pageattr.c 59.5 KB
Newer Older
1 2
/*
 * Copyright 2002 Andi Kleen, SuSE Labs.
L
Linus Torvalds 已提交
3
 * Thanks to Ben LaHaise for precious feedback.
4
 */
L
Linus Torvalds 已提交
5
#include <linux/highmem.h>
I
Ingo Molnar 已提交
6
#include <linux/bootmem.h>
7 8
#include <linux/sched.h>
#include <linux/mm.h>
9
#include <linux/interrupt.h>
10 11
#include <linux/seq_file.h>
#include <linux/debugfs.h>
12
#include <linux/pfn.h>
13
#include <linux/percpu.h>
14
#include <linux/gfp.h>
15
#include <linux/pci.h>
16
#include <linux/vmalloc.h>
17

18
#include <asm/e820/api.h>
L
Linus Torvalds 已提交
19 20
#include <asm/processor.h>
#include <asm/tlbflush.h>
D
Dave Jones 已提交
21
#include <asm/sections.h>
22
#include <asm/setup.h>
23
#include <linux/uaccess.h>
24
#include <asm/pgalloc.h>
T
Thomas Gleixner 已提交
25
#include <asm/proto.h>
26
#include <asm/pat.h>
L
Laura Abbott 已提交
27
#include <asm/set_memory.h>
L
Linus Torvalds 已提交
28

I
Ingo Molnar 已提交
29 30 31
/*
 * The current flushing context - we pass it instead of 5 arguments:
 */
T
Thomas Gleixner 已提交
32
struct cpa_data {
33
	unsigned long	*vaddr;
34
	pgd_t		*pgd;
T
Thomas Gleixner 已提交
35 36
	pgprot_t	mask_set;
	pgprot_t	mask_clr;
37
	unsigned long	numpages;
38
	int		flags;
T
Thomas Gleixner 已提交
39
	unsigned long	pfn;
40 41
	unsigned	force_split		: 1,
			force_static_prot	: 1;
42
	int		curpage;
43
	struct page	**pages;
T
Thomas Gleixner 已提交
44 45
};

T
Thomas Gleixner 已提交
46
enum cpa_warn {
47
	CPA_CONFLICT,
T
Thomas Gleixner 已提交
48 49 50 51 52 53
	CPA_PROTECT,
	CPA_DETECT,
};

static const int cpa_warn_level = CPA_PROTECT;

54 55 56 57 58 59 60 61
/*
 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
 * entries change the page attribute in parallel to some other cpu
 * splitting a large page entry along with changing the attribute.
 */
static DEFINE_SPINLOCK(cpa_lock);

62 63
#define CPA_FLUSHTLB 1
#define CPA_ARRAY 2
64
#define CPA_PAGES_ARRAY 4
65
#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
66

67
#ifdef CONFIG_PROC_FS
68 69
static unsigned long direct_pages_count[PG_LEVEL_NUM];

70
void update_page_count(int level, unsigned long pages)
71 72
{
	/* Protect against CPA */
A
Andrea Arcangeli 已提交
73
	spin_lock(&pgd_lock);
74
	direct_pages_count[level] += pages;
A
Andrea Arcangeli 已提交
75
	spin_unlock(&pgd_lock);
76 77 78 79
}

static void split_page_count(int level)
{
80 81 82
	if (direct_pages_count[level] == 0)
		return;

83 84 85 86
	direct_pages_count[level]--;
	direct_pages_count[level - 1] += PTRS_PER_PTE;
}

87
void arch_report_meminfo(struct seq_file *m)
88
{
89
	seq_printf(m, "DirectMap4k:    %8lu kB\n",
H
Hugh Dickins 已提交
90 91
			direct_pages_count[PG_LEVEL_4K] << 2);
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
92
	seq_printf(m, "DirectMap2M:    %8lu kB\n",
H
Hugh Dickins 已提交
93 94
			direct_pages_count[PG_LEVEL_2M] << 11);
#else
95
	seq_printf(m, "DirectMap4M:    %8lu kB\n",
H
Hugh Dickins 已提交
96 97 98
			direct_pages_count[PG_LEVEL_2M] << 12);
#endif
	if (direct_gbpages)
99
		seq_printf(m, "DirectMap1G:    %8lu kB\n",
H
Hugh Dickins 已提交
100
			direct_pages_count[PG_LEVEL_1G] << 20);
101
}
102 103 104
#else
static inline void split_page_count(int level) { }
#endif
105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
#ifdef CONFIG_X86_CPA_STATISTICS

static unsigned long cpa_1g_checked;
static unsigned long cpa_1g_sameprot;
static unsigned long cpa_1g_preserved;
static unsigned long cpa_2m_checked;
static unsigned long cpa_2m_sameprot;
static unsigned long cpa_2m_preserved;
static unsigned long cpa_4k_checked;
static unsigned long cpa_4k_install;

static inline void cpa_inc_1g_checked(void)
{
	cpa_1g_checked++;
}

static inline void cpa_inc_2m_checked(void)
{
	cpa_2m_checked++;
}

static inline void cpa_inc_4k_checked(void)
{
	cpa_4k_checked++;
}

static inline void cpa_inc_4k_install(void)
{
	cpa_4k_install++;
}

static inline void cpa_inc_lp_sameprot(int level)
{
	if (level == PG_LEVEL_1G)
		cpa_1g_sameprot++;
	else
		cpa_2m_sameprot++;
}

static inline void cpa_inc_lp_preserved(int level)
{
	if (level == PG_LEVEL_1G)
		cpa_1g_preserved++;
	else
		cpa_2m_preserved++;
}

static int cpastats_show(struct seq_file *m, void *p)
{
	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
	seq_printf(m, "4K pages checked:     %16lu\n", cpa_4k_checked);
	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
	return 0;
}

static int cpastats_open(struct inode *inode, struct file *file)
{
	return single_open(file, cpastats_show, NULL);
}

static const struct file_operations cpastats_fops = {
	.open		= cpastats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static int __init cpa_stats_init(void)
{
	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
			    &cpastats_fops);
	return 0;
}
late_initcall(cpa_stats_init);
#else
static inline void cpa_inc_1g_checked(void) { }
static inline void cpa_inc_2m_checked(void) { }
static inline void cpa_inc_4k_checked(void) { }
static inline void cpa_inc_4k_install(void) { }
static inline void cpa_inc_lp_sameprot(int level) { }
static inline void cpa_inc_lp_preserved(int level) { }
#endif


195 196 197 198 199 200 201 202 203 204 205 206
static inline int
within(unsigned long addr, unsigned long start, unsigned long end)
{
	return addr >= start && addr < end;
}

static inline int
within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
{
	return addr >= start && addr <= end;
}

T
Thomas Gleixner 已提交
207 208 209 210
#ifdef CONFIG_X86_64

static inline unsigned long highmap_start_pfn(void)
{
211
	return __pa_symbol(_text) >> PAGE_SHIFT;
T
Thomas Gleixner 已提交
212 213 214 215
}

static inline unsigned long highmap_end_pfn(void)
{
216 217
	/* Do not reference physical address outside the kernel. */
	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
T
Thomas Gleixner 已提交
218 219
}

220
static bool __cpa_pfn_in_highmap(unsigned long pfn)
I
Ingo Molnar 已提交
221
{
222 223 224 225 226
	/*
	 * Kernel text has an alias mapping at a high address, known
	 * here as "highmap".
	 */
	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
227 228
}

229 230 231
#else

static bool __cpa_pfn_in_highmap(unsigned long pfn)
232
{
233 234
	/* There is no highmap on 32-bit */
	return false;
235 236
}

237 238
#endif

T
Thomas Gleixner 已提交
239 240 241
/*
 * Flushing functions
 */
242 243 244

/**
 * clflush_cache_range - flush a cache range with clflush
245
 * @vaddr:	virtual start address
246 247
 * @size:	number of bytes to flush
 *
248 249
 * clflushopt is an unordered instruction which needs fencing with mfence or
 * sfence to avoid ordering issues.
250
 */
I
Ingo Molnar 已提交
251
void clflush_cache_range(void *vaddr, unsigned int size)
T
Thomas Gleixner 已提交
252
{
253 254
	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
255
	void *vend = vaddr + size;
256 257 258

	if (p >= vend)
		return;
T
Thomas Gleixner 已提交
259

260
	mb();
I
Ingo Molnar 已提交
261

262
	for (; p < vend; p += clflush_size)
263
		clflushopt(p);
I
Ingo Molnar 已提交
264

265
	mb();
T
Thomas Gleixner 已提交
266
}
267
EXPORT_SYMBOL_GPL(clflush_cache_range);
T
Thomas Gleixner 已提交
268

269 270 271 272 273 274
void arch_invalidate_pmem(void *addr, size_t size)
{
	clflush_cache_range(addr, size);
}
EXPORT_SYMBOL_GPL(arch_invalidate_pmem);

275
static void __cpa_flush_all(void *arg)
T
Thomas Gleixner 已提交
276
{
277 278
	unsigned long cache = (unsigned long)arg;

T
Thomas Gleixner 已提交
279 280 281 282 283 284
	/*
	 * Flush all to work around Errata in early athlons regarding
	 * large page flushing.
	 */
	__flush_tlb_all();

285
	if (cache && boot_cpu_data.x86 >= 4)
T
Thomas Gleixner 已提交
286 287 288
		wbinvd();
}

289
static void cpa_flush_all(unsigned long cache)
T
Thomas Gleixner 已提交
290
{
291
	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
T
Thomas Gleixner 已提交
292

293
	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
T
Thomas Gleixner 已提交
294 295
}

