;
		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1457 1458
	} else {
		/*
1459 1460 1461 1462 1463 1464 1465
		 * Pages belonging to memslots that don't have the same
		 * alignment for userspace and IPA cannot be mapped using
		 * block descriptors even if the pages belong to a THP for
		 * the process, because the stage-2 block descriptor will
		 * cover more than a single THP and we loose atomicity for
		 * unmapping, updates, and splits of the THP or other pages
		 * in the stage-2 block range.
1466
		 */
1467 1468
		if ((memslot->userspace_addr & ~PMD_MASK) !=
		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1469
			force_pte = true;
1470 1471 1472
	}
	up_read(&current->mm->mmap_sem);

1473
	/* We need minimum second+third level pages */
1474 1475
	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
				     KVM_NR_MEM_OBJS);
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
	if (ret)
		return ret;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	/*
	 * Ensure the read of mmu_notifier_seq happens before we call
	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
	 * the page we just got a reference to gets unmapped before we have a
	 * chance to grab the mmu_lock, which ensure that if the page gets
	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
	 */
	smp_rmb();

1491
	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1492 1493 1494 1495
	if (pfn == KVM_PFN_ERR_HWPOISON) {
		kvm_send_hwpoison_signal(hva, vma);
		return 0;
	}
1496
	if (is_error_noslot_pfn(pfn))
1497 1498
		return -EFAULT;

1499
	if (kvm_is_device_pfn(pfn)) {
1500
		mem_type = PAGE_S2_DEVICE;
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
	} else if (logging_active) {
		/*
		 * Faults on pages in a memslot with logging enabled
		 * should not be mapped with huge pages (it introduces churn
		 * and performance degradation), so force a pte mapping.
		 */
		force_pte = true;
		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;

		/*
		 * Only actually map the page as writable if this was a write
		 * fault.
		 */
		if (!write_fault)
			writable = false;
	}
1518

1519 1520
	spin_lock(&kvm->mmu_lock);
	if (mmu_notifier_retry(kvm, mmu_seq))
1521
		goto out_unlock;
1522

1523 1524
	if (!hugetlb && !force_pte)
		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1525 1526

	if (hugetlb) {
1527
		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1528 1529
		new_pmd = pmd_mkhuge(new_pmd);
		if (writable) {
1530
			new_pmd = kvm_s2pmd_mkwrite(new_pmd);
1531 1532
			kvm_set_pfn_dirty(pfn);
		}
1533 1534

		if (fault_status != FSC_PERM)
1535
			clean_dcache_guest_page(pfn, PMD_SIZE);
1536 1537 1538

		if (exec_fault) {
			new_pmd = kvm_s2pmd_mkexec(new_pmd);
1539
			invalidate_icache_guest_page(pfn, PMD_SIZE);
1540 1541 1542 1543
		} else if (fault_status == FSC_PERM) {
			/* Preserve execute if XN was already cleared */
			if (stage2_is_exec(kvm, fault_ipa))
				new_pmd = kvm_s2pmd_mkexec(new_pmd);
1544
		}
1545

1546 1547
		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
	} else {
1548
		pte_t new_pte = pfn_pte(pfn, mem_type);
1549

1550
		if (writable) {
1551
			new_pte = kvm_s2pte_mkwrite(new_pte);
1552
			kvm_set_pfn_dirty(pfn);
1553
			mark_page_dirty(kvm, gfn);
1554
		}
1555 1556

		if (fault_status != FSC_PERM)
1557
			clean_dcache_guest_page(pfn, PAGE_SIZE);
1558 1559 1560

		if (exec_fault) {
			new_pte = kvm_s2pte_mkexec(new_pte);
1561
			invalidate_icache_guest_page(pfn, PAGE_SIZE);
1562 1563 1564 1565
		} else if (fault_status == FSC_PERM) {
			/* Preserve execute if XN was already cleared */
			if (stage2_is_exec(kvm, fault_ipa))
				new_pte = kvm_s2pte_mkexec(new_pte);
1566
		}
1567

1568
		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1569
	}
1570

1571
out_unlock:
1572
	spin_unlock(&kvm->mmu_lock);
1573
	kvm_set_pfn_accessed(pfn);
1574
	kvm_release_pfn_clean(pfn);
1575
	return ret;
1576 1577
}

