intel_runtime_pm.c 71.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Copyright © 2012-2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *    Daniel Vetter <daniel.vetter@ffwll.ch>
 *
 */

#include <linux/pm_runtime.h>
#include <linux/vgaarb.h>

#include "i915_drv.h"
#include "intel_drv.h"

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
/**
 * DOC: runtime pm
 *
 * The i915 driver supports dynamic enabling and disabling of entire hardware
 * blocks at runtime. This is especially important on the display side where
 * software is supposed to control many power gates manually on recent hardware,
 * since on the GT side a lot of the power management is done by the hardware.
 * But even there some manual control at the device level is required.
 *
 * Since i915 supports a diverse set of platforms with a unified codebase and
 * hardware engineers just love to shuffle functionality around between power
 * domains there's a sizeable amount of indirection required. This file provides
 * generic functions to the driver for grabbing and releasing references for
 * abstract power domains. It then maps those to the actual power wells
 * present for a given platform.
 */

52 53 54 55 56
#define for_each_power_well(i, power_well, domain_mask, power_domains)	\
	for (i = 0;							\
	     i < (power_domains)->power_well_count &&			\
		 ((power_well) = &(power_domains)->power_wells[i]);	\
	     i++)							\
57
		for_each_if ((power_well)->domains & (domain_mask))
58 59 60 61 62

#define for_each_power_well_rev(i, power_well, domain_mask, power_domains) \
	for (i = (power_domains)->power_well_count - 1;			 \
	     i >= 0 && ((power_well) = &(power_domains)->power_wells[i]);\
	     i--)							 \
63
		for_each_if ((power_well)->domains & (domain_mask))
64

65 66 67
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
				    int power_well_id);

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
const char *
intel_display_power_domain_str(enum intel_display_power_domain domain)
{
	switch (domain) {
	case POWER_DOMAIN_PIPE_A:
		return "PIPE_A";
	case POWER_DOMAIN_PIPE_B:
		return "PIPE_B";
	case POWER_DOMAIN_PIPE_C:
		return "PIPE_C";
	case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
		return "PIPE_A_PANEL_FITTER";
	case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
		return "PIPE_B_PANEL_FITTER";
	case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
		return "PIPE_C_PANEL_FITTER";
	case POWER_DOMAIN_TRANSCODER_A:
		return "TRANSCODER_A";
	case POWER_DOMAIN_TRANSCODER_B:
		return "TRANSCODER_B";
	case POWER_DOMAIN_TRANSCODER_C:
		return "TRANSCODER_C";
	case POWER_DOMAIN_TRANSCODER_EDP:
		return "TRANSCODER_EDP";
	case POWER_DOMAIN_PORT_DDI_A_LANES:
		return "PORT_DDI_A_LANES";
	case POWER_DOMAIN_PORT_DDI_B_LANES:
		return "PORT_DDI_B_LANES";
	case POWER_DOMAIN_PORT_DDI_C_LANES:
		return "PORT_DDI_C_LANES";
	case POWER_DOMAIN_PORT_DDI_D_LANES:
		return "PORT_DDI_D_LANES";
	case POWER_DOMAIN_PORT_DDI_E_LANES:
		return "PORT_DDI_E_LANES";
	case POWER_DOMAIN_PORT_DSI:
		return "PORT_DSI";
	case POWER_DOMAIN_PORT_CRT:
		return "PORT_CRT";
	case POWER_DOMAIN_PORT_OTHER:
		return "PORT_OTHER";
	case POWER_DOMAIN_VGA:
		return "VGA";
	case POWER_DOMAIN_AUDIO:
		return "AUDIO";
	case POWER_DOMAIN_PLLS:
		return "PLLS";
	case POWER_DOMAIN_AUX_A:
		return "AUX_A";
	case POWER_DOMAIN_AUX_B:
		return "AUX_B";
	case POWER_DOMAIN_AUX_C:
		return "AUX_C";
	case POWER_DOMAIN_AUX_D:
		return "AUX_D";
	case POWER_DOMAIN_GMBUS:
		return "GMBUS";
	case POWER_DOMAIN_INIT:
		return "INIT";
	case POWER_DOMAIN_MODESET:
		return "MODESET";
	default:
		MISSING_CASE(domain);
		return "?";
	}
}

134 135 136 137 138 139 140 141
static void intel_power_well_enable(struct drm_i915_private *dev_priv,
				    struct i915_power_well *power_well)
{
	DRM_DEBUG_KMS("enabling %s\n", power_well->name);
	power_well->ops->enable(dev_priv, power_well);
	power_well->hw_enabled = true;
}

142 143 144 145 146 147 148 149
static void intel_power_well_disable(struct drm_i915_private *dev_priv,
				     struct i915_power_well *power_well)
{
	DRM_DEBUG_KMS("disabling %s\n", power_well->name);
	power_well->hw_enabled = false;
	power_well->ops->disable(dev_priv, power_well);
}

150
/*
151 152 153 154 155 156 157 158 159 160 161
 * We should only use the power well if we explicitly asked the hardware to
 * enable it, so check if it's enabled and also check if we've requested it to
 * be enabled.
 */
static bool hsw_power_well_enabled(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	return I915_READ(HSW_PWR_WELL_DRIVER) ==
		     (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
}

162 163 164 165 166 167 168 169 170 171 172 173
/**
 * __intel_display_power_is_enabled - unlocked check for a power domain
 * @dev_priv: i915 device instance
 * @domain: power domain to check
 *
 * This is the unlocked version of intel_display_power_is_enabled() and should
 * only be used from error capture and recovery code where deadlocks are
 * possible.
 *
 * Returns:
 * True when the power domain is enabled, false otherwise.
 */
174 175
bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
				      enum intel_display_power_domain domain)
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
{
	struct i915_power_domains *power_domains;
	struct i915_power_well *power_well;
	bool is_enabled;
	int i;

	if (dev_priv->pm.suspended)
		return false;

	power_domains = &dev_priv->power_domains;

	is_enabled = true;

	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
		if (power_well->always_on)
			continue;

		if (!power_well->hw_enabled) {
			is_enabled = false;
			break;
		}
	}

	return is_enabled;
}

202
/**
203
 * intel_display_power_is_enabled - check for a power domain
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
 * @dev_priv: i915 device instance
 * @domain: power domain to check
 *
 * This function can be used to check the hw power domain state. It is mostly
 * used in hardware state readout functions. Everywhere else code should rely
 * upon explicit power domain reference counting to ensure that the hardware
 * block is powered up before accessing it.
 *
 * Callers must hold the relevant modesetting locks to ensure that concurrent
 * threads can't disable the power well while the caller tries to read a few
 * registers.
 *
 * Returns:
 * True when the power domain is enabled, false otherwise.
 */
219 220
bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
				    enum intel_display_power_domain domain)
221 222 223 224 225 226 227
{
	struct i915_power_domains *power_domains;
	bool ret;

	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);
228
	ret = __intel_display_power_is_enabled(dev_priv, domain);
229 230 231 232 233
	mutex_unlock(&power_domains->lock);

	return ret;
}

234 235 236 237 238 239 240 241 242 243
/**
 * intel_display_set_init_power - set the initial power domain state
 * @dev_priv: i915 device instance
 * @enable: whether to enable or disable the initial power domain state
 *
 * For simplicity our driver load/unload and system suspend/resume code assumes
 * that all power domains are always enabled. This functions controls the state
 * of this little hack. While the initial power domain state is enabled runtime
 * pm is effectively disabled.
 */
244 245 246 247 248 249 250 251 252 253 254 255 256 257
void intel_display_set_init_power(struct drm_i915_private *dev_priv,
				  bool enable)
{
	if (dev_priv->power_domains.init_power_on == enable)
		return;

	if (enable)
		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
	else
		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);

	dev_priv->power_domains.init_power_on = enable;
}

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
/*
 * Starting with Haswell, we have a "Power Down Well" that can be turned off
 * when not needed anymore. We have 4 registers that can request the power well
 * to be enabled, and it will only be disabled if none of the registers is
 * requesting it to be enabled.
 */
static void hsw_power_well_post_enable(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	/*
	 * After we re-enable the power well, if we touch VGA register 0x3d5
	 * we'll get unclaimed register interrupts. This stops after we write
	 * anything to the VGA MSR register. The vgacon module uses this
	 * register all the time, so if we unbind our driver and, as a
	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
	 * console_unlock(). So make here we touch the VGA MSR register, making
	 * sure vgacon can keep working normally without triggering interrupts
	 * and error messages.
	 */
	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
	outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);