296 297 298 299 300 301 302 303 304 305
static void __cpa_flush_range(void *arg)
{
	/*
	 * We could optimize that further and do individual per page
	 * tlb invalidates for a low number of pages. Caveat: we must
	 * flush the high aliases on 64bit as well.
	 */
	__flush_tlb_all();
}

306
static void cpa_flush_range(unsigned long start, int numpages, int cache)
307
{
I
Ingo Molnar 已提交
308 309 310
	unsigned int i, level;
	unsigned long addr;

311
	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
I
Ingo Molnar 已提交
312
	WARN_ON(PAGE_ALIGN(start) != start);
313

314
	on_each_cpu(__cpa_flush_range, NULL, 1);
315

316 317 318
	if (!cache)
		return;

T
Thomas Gleixner 已提交
319 320 321 322 323 324
	/*
	 * We only need to flush on one CPU,
	 * clflush is a MESI-coherent instruction that
	 * will cause all other CPUs to flush the same
	 * cachelines:
	 */
I
Ingo Molnar 已提交
325 326 327 328 329 330
	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
		pte_t *pte = lookup_address(addr, &level);

		/*
		 * Only flush present addresses:
		 */
331
		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
I
Ingo Molnar 已提交
332 333
			clflush_cache_range((void *) addr, PAGE_SIZE);
	}
334 335
}

336 337
static void cpa_flush_array(unsigned long *start, int numpages, int cache,
			    int in_flags, struct page **pages)
338 339
{
	unsigned int i, level;
340 341 342 343 344 345 346 347 348 349 350 351
#ifdef CONFIG_PREEMPT
	/*
	 * Avoid wbinvd() because it causes latencies on all CPUs,
	 * regardless of any CPU isolation that may be in effect.
	 *
	 * This should be extended for CAT enabled systems independent of
	 * PREEMPT because wbinvd() does not respect the CAT partitions and
	 * this is exposed to unpriviledged users through the graphics
	 * subsystem.
	 */
	unsigned long do_wbinvd = 0;
#else
352
	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
353
#endif
354

355
	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
356

357
	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
358

359
	if (!cache || do_wbinvd)
360 361 362 363 364 365 366 367
		return;

	/*
	 * We only need to flush on one CPU,
	 * clflush is a MESI-coherent instruction that
	 * will cause all other CPUs to flush the same
	 * cachelines:
	 */
368 369 370 371 372 373 374 375 376 377
	for (i = 0; i < numpages; i++) {
		unsigned long addr;
		pte_t *pte;

		if (in_flags & CPA_PAGES_ARRAY)
			addr = (unsigned long)page_address(pages[i]);
		else
			addr = start[i];

		pte = lookup_address(addr, &level);
378 379 380 381 382

		/*
		 * Only flush present addresses:
		 */
		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
383
			clflush_cache_range((void *)addr, PAGE_SIZE);
384 385 386
	}
}

387 388 389 390 391 392 393
static bool overlaps(unsigned long r1_start, unsigned long r1_end,
		     unsigned long r2_start, unsigned long r2_end)
{
	return (r1_start <= r2_end && r1_end >= r2_start) ||
		(r2_start <= r1_end && r2_end >= r1_start);
}

394
#ifdef CONFIG_PCI_BIOS
395
/*
396 397
 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 * based config access (CONFIG_PCI_GOBIOS) support.
398
 */
399
#define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
400
#define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
401

402
static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
403
{
404
	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
405 406 407 408
		return _PAGE_NX;
	return 0;
}
#else
409
static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
410 411 412
{
	return 0;
}
413
#endif
414

415 416 417 418 419
/*
 * The .rodata section needs to be read-only. Using the pfn catches all
 * aliases.  This also includes __ro_after_init, so do not enforce until
 * kernel_set_to_readonly is true.
 */
420
static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
421
{
422 423 424 425 426 427 428
	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));

	/*
	 * Note: __end_rodata is at page aligned and not inclusive, so
	 * subtract 1 to get the last enforced PFN in the rodata area.
	 */
	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
429

430
	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
431 432 433 434 435 436 437 438 439 440 441 442
		return _PAGE_RW;
	return 0;
}

/*
 * Protect kernel text against becoming non executable by forbidding
 * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 * out of which the kernel actually executes.  Do not protect the low
 * mapping.
 *
 * This does not cover __inittext since that is gone after boot.
 */
443
static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
444
{
445 446 447 448
	unsigned long t_end = (unsigned long)_etext - 1;
	unsigned long t_start = (unsigned long)_text;

	if (overlaps(start, end, t_start, t_end))
449 450 451
		return _PAGE_NX;
	return 0;
}
452

453
#if defined(CONFIG_X86_64)
454 455 456 457 458 459 460 461 462
/*
 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 * kernel text mappings for the large page aligned text, rodata sections
 * will be always read-only. For the kernel identity mappings covering the
 * holes caused by this alignment can be anything that user asks.
 *
 * This will preserve the large page mappings for kernel text/data at no
 * extra cost.
 */
463 464
static pgprotval_t protect_kernel_text_ro(unsigned long start,
					  unsigned long end)
465
{
466 467
	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
	unsigned long t_start = (unsigned long)_text;
468 469
	unsigned int level;

470
	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
471
		return 0;
472
	/*
473 474 475
	 * Don't enforce the !RW mapping for the kernel text mapping, if
	 * the current mapping is already using small page mapping.  No
	 * need to work hard to preserve large page mappings in this case.
476
	 *
477 478 479 480 481 482
	 * This also fixes the Linux Xen paravirt guest boot failure caused
	 * by unexpected read-only mappings for kernel identity
	 * mappings. In this paravirt guest case, the kernel text mapping
	 * and the kernel identity mapping share the same page-table pages,
	 * so the protections for kernel text and identity mappings have to
	 * be the same.
483
	 */
484
	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
485 486 487 488
		return _PAGE_RW;
	return 0;
}
#else
489 490
static pgprotval_t protect_kernel_text_ro(unsigned long start,
					  unsigned long end)
491 492 493
{
	return 0;
}
494 495
#endif

T
Thomas Gleixner 已提交
496 497 498 499 500 501 502 503 504 505
static inline bool conflicts(pgprot_t prot, pgprotval_t val)
{
	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
}

static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
				  unsigned long start, unsigned long end,
				  unsigned long pfn, const char *txt)
{
	static const char *lvltxt[] = {
506
		[CPA_CONFLICT]	= "conflict",
T
Thomas Gleixner 已提交
507 508 509 510 511 512 513 514 515 516 517 518
		[CPA_PROTECT]	= "protect",
		[CPA_DETECT]	= "detect",
	};

	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
		return;

	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
		(unsigned long long)val);
}

519 520 521 522 523 524
/*
 * Certain areas of memory on x86 require very specific protection flags,
 * for example the BIOS area or kernel text. Callers don't always get this
 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 * checks and fixes these known static required protection bits.
 */
525
static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
T
Thomas Gleixner 已提交
526 527
					  unsigned long pfn, unsigned long npg,
					  int warnlvl)
528
{
T
Thomas Gleixner 已提交
529
	pgprotval_t forbidden, res;
530
	unsigned long end;
531

532 533 534 535 536 537 538
	/*
	 * There is no point in checking RW/NX conflicts when the requested
	 * mapping is setting the page !PRESENT.
	 */
	if (!(pgprot_val(prot) & _PAGE_PRESENT))
		return prot;

539
	/* Operate on the virtual address */
540
	end = start + npg * PAGE_SIZE - 1;
T
Thomas Gleixner 已提交
541 542 543 544 545 546 547 548

	res = protect_kernel_text(start, end);
	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
	forbidden = res;

	res = protect_kernel_text_ro(start, end);
	check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
	forbidden |= res;
549 550

	/* Check the PFN directly */
T
Thomas Gleixner 已提交
551 552 553 554 555 556 557
	res = protect_pci_bios(pfn, pfn + npg - 1);
	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
	forbidden |= res;

	res = protect_rodata(pfn, pfn + npg - 1);
	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
	forbidden |= res;
I
Ingo Molnar 已提交
558

559
	return __pgprot(pgprot_val(prot) & ~forbidden);
I
Ingo Molnar 已提交
560 561
}

562 563 564 565 566 567
/*
 * Lookup the page table entry for a virtual address in a specific pgd.
 * Return a pointer to the entry and the level of the mapping.
 */
pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
			     unsigned int *level)
568
{
569
	p4d_t *p4d;
L
Linus Torvalds 已提交
570 571
	pud_t *pud;
	pmd_t *pmd;
572

T
Thomas Gleixner 已提交
573 574
	*level = PG_LEVEL_NONE;

L
Linus Torvalds 已提交
575 576
	if (pgd_none(*pgd))
		return NULL;
I
Ingo Molnar 已提交
577

578 579 580 581 582 583 584 585 586
	p4d = p4d_offset(pgd, address);
	if (p4d_none(*p4d))
		return NULL;

	*level = PG_LEVEL_512G;
	if (p4d_large(*p4d) || !p4d_present(*p4d))
		return (pte_t *)p4d;

	pud = pud_offset(p4d, address);
L
Linus Torvalds 已提交
587 588
	if (pud_none(*pud))
		return NULL;
589 590 591 592 593

	*level = PG_LEVEL_1G;
	if (pud_large(*pud) || !pud_present(*pud))
		return (pte_t *)pud;

L
Linus Torvalds 已提交
594 595 596
	pmd = pmd_offset(pud, address);
	if (pmd_none(*pmd))
		return NULL;
T
Thomas Gleixner 已提交
597 598

	*level = PG_LEVEL_2M;
T
Thomas Gleixner 已提交
599
	if (pmd_large(*pmd) || !pmd_present(*pmd))
L
Linus Torvalds 已提交
600 601
		return (pte_t *)pmd;