1578 1579 1580 1581
/*
 * Resolve the access fault by making the page young again.
 * Note that because the faulting entry is guaranteed not to be
 * cached in the TLB, we don't need to invalidate anything.
1582 1583
 * Only the HW Access Flag updates are supported for Stage 2 (no DBM),
 * so there is no need for atomic (pte|pmd)_mkyoung operations.
1584 1585 1586 1587 1588
 */
static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
{
	pmd_t *pmd;
	pte_t *pte;
D
Dan Williams 已提交
1589
	kvm_pfn_t pfn;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	bool pfn_valid = false;

	trace_kvm_access_fault(fault_ipa);

	spin_lock(&vcpu->kvm->mmu_lock);

	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		goto out;

1600
	if (pmd_thp_or_huge(*pmd)) {	/* THP, HugeTLB */
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
		*pmd = pmd_mkyoung(*pmd);
		pfn = pmd_pfn(*pmd);
		pfn_valid = true;
		goto out;
	}

	pte = pte_offset_kernel(pmd, fault_ipa);
	if (pte_none(*pte))		/* Nothing there either */
		goto out;

	*pte = pte_mkyoung(*pte);	/* Just a page... */
	pfn = pte_pfn(*pte);
	pfn_valid = true;
out:
	spin_unlock(&vcpu->kvm->mmu_lock);
	if (pfn_valid)
		kvm_set_pfn_accessed(pfn);
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
/**
 * kvm_handle_guest_abort - handles all 2nd stage aborts
 * @vcpu:	the VCPU pointer
 * @run:	the kvm_run structure
 *
 * Any abort that gets to the host is almost guaranteed to be caused by a
 * missing second stage translation table entry, which can mean that either the
 * guest simply needs more memory and we must allocate an appropriate page or it
 * can mean that the guest tried to access I/O memory, which is emulated by user
 * space. The distinction is based on the IPA causing the fault and whether this
 * memory region has been registered as standard RAM by user space.
 */
1632 1633
int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
1634 1635 1636
	unsigned long fault_status;
	phys_addr_t fault_ipa;
	struct kvm_memory_slot *memslot;
1637 1638
	unsigned long hva;
	bool is_iabt, write_fault, writable;
1639 1640 1641
	gfn_t gfn;
	int ret, idx;

1642 1643 1644
	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);

	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1645
	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1646

1647 1648 1649 1650 1651 1652
	/* Synchronous External Abort? */
	if (kvm_vcpu_dabt_isextabt(vcpu)) {
		/*
		 * For RAS the host kernel may handle this abort.
		 * There is no need to pass the error into the guest.
		 */
1653 1654 1655
		if (!handle_guest_sea(fault_ipa, kvm_vcpu_get_hsr(vcpu)))
			return 1;

1656 1657 1658 1659
		if (unlikely(!is_iabt)) {
			kvm_inject_vabt(vcpu);
			return 1;
		}
1660 1661
	}

1662 1663
	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1664 1665

	/* Check the stage-2 fault is trans. fault or write fault */
1666 1667
	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
	    fault_status != FSC_ACCESS) {
1668 1669 1670 1671
		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
			kvm_vcpu_trap_get_class(vcpu),
			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1672 1673 1674 1675 1676 1677
		return -EFAULT;
	}

	idx = srcu_read_lock(&vcpu->kvm->srcu);

	gfn = fault_ipa >> PAGE_SHIFT;
1678 1679
	memslot = gfn_to_memslot(vcpu->kvm, gfn);
	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1680
	write_fault = kvm_is_write_fault(vcpu);
1681
	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1682 1683
		if (is_iabt) {
			/* Prefetch Abort on I/O address */
1684
			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1685 1686 1687 1688
			ret = 1;
			goto out_unlock;
		}

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
		/*
		 * Check for a cache maintenance operation. Since we
		 * ended-up here, we know it is outside of any memory
		 * slot. But we can't find out if that is for a device,
		 * or if the guest is just being stupid. The only thing
		 * we know for sure is that this range cannot be cached.
		 *
		 * So let's assume that the guest is just being
		 * cautious, and skip the instruction.
		 */
		if (kvm_vcpu_dabt_is_cm(vcpu)) {
			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
			ret = 1;
			goto out_unlock;
		}

M
Marc Zyngier 已提交
1705 1706 1707 1708 1709 1710 1711
		/*
		 * The IPA is reported as [MAX:12], so we need to
		 * complement it with the bottom 12 bits from the
		 * faulting VA. This is always 12 bits, irrespective
		 * of the page size.
		 */
		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
C
Christoffer Dall 已提交
1712
		ret = io_mem_abort(vcpu, run, fault_ipa);
1713 1714 1715
		goto out_unlock;
	}