282
	if (IS_BROADWELL(dev))
283 284
		gen8_irq_power_well_post_enable(dev_priv,
						1 << PIPE_C | 1 << PIPE_B);
285 286
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
static void skl_power_well_post_enable(struct drm_i915_private *dev_priv,
				       struct i915_power_well *power_well)
{
	struct drm_device *dev = dev_priv->dev;

	/*
	 * After we re-enable the power well, if we touch VGA register 0x3d5
	 * we'll get unclaimed register interrupts. This stops after we write
	 * anything to the VGA MSR register. The vgacon module uses this
	 * register all the time, so if we unbind our driver and, as a
	 * consequence, bind vgacon, we'll get stuck in an infinite loop at
	 * console_unlock(). So make here we touch the VGA MSR register, making
	 * sure vgacon can keep working normally without triggering interrupts
	 * and error messages.
	 */
	if (power_well->data == SKL_DISP_PW_2) {
		vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
		outb(inb(VGA_MSR_READ), VGA_MSR_WRITE);
		vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);

		gen8_irq_power_well_post_enable(dev_priv,
						1 << PIPE_C | 1 << PIPE_B);
	}
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
static void hsw_set_power_well(struct drm_i915_private *dev_priv,
			       struct i915_power_well *power_well, bool enable)
{
	bool is_enabled, enable_requested;
	uint32_t tmp;

	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
	is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
	enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;

	if (enable) {
		if (!enable_requested)
			I915_WRITE(HSW_PWR_WELL_DRIVER,
				   HSW_PWR_WELL_ENABLE_REQUEST);

		if (!is_enabled) {
			DRM_DEBUG_KMS("Enabling power well\n");
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
				      HSW_PWR_WELL_STATE_ENABLED), 20))
				DRM_ERROR("Timeout enabling power well\n");
332
			hsw_power_well_post_enable(dev_priv);
333 334 335 336 337 338 339 340 341 342 343
		}

	} else {
		if (enable_requested) {
			I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
			POSTING_READ(HSW_PWR_WELL_DRIVER);
			DRM_DEBUG_KMS("Requesting to disable the power well\n");
		}
	}
}

344 345 346 347 348 349 350 351
#define SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
	BIT(POWER_DOMAIN_PIPE_B) |			\
	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
	BIT(POWER_DOMAIN_PIPE_C) |			\
	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
352 353 354 355
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
356 357 358 359 360 361 362
	BIT(POWER_DOMAIN_AUX_B) |                       \
	BIT(POWER_DOMAIN_AUX_C) |			\
	BIT(POWER_DOMAIN_AUX_D) |			\
	BIT(POWER_DOMAIN_AUDIO) |			\
	BIT(POWER_DOMAIN_VGA) |				\
	BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_A_E_POWER_DOMAINS (		\
363 364
	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_E_LANES) |		\
365 366
	BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_B_POWER_DOMAINS (		\
367
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
368 369
	BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_C_POWER_DOMAINS (		\
370
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
371 372
	BIT(POWER_DOMAIN_INIT))
#define SKL_DISPLAY_DDI_D_POWER_DOMAINS (		\
373
	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
374
	BIT(POWER_DOMAIN_INIT))
375 376 377 378 379
#define SKL_DISPLAY_DC_OFF_POWER_DOMAINS (		\
	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
	BIT(POWER_DOMAIN_MODESET) |			\
	BIT(POWER_DOMAIN_AUX_A) |			\
	BIT(POWER_DOMAIN_INIT))
380
#define SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS (		\
381
	(POWER_DOMAIN_MASK & ~(				\
382 383
	SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
	SKL_DISPLAY_DC_OFF_POWER_DOMAINS)) |		\
384 385
	BIT(POWER_DOMAIN_INIT))

386 387 388 389 390 391 392 393
#define BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS (		\
	BIT(POWER_DOMAIN_TRANSCODER_A) |		\
	BIT(POWER_DOMAIN_PIPE_B) |			\
	BIT(POWER_DOMAIN_TRANSCODER_B) |		\
	BIT(POWER_DOMAIN_PIPE_C) |			\
	BIT(POWER_DOMAIN_TRANSCODER_C) |		\
	BIT(POWER_DOMAIN_PIPE_B_PANEL_FITTER) |		\
	BIT(POWER_DOMAIN_PIPE_C_PANEL_FITTER) |		\
394 395
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
396 397 398 399
	BIT(POWER_DOMAIN_AUX_B) |			\
	BIT(POWER_DOMAIN_AUX_C) |			\
	BIT(POWER_DOMAIN_AUDIO) |			\
	BIT(POWER_DOMAIN_VGA) |				\
400
	BIT(POWER_DOMAIN_GMBUS) |			\
401 402 403 404 405 406
	BIT(POWER_DOMAIN_INIT))
#define BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS (		\
	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
	BIT(POWER_DOMAIN_PIPE_A) |			\
	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER) |		\
407
	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
408 409 410
	BIT(POWER_DOMAIN_AUX_A) |			\
	BIT(POWER_DOMAIN_PLLS) |			\
	BIT(POWER_DOMAIN_INIT))
411 412 413 414 415
#define BXT_DISPLAY_DC_OFF_POWER_DOMAINS (		\
	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS |		\
	BIT(POWER_DOMAIN_MODESET) |			\
	BIT(POWER_DOMAIN_AUX_A) |			\
	BIT(POWER_DOMAIN_INIT))
416 417 418 419 420
#define BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS (		\
	(POWER_DOMAIN_MASK & ~(BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS |	\
	BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS)) |	\
	BIT(POWER_DOMAIN_INIT))

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
static void assert_can_enable_dc9(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;

	WARN(!IS_BROXTON(dev), "Platform doesn't support DC9.\n");
	WARN((I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
		"DC9 already programmed to be enabled.\n");
	WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
		"DC5 still not disabled to enable DC9.\n");
	WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on.\n");
	WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");

	 /*
	  * TODO: check for the following to verify the conditions to enter DC9
	  * state are satisfied:
	  * 1] Check relevant display engine registers to verify if mode set
	  * disable sequence was followed.
	  * 2] Check if display uninitialize sequence is initialized.
	  */
}

static void assert_can_disable_dc9(struct drm_i915_private *dev_priv)
{
	WARN(intel_irqs_enabled(dev_priv), "Interrupts not disabled yet.\n");
	WARN(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_DC9),
		"DC9 already programmed to be disabled.\n");
	WARN(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5,
		"DC5 still not disabled.\n");

	 /*
	  * TODO: check for the following to verify DC9 state was indeed
	  * entered before programming to disable it:
	  * 1] Check relevant display engine registers to verify if mode
	  *  set disable sequence was followed.
	  * 2] Check if display uninitialize sequence is initialized.
	  */
}

459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void gen9_set_dc_state_debugmask_memory_up(
			struct drm_i915_private *dev_priv)
{
	uint32_t val;

	/* The below bit doesn't need to be cleared ever afterwards */
	val = I915_READ(DC_STATE_DEBUG);
	if (!(val & DC_STATE_DEBUG_MASK_MEMORY_UP)) {
		val |= DC_STATE_DEBUG_MASK_MEMORY_UP;
		I915_WRITE(DC_STATE_DEBUG, val);
		POSTING_READ(DC_STATE_DEBUG);
	}
}

473
static void gen9_set_dc_state(struct drm_i915_private *dev_priv, uint32_t state)
474 475
{
	uint32_t val;
476
	uint32_t mask;
477