T
Thomas Gleixner 已提交
602
	*level = PG_LEVEL_4K;
I
Ingo Molnar 已提交
603

604 605
	return pte_offset_kernel(pmd, address);
}
606 607 608 609 610 611 612 613 614 615 616

/*
 * Lookup the page table entry for a virtual address. Return a pointer
 * to the entry and the level of the mapping.
 *
 * Note: We return pud and pmd either when the entry is marked large
 * or when the present bit is not set. Otherwise we would return a
 * pointer to a nonexisting mapping.
 */
pte_t *lookup_address(unsigned long address, unsigned int *level)
{
617
	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
618
}
619
EXPORT_SYMBOL_GPL(lookup_address);
620

621 622 623
static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
				  unsigned int *level)
{
624
	if (cpa->pgd)
625
		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
626 627
					       address, level);

628
	return lookup_address(address, level);
629 630
}

631 632 633 634 635 636 637
/*
 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 * or NULL if not present.
 */
pmd_t *lookup_pmd_address(unsigned long address)
{
	pgd_t *pgd;
638
	p4d_t *p4d;
639 640 641 642 643 644
	pud_t *pud;

	pgd = pgd_offset_k(address);
	if (pgd_none(*pgd))
		return NULL;

645 646 647 648 649
	p4d = p4d_offset(pgd, address);
	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
		return NULL;

	pud = pud_offset(p4d, address);
650 651 652 653 654 655
	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
		return NULL;

	return pmd_offset(pud, address);
}

656 657 658 659 660 661 662 663 664 665 666 667 668 669
/*
 * This is necessary because __pa() does not work on some
 * kinds of memory, like vmalloc() or the alloc_remap()
 * areas on 32-bit NUMA systems.  The percpu areas can
 * end up in this kind of memory, for instance.
 *
 * This could be optimized, but it is only intended to be
 * used at inititalization time, and keeping it
 * unoptimized should increase the testing coverage for
 * the more obscure platforms.
 */
phys_addr_t slow_virt_to_phys(void *__virt_addr)
{
	unsigned long virt_addr = (unsigned long)__virt_addr;
670 671
	phys_addr_t phys_addr;
	unsigned long offset;
672 673 674 675 676
	enum pg_level level;
	pte_t *pte;

	pte = lookup_address(virt_addr, &level);
	BUG_ON(!pte);
677

678 679 680 681 682
	/*
	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
	 * make 32-PAE kernel work correctly.
	 */
683 684
	switch (level) {
	case PG_LEVEL_1G:
685
		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
686 687 688
		offset = virt_addr & ~PUD_PAGE_MASK;
		break;
	case PG_LEVEL_2M:
689
		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
690 691 692
		offset = virt_addr & ~PMD_PAGE_MASK;
		break;
	default:
693
		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
694 695 696 697
		offset = virt_addr & ~PAGE_MASK;
	}

	return (phys_addr_t)(phys_addr | offset);
698 699 700
}
EXPORT_SYMBOL_GPL(slow_virt_to_phys);

I
Ingo Molnar 已提交
701 702 703
/*
 * Set the new pmd in all the pgds we know about:
 */
I
Ingo Molnar 已提交
704
static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
705 706 707
{
	/* change init_mm */
	set_pte_atomic(kpte, pte);
708
#ifdef CONFIG_X86_32
709
	if (!SHARED_KERNEL_PMD) {
710 711
		struct page *page;

712
		list_for_each_entry(page, &pgd_list, lru) {
713
			pgd_t *pgd;
714
			p4d_t *p4d;
715 716 717 718
			pud_t *pud;
			pmd_t *pmd;

			pgd = (pgd_t *)page_address(page) + pgd_index(address);
719 720
			p4d = p4d_offset(pgd, address);
			pud = pud_offset(p4d, address);
721 722 723
			pmd = pmd_offset(pud, address);
			set_pte_atomic((pte_t *)pmd, pte);
		}
L
Linus Torvalds 已提交
724
	}
725
#endif
L
Linus Torvalds 已提交
726 727
}

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
{
	/*
	 * _PAGE_GLOBAL means "global page" for present PTEs.
	 * But, it is also used to indicate _PAGE_PROTNONE
	 * for non-present PTEs.
	 *
	 * This ensures that a _PAGE_GLOBAL PTE going from
	 * present to non-present is not confused as
	 * _PAGE_PROTNONE.
	 */
	if (!(pgprot_val(prot) & _PAGE_PRESENT))
		pgprot_val(prot) &= ~_PAGE_GLOBAL;

	return prot;
}

745 746
static int __should_split_large_page(pte_t *kpte, unsigned long address,
				     struct cpa_data *cpa)
747
{
748
	unsigned long numpages, pmask, psize, lpaddr, addr, pfn, old_pfn;
749
	pgprot_t old_prot, new_prot, req_prot, chk_prot;
750
	pte_t new_pte, old_pte, *tmp;
751
	enum pg_level level;
752
	int i;
753 754 755 756 757

	/*
	 * Check for races, another CPU might have split this page
	 * up already:
	 */
758
	tmp = _lookup_address_cpa(cpa, address, &level);
759
	if (tmp != kpte)
760
		return 1;
761 762 763

	switch (level) {
	case PG_LEVEL_2M:
764 765
		old_prot = pmd_pgprot(*(pmd_t *)kpte);
		old_pfn = pmd_pfn(*(pmd_t *)kpte);
766
		cpa_inc_2m_checked();
767
		break;
768
	case PG_LEVEL_1G:
769 770
		old_prot = pud_pgprot(*(pud_t *)kpte);
		old_pfn = pud_pfn(*(pud_t *)kpte);
771
		cpa_inc_1g_checked();
772
		break;
773
	default:
774
		return -EINVAL;
775 776
	}

777 778 779
	psize = page_level_size(level);
	pmask = page_level_mask(level);

780 781 782 783
	/*
	 * Calculate the number of pages, which fit into this large
	 * page starting at address:
	 */
784 785
	lpaddr = (address + psize) & pmask;
	numpages = (lpaddr - address) >> PAGE_SHIFT;
786 787
	if (numpages < cpa->numpages)
		cpa->numpages = numpages;
788 789 790

	/*
	 * We are safe now. Check whether the new pgprot is the same:
791 792
	 * Convert protection attributes to 4k-format, as cpa->mask* are set
	 * up accordingly.
793 794
	 */
	old_pte = *kpte;
795
	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
796
	req_prot = pgprot_large_2_4k(old_prot);
797

798 799
	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
T
Thomas Gleixner 已提交
800

801 802 803 804 805 806
	/*
	 * req_prot is in format of 4k pages. It must be converted to large
	 * page format: the caching mode includes the PAT bit located at
	 * different bit positions in the two formats.
	 */
	req_prot = pgprot_4k_2_large(req_prot);
807
	req_prot = pgprot_clear_protnone_bits(req_prot);
808
	if (pgprot_val(req_prot) & _PAGE_PRESENT)
809
		pgprot_val(req_prot) |= _PAGE_PSE;
810

T
Thomas Gleixner 已提交
811
	/*
812 813
	 * old_pfn points to the large page base pfn. So we need to add the
	 * offset of the virtual address:
T
Thomas Gleixner 已提交
814
	 */
815
	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
T
Thomas Gleixner 已提交
816 817
	cpa->pfn = pfn;

818 819 820 821 822 823
	/*
	 * Calculate the large page base address and the number of 4K pages
	 * in the large page
	 */
	lpaddr = address & pmask;
	numpages = psize >> PAGE_SHIFT;
824

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	/*
	 * Sanity check that the existing mapping is correct versus the static
	 * protections. static_protections() guards against !PRESENT, so no
	 * extra conditional required here.
	 */
	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
				      CPA_CONFLICT);

	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
		/*
		 * Split the large page and tell the split code to
		 * enforce static protections.
		 */
		cpa->force_static_prot = 1;
		return 1;
	}

842 843 844 845 846 847 848 849 850 851 852 853 854 855
	/*
	 * Optimization: If the requested pgprot is the same as the current
	 * pgprot, then the large page can be preserved and no updates are
	 * required independent of alignment and length of the requested
	 * range. The above already established that the current pgprot is
	 * correct, which in consequence makes the requested pgprot correct
	 * as well if it is the same. The static protection scan below will
	 * not come to a different conclusion.
	 */
	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
		cpa_inc_lp_sameprot(level);
		return 0;
	}

856
	/*
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
	 * Optimization: Check whether the requested pgprot is conflicting
	 * with a static protection requirement in the large page. If not,
	 * then checking whether the requested range is fully covering the
	 * large page can be done right here.
	 */
	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
				      CPA_DETECT);

	if (pgprot_val(req_prot) == pgprot_val(new_prot)) {
		if (address != lpaddr || cpa->numpages != numpages)
			return 1;
		goto setlp;
	}

	/*
	 * Slow path. The full large page check above established that the
	 * requested pgprot cannot be applied to the full large page due to
	 * conflicting requirements of static protection regions. It might
	 * turn out that the whole requested range is covered by the
	 * modified protection of the first 4k segment at @address. This
	 * might result in the ability to preserve the large page
	 * nevertheless.
879
	 */
T
Thomas Gleixner 已提交
880
	new_prot = static_protections(req_prot, address, pfn, 1, CPA_DETECT);
881
	pfn = old_pfn;
882
	for (i = 0, addr = lpaddr; i < numpages; i++, addr += PAGE_SIZE, pfn++) {
883 884
		chk_prot = static_protections(req_prot, addr, pfn, 1,
					      CPA_DETECT);
885
		cpa_inc_4k_checked();
886
		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
887
			return 1;
888 889
	}