1716 1717 1718
	/* Userspace should not be able to register out-of-bounds IPAs */
	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);

1719 1720 1721 1722 1723 1724
	if (fault_status == FSC_ACCESS) {
		handle_access_fault(vcpu, fault_ipa);
		ret = 1;
		goto out_unlock;
	}

1725
	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1726 1727 1728 1729 1730
	if (ret == 0)
		ret = 1;
out_unlock:
	srcu_read_unlock(&vcpu->kvm->srcu, idx);
	return ret;
1731 1732
}

1733 1734 1735 1736
static int handle_hva_to_gpa(struct kvm *kvm,
			     unsigned long start,
			     unsigned long end,
			     int (*handler)(struct kvm *kvm,
1737 1738
					    gpa_t gpa, u64 size,
					    void *data),
1739
			     void *data)
1740 1741 1742
{
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;
1743
	int ret = 0;
1744 1745 1746 1747 1748 1749

	slots = kvm_memslots(kvm);

	/* we only care about the pages that the guest sees */
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
1750
		gfn_t gpa;
1751 1752 1753 1754 1755 1756 1757

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;

1758 1759
		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1760
	}
1761 1762

	return ret;
1763 1764
}

1765
static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1766
{
1767
	unmap_stage2_range(kvm, gpa, size);
1768
	return 0;
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
	unsigned long end = hva + PAGE_SIZE;

	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva(hva);
	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

int kvm_unmap_hva_range(struct kvm *kvm,
			unsigned long start, unsigned long end)
{
	if (!kvm->arch.pgd)
		return 0;

	trace_kvm_unmap_hva_range(start, end);
	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
	return 0;
}

1794
static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1795 1796 1797
{
	pte_t *pte = (pte_t *)data;

1798
	WARN_ON(size != PAGE_SIZE);
1799 1800 1801 1802 1803 1804 1805 1806
	/*
	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
	 * flag clear because MMU notifiers will have unmapped a huge PMD before
	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
	 * therefore stage2_set_pte() never needs to clear out a huge PMD
	 * through this calling path.
	 */
	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1807
	return 0;
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
}


void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
	unsigned long end = hva + PAGE_SIZE;
	pte_t stage2_pte;

	if (!kvm->arch.pgd)
		return;

	trace_kvm_set_spte_hva(hva);
	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
}

1824
static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1825 1826 1827 1828
{
	pmd_t *pmd;
	pte_t *pte;

1829
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1830 1831 1832 1833
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1834 1835
	if (pmd_thp_or_huge(*pmd))	/* THP, HugeTLB */
		return stage2_pmdp_test_and_clear_young(pmd);
1836 1837 1838 1839 1840

	pte = pte_offset_kernel(pmd, gpa);
	if (pte_none(*pte))
		return 0;

1841
	return stage2_ptep_test_and_clear_young(pte);
1842 1843
}

1844
static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1845 1846 1847 1848
{
	pmd_t *pmd;
	pte_t *pte;

1849
	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE);
1850 1851 1852 1853
	pmd = stage2_get_pmd(kvm, NULL, gpa);
	if (!pmd || pmd_none(*pmd))	/* Nothing there */
		return 0;

1854
	if (pmd_thp_or_huge(*pmd))		/* THP, HugeTLB */
1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
		return pmd_young(*pmd);

	pte = pte_offset_kernel(pmd, gpa);
	if (!pte_none(*pte))		/* Just a page... */
		return pte_young(*pte);

	return 0;
}

int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
1866 1867
	if (!kvm->arch.pgd)
		return 0;
1868 1869 1870 1871 1872 1873
	trace_kvm_age_hva(start, end);
	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
}

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
{
1874 1875
	if (!kvm->arch.pgd)
		return 0;
1876 1877 1878 1879
	trace_kvm_test_age_hva(hva);
	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
}

1880 1881 1882 1883 1884
void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
}

1885 1886
phys_addr_t kvm_mmu_get_httbr(void)
{
1887 1888 1889 1890
	if (__kvm_cpu_uses_extended_idmap())
		return virt_to_phys(merged_hyp_pgd);
	else
		return virt_to_phys(hyp_pgd);
1891 1892
}

1893 1894 1895 1896 1897
phys_addr_t kvm_get_idmap_vector(void)
{
	return hyp_idmap_vector;
}