478 479 480 481 482
	mask = DC_STATE_EN_UPTO_DC5;
	if (IS_BROXTON(dev_priv))
		mask |= DC_STATE_EN_DC9;
	else
		mask |= DC_STATE_EN_UPTO_DC6;
483

484
	WARN_ON_ONCE(state & ~mask);
485

486 487 488 489 490
	if (i915.enable_dc == 0)
		state = DC_STATE_DISABLE;
	else if (i915.enable_dc == 1 && state > DC_STATE_EN_UPTO_DC5)
		state = DC_STATE_EN_UPTO_DC5;

491 492 493
	if (state & DC_STATE_EN_UPTO_DC5_DC6_MASK)
		gen9_set_dc_state_debugmask_memory_up(dev_priv);

494
	val = I915_READ(DC_STATE_EN);
495 496
	DRM_DEBUG_KMS("Setting DC state from %02x to %02x\n",
		      val & mask, state);
497 498 499 500 501 502

	/* Check if DMC is ignoring our DC state requests */
	if ((val & mask) != dev_priv->csr.dc_state)
		DRM_ERROR("DC state mismatch (0x%x -> 0x%x)\n",
			  dev_priv->csr.dc_state, val & mask);

503 504
	val &= ~mask;
	val |= state;
505 506
	I915_WRITE(DC_STATE_EN, val);
	POSTING_READ(DC_STATE_EN);
507 508

	dev_priv->csr.dc_state = val & mask;
509 510
}

511
void bxt_enable_dc9(struct drm_i915_private *dev_priv)
512
{
513 514 515
	assert_can_enable_dc9(dev_priv);

	DRM_DEBUG_KMS("Enabling DC9\n");
516

517 518 519 520 521
	gen9_set_dc_state(dev_priv, DC_STATE_EN_DC9);
}

void bxt_disable_dc9(struct drm_i915_private *dev_priv)
{
522 523 524 525
	assert_can_disable_dc9(dev_priv);

	DRM_DEBUG_KMS("Disabling DC9\n");

526
	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
527 528
}

529 530 531 532 533 534 535 536
static void assert_csr_loaded(struct drm_i915_private *dev_priv)
{
	WARN_ONCE(!I915_READ(CSR_PROGRAM(0)),
		  "CSR program storage start is NULL\n");
	WARN_ONCE(!I915_READ(CSR_SSP_BASE), "CSR SSP Base Not fine\n");
	WARN_ONCE(!I915_READ(CSR_HTP_SKL), "CSR HTP Not fine\n");
}

537
static void assert_can_enable_dc5(struct drm_i915_private *dev_priv)
538
{
539
	struct drm_device *dev = dev_priv->dev;
540 541 542
	bool pg2_enabled = intel_display_power_well_is_enabled(dev_priv,
					SKL_DISP_PW_2);

543 544
	WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
		  "Platform doesn't support DC5.\n");
545 546
	WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
	WARN_ONCE(pg2_enabled, "PG2 not disabled to enable DC5.\n");
547

548 549
	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5),
		  "DC5 already programmed to be enabled.\n");
550
	assert_rpm_wakelock_held(dev_priv);
551 552 553 554 555 556

	assert_csr_loaded(dev_priv);
}

static void assert_can_disable_dc5(struct drm_i915_private *dev_priv)
{
557 558 559 560 561 562
	/*
	 * During initialization, the firmware may not be loaded yet.
	 * We still want to make sure that the DC enabling flag is cleared.
	 */
	if (dev_priv->power_domains.initializing)
		return;
563

564
	assert_rpm_wakelock_held(dev_priv);
565 566 567 568 569
}

static void gen9_enable_dc5(struct drm_i915_private *dev_priv)
{
	assert_can_enable_dc5(dev_priv);
570 571 572

	DRM_DEBUG_KMS("Enabling DC5\n");

573
	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
574 575
}

576
static void assert_can_enable_dc6(struct drm_i915_private *dev_priv)
577
{
578
	struct drm_device *dev = dev_priv->dev;
579

580 581
	WARN_ONCE(!IS_SKYLAKE(dev) && !IS_KABYLAKE(dev),
		  "Platform doesn't support DC6.\n");
582 583 584 585 586
	WARN_ONCE(!HAS_RUNTIME_PM(dev), "Runtime PM not enabled.\n");
	WARN_ONCE(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
		  "Backlight is not disabled.\n");
	WARN_ONCE((I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
		  "DC6 already programmed to be enabled.\n");
587 588 589 590 591 592 593 594 595 596 597 598 599

	assert_csr_loaded(dev_priv);
}

static void assert_can_disable_dc6(struct drm_i915_private *dev_priv)
{
	/*
	 * During initialization, the firmware may not be loaded yet.
	 * We still want to make sure that the DC enabling flag is cleared.
	 */
	if (dev_priv->power_domains.initializing)
		return;

600 601
	WARN_ONCE(!(I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC6),
		  "DC6 already programmed to be disabled.\n");
602 603
}

604 605 606
static void gen9_disable_dc5_dc6(struct drm_i915_private *dev_priv)
{
	assert_can_disable_dc5(dev_priv);
607

608 609
	if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
	    i915.enable_dc != 0 && i915.enable_dc != 1)
610
		assert_can_disable_dc6(dev_priv);
611 612 613 614

	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
}

615
void skl_enable_dc6(struct drm_i915_private *dev_priv)
616 617
{
	assert_can_enable_dc6(dev_priv);
618 619 620

	DRM_DEBUG_KMS("Enabling DC6\n");

621 622
	gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);

623 624
}

625
void skl_disable_dc6(struct drm_i915_private *dev_priv)
626
{
627
	assert_can_disable_dc6(dev_priv);
628 629 630

	DRM_DEBUG_KMS("Disabling DC6\n");

631
	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
632 633
}

634 635 636 637 638
static void skl_set_power_well(struct drm_i915_private *dev_priv,
			struct i915_power_well *power_well, bool enable)
{
	uint32_t tmp, fuse_status;
	uint32_t req_mask, state_mask;
639
	bool is_enabled, enable_requested, check_fuse_status = false;
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669

	tmp = I915_READ(HSW_PWR_WELL_DRIVER);
	fuse_status = I915_READ(SKL_FUSE_STATUS);

	switch (power_well->data) {
	case SKL_DISP_PW_1:
		if (wait_for((I915_READ(SKL_FUSE_STATUS) &
			SKL_FUSE_PG0_DIST_STATUS), 1)) {
			DRM_ERROR("PG0 not enabled\n");
			return;
		}
		break;
	case SKL_DISP_PW_2:
		if (!(fuse_status & SKL_FUSE_PG1_DIST_STATUS)) {
			DRM_ERROR("PG1 in disabled state\n");
			return;
		}
		break;
	case SKL_DISP_PW_DDI_A_E:
	case SKL_DISP_PW_DDI_B:
	case SKL_DISP_PW_DDI_C:
	case SKL_DISP_PW_DDI_D:
	case SKL_DISP_PW_MISC_IO:
		break;
	default:
		WARN(1, "Unknown power well %lu\n", power_well->data);
		return;
	}

	req_mask = SKL_POWER_WELL_REQ(power_well->data);
670
	enable_requested = tmp & req_mask;
671
	state_mask = SKL_POWER_WELL_STATE(power_well->data);
672
	is_enabled = tmp & state_mask;
673 674

	if (enable) {
675
		if (!enable_requested) {
676 677 678 679
			WARN((tmp & state_mask) &&
				!I915_READ(HSW_PWR_WELL_BIOS),
				"Invalid for power well status to be enabled, unless done by the BIOS, \
				when request is to disable!\n");
680 681 682
			I915_WRITE(HSW_PWR_WELL_DRIVER, tmp | req_mask);
		}