890
	/* If there are no changes, return. */
891 892
	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
		cpa_inc_lp_sameprot(level);
893
		return 0;
894
	}
895 896

	/*
897 898
	 * Verify that the address is aligned and the number of pages
	 * covers the full page.
899
	 */
900 901 902
	if (address != lpaddr || cpa->numpages != numpages)
		return 1;

903
setlp:
904 905 906 907
	/* All checks passed. Update the large page mapping. */
	new_pte = pfn_pte(old_pfn, new_prot);
	__set_pmd_pte(kpte, address, new_pte);
	cpa->flags |= CPA_FLUSHTLB;
908
	cpa_inc_lp_preserved(level);
909 910 911 912 913 914 915 916 917 918
	return 0;
}

static int should_split_large_page(pte_t *kpte, unsigned long address,
				   struct cpa_data *cpa)
{
	int do_split;

	if (cpa->force_split)
		return 1;
919

920 921
	spin_lock(&pgd_lock);
	do_split = __should_split_large_page(kpte, address, cpa);
A
Andrea Arcangeli 已提交
922
	spin_unlock(&pgd_lock);
I
Ingo Molnar 已提交
923

I
Ingo Molnar 已提交
924
	return do_split;
925 926
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
			  pgprot_t ref_prot, unsigned long address,
			  unsigned long size)
{
	unsigned int npg = PFN_DOWN(size);
	pgprot_t prot;

	/*
	 * If should_split_large_page() discovered an inconsistent mapping,
	 * remove the invalid protection in the split mapping.
	 */
	if (!cpa->force_static_prot)
		goto set;

	prot = static_protections(ref_prot, address, pfn, npg, CPA_PROTECT);

	if (pgprot_val(prot) == pgprot_val(ref_prot))
		goto set;

	/*
	 * If this is splitting a PMD, fix it up. PUD splits cannot be
	 * fixed trivially as that would require to rescan the newly
	 * installed PMD mappings after returning from split_large_page()
	 * so an eventual further split can allocate the necessary PTE
	 * pages. Warn for now and revisit it in case this actually
	 * happens.
	 */
	if (size == PAGE_SIZE)
		ref_prot = prot;
	else
		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
set:
	set_pte(pte, pfn_pte(pfn, ref_prot));
}

962
static int
963 964
__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
		   struct page *base)
965
{
966
	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
967
	pte_t *pbase = (pte_t *)page_address(base);
I
Ingo Molnar 已提交
968 969
	unsigned int i, level;
	pgprot_t ref_prot;
970
	pte_t *tmp;
971

A
Andrea Arcangeli 已提交
972
	spin_lock(&pgd_lock);
973 974 975 976
	/*
	 * Check for races, another CPU might have split this page
	 * up for us already:
	 */
977
	tmp = _lookup_address_cpa(cpa, address, &level);
978 979 980 981
	if (tmp != kpte) {
		spin_unlock(&pgd_lock);
		return 1;
	}
982

983
	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
984

985 986 987
	switch (level) {
	case PG_LEVEL_2M:
		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
988 989 990 991
		/*
		 * Clear PSE (aka _PAGE_PAT) and move
		 * PAT bit to correct position.
		 */
992
		ref_prot = pgprot_large_2_4k(ref_prot);
993
		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
994 995
		lpaddr = address & PMD_MASK;
		lpinc = PAGE_SIZE;
996
		break;
997

998 999 1000
	case PG_LEVEL_1G:
		ref_prot = pud_pgprot(*(pud_t *)kpte);
		ref_pfn = pud_pfn(*(pud_t *)kpte);
1001
		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
1002 1003
		lpaddr = address & PUD_MASK;
		lpinc = PMD_SIZE;
1004
		/*
1005
		 * Clear the PSE flags if the PRESENT flag is not set
1006 1007 1008
		 * otherwise pmd_present/pmd_huge will return true
		 * even on a non present pmd.
		 */
1009
		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1010
			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1011 1012 1013 1014 1015
		break;

	default:
		spin_unlock(&pgd_lock);
		return 1;
1016 1017
	}

1018
	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1019

1020 1021 1022
	/*
	 * Get the target pfn from the original entry:
	 */
1023
	pfn = ref_pfn;
1024 1025
	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1026

1027 1028 1029 1030 1031 1032
	if (virt_addr_valid(address)) {
		unsigned long pfn = PFN_DOWN(__pa(address));

		if (pfn_range_is_mapped(pfn, pfn + 1))
			split_page_count(level);
	}
1033

1034
	/*
1035
	 * Install the new, split up pagetable.
1036
	 *
1037 1038 1039
	 * We use the standard kernel pagetable protections for the new
	 * pagetable protections, the actual ptes set above control the
	 * primary protection behavior:
1040
	 */
1041
	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051

	/*
	 * Intel Atom errata AAH41 workaround.
	 *
	 * The real fix should be in hw or in a microcode update, but
	 * we also probabilistically try to reduce the window of having
	 * a large TLB mixed with 4K TLBs while instruction fetches are
	 * going on.
	 */
	__flush_tlb_all();
1052
	spin_unlock(&pgd_lock);
1053

1054 1055
	return 0;
}
1056

1057 1058
static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
			    unsigned long address)
1059 1060 1061
{
	struct page *base;

1062
	if (!debug_pagealloc_enabled())
1063
		spin_unlock(&cpa_lock);
1064
	base = alloc_pages(GFP_KERNEL, 0);
1065
	if (!debug_pagealloc_enabled())
1066 1067 1068 1069
		spin_lock(&cpa_lock);
	if (!base)
		return -ENOMEM;

1070
	if (__split_large_page(cpa, kpte, address, base))
S
Suresh Siddha 已提交
1071
		__free_page(base);
1072 1073 1074 1075

	return 0;
}

1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
static bool try_to_free_pte_page(pte_t *pte)
{
	int i;

	for (i = 0; i < PTRS_PER_PTE; i++)
		if (!pte_none(pte[i]))
			return false;

	free_page((unsigned long)pte);
	return true;
}

static bool try_to_free_pmd_page(pmd_t *pmd)
{
	int i;

	for (i = 0; i < PTRS_PER_PMD; i++)
		if (!pmd_none(pmd[i]))
			return false;

	free_page((unsigned long)pmd);
	return true;
}

static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
{
	pte_t *pte = pte_offset_kernel(pmd, start);

	while (start < end) {
		set_pte(pte, __pte(0));

		start += PAGE_SIZE;
		pte++;
	}

	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
		pmd_clear(pmd);
		return true;
	}
	return false;
}

static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
			      unsigned long start, unsigned long end)
{
	if (unmap_pte_range(pmd, start, end))
		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
			pud_clear(pud);
}

static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
{
	pmd_t *pmd = pmd_offset(pud, start);

	/*
	 * Not on a 2MB page boundary?
	 */
	if (start & (PMD_SIZE - 1)) {
		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
		unsigned long pre_end = min_t(unsigned long, end, next_page);

		__unmap_pmd_range(pud, pmd, start, pre_end);

		start = pre_end;
		pmd++;
	}

	/*
	 * Try to unmap in 2M chunks.
	 */
	while (end - start >= PMD_SIZE) {
		if (pmd_large(*pmd))
			pmd_clear(pmd);
		else
			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);

		start += PMD_SIZE;
		pmd++;
	}

	/*
	 * 4K leftovers?
	 */
	if (start < end)
		return __unmap_pmd_range(pud, pmd, start, end);

	/*
	 * Try again to free the PMD page if haven't succeeded above.
	 */
	if (!pud_none(*pud))
		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
			pud_clear(pud);
}
1169

1170
static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1171
{
1172
	pud_t *pud = pud_offset(p4d, start);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

	/*
	 * Not on a GB page boundary?
	 */
	if (start & (PUD_SIZE - 1)) {
		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
		unsigned long pre_end	= min_t(unsigned long, end, next_page);

		unmap_pmd_range(pud, start, pre_end);

		start = pre_end;
		pud++;
	}

	/*
	 * Try to unmap in 1G chunks?
	 */
	while (end - start >= PUD_SIZE) {

		if (pud_large(*pud))
			pud_clear(pud);
		else
			unmap_pmd_range(pud, start, start + PUD_SIZE);

		start += PUD_SIZE;
		pud++;
	}

	/*
	 * 2M leftovers?
	 */
	if (start < end)
		unmap_pmd_range(pud, start, end);

	/*
	 * No need to try to free the PUD page because we'll free it in
	 * populate_pgd's error path
	 */
}

1213 1214
static int alloc_pte_page(pmd_t *pmd)
{
1215
	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1216 1217 1218 1219 1220 1221 1222
	if (!pte)
		return -1;

	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
	return 0;
}

1223 1224
static int alloc_pmd_page(pud_t *pud)
{
1225
	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1226 1227 1228 1229 1230 1231 1232
	if (!pmd)
		return -1;

	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
	return 0;
}

1233 1234 1235 1236 1237 1238 1239 1240
static void populate_pte(struct cpa_data *cpa,
			 unsigned long start, unsigned long end,
			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, start);

1241
	pgprot = pgprot_clear_protnone_bits(pgprot);
1242 1243

	while (num_pages-- && start < end) {
1244
		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1245 1246

		start	 += PAGE_SIZE;
1247
		cpa->pfn++;
1248 1249 1250
		pte++;
	}
}
1251

1252 1253 1254
static long populate_pmd(struct cpa_data *cpa,
			 unsigned long start, unsigned long end,
			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1255
{
1256
	long cur_pages = 0;
1257
	pmd_t *pmd;
1258
	pgprot_t pmd_pgprot;
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