1898 1899 1900 1901 1902
static int kvm_map_idmap_text(pgd_t *pgd)
{
	int err;

	/* Create the idmap in the boot page tables */
1903
	err = 	__create_hyp_mappings(pgd, __kvm_idmap_ptrs_per_pgd(),
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
				      hyp_idmap_start, hyp_idmap_end,
				      __phys_to_pfn(hyp_idmap_start),
				      PAGE_HYP_EXEC);
	if (err)
		kvm_err("Failed to idmap %lx-%lx\n",
			hyp_idmap_start, hyp_idmap_end);

	return err;
}

1914 1915
int kvm_mmu_init(void)
{
1916 1917
	int err;

1918
	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1919
	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1920
	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1921
	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1922
	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1923

1924 1925 1926 1927 1928
	/*
	 * We rely on the linker script to ensure at build time that the HYP
	 * init code does not cross a page boundary.
	 */
	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1929

1930 1931 1932 1933
	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
	kvm_debug("HYP VA range: %lx:%lx\n",
		  kern_hyp_va(PAGE_OFFSET),
		  kern_hyp_va((unsigned long)high_memory - 1));
1934

M
Marc Zyngier 已提交
1935
	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1936
	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1937
	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1938 1939 1940 1941 1942 1943 1944 1945 1946
		/*
		 * The idmap page is intersecting with the VA space,
		 * it is not safe to continue further.
		 */
		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
		err = -EINVAL;
		goto out;
	}

1947
	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1948
	if (!hyp_pgd) {
1949
		kvm_err("Hyp mode PGD not allocated\n");
1950 1951 1952 1953
		err = -ENOMEM;
		goto out;
	}

1954 1955 1956 1957 1958 1959 1960 1961
	if (__kvm_cpu_uses_extended_idmap()) {
		boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
							 hyp_pgd_order);
		if (!boot_hyp_pgd) {
			kvm_err("Hyp boot PGD not allocated\n");
			err = -ENOMEM;
			goto out;
		}
1962

1963 1964 1965
		err = kvm_map_idmap_text(boot_hyp_pgd);
		if (err)
			goto out;
1966

1967 1968 1969 1970 1971 1972 1973
		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
		if (!merged_hyp_pgd) {
			kvm_err("Failed to allocate extra HYP pgd\n");
			goto out;
		}
		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
				    hyp_idmap_start);
1974 1975 1976 1977
	} else {
		err = kvm_map_idmap_text(hyp_pgd);
		if (err)
			goto out;
1978 1979
	}

1980
	io_map_base = hyp_idmap_start;
1981
	return 0;
1982
out:
1983
	free_hyp_pgds();
1984
	return err;
1985
}
1986 1987

void kvm_arch_commit_memory_region(struct kvm *kvm,
1988
				   const struct kvm_userspace_memory_region *mem,
1989
				   const struct kvm_memory_slot *old,
1990
				   const struct kvm_memory_slot *new,
1991 1992
				   enum kvm_mr_change change)
{
1993 1994 1995 1996 1997 1998 1999
	/*
	 * At this point memslot has been committed and there is an
	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
	 * memory slot is write protected.
	 */
	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
		kvm_mmu_wp_memory_region(kvm, mem->slot);
2000 2001 2002 2003
}

int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2004
				   const struct kvm_userspace_memory_region *mem,
2005 2006
				   enum kvm_mr_change change)
{
2007 2008 2009 2010 2011
	hva_t hva = mem->userspace_addr;
	hva_t reg_end = hva + mem->memory_size;
	bool writable = !(mem->flags & KVM_MEM_READONLY);
	int ret = 0;

2012 2013
	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
			change != KVM_MR_FLAGS_ONLY)
2014 2015
		return 0;

2016 2017 2018 2019 2020 2021 2022 2023
	/*
	 * Prevent userspace from creating a memory region outside of the IPA
	 * space addressable by the KVM guest IPA space.
	 */
	if (memslot->base_gfn + memslot->npages >=
	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
		return -EFAULT;

2024
	down_read(&current->mm->mmap_sem);
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
	/*
	 * A memory region could potentially cover multiple VMAs, and any holes
	 * between them, so iterate over all of them to find out if we can map
	 * any of them right now.
	 *
	 *     +--------------------------------------------+
	 * +---------------+----------------+   +----------------+
	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
	 * +---------------+----------------+   +----------------+
	 *     |               memory region                |
	 *     +--------------------------------------------+
	 */
	do {
		struct vm_area_struct *vma = find_vma(current->mm, hva);
		hva_t vm_start, vm_end;

		if (!vma || vma->vm_start >= reg_end)
			break;