683
		if (!is_enabled) {
684
			DRM_DEBUG_KMS("Enabling %s\n", power_well->name);
685 686 687 688 689 690 691
			if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
				state_mask), 1))
				DRM_ERROR("%s enable timeout\n",
					power_well->name);
			check_fuse_status = true;
		}
	} else {
692
		if (enable_requested) {
693 694 695
			I915_WRITE(HSW_PWR_WELL_DRIVER,	tmp & ~req_mask);
			POSTING_READ(HSW_PWR_WELL_DRIVER);
			DRM_DEBUG_KMS("Disabling %s\n", power_well->name);
696 697 698 699 700 701 702 703 704 705 706 707 708 709
		}
	}

	if (check_fuse_status) {
		if (power_well->data == SKL_DISP_PW_1) {
			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
				SKL_FUSE_PG1_DIST_STATUS), 1))
				DRM_ERROR("PG1 distributing status timeout\n");
		} else if (power_well->data == SKL_DISP_PW_2) {
			if (wait_for((I915_READ(SKL_FUSE_STATUS) &
				SKL_FUSE_PG2_DIST_STATUS), 1))
				DRM_ERROR("PG2 distributing status timeout\n");
		}
	}
710 711 712

	if (enable && !is_enabled)
		skl_power_well_post_enable(dev_priv, power_well);
713 714
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
static void hsw_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, power_well->count > 0);

	/*
	 * We're taking over the BIOS, so clear any requests made by it since
	 * the driver is in charge now.
	 */
	if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
		I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}

static void hsw_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, true);
}

static void hsw_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	hsw_set_power_well(dev_priv, power_well, false);
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static bool skl_power_well_enabled(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	uint32_t mask = SKL_POWER_WELL_REQ(power_well->data) |
		SKL_POWER_WELL_STATE(power_well->data);

	return (I915_READ(HSW_PWR_WELL_DRIVER) & mask) == mask;
}

static void skl_power_well_sync_hw(struct drm_i915_private *dev_priv,
				struct i915_power_well *power_well)
{
	skl_set_power_well(dev_priv, power_well, power_well->count > 0);

	/* Clear any request made by BIOS as driver is taking over */
	I915_WRITE(HSW_PWR_WELL_BIOS, 0);
}

static void skl_power_well_enable(struct drm_i915_private *dev_priv,
				struct i915_power_well *power_well)
{
	skl_set_power_well(dev_priv, power_well, true);
}

static void skl_power_well_disable(struct drm_i915_private *dev_priv,
				struct i915_power_well *power_well)
{
	skl_set_power_well(dev_priv, power_well, false);
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
static bool gen9_dc_off_power_well_enabled(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	return (I915_READ(DC_STATE_EN) & DC_STATE_EN_UPTO_DC5_DC6_MASK) == 0;
}

static void gen9_dc_off_power_well_enable(struct drm_i915_private *dev_priv,
					  struct i915_power_well *power_well)
{
	gen9_disable_dc5_dc6(dev_priv);
}

static void gen9_dc_off_power_well_disable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
785 786
	if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
	    i915.enable_dc != 0 && i915.enable_dc != 1)
787 788 789 790 791 792 793 794 795 796 797
		skl_enable_dc6(dev_priv);
	else
		gen9_enable_dc5(dev_priv);
}

static void gen9_dc_off_power_well_sync_hw(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	if (power_well->count > 0) {
		gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
	} else {
798 799
		if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
		    i915.enable_dc != 0 &&
800
		    i915.enable_dc != 1)
801 802 803 804 805 806
			gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
		else
			gen9_set_dc_state(dev_priv, DC_STATE_EN_UPTO_DC5);
	}
}

807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
static void i9xx_always_on_power_well_noop(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
}

static bool i9xx_always_on_power_well_enabled(struct drm_i915_private *dev_priv,
					     struct i915_power_well *power_well)
{
	return true;
}

static void vlv_set_power_well(struct drm_i915_private *dev_priv,
			       struct i915_power_well *power_well, bool enable)
{
	enum punit_power_well power_well_id = power_well->data;
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	state = enable ? PUNIT_PWRGT_PWR_ON(power_well_id) :
			 PUNIT_PWRGT_PWR_GATE(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL);
	ctrl &= ~mask;
	ctrl |= state;
	vlv_punit_write(dev_priv, PUNIT_REG_PWRGT_CTRL, ctrl);

	if (wait_for(COND, 100))
844
		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void vlv_power_well_sync_hw(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, power_well->count > 0);
}

static void vlv_power_well_enable(struct drm_i915_private *dev_priv,
				  struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, true);
}

static void vlv_power_well_disable(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	vlv_set_power_well(dev_priv, power_well, false);
}

static bool vlv_power_well_enabled(struct drm_i915_private *dev_priv,
				   struct i915_power_well *power_well)
{
	int power_well_id = power_well->data;
	bool enabled = false;
	u32 mask;
	u32 state;
	u32 ctrl;

	mask = PUNIT_PWRGT_MASK(power_well_id);
	ctrl = PUNIT_PWRGT_PWR_ON(power_well_id);

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_STATUS) & mask;
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != PUNIT_PWRGT_PWR_ON(power_well_id) &&
		state != PUNIT_PWRGT_PWR_GATE(power_well_id));
	if (state == ctrl)
		enabled = true;

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_PWRGT_CTRL) & mask;
	WARN_ON(ctrl != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

908
static void vlv_display_power_well_init(struct drm_i915_private *dev_priv)
909
{
910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
	enum pipe pipe;

	/*
	 * Enable the CRI clock source so we can get at the
	 * display and the reference clock for VGA
	 * hotplug / manual detection. Supposedly DSI also
	 * needs the ref clock up and running.
	 *
	 * CHV DPLL B/C have some issues if VGA mode is enabled.
	 */
	for_each_pipe(dev_priv->dev, pipe) {
		u32 val = I915_READ(DPLL(pipe));

		val |= DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
		if (pipe != PIPE_A)
			val |= DPLL_INTEGRATED_CRI_CLK_VLV;

		I915_WRITE(DPLL(pipe), val);
	}
929 930 931 932 933 934 935 936 937 938 939 940

	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_enable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	/*
	 * During driver initialization/resume we can avoid restoring the
	 * part of the HW/SW state that will be inited anyway explicitly.
	 */
	if (dev_priv->power_domains.initializing)
		return;

941
	intel_hpd_init(dev_priv);
942 943 944 945

	i915_redisable_vga_power_on(dev_priv->dev);
}

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
static void vlv_display_power_well_deinit(struct drm_i915_private *dev_priv)
{
	spin_lock_irq(&dev_priv->irq_lock);
	valleyview_disable_display_irqs(dev_priv);
	spin_unlock_irq(&dev_priv->irq_lock);

	vlv_power_sequencer_reset(dev_priv);
}

static void vlv_display_power_well_enable(struct drm_i915_private *dev_priv,
					  struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

	vlv_set_power_well(dev_priv, power_well, true);

	vlv_display_power_well_init(dev_priv);
}

965 966 967 968 969
static void vlv_display_power_well_disable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DISP2D);

970
	vlv_display_power_well_deinit(dev_priv);
971 972 973 974 975 976 977 978 979

	vlv_set_power_well(dev_priv, power_well, false);
}

static void vlv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

980
	/* since ref/cri clock was enabled */
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */

	vlv_set_power_well(dev_priv, power_well, true);

	/*
	 * From VLV2A0_DP_eDP_DPIO_driver_vbios_notes_10.docx -
	 *  6.	De-assert cmn_reset/side_reset. Same as VLV X0.
	 *   a.	GUnit 0x2110 bit[0] set to 1 (def 0)
	 *   b.	The other bits such as sfr settings / modesel may all
	 *	be set to 0.
	 *
	 * This should only be done on init and resume from S3 with
	 * both PLLs disabled, or we risk losing DPIO and PLL
	 * synchronization.
	 */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) | DPIO_CMNRST);
}

static void vlv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum pipe pipe;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC);

	for_each_pipe(dev_priv, pipe)
		assert_pll_disabled(dev_priv, pipe);

	/* Assert common reset */
	I915_WRITE(DPIO_CTL, I915_READ(DPIO_CTL) & ~DPIO_CMNRST);

	vlv_set_power_well(dev_priv, power_well, false);
}

1015 1016 1017 1018 1019 1020 1021 1022
#define POWER_DOMAIN_MASK (BIT(POWER_DOMAIN_NUM) - 1)

static struct i915_power_well *lookup_power_well(struct drm_i915_private *dev_priv,
						 int power_well_id)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	int i;