	/*
	 * Not on a 2M boundary?
	 */
	if (start & (PMD_SIZE - 1)) {
		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;

		pre_end   = min_t(unsigned long, pre_end, next_page);
		cur_pages = (pre_end - start) >> PAGE_SHIFT;
		cur_pages = min_t(unsigned int, num_pages, cur_pages);

		/*
		 * Need a PTE page?
		 */
		pmd = pmd_offset(pud, start);
		if (pmd_none(*pmd))
			if (alloc_pte_page(pmd))
				return -1;

		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);

		start = pre_end;
	}

	/*
	 * We mapped them all?
	 */
	if (num_pages == cur_pages)
		return cur_pages;

1290 1291
	pmd_pgprot = pgprot_4k_2_large(pgprot);

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	while (end - start >= PMD_SIZE) {

		/*
		 * We cannot use a 1G page so allocate a PMD page if needed.
		 */
		if (pud_none(*pud))
			if (alloc_pmd_page(pud))
				return -1;

		pmd = pmd_offset(pud, start);

1303 1304
		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
					canon_pgprot(pmd_pgprot))));
1305 1306

		start	  += PMD_SIZE;
1307
		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		cur_pages += PMD_SIZE >> PAGE_SHIFT;
	}

	/*
	 * Map trailing 4K pages.
	 */
	if (start < end) {
		pmd = pmd_offset(pud, start);
		if (pmd_none(*pmd))
			if (alloc_pte_page(pmd))
				return -1;

		populate_pte(cpa, start, end, num_pages - cur_pages,
			     pmd, pgprot);
	}
	return num_pages;
}
1325

1326 1327
static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
			pgprot_t pgprot)
1328 1329 1330
{
	pud_t *pud;
	unsigned long end;
1331
	long cur_pages = 0;
1332
	pgprot_t pud_pgprot;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

	end = start + (cpa->numpages << PAGE_SHIFT);

	/*
	 * Not on a Gb page boundary? => map everything up to it with
	 * smaller pages.
	 */
	if (start & (PUD_SIZE - 1)) {
		unsigned long pre_end;
		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;

		pre_end   = min_t(unsigned long, end, next_page);
		cur_pages = (pre_end - start) >> PAGE_SHIFT;
		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);

1348
		pud = pud_offset(p4d, start);
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368

		/*
		 * Need a PMD page?
		 */
		if (pud_none(*pud))
			if (alloc_pmd_page(pud))
				return -1;

		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
					 pud, pgprot);
		if (cur_pages < 0)
			return cur_pages;

		start = pre_end;
	}

	/* We mapped them all? */
	if (cpa->numpages == cur_pages)
		return cur_pages;

1369
	pud = pud_offset(p4d, start);
1370
	pud_pgprot = pgprot_4k_2_large(pgprot);
1371 1372 1373 1374

	/*
	 * Map everything starting from the Gb boundary, possibly with 1G pages
	 */
1375
	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1376 1377
		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
				   canon_pgprot(pud_pgprot))));
1378 1379

		start	  += PUD_SIZE;
1380
		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1381 1382 1383 1384 1385 1386
		cur_pages += PUD_SIZE >> PAGE_SHIFT;
		pud++;
	}

	/* Map trailing leftover */
	if (start < end) {
1387
		long tmp;
1388

1389
		pud = pud_offset(p4d, start);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
		if (pud_none(*pud))
			if (alloc_pmd_page(pud))
				return -1;

		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
				   pud, pgprot);
		if (tmp < 0)
			return cur_pages;

		cur_pages += tmp;
	}
	return cur_pages;
}
1403 1404 1405 1406 1407 1408 1409 1410 1411

/*
 * Restrictions for kernel page table do not necessarily apply when mapping in
 * an alternate PGD.
 */
static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
{
	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
	pud_t *pud = NULL;	/* shut up gcc */
1412
	p4d_t *p4d;
1413
	pgd_t *pgd_entry;
1414
	long ret;
1415 1416 1417

	pgd_entry = cpa->pgd + pgd_index(addr);

1418
	if (pgd_none(*pgd_entry)) {
1419
		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1420 1421 1422 1423 1424 1425
		if (!p4d)
			return -1;

		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
	}

1426 1427 1428
	/*
	 * Allocate a PUD page and hand it down for mapping.
	 */
1429 1430
	p4d = p4d_offset(pgd_entry, addr);
	if (p4d_none(*p4d)) {
1431
		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1432 1433
		if (!pud)
			return -1;
1434

1435
		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1436 1437 1438 1439 1440
	}

	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);

1441
	ret = populate_pud(cpa, addr, p4d, pgprot);
1442
	if (ret < 0) {
1443 1444 1445 1446 1447
		/*
		 * Leave the PUD page in place in case some other CPU or thread
		 * already found it, but remove any useless entries we just
		 * added to it.
		 */
1448
		unmap_pud_range(p4d, addr,
1449
				addr + (cpa->numpages << PAGE_SHIFT));
1450
		return ret;
1451
	}
1452

1453 1454 1455 1456
	cpa->numpages = ret;
	return 0;
}

1457 1458 1459
static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
			       int primary)
{
1460 1461 1462 1463 1464 1465
	if (cpa->pgd) {
		/*
		 * Right now, we only execute this code path when mapping
		 * the EFI virtual memory map regions, no other users
		 * provide a ->pgd value. This may change in the future.
		 */
1466
		return populate_pgd(cpa, vaddr);
1467
	}
1468

1469 1470 1471
	/*
	 * Ignore all non primary paths.
	 */
1472 1473
	if (!primary) {
		cpa->numpages = 1;
1474
		return 0;
1475
	}
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488

	/*
	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
	 * to have holes.
	 * Also set numpages to '1' indicating that we processed cpa req for
	 * one virtual address page and its pfn. TBD: numpages can be set based
	 * on the initial value and the level returned by lookup_address().
	 */
	if (within(vaddr, PAGE_OFFSET,
		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
		cpa->numpages = 1;
		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
		return 0;
1489 1490 1491 1492

	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
		/* Faults in the highmap are OK, so do not warn: */
		return -EFAULT;
1493 1494 1495 1496 1497 1498 1499 1500 1501
	} else {
		WARN(1, KERN_WARNING "CPA: called for zero pte. "
			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
			*cpa->vaddr);

		return -EFAULT;
	}
}

T
Thomas Gleixner 已提交
1502
static int __change_page_attr(struct cpa_data *cpa, int primary)
1503
{
1504
	unsigned long address;
1505 1506
	int do_split, err;
	unsigned int level;
T
Thomas Gleixner 已提交
1507
	pte_t *kpte, old_pte;
L
Linus Torvalds 已提交
1508

1509 1510 1511 1512 1513 1514
	if (cpa->flags & CPA_PAGES_ARRAY) {
		struct page *page = cpa->pages[cpa->curpage];
		if (unlikely(PageHighMem(page)))
			return 0;
		address = (unsigned long)page_address(page);
	} else if (cpa->flags & CPA_ARRAY)
1515 1516 1517
		address = cpa->vaddr[cpa->curpage];
	else
		address = *cpa->vaddr;
1518
repeat:
1519
	kpte = _lookup_address_cpa(cpa, address, &level);
L
Linus Torvalds 已提交
1520
	if (!kpte)
1521
		return __cpa_process_fault(cpa, address, primary);
T
Thomas Gleixner 已提交
1522 1523

	old_pte = *kpte;
1524
	if (pte_none(old_pte))
1525
		return __cpa_process_fault(cpa, address, primary);
1526

T
Thomas Gleixner 已提交
1527
	if (level == PG_LEVEL_4K) {
T
Thomas Gleixner 已提交
1528
		pte_t new_pte;
1529
		pgprot_t new_prot = pte_pgprot(old_pte);
T
Thomas Gleixner 已提交
1530
		unsigned long pfn = pte_pfn(old_pte);
I
Ingo Molnar 已提交
1531

T
Thomas Gleixner 已提交
1532 1533
		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
I
Ingo Molnar 已提交
1534

1535
		cpa_inc_4k_install();
T
Thomas Gleixner 已提交
1536 1537
		new_prot = static_protections(new_prot, address, pfn, 1,
					      CPA_PROTECT);
I
Ingo Molnar 已提交
1538

1539
		new_prot = pgprot_clear_protnone_bits(new_prot);
1540

1541 1542 1543 1544 1545
		/*
		 * We need to keep the pfn from the existing PTE,
		 * after all we're only going to change it's attributes
		 * not the memory it points to
		 */
1546
		new_pte = pfn_pte(pfn, new_prot);
T
Thomas Gleixner 已提交
1547
		cpa->pfn = pfn;
1548 1549 1550 1551 1552
		/*
		 * Do we really change anything ?
		 */
		if (pte_val(old_pte) != pte_val(new_pte)) {
			set_pte_atomic(kpte, new_pte);
1553
			cpa->flags |= CPA_FLUSHTLB;
1554
		}
1555
		cpa->numpages = 1;
1556
		return 0;
L
Linus Torvalds 已提交
1557
	}
1558 1559 1560 1561 1562

	/*
	 * Check, whether we can keep the large page intact
	 * and just change the pte:
	 */
1563
	do_split = should_split_large_page(kpte, address, cpa);
1564 1565
	/*
	 * When the range fits into the existing large page,
1566
	 * return. cp->numpages and cpa->tlbflush have been updated in
1567 1568
	 * try_large_page:
	 */
I
Ingo Molnar 已提交
1569 1570
	if (do_split <= 0)
		return do_split;
1571 1572 1573 1574