		/*
		 * Mapping a read-only VMA is only allowed if the
		 * memory region is configured as read-only.
		 */
		if (writable && !(vma->vm_flags & VM_WRITE)) {
			ret = -EPERM;
			break;
		}

		/*
		 * Take the intersection of this VMA with the memory region
		 */
		vm_start = max(hva, vma->vm_start);
		vm_end = min(reg_end, vma->vm_end);

		if (vma->vm_flags & VM_PFNMAP) {
			gpa_t gpa = mem->guest_phys_addr +
				    (vm_start - mem->userspace_addr);
2062 2063 2064 2065
			phys_addr_t pa;

			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
			pa += vm_start - vma->vm_start;
2066

2067
			/* IO region dirty page logging not allowed */
2068 2069 2070 2071
			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
				ret = -EINVAL;
				goto out;
			}
2072

2073 2074 2075 2076 2077 2078 2079 2080 2081
			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
						    vm_end - vm_start,
						    writable);
			if (ret)
				break;
		}
		hva = vm_end;
	} while (hva < reg_end);

2082
	if (change == KVM_MR_FLAGS_ONLY)
2083
		goto out;
2084

2085 2086
	spin_lock(&kvm->mmu_lock);
	if (ret)
2087
		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
2088 2089 2090
	else
		stage2_flush_memslot(kvm, memslot);
	spin_unlock(&kvm->mmu_lock);
2091 2092
out:
	up_read(&current->mm->mmap_sem);
2093
	return ret;
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106
}

void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
			   struct kvm_memory_slot *dont)
{
}

int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
{
	return 0;
}

2107
void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
2108 2109 2110 2111 2112
{
}

void kvm_arch_flush_shadow_all(struct kvm *kvm)
{
2113
	kvm_free_stage2_pgd(kvm);
2114 2115 2116 2117 2118
}

void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
				   struct kvm_memory_slot *slot)
{
2119 2120 2121 2122 2123 2124
	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
	phys_addr_t size = slot->npages << PAGE_SHIFT;

	spin_lock(&kvm->mmu_lock);
	unmap_stage2_range(kvm, gpa, size);
	spin_unlock(&kvm->mmu_lock);
2125
}
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 *
 * Main problems:
 * - S/W ops are local to a CPU (not broadcast)
 * - We have line migration behind our back (speculation)
 * - System caches don't support S/W at all (damn!)
 *
 * In the face of the above, the best we can do is to try and convert
 * S/W ops to VA ops. Because the guest is not allowed to infer the
 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
 * which is a rather good thing for us.
 *
 * Also, it is only used when turning caches on/off ("The expected
 * usage of the cache maintenance instructions that operate by set/way
 * is associated with the cache maintenance instructions associated
 * with the powerdown and powerup of caches, if this is required by
 * the implementation.").
 *
 * We use the following policy:
 *
 * - If we trap a S/W operation, we enable VM trapping to detect
 *   caches being turned on/off, and do a full clean.
 *
 * - We flush the caches on both caches being turned on and off.
 *
 * - Once the caches are enabled, we stop trapping VM ops.
 */
void kvm_set_way_flush(struct kvm_vcpu *vcpu)
{
2157
	unsigned long hcr = *vcpu_hcr(vcpu);
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171

	/*
	 * If this is the first time we do a S/W operation
	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
	 * VM trapping.
	 *
	 * Otherwise, rely on the VM trapping to wait for the MMU +
	 * Caches to be turned off. At that point, we'll be able to
	 * clean the caches again.
	 */
	if (!(hcr & HCR_TVM)) {
		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
					vcpu_has_cache_enabled(vcpu));
		stage2_flush_vm(vcpu->kvm);
2172
		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	}
}

void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
{
	bool now_enabled = vcpu_has_cache_enabled(vcpu);

	/*
	 * If switching the MMU+caches on, need to invalidate the caches.
	 * If switching it off, need to clean the caches.
	 * Clean + invalidate does the trick always.
	 */
	if (now_enabled != was_enabled)
		stage2_flush_vm(vcpu->kvm);

	/* Caches are now on, stop trapping VM ops (until a S/W op) */
	if (now_enabled)
2190
		*vcpu_hcr(vcpu) &= ~HCR_TVM;
2191 2192 2193

	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
}