1023 1024 1025 1026
	for (i = 0; i < power_domains->power_well_count; i++) {
		struct i915_power_well *power_well;

		power_well = &power_domains->power_wells[i];
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
		if (power_well->data == power_well_id)
			return power_well;
	}

	return NULL;
}

#define BITS_SET(val, bits) (((val) & (bits)) == (bits))

static void assert_chv_phy_status(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *cmn_bc =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
	struct i915_power_well *cmn_d =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);
	u32 phy_control = dev_priv->chv_phy_control;
	u32 phy_status = 0;
1044
	u32 phy_status_mask = 0xffffffff;
1045 1046
	u32 tmp;

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	/*
	 * The BIOS can leave the PHY is some weird state
	 * where it doesn't fully power down some parts.
	 * Disable the asserts until the PHY has been fully
	 * reset (ie. the power well has been disabled at
	 * least once).
	 */
	if (!dev_priv->chv_phy_assert[DPIO_PHY0])
		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0) |
				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0) |
				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1) |
				     PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1) |
				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0) |
				     PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1));

	if (!dev_priv->chv_phy_assert[DPIO_PHY1])
		phy_status_mask &= ~(PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0) |
				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0) |
				     PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1));

1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
		phy_status |= PHY_POWERGOOD(DPIO_PHY0);

		/* this assumes override is only used to enable lanes */
		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0)) == 0)
			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0);

		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1)) == 0)
			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1);

		/* CL1 is on whenever anything is on in either channel */
		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH0) |
			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)))
			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH0);

		/*
		 * The DPLLB check accounts for the pipe B + port A usage
		 * with CL2 powered up but all the lanes in the second channel
		 * powered down.
		 */
		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY0, DPIO_CH1)) &&
		    (I915_READ(DPLL(PIPE_B)) & DPLL_VCO_ENABLE) == 0)
			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY0, DPIO_CH1);

		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH0)))
			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 0);
		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH0)))
			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH0, 1);

		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY0, DPIO_CH1)))
			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 0);
		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY0, DPIO_CH1)))
			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY0, DPIO_CH1, 1);
	}

	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
		phy_status |= PHY_POWERGOOD(DPIO_PHY1);

		/* this assumes override is only used to enable lanes */
		if ((phy_control & PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0)) == 0)
			phy_control |= PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0);

		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0xf, DPIO_PHY1, DPIO_CH0)))
			phy_status |= PHY_STATUS_CMN_LDO(DPIO_PHY1, DPIO_CH0);

		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0x3, DPIO_PHY1, DPIO_CH0)))
			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 0);
		if (BITS_SET(phy_control,
			     PHY_CH_POWER_DOWN_OVRD(0xc, DPIO_PHY1, DPIO_CH0)))
			phy_status |= PHY_STATUS_SPLINE_LDO(DPIO_PHY1, DPIO_CH0, 1);
	}

1127 1128
	phy_status &= phy_status_mask;

1129 1130 1131 1132
	/*
	 * The PHY may be busy with some initial calibration and whatnot,
	 * so the power state can take a while to actually change.
	 */
1133
	if (wait_for((tmp = I915_READ(DISPLAY_PHY_STATUS) & phy_status_mask) == phy_status, 10))
1134 1135 1136 1137 1138 1139 1140
		WARN(phy_status != tmp,
		     "Unexpected PHY_STATUS 0x%08x, expected 0x%08x (PHY_CONTROL=0x%08x)\n",
		     tmp, phy_status, dev_priv->chv_phy_control);
}

#undef BITS_SET

1141 1142 1143 1144
static void chv_dpio_cmn_power_well_enable(struct drm_i915_private *dev_priv,
					   struct i915_power_well *power_well)
{
	enum dpio_phy phy;
1145 1146
	enum pipe pipe;
	uint32_t tmp;
1147 1148 1149 1150

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

1151 1152
	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		pipe = PIPE_A;
1153
		phy = DPIO_PHY0;
1154 1155
	} else {
		pipe = PIPE_C;
1156
		phy = DPIO_PHY1;
1157
	}
1158 1159

	/* since ref/cri clock was enabled */
1160 1161 1162 1163 1164 1165 1166
	udelay(1); /* >10ns for cmnreset, >0ns for sidereset */
	vlv_set_power_well(dev_priv, power_well, true);

	/* Poll for phypwrgood signal */
	if (wait_for(I915_READ(DISPLAY_PHY_STATUS) & PHY_POWERGOOD(phy), 1))
		DRM_ERROR("Display PHY %d is not power up\n", phy);

1167 1168 1169 1170
	mutex_lock(&dev_priv->sb_lock);

	/* Enable dynamic power down */
	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW28);
1171 1172
	tmp |= DPIO_DYNPWRDOWNEN_CH0 | DPIO_CL1POWERDOWNEN |
		DPIO_SUS_CLK_CONFIG_GATE_CLKREQ;
1173 1174 1175 1176 1177 1178
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW28, tmp);

	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		tmp = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW6_CH1);
		tmp |= DPIO_DYNPWRDOWNEN_CH1;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW6_CH1, tmp);
1179 1180 1181 1182 1183 1184 1185 1186 1187
	} else {
		/*
		 * Force the non-existing CL2 off. BXT does this
		 * too, so maybe it saves some power even though
		 * CL2 doesn't exist?
		 */
		tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
		tmp |= DPIO_CL2_LDOFUSE_PWRENB;
		vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, tmp);
1188 1189 1190 1191
	}

	mutex_unlock(&dev_priv->sb_lock);

1192 1193
	dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(phy);
	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1194 1195 1196

	DRM_DEBUG_KMS("Enabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
		      phy, dev_priv->chv_phy_control);
1197 1198

	assert_chv_phy_status(dev_priv);
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
}

static void chv_dpio_cmn_power_well_disable(struct drm_i915_private *dev_priv,
					    struct i915_power_well *power_well)
{
	enum dpio_phy phy;

	WARN_ON_ONCE(power_well->data != PUNIT_POWER_WELL_DPIO_CMN_BC &&
		     power_well->data != PUNIT_POWER_WELL_DPIO_CMN_D);

	if (power_well->data == PUNIT_POWER_WELL_DPIO_CMN_BC) {
		phy = DPIO_PHY0;
		assert_pll_disabled(dev_priv, PIPE_A);
		assert_pll_disabled(dev_priv, PIPE_B);
	} else {
		phy = DPIO_PHY1;
		assert_pll_disabled(dev_priv, PIPE_C);
	}

1218 1219
	dev_priv->chv_phy_control &= ~PHY_COM_LANE_RESET_DEASSERT(phy);
	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);
1220 1221

	vlv_set_power_well(dev_priv, power_well, false);
1222 1223 1224

	DRM_DEBUG_KMS("Disabled DPIO PHY%d (PHY_CONTROL=0x%08x)\n",
		      phy, dev_priv->chv_phy_control);
1225

1226 1227 1228
	/* PHY is fully reset now, so we can enable the PHY state asserts */
	dev_priv->chv_phy_assert[phy] = true;

1229
	assert_chv_phy_status(dev_priv);
1230 1231
}

1232 1233 1234 1235 1236 1237
static void assert_chv_phy_powergate(struct drm_i915_private *dev_priv, enum dpio_phy phy,
				     enum dpio_channel ch, bool override, unsigned int mask)
{
	enum pipe pipe = phy == DPIO_PHY0 ? PIPE_A : PIPE_C;
	u32 reg, val, expected, actual;

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	/*
	 * The BIOS can leave the PHY is some weird state
	 * where it doesn't fully power down some parts.
	 * Disable the asserts until the PHY has been fully
	 * reset (ie. the power well has been disabled at
	 * least once).
	 */
	if (!dev_priv->chv_phy_assert[phy])
		return;