	/*
	 * We have to split the large page:
	 */
1575
	err = split_large_page(cpa, kpte, address);
I
Ingo Molnar 已提交
1576
	if (!err) {
1577
		/*
1578 1579 1580 1581 1582
		 * Do a global flush tlb after splitting the large page
		 * and before we do the actual change page attribute in the PTE.
		 *
		 * With out this, we violate the TLB application note, that says
		 * "The TLBs may contain both ordinary and large-page
1583 1584 1585 1586 1587 1588
		 *  translations for a 4-KByte range of linear addresses. This
		 *  may occur if software modifies the paging structures so that
		 *  the page size used for the address range changes. If the two
		 *  translations differ with respect to page frame or attributes
		 *  (e.g., permissions), processor behavior is undefined and may
		 *  be implementation-specific."
1589 1590
		 *
		 * We do this global tlb flush inside the cpa_lock, so that we
1591 1592 1593
		 * don't allow any other cpu, with stale tlb entries change the
		 * page attribute in parallel, that also falls into the
		 * just split large page entry.
1594
		 */
1595
		flush_tlb_all();
I
Ingo Molnar 已提交
1596 1597
		goto repeat;
	}
I
Ingo Molnar 已提交
1598

I
Ingo Molnar 已提交
1599
	return err;
1600
}
L
Linus Torvalds 已提交
1601

T
Thomas Gleixner 已提交
1602 1603 1604
static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);

static int cpa_process_alias(struct cpa_data *cpa)
L
Linus Torvalds 已提交
1605
{
T
Thomas Gleixner 已提交
1606
	struct cpa_data alias_cpa;
T
Tejun Heo 已提交
1607
	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1608
	unsigned long vaddr;
T
Tejun Heo 已提交
1609
	int ret;
1610

1611
	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
T
Thomas Gleixner 已提交
1612
		return 0;
1613

1614 1615 1616 1617
	/*
	 * No need to redo, when the primary call touched the direct
	 * mapping already:
	 */
1618 1619 1620 1621 1622 1623
	if (cpa->flags & CPA_PAGES_ARRAY) {
		struct page *page = cpa->pages[cpa->curpage];
		if (unlikely(PageHighMem(page)))
			return 0;
		vaddr = (unsigned long)page_address(page);
	} else if (cpa->flags & CPA_ARRAY)
1624 1625 1626 1627 1628
		vaddr = cpa->vaddr[cpa->curpage];
	else
		vaddr = *cpa->vaddr;

	if (!(within(vaddr, PAGE_OFFSET,
1629
		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1630

1631
		alias_cpa = *cpa;
T
Tejun Heo 已提交
1632
		alias_cpa.vaddr = &laddr;
1633
		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1634

1635
		ret = __change_page_attr_set_clr(&alias_cpa, 0);
T
Tejun Heo 已提交
1636 1637
		if (ret)
			return ret;
1638
	}
1639 1640

#ifdef CONFIG_X86_64
A
Arjan van de Ven 已提交
1641
	/*
T
Tejun Heo 已提交
1642 1643
	 * If the primary call didn't touch the high mapping already
	 * and the physical address is inside the kernel map, we need
1644
	 * to touch the high mapped kernel as well:
A
Arjan van de Ven 已提交
1645
	 */
T
Tejun Heo 已提交
1646
	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1647
	    __cpa_pfn_in_highmap(cpa->pfn)) {
T
Tejun Heo 已提交
1648 1649 1650 1651 1652
		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
					       __START_KERNEL_map - phys_base;
		alias_cpa = *cpa;
		alias_cpa.vaddr = &temp_cpa_vaddr;
		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
T
Thomas Gleixner 已提交
1653

T
Tejun Heo 已提交
1654 1655 1656 1657 1658 1659
		/*
		 * The high mapping range is imprecise, so ignore the
		 * return value.
		 */
		__change_page_attr_set_clr(&alias_cpa, 0);
	}
A
Arjan van de Ven 已提交
1660
#endif
T
Tejun Heo 已提交
1661 1662

	return 0;
L
Linus Torvalds 已提交
1663 1664
}

T
Thomas Gleixner 已提交
1665
static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1666
{
1667 1668
	unsigned long numpages = cpa->numpages;
	int ret;
1669

1670 1671 1672 1673 1674
	while (numpages) {
		/*
		 * Store the remaining nr of pages for the large page
		 * preservation check.
		 */
1675
		cpa->numpages = numpages;
1676
		/* for array changes, we can't use large page */
1677
		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1678
			cpa->numpages = 1;
T
Thomas Gleixner 已提交
1679

1680
		if (!debug_pagealloc_enabled())
1681
			spin_lock(&cpa_lock);
T
Thomas Gleixner 已提交
1682
		ret = __change_page_attr(cpa, checkalias);
1683
		if (!debug_pagealloc_enabled())
1684
			spin_unlock(&cpa_lock);
1685 1686 1687
		if (ret)
			return ret;

T
Thomas Gleixner 已提交
1688 1689 1690 1691 1692 1693
		if (checkalias) {
			ret = cpa_process_alias(cpa);
			if (ret)
				return ret;
		}

1694 1695 1696 1697 1698
		/*
		 * Adjust the number of pages with the result of the
		 * CPA operation. Either a large page has been
		 * preserved or a single page update happened.
		 */
1699
		BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1700
		numpages -= cpa->numpages;
1701
		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1702 1703 1704 1705
			cpa->curpage++;
		else
			*cpa->vaddr += cpa->numpages * PAGE_SIZE;

1706
	}
1707 1708 1709
	return 0;
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
/*
 * Machine check recovery code needs to change cache mode of poisoned
 * pages to UC to avoid speculative access logging another error. But
 * passing the address of the 1:1 mapping to set_memory_uc() is a fine
 * way to encourage a speculative access. So we cheat and flip the top
 * bit of the address. This works fine for the code that updates the
 * page tables. But at the end of the process we need to flush the cache
 * and the non-canonical address causes a #GP fault when used by the
 * CLFLUSH instruction.
 *
 * But in the common case we already have a canonical address. This code
 * will fix the top bit if needed and is a no-op otherwise.
 */
static inline unsigned long make_addr_canonical_again(unsigned long addr)
{
#ifdef CONFIG_X86_64
	return (long)(addr << 1) >> 1;
#else
	return addr;
#endif
}


1733
static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1734
				    pgprot_t mask_set, pgprot_t mask_clr,
1735 1736
				    int force_split, int in_flag,
				    struct page **pages)
1737
{
T
Thomas Gleixner 已提交
1738
	struct cpa_data cpa;
1739
	int ret, cache, checkalias;
1740
	unsigned long baddr = 0;
1741

1742 1743
	memset(&cpa, 0, sizeof(cpa));

1744
	/*
1745 1746
	 * Check, if we are requested to set a not supported
	 * feature.  Clearing non-supported features is OK.
1747 1748
	 */
	mask_set = canon_pgprot(mask_set);
1749

1750
	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1751 1752
		return 0;

1753
	/* Ensure we are PAGE_SIZE aligned */
1754
	if (in_flag & CPA_ARRAY) {
1755 1756 1757 1758 1759 1760 1761
		int i;
		for (i = 0; i < numpages; i++) {
			if (addr[i] & ~PAGE_MASK) {
				addr[i] &= PAGE_MASK;
				WARN_ON_ONCE(1);
			}
		}
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
		/*
		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
		 * No need to cehck in that case
		 */
		if (*addr & ~PAGE_MASK) {
			*addr &= PAGE_MASK;
			/*
			 * People should not be passing in unaligned addresses:
			 */
			WARN_ON_ONCE(1);
		}
1774 1775 1776 1777
		/*
		 * Save address for cache flush. *addr is modified in the call
		 * to __change_page_attr_set_clr() below.
		 */
1778
		baddr = make_addr_canonical_again(*addr);
1779 1780
	}

1781 1782 1783
	/* Must avoid aliasing mappings in the highmem code */
	kmap_flush_unused();

N
Nick Piggin 已提交
1784 1785
	vm_unmap_aliases();

T
Thomas Gleixner 已提交
1786
	cpa.vaddr = addr;
1787
	cpa.pages = pages;
T
Thomas Gleixner 已提交
1788 1789 1790
	cpa.numpages = numpages;
	cpa.mask_set = mask_set;
	cpa.mask_clr = mask_clr;
1791 1792
	cpa.flags = 0;
	cpa.curpage = 0;
1793
	cpa.force_split = force_split;
T
Thomas Gleixner 已提交
1794

1795 1796
	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
		cpa.flags |= in_flag;
1797

1798 1799
	/* No alias checking for _NX bit modifications */
	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1800 1801 1802
	/* Has caller explicitly disabled alias checking? */
	if (in_flag & CPA_NO_CHECK_ALIAS)
		checkalias = 0;
1803 1804

	ret = __change_page_attr_set_clr(&cpa, checkalias);
1805

1806 1807 1808
	/*
	 * Check whether we really changed something:
	 */
1809
	if (!(cpa.flags & CPA_FLUSHTLB))
1810
		goto out;
1811

1812 1813 1814 1815
	/*
	 * No need to flush, when we did not set any of the caching
	 * attributes:
	 */
1816
	cache = !!pgprot2cachemode(mask_set);
1817

1818
	/*
1819 1820
	 * On success we use CLFLUSH, when the CPU supports it to
	 * avoid the WBINVD. If the CPU does not support it and in the
1821
	 * error case we fall back to cpa_flush_all (which uses
1822
	 * WBINVD):
1823
	 */
1824
	if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1825 1826 1827 1828
		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
			cpa_flush_array(addr, numpages, cache,
					cpa.flags, pages);
		} else
1829
			cpa_flush_range(baddr, numpages, cache);
1830
	} else
1831
		cpa_flush_all(cache);
1832