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	if (ch == DPIO_CH0)
		reg = _CHV_CMN_DW0_CH0;
	else
		reg = _CHV_CMN_DW6_CH1;

	mutex_lock(&dev_priv->sb_lock);
	val = vlv_dpio_read(dev_priv, pipe, reg);
	mutex_unlock(&dev_priv->sb_lock);

	/*
	 * This assumes !override is only used when the port is disabled.
	 * All lanes should power down even without the override when
	 * the port is disabled.
	 */
	if (!override || mask == 0xf) {
		expected = DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;
		/*
		 * If CH1 common lane is not active anymore
		 * (eg. for pipe B DPLL) the entire channel will
		 * shut down, which causes the common lane registers
		 * to read as 0. That means we can't actually check
		 * the lane power down status bits, but as the entire
		 * register reads as 0 it's a good indication that the
		 * channel is indeed entirely powered down.
		 */
		if (ch == DPIO_CH1 && val == 0)
			expected = 0;
	} else if (mask != 0x0) {
		expected = DPIO_ANYDL_POWERDOWN;
	} else {
		expected = 0;
	}

	if (ch == DPIO_CH0)
		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH0;
	else
		actual = val >> DPIO_ANYDL_POWERDOWN_SHIFT_CH1;
	actual &= DPIO_ALLDL_POWERDOWN | DPIO_ANYDL_POWERDOWN;

	WARN(actual != expected,
	     "Unexpected DPIO lane power down: all %d, any %d. Expected: all %d, any %d. (0x%x = 0x%08x)\n",
	     !!(actual & DPIO_ALLDL_POWERDOWN), !!(actual & DPIO_ANYDL_POWERDOWN),
	     !!(expected & DPIO_ALLDL_POWERDOWN), !!(expected & DPIO_ANYDL_POWERDOWN),
	     reg, val);
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
bool chv_phy_powergate_ch(struct drm_i915_private *dev_priv, enum dpio_phy phy,
			  enum dpio_channel ch, bool override)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	bool was_override;

	mutex_lock(&power_domains->lock);

	was_override = dev_priv->chv_phy_control & PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);

	if (override == was_override)
		goto out;

	if (override)
		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
	else
		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);

	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);

	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d (DPIO_PHY_CONTROL=0x%08x)\n",
		      phy, ch, dev_priv->chv_phy_control);

1317 1318
	assert_chv_phy_status(dev_priv);

1319 1320 1321 1322 1323 1324
out:
	mutex_unlock(&power_domains->lock);

	return was_override;
}

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
void chv_phy_powergate_lanes(struct intel_encoder *encoder,
			     bool override, unsigned int mask)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	enum dpio_phy phy = vlv_dport_to_phy(enc_to_dig_port(&encoder->base));
	enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));

	mutex_lock(&power_domains->lock);

	dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD(0xf, phy, ch);
	dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD(mask, phy, ch);

	if (override)
		dev_priv->chv_phy_control |= PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);
	else
		dev_priv->chv_phy_control &= ~PHY_CH_POWER_DOWN_OVRD_EN(phy, ch);

	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);

	DRM_DEBUG_KMS("Power gating DPIO PHY%d CH%d lanes 0x%x (PHY_CONTROL=0x%08x)\n",
		      phy, ch, mask, dev_priv->chv_phy_control);

1348 1349
	assert_chv_phy_status(dev_priv);

1350 1351
	assert_chv_phy_powergate(dev_priv, phy, ch, override, mask);

1352
	mutex_unlock(&power_domains->lock);
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
}

static bool chv_pipe_power_well_enabled(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
	enum pipe pipe = power_well->data;
	bool enabled;
	u32 state, ctrl;

	mutex_lock(&dev_priv->rps.hw_lock);

	state = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe);
	/*
	 * We only ever set the power-on and power-gate states, anything
	 * else is unexpected.
	 */
	WARN_ON(state != DP_SSS_PWR_ON(pipe) && state != DP_SSS_PWR_GATE(pipe));
	enabled = state == DP_SSS_PWR_ON(pipe);

	/*
	 * A transient state at this point would mean some unexpected party
	 * is poking at the power controls too.
	 */
	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSC_MASK(pipe);
	WARN_ON(ctrl << 16 != state);

	mutex_unlock(&dev_priv->rps.hw_lock);

	return enabled;
}

static void chv_set_pipe_power_well(struct drm_i915_private *dev_priv,
				    struct i915_power_well *power_well,
				    bool enable)
{
	enum pipe pipe = power_well->data;
	u32 state;
	u32 ctrl;

	state = enable ? DP_SSS_PWR_ON(pipe) : DP_SSS_PWR_GATE(pipe);

	mutex_lock(&dev_priv->rps.hw_lock);

#define COND \
	((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) & DP_SSS_MASK(pipe)) == state)

	if (COND)
		goto out;

	ctrl = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	ctrl &= ~DP_SSC_MASK(pipe);
	ctrl |= enable ? DP_SSC_PWR_ON(pipe) : DP_SSC_PWR_GATE(pipe);
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, ctrl);

	if (wait_for(COND, 100))
1408
		DRM_ERROR("timeout setting power well state %08x (%08x)\n",
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
			  state,
			  vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ));

#undef COND

out:
	mutex_unlock(&dev_priv->rps.hw_lock);
}

static void chv_pipe_power_well_sync_hw(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
1421 1422
	WARN_ON_ONCE(power_well->data != PIPE_A);

1423 1424 1425 1426 1427 1428
	chv_set_pipe_power_well(dev_priv, power_well, power_well->count > 0);
}

static void chv_pipe_power_well_enable(struct drm_i915_private *dev_priv,
				       struct i915_power_well *power_well)
{
1429
	WARN_ON_ONCE(power_well->data != PIPE_A);
1430 1431

	chv_set_pipe_power_well(dev_priv, power_well, true);
1432

1433
	vlv_display_power_well_init(dev_priv);
1434 1435 1436 1437 1438
}

static void chv_pipe_power_well_disable(struct drm_i915_private *dev_priv,
					struct i915_power_well *power_well)
{
1439 1440
	WARN_ON_ONCE(power_well->data != PIPE_A);

1441
	vlv_display_power_well_deinit(dev_priv);
1442

1443 1444 1445
	chv_set_pipe_power_well(dev_priv, power_well, false);
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
static void
__intel_display_power_get_domain(struct drm_i915_private *dev_priv,
				 enum intel_display_power_domain domain)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
	int i;

	for_each_power_well(i, power_well, BIT(domain), power_domains) {
		if (!power_well->count++)
			intel_power_well_enable(dev_priv, power_well);
	}

	power_domains->domain_use_count[domain]++;
}

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
/**
 * intel_display_power_get - grab a power domain reference
 * @dev_priv: i915 device instance
 * @domain: power domain to reference
 *
 * This function grabs a power domain reference for @domain and ensures that the
 * power domain and all its parents are powered up. Therefore users should only
 * grab a reference to the innermost power domain they need.
 *
 * Any power domain reference obtained by this function must have a symmetric
 * call to intel_display_power_put() to release the reference again.
 */
1474 1475 1476
void intel_display_power_get(struct drm_i915_private *dev_priv,
			     enum intel_display_power_domain domain)
{
1477
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
1478 1479 1480

	intel_runtime_pm_get(dev_priv);

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
	mutex_lock(&power_domains->lock);

	__intel_display_power_get_domain(dev_priv, domain);

	mutex_unlock(&power_domains->lock);
}

/**
 * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
 * @dev_priv: i915 device instance
 * @domain: power domain to reference
 *
 * This function grabs a power domain reference for @domain and ensures that the
 * power domain and all its parents are powered up. Therefore users should only
 * grab a reference to the innermost power domain they need.
 *
 * Any power domain reference obtained by this function must have a symmetric
 * call to intel_display_power_put() to release the reference again.
 */
bool intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
					enum intel_display_power_domain domain)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	bool is_enabled;

	if (!intel_runtime_pm_get_if_in_use(dev_priv))
		return false;
1508 1509 1510

	mutex_lock(&power_domains->lock);

1511 1512 1513 1514 1515
	if (__intel_display_power_is_enabled(dev_priv, domain)) {
		__intel_display_power_get_domain(dev_priv, domain);
		is_enabled = true;
	} else {
		is_enabled = false;
1516 1517 1518
	}

	mutex_unlock(&power_domains->lock);
1519 1520 1521 1522 1523

	if (!is_enabled)
		intel_runtime_pm_put(dev_priv);

	return is_enabled;
1524 1525
}

1526 1527 1528 1529 1530 1531 1532 1533 1534
/**
 * intel_display_power_put - release a power domain reference
 * @dev_priv: i915 device instance
 * @domain: power domain to reference
 *
 * This function drops the power domain reference obtained by
 * intel_display_power_get() and might power down the corresponding hardware
 * block right away if this is the last reference.
 */
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
void intel_display_power_put(struct drm_i915_private *dev_priv,
			     enum intel_display_power_domain domain)
{
	struct i915_power_domains *power_domains;
	struct i915_power_well *power_well;
	int i;

	power_domains = &dev_priv->power_domains;

	mutex_lock(&power_domains->lock);

1546 1547 1548
	WARN(!power_domains->domain_use_count[domain],
	     "Use count on domain %s is already zero\n",
	     intel_display_power_domain_str(domain));
1549 1550 1551
	power_domains->domain_use_count[domain]--;

	for_each_power_well_rev(i, power_well, BIT(domain), power_domains) {
1552 1553 1554
		WARN(!power_well->count,
		     "Use count on power well %s is already zero",
		     power_well->name);
1555

1556
		if (!--power_well->count)
1557
			intel_power_well_disable(dev_priv, power_well);
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	}

	mutex_unlock(&power_domains->lock);

	intel_runtime_pm_put(dev_priv);
}

#define HSW_ALWAYS_ON_POWER_DOMAINS (			\
	BIT(POWER_DOMAIN_PIPE_A) |			\
	BIT(POWER_DOMAIN_TRANSCODER_EDP) |		\
1568 1569 1570 1571
	BIT(POWER_DOMAIN_PORT_DDI_A_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |		\
	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |		\
1572 1573
	BIT(POWER_DOMAIN_PORT_CRT) |			\
	BIT(POWER_DOMAIN_PLLS) |			\
1574 1575 1576 1577
	BIT(POWER_DOMAIN_AUX_A) |			\
	BIT(POWER_DOMAIN_AUX_B) |			\
	BIT(POWER_DOMAIN_AUX_C) |			\
	BIT(POWER_DOMAIN_AUX_D) |			\
1578
	BIT(POWER_DOMAIN_GMBUS) |			\
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	BIT(POWER_DOMAIN_INIT))
#define HSW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~HSW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

#define BDW_ALWAYS_ON_POWER_DOMAINS (			\
	HSW_ALWAYS_ON_POWER_DOMAINS |			\
	BIT(POWER_DOMAIN_PIPE_A_PANEL_FITTER))
#define BDW_DISPLAY_POWER_DOMAINS (				\
	(POWER_DOMAIN_MASK & ~BDW_ALWAYS_ON_POWER_DOMAINS) |	\
	BIT(POWER_DOMAIN_INIT))

#define VLV_ALWAYS_ON_POWER_DOMAINS	BIT(POWER_DOMAIN_INIT)
#define VLV_DISPLAY_POWER_DOMAINS	POWER_DOMAIN_MASK

#define VLV_DPIO_CMN_BC_POWER_DOMAINS (		\
1595 1596
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1597
	BIT(POWER_DOMAIN_PORT_CRT) |		\
1598 1599
	BIT(POWER_DOMAIN_AUX_B) |		\
	BIT(POWER_DOMAIN_AUX_C) |		\
1600 1601 1602
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS (	\
1603
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1604
	BIT(POWER_DOMAIN_AUX_B) |		\
1605 1606 1607
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS (	\
1608
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
1609
	BIT(POWER_DOMAIN_AUX_B) |		\
1610 1611 1612
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS (	\
1613
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1614
	BIT(POWER_DOMAIN_AUX_C) |		\
1615 1616 1617
	BIT(POWER_DOMAIN_INIT))

#define VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS (	\
1618
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1619
	BIT(POWER_DOMAIN_AUX_C) |		\
1620 1621 1622
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_CMN_BC_POWER_DOMAINS (		\
1623 1624
	BIT(POWER_DOMAIN_PORT_DDI_B_LANES) |	\
	BIT(POWER_DOMAIN_PORT_DDI_C_LANES) |	\
1625 1626
	BIT(POWER_DOMAIN_AUX_B) |		\
	BIT(POWER_DOMAIN_AUX_C) |		\
1627 1628 1629
	BIT(POWER_DOMAIN_INIT))

#define CHV_DPIO_CMN_D_POWER_DOMAINS (		\
1630
	BIT(POWER_DOMAIN_PORT_DDI_D_LANES) |	\
1631
	BIT(POWER_DOMAIN_AUX_D) |		\
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	BIT(POWER_DOMAIN_INIT))

static const struct i915_power_well_ops i9xx_always_on_power_well_ops = {
	.sync_hw = i9xx_always_on_power_well_noop,
	.enable = i9xx_always_on_power_well_noop,
	.disable = i9xx_always_on_power_well_noop,
	.is_enabled = i9xx_always_on_power_well_enabled,
};

static const struct i915_power_well_ops chv_pipe_power_well_ops = {
	.sync_hw = chv_pipe_power_well_sync_hw,
	.enable = chv_pipe_power_well_enable,
	.disable = chv_pipe_power_well_disable,
	.is_enabled = chv_pipe_power_well_enabled,
};

static const struct i915_power_well_ops chv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = chv_dpio_cmn_power_well_enable,
	.disable = chv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static struct i915_power_well i9xx_always_on_power_well[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = POWER_DOMAIN_MASK,
		.ops = &i9xx_always_on_power_well_ops,
	},
};

static const struct i915_power_well_ops hsw_power_well_ops = {
	.sync_hw = hsw_power_well_sync_hw,
	.enable = hsw_power_well_enable,
	.disable = hsw_power_well_disable,
	.is_enabled = hsw_power_well_enabled,
};

1671 1672 1673 1674 1675 1676 1677
static const struct i915_power_well_ops skl_power_well_ops = {
	.sync_hw = skl_power_well_sync_hw,
	.enable = skl_power_well_enable,
	.disable = skl_power_well_disable,
	.is_enabled = skl_power_well_enabled,
};

1678 1679 1680 1681 1682 1683 1684
static const struct i915_power_well_ops gen9_dc_off_power_well_ops = {
	.sync_hw = gen9_dc_off_power_well_sync_hw,
	.enable = gen9_dc_off_power_well_enable,
	.disable = gen9_dc_off_power_well_disable,
	.is_enabled = gen9_dc_off_power_well_enabled,
};