1833
out:
1834 1835 1836
	return ret;
}

1837 1838
static inline int change_page_attr_set(unsigned long *addr, int numpages,
				       pgprot_t mask, int array)
1839
{
1840
	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1841
		(array ? CPA_ARRAY : 0), NULL);
1842 1843
}

1844 1845
static inline int change_page_attr_clear(unsigned long *addr, int numpages,
					 pgprot_t mask, int array)
1846
{
1847
	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1848
		(array ? CPA_ARRAY : 0), NULL);
1849 1850
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
static inline int cpa_set_pages_array(struct page **pages, int numpages,
				       pgprot_t mask)
{
	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
		CPA_PAGES_ARRAY, pages);
}

static inline int cpa_clear_pages_array(struct page **pages, int numpages,
					 pgprot_t mask)
{
	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
		CPA_PAGES_ARRAY, pages);
}

1865
int _set_memory_uc(unsigned long addr, int numpages)
1866
{
1867 1868
	/*
	 * for now UC MINUS. see comments in ioremap_nocache()
1869 1870 1871
	 * If you really need strong UC use ioremap_uc(), but note
	 * that you cannot override IO areas with set_memory_*() as
	 * these helpers cannot work with IO memory.
1872
	 */
1873
	return change_page_attr_set(&addr, numpages,
1874 1875
				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
				    0);
1876
}
1877 1878 1879

int set_memory_uc(unsigned long addr, int numpages)
{
1880 1881
	int ret;

1882 1883 1884
	/*
	 * for now UC MINUS. see comments in ioremap_nocache()
	 */
1885
	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1886
			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1887 1888 1889 1890 1891 1892 1893 1894
	if (ret)
		goto out_err;

	ret = _set_memory_uc(addr, numpages);
	if (ret)
		goto out_free;

	return 0;
1895

1896 1897 1898 1899
out_free:
	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
out_err:
	return ret;
1900
}
1901 1902
EXPORT_SYMBOL(set_memory_uc);

1903
static int _set_memory_array(unsigned long *addr, int addrinarray,
1904
		enum page_cache_mode new_type)
1905
{
1906
	enum page_cache_mode set_type;
1907 1908 1909
	int i, j;
	int ret;

1910
	for (i = 0; i < addrinarray; i++) {
1911
		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1912
					new_type, NULL);
1913 1914
		if (ret)
			goto out_free;
1915 1916
	}

1917 1918 1919 1920
	/* If WC, set to UC- first and then WC */
	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
				_PAGE_CACHE_MODE_UC_MINUS : new_type;

1921
	ret = change_page_attr_set(addr, addrinarray,
1922
				   cachemode2pgprot(set_type), 1);
1923

1924
	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1925
		ret = change_page_attr_set_clr(addr, addrinarray,
1926 1927
					       cachemode2pgprot(
						_PAGE_CACHE_MODE_WC),
1928 1929
					       __pgprot(_PAGE_CACHE_MASK),
					       0, CPA_ARRAY, NULL);
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
	if (ret)
		goto out_free;

	return 0;

out_free:
	for (j = 0; j < i; j++)
		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);

	return ret;
1940
}
1941 1942 1943

int set_memory_array_uc(unsigned long *addr, int addrinarray)
{
1944
	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1945
}
1946 1947
EXPORT_SYMBOL(set_memory_array_uc);

1948 1949
int set_memory_array_wc(unsigned long *addr, int addrinarray)
{
1950
	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1951 1952 1953
}
EXPORT_SYMBOL(set_memory_array_wc);

1954 1955 1956 1957 1958 1959
int set_memory_array_wt(unsigned long *addr, int addrinarray)
{
	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
}
EXPORT_SYMBOL_GPL(set_memory_array_wt);

1960 1961
int _set_memory_wc(unsigned long addr, int numpages)
{
1962
	int ret;
1963 1964
	unsigned long addr_copy = addr;

1965
	ret = change_page_attr_set(&addr, numpages,
1966 1967
				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
				   0);
1968
	if (!ret) {
1969
		ret = change_page_attr_set_clr(&addr_copy, numpages,
1970 1971
					       cachemode2pgprot(
						_PAGE_CACHE_MODE_WC),
1972 1973
					       __pgprot(_PAGE_CACHE_MASK),
					       0, 0, NULL);
1974 1975
	}
	return ret;
1976 1977 1978 1979
}

int set_memory_wc(unsigned long addr, int numpages)
{
1980 1981 1982
	int ret;

	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1983
		_PAGE_CACHE_MODE_WC, NULL);
1984
	if (ret)
1985
		return ret;
1986

1987 1988
	ret = _set_memory_wc(addr, numpages);
	if (ret)
1989
		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1990 1991

	return ret;
1992 1993 1994
}
EXPORT_SYMBOL(set_memory_wc);

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
int _set_memory_wt(unsigned long addr, int numpages)
{
	return change_page_attr_set(&addr, numpages,
				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
}

int set_memory_wt(unsigned long addr, int numpages)
{
	int ret;

	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
			      _PAGE_CACHE_MODE_WT, NULL);
	if (ret)
		return ret;

	ret = _set_memory_wt(addr, numpages);
	if (ret)
		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);

	return ret;
}
EXPORT_SYMBOL_GPL(set_memory_wt);

2018
int _set_memory_wb(unsigned long addr, int numpages)
2019
{
2020
	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2021 2022
	return change_page_attr_clear(&addr, numpages,
				      __pgprot(_PAGE_CACHE_MASK), 0);
2023
}
2024 2025 2026

int set_memory_wb(unsigned long addr, int numpages)
{
2027 2028 2029 2030 2031 2032
	int ret;

	ret = _set_memory_wb(addr, numpages);
	if (ret)
		return ret;

2033
	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2034
	return 0;
2035
}
2036 2037
EXPORT_SYMBOL(set_memory_wb);

2038 2039 2040
int set_memory_array_wb(unsigned long *addr, int addrinarray)
{
	int i;
2041 2042
	int ret;

2043
	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2044 2045
	ret = change_page_attr_clear(addr, addrinarray,
				      __pgprot(_PAGE_CACHE_MASK), 1);
2046 2047
	if (ret)
		return ret;
2048

2049 2050
	for (i = 0; i < addrinarray; i++)
		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
2051

2052
	return 0;
2053 2054 2055
}
EXPORT_SYMBOL(set_memory_array_wb);

2056 2057
int set_memory_x(unsigned long addr, int numpages)
{
2058 2059 2060
	if (!(__supported_pte_mask & _PAGE_NX))
		return 0;

2061
	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2062 2063 2064 2065 2066
}
EXPORT_SYMBOL(set_memory_x);

int set_memory_nx(unsigned long addr, int numpages)
{
2067 2068 2069
	if (!(__supported_pte_mask & _PAGE_NX))
		return 0;

2070
	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2071 2072 2073 2074 2075
}
EXPORT_SYMBOL(set_memory_nx);

int set_memory_ro(unsigned long addr, int numpages)
{
2076
	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
2077 2078 2079 2080
}

int set_memory_rw(unsigned long addr, int numpages)
{
2081
	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2082
}
I
Ingo Molnar 已提交
2083 2084 2085

int set_memory_np(unsigned long addr, int numpages)
{
2086
	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
I
Ingo Molnar 已提交
2087
}
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097
int set_memory_np_noalias(unsigned long addr, int numpages)
{
	int cpa_flags = CPA_NO_CHECK_ALIAS;

	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
					__pgprot(_PAGE_PRESENT), 0,
					cpa_flags, NULL);
}

2098 2099
int set_memory_4k(unsigned long addr, int numpages)
{
2100
	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2101
					__pgprot(0), 1, 0, NULL);
2102 2103
}

2104 2105 2106 2107 2108 2109
int set_memory_nonglobal(unsigned long addr, int numpages)
{
	return change_page_attr_clear(&addr, numpages,
				      __pgprot(_PAGE_GLOBAL), 0);
}

2110 2111 2112 2113 2114 2115
int set_memory_global(unsigned long addr, int numpages)
{
	return change_page_attr_set(&addr, numpages,
				    __pgprot(_PAGE_GLOBAL), 0);
}

2116 2117 2118 2119 2120 2121
static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
{
	struct cpa_data cpa;
	unsigned long start;
	int ret;

2122 2123
	/* Nothing to do if memory encryption is not active */
	if (!mem_encrypt_active())
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
		return 0;

	/* Should not be working on unaligned addresses */
	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
		addr &= PAGE_MASK;

	start = addr;

	memset(&cpa, 0, sizeof(cpa));
	cpa.vaddr = &addr;
	cpa.numpages = numpages;
	cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
	cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
	cpa.pgd = init_mm.pgd;

	/* Must avoid aliasing mappings in the highmem code */
	kmap_flush_unused();
	vm_unmap_aliases();

	/*
	 * Before changing the encryption attribute, we need to flush caches.
	 */
	if (static_cpu_has(X86_FEATURE_CLFLUSH))
		cpa_flush_range(start, numpages, 1);
	else
		cpa_flush_all(1);

	ret = __change_page_attr_set_clr(&cpa, 1);

	/*
	 * After changing the encryption attribute, we need to flush TLBs
	 * again in case any speculative TLB caching occurred (but no need
	 * to flush caches again).  We could just use cpa_flush_all(), but
	 * in case TLB flushing gets optimized in the cpa_flush_range()
	 * path use the same logic as above.
	 */
	if (static_cpu_has(X86_FEATURE_CLFLUSH))
		cpa_flush_range(start, numpages, 0);
	else
		cpa_flush_all(0);

	return ret;
}

int set_memory_encrypted(unsigned long addr, int numpages)
{
	return __set_memory_enc_dec(addr, numpages, true);
}
2172
EXPORT_SYMBOL_GPL(set_memory_encrypted);
2173 2174 2175 2176 2177

int set_memory_decrypted(unsigned long addr, int numpages)
{
	return __set_memory_enc_dec(addr, numpages, false);
}
2178
EXPORT_SYMBOL_GPL(set_memory_decrypted);
2179

2180 2181 2182 2183
int set_pages_uc(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

T
Thomas Gleixner 已提交
2184
	return set_memory_uc(addr, numpages);
2185 2186 2187
}
EXPORT_SYMBOL(set_pages_uc);

2188
static int _set_pages_array(struct page **pages, int addrinarray,
2189
		enum page_cache_mode new_type)
2190 2191 2192
{
	unsigned long start;
	unsigned long end;
2193
	enum page_cache_mode set_type;
2194 2195
	int i;
	int free_idx;
2196
	int ret;
2197 2198

	for (i = 0; i < addrinarray; i++) {
2199 2200 2201
		if (PageHighMem(pages[i]))
			continue;
		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2202
		end = start + PAGE_SIZE;
2203
		if (reserve_memtype(start, end, new_type, NULL))
2204 2205 2206
			goto err_out;
	}

2207 2208 2209 2210
	/* If WC, set to UC- first and then WC */
	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
				_PAGE_CACHE_MODE_UC_MINUS : new_type;

2211
	ret = cpa_set_pages_array(pages, addrinarray,
2212
				  cachemode2pgprot(set_type));
2213
	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2214
		ret = change_page_attr_set_clr(NULL, addrinarray,
2215 2216
					       cachemode2pgprot(
						_PAGE_CACHE_MODE_WC),
2217 2218 2219 2220 2221
					       __pgprot(_PAGE_CACHE_MASK),
					       0, CPA_PAGES_ARRAY, pages);
	if (ret)
		goto err_out;
	return 0; /* Success */
2222 2223 2224
err_out:
	free_idx = i;
	for (i = 0; i < free_idx; i++) {
2225 2226 2227
		if (PageHighMem(pages[i]))
			continue;
		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2228 2229 2230 2231 2232
		end = start + PAGE_SIZE;
		free_memtype(start, end);
	}
	return -EINVAL;
}
2233 2234 2235

int set_pages_array_uc(struct page **pages, int addrinarray)
{
2236
	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
2237
}
2238 2239
EXPORT_SYMBOL(set_pages_array_uc);

2240 2241
int set_pages_array_wc(struct page **pages, int addrinarray)
{
2242
	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
2243 2244 2245
}
EXPORT_SYMBOL(set_pages_array_wc);

2246 2247 2248 2249 2250 2251
int set_pages_array_wt(struct page **pages, int addrinarray)
{
	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
}
EXPORT_SYMBOL_GPL(set_pages_array_wt);

2252 2253 2254 2255
int set_pages_wb(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

T
Thomas Gleixner 已提交
2256
	return set_memory_wb(addr, numpages);
2257 2258 2259
}
EXPORT_SYMBOL(set_pages_wb);

2260 2261 2262 2263 2264 2265 2266
int set_pages_array_wb(struct page **pages, int addrinarray)
{
	int retval;
	unsigned long start;
	unsigned long end;
	int i;

2267
	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2268 2269
	retval = cpa_clear_pages_array(pages, addrinarray,
			__pgprot(_PAGE_CACHE_MASK));
2270 2271
	if (retval)
		return retval;
2272 2273

	for (i = 0; i < addrinarray; i++) {
2274 2275 2276
		if (PageHighMem(pages[i]))
			continue;
		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2277 2278 2279 2280
		end = start + PAGE_SIZE;
		free_memtype(start, end);
	}

2281
	return 0;
2282 2283 2284
}
EXPORT_SYMBOL(set_pages_array_wb);

2285 2286 2287 2288
int set_pages_x(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

T
Thomas Gleixner 已提交
2289
	return set_memory_x(addr, numpages);
2290 2291 2292 2293 2294 2295 2296
}
EXPORT_SYMBOL(set_pages_x);

int set_pages_nx(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

T
Thomas Gleixner 已提交
2297
	return set_memory_nx(addr, numpages);
2298 2299 2300 2301 2302 2303 2304
}
EXPORT_SYMBOL(set_pages_nx);

int set_pages_ro(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);

T
Thomas Gleixner 已提交
2305
	return set_memory_ro(addr, numpages);
2306 2307 2308 2309 2310
}

int set_pages_rw(struct page *page, int numpages)
{
	unsigned long addr = (unsigned long)page_address(page);
2311

T
Thomas Gleixner 已提交
2312
	return set_memory_rw(addr, numpages);
I
Ingo Molnar 已提交
2313 2314
}

L
Linus Torvalds 已提交
2315
#ifdef CONFIG_DEBUG_PAGEALLOC
I
Ingo Molnar 已提交
2316 2317 2318

static int __set_pages_p(struct page *page, int numpages)
{
2319 2320
	unsigned long tempaddr = (unsigned long) page_address(page);
	struct cpa_data cpa = { .vaddr = &tempaddr,
2321
				.pgd = NULL,
T
Thomas Gleixner 已提交
2322 2323
				.numpages = numpages,
				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2324 2325
				.mask_clr = __pgprot(0),
				.flags = 0};
2326

2327 2328 2329 2330 2331 2332 2333
	/*
	 * No alias checking needed for setting present flag. otherwise,
	 * we may need to break large pages for 64-bit kernel text
	 * mappings (this adds to complexity if we want to do this from
	 * atomic context especially). Let's keep it simple!
	 */
	return __change_page_attr_set_clr(&cpa, 0);
I
Ingo Molnar 已提交
2334 2335 2336 2337
}

static int __set_pages_np(struct page *page, int numpages)
{
2338 2339
	unsigned long tempaddr = (unsigned long) page_address(page);
	struct cpa_data cpa = { .vaddr = &tempaddr,
2340
				.pgd = NULL,
T
Thomas Gleixner 已提交
2341 2342
				.numpages = numpages,
				.mask_set = __pgprot(0),
2343 2344
				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
				.flags = 0};
2345

2346 2347 2348 2349 2350 2351 2352
	/*
	 * No alias checking needed for setting not present flag. otherwise,
	 * we may need to break large pages for 64-bit kernel text
	 * mappings (this adds to complexity if we want to do this from
	 * atomic context especially). Let's keep it simple!
	 */
	return __change_page_attr_set_clr(&cpa, 0);
I
Ingo Molnar 已提交
2353 2354
}

2355
void __kernel_map_pages(struct page *page, int numpages, int enable)
L
Linus Torvalds 已提交
2356 2357 2358
{
	if (PageHighMem(page))
		return;
2359
	if (!enable) {
2360 2361
		debug_check_no_locks_freed(page_address(page),
					   numpages * PAGE_SIZE);
2362
	}
2363

2364
	/*
I
Ingo Molnar 已提交
2365
	 * The return value is ignored as the calls cannot fail.
2366 2367
	 * Large pages for identity mappings are not used at boot time
	 * and hence no memory allocations during large page split.
L
Linus Torvalds 已提交
2368
	 */
I
Ingo Molnar 已提交
2369 2370 2371 2372
	if (enable)
		__set_pages_p(page, numpages);
	else
		__set_pages_np(page, numpages);
2373 2374

	/*
2375
	 * We should perform an IPI and flush all tlbs,
2376 2377 2378
	 * but that can deadlock->flush only current cpu.
	 * Preemption needs to be disabled around __flush_tlb_all() due to
	 * CR3 reload in __native_flush_tlb().
L
Linus Torvalds 已提交
2379
	 */
2380
	preempt_disable();
L
Linus Torvalds 已提交
2381
	__flush_tlb_all();
2382
	preempt_enable();
2383 2384

	arch_flush_lazy_mmu_mode();
2385 2386
}

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
#ifdef CONFIG_HIBERNATION

bool kernel_page_present(struct page *page)
{
	unsigned int level;
	pte_t *pte;

	if (PageHighMem(page))
		return false;

	pte = lookup_address((unsigned long)page_address(page), &level);
	return (pte_val(*pte) & _PAGE_PRESENT);
}

#endif /* CONFIG_HIBERNATION */

#endif /* CONFIG_DEBUG_PAGEALLOC */
2404

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
			    unsigned numpages, unsigned long page_flags)
{
	int retval = -EINVAL;

	struct cpa_data cpa = {
		.vaddr = &address,
		.pfn = pfn,
		.pgd = pgd,
		.numpages = numpages,
		.mask_set = __pgprot(0),
		.mask_clr = __pgprot(0),
		.flags = 0,
	};

	if (!(__supported_pte_mask & _PAGE_NX))
		goto out;

	if (!(page_flags & _PAGE_NX))
		cpa.mask_clr = __pgprot(_PAGE_NX);

2426 2427 2428
	if (!(page_flags & _PAGE_RW))
		cpa.mask_clr = __pgprot(_PAGE_RW);

2429 2430 2431
	if (!(page_flags & _PAGE_ENC))
		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);

2432 2433 2434 2435 2436 2437 2438 2439 2440
	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);

	retval = __change_page_attr_set_clr(&cpa, 0);
	__flush_tlb_all();

out:
	return retval;
}

2441 2442 2443 2444 2445 2446 2447
/*
 * The testcases use internal knowledge of the implementation that shouldn't
 * be exposed to the rest of the kernel. Include these directly here.
 */
#ifdef CONFIG_CPA_DEBUG
#include "pageattr-test.c"
#endif