1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
static struct i915_power_well hsw_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = HSW_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "display",
		.domains = HSW_DISPLAY_POWER_DOMAINS,
		.ops = &hsw_power_well_ops,
	},
};

static struct i915_power_well bdw_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = BDW_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "display",
		.domains = BDW_DISPLAY_POWER_DOMAINS,
		.ops = &hsw_power_well_ops,
	},
};

static const struct i915_power_well_ops vlv_display_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_display_power_well_enable,
	.disable = vlv_display_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static const struct i915_power_well_ops vlv_dpio_cmn_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_dpio_cmn_power_well_enable,
	.disable = vlv_dpio_cmn_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static const struct i915_power_well_ops vlv_dpio_power_well_ops = {
	.sync_hw = vlv_power_well_sync_hw,
	.enable = vlv_power_well_enable,
	.disable = vlv_power_well_disable,
	.is_enabled = vlv_power_well_enabled,
};

static struct i915_power_well vlv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
1740
		.data = PUNIT_POWER_WELL_ALWAYS_ON,
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
	},
	{
		.name = "display",
		.domains = VLV_DISPLAY_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DISP2D,
		.ops = &vlv_display_power_well_ops,
	},
	{
		.name = "dpio-tx-b-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_01,
	},
	{
		.name = "dpio-tx-b-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_B_LANES_23,
	},
	{
		.name = "dpio-tx-c-01",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_01,
	},
	{
		.name = "dpio-tx-c-23",
		.domains = VLV_DPIO_TX_B_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_B_LANES_23_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_01_POWER_DOMAINS |
			   VLV_DPIO_TX_C_LANES_23_POWER_DOMAINS,
		.ops = &vlv_dpio_power_well_ops,
		.data = PUNIT_POWER_WELL_DPIO_TX_C_LANES_23,
	},
	{
		.name = "dpio-common",
		.domains = VLV_DPIO_CMN_BC_POWER_DOMAINS,
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
		.ops = &vlv_dpio_cmn_power_well_ops,
	},
};

static struct i915_power_well chv_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = VLV_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "display",
1801
		/*
1802 1803 1804
		 * Pipe A power well is the new disp2d well. Pipe B and C
		 * power wells don't actually exist. Pipe A power well is
		 * required for any pipe to work.
1805
		 */
1806
		.domains = VLV_DISPLAY_POWER_DOMAINS,
1807 1808 1809 1810 1811
		.data = PIPE_A,
		.ops = &chv_pipe_power_well_ops,
	},
	{
		.name = "dpio-common-bc",
1812
		.domains = CHV_DPIO_CMN_BC_POWER_DOMAINS,
1813 1814 1815 1816 1817
		.data = PUNIT_POWER_WELL_DPIO_CMN_BC,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
	{
		.name = "dpio-common-d",
1818
		.domains = CHV_DPIO_CMN_D_POWER_DOMAINS,
1819 1820 1821 1822 1823
		.data = PUNIT_POWER_WELL_DPIO_CMN_D,
		.ops = &chv_dpio_cmn_power_well_ops,
	},
};

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
bool intel_display_power_well_is_enabled(struct drm_i915_private *dev_priv,
				    int power_well_id)
{
	struct i915_power_well *power_well;
	bool ret;

	power_well = lookup_power_well(dev_priv, power_well_id);
	ret = power_well->ops->is_enabled(dev_priv, power_well);

	return ret;
}

1836 1837 1838 1839 1840 1841
static struct i915_power_well skl_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = SKL_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
1842
		.data = SKL_DISP_PW_ALWAYS_ON,
1843 1844 1845
	},
	{
		.name = "power well 1",
1846 1847
		/* Handled by the DMC firmware */
		.domains = 0,
1848 1849 1850 1851 1852
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_1,
	},
	{
		.name = "MISC IO power well",
1853 1854
		/* Handled by the DMC firmware */
		.domains = 0,
1855 1856 1857
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_MISC_IO,
	},
1858 1859 1860 1861 1862 1863
	{
		.name = "DC off",
		.domains = SKL_DISPLAY_DC_OFF_POWER_DOMAINS,
		.ops = &gen9_dc_off_power_well_ops,
		.data = SKL_DISP_PW_DC_OFF,
	},
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	{
		.name = "power well 2",
		.domains = SKL_DISPLAY_POWERWELL_2_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_2,
	},
	{
		.name = "DDI A/E power well",
		.domains = SKL_DISPLAY_DDI_A_E_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_DDI_A_E,
	},
	{
		.name = "DDI B power well",
		.domains = SKL_DISPLAY_DDI_B_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_DDI_B,
	},
	{
		.name = "DDI C power well",
		.domains = SKL_DISPLAY_DDI_C_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_DDI_C,
	},
	{
		.name = "DDI D power well",
		.domains = SKL_DISPLAY_DDI_D_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_DDI_D,
	},
};

1896 1897 1898 1899
void skl_pw1_misc_io_init(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *well;

1900
	if (!(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)))
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
		return;

	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
	intel_power_well_enable(dev_priv, well);

	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
	intel_power_well_enable(dev_priv, well);
}

void skl_pw1_misc_io_fini(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *well;

1914
	if (!(IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)))
1915 1916 1917 1918 1919 1920 1921 1922 1923
		return;

	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
	intel_power_well_disable(dev_priv, well);

	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
	intel_power_well_disable(dev_priv, well);
}

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
static struct i915_power_well bxt_power_wells[] = {
	{
		.name = "always-on",
		.always_on = 1,
		.domains = BXT_DISPLAY_ALWAYS_ON_POWER_DOMAINS,
		.ops = &i9xx_always_on_power_well_ops,
	},
	{
		.name = "power well 1",
		.domains = BXT_DISPLAY_POWERWELL_1_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_1,
	},
1937 1938 1939 1940 1941 1942
	{
		.name = "DC off",
		.domains = BXT_DISPLAY_DC_OFF_POWER_DOMAINS,
		.ops = &gen9_dc_off_power_well_ops,
		.data = SKL_DISP_PW_DC_OFF,
	},
1943 1944 1945 1946 1947
	{
		.name = "power well 2",
		.domains = BXT_DISPLAY_POWERWELL_2_POWER_DOMAINS,
		.ops = &skl_power_well_ops,
		.data = SKL_DISP_PW_2,
1948
	},
1949 1950
};

1951 1952 1953 1954 1955 1956 1957
static int
sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
				   int disable_power_well)
{
	if (disable_power_well >= 0)
		return !!disable_power_well;

1958 1959 1960 1961 1962
	if (IS_BROXTON(dev_priv)) {
		DRM_DEBUG_KMS("Disabling display power well support\n");
		return 0;
	}

1963 1964 1965
	return 1;
}

1966 1967 1968 1969 1970
#define set_power_wells(power_domains, __power_wells) ({		\
	(power_domains)->power_wells = (__power_wells);			\
	(power_domains)->power_well_count = ARRAY_SIZE(__power_wells);	\
})

1971 1972 1973 1974 1975 1976 1977
/**
 * intel_power_domains_init - initializes the power domain structures
 * @dev_priv: i915 device instance
 *
 * Initializes the power domain structures for @dev_priv depending upon the
 * supported platform.
 */
1978 1979 1980 1981
int intel_power_domains_init(struct drm_i915_private *dev_priv)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;

1982 1983 1984
	i915.disable_power_well = sanitize_disable_power_well_option(dev_priv,
						     i915.disable_power_well);

1985 1986
	BUILD_BUG_ON(POWER_DOMAIN_NUM > 31);

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
	mutex_init(&power_domains->lock);

	/*
	 * The enabling order will be from lower to higher indexed wells,
	 * the disabling order is reversed.
	 */
	if (IS_HASWELL(dev_priv->dev)) {
		set_power_wells(power_domains, hsw_power_wells);
	} else if (IS_BROADWELL(dev_priv->dev)) {
		set_power_wells(power_domains, bdw_power_wells);
1997
	} else if (IS_SKYLAKE(dev_priv->dev) || IS_KABYLAKE(dev_priv->dev)) {
1998
		set_power_wells(power_domains, skl_power_wells);
1999 2000
	} else if (IS_BROXTON(dev_priv->dev)) {
		set_power_wells(power_domains, bxt_power_wells);
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	} else if (IS_CHERRYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, chv_power_wells);
	} else if (IS_VALLEYVIEW(dev_priv->dev)) {
		set_power_wells(power_domains, vlv_power_wells);
	} else {
		set_power_wells(power_domains, i9xx_always_on_power_well);
	}

	return 0;
}

2012 2013 2014 2015 2016 2017 2018 2019
/**
 * intel_power_domains_fini - finalizes the power domain structures
 * @dev_priv: i915 device instance
 *
 * Finalizes the power domain structures for @dev_priv depending upon the
 * supported platform. This function also disables runtime pm and ensures that
 * the device stays powered up so that the driver can be reloaded.
 */
2020
void intel_power_domains_fini(struct drm_i915_private *dev_priv)
2021
{
2022 2023
	struct device *device = &dev_priv->dev->pdev->dev;

2024 2025
	/*
	 * The i915.ko module is still not prepared to be loaded when
2026
	 * the power well is not enabled, so just enable it in case
2027 2028 2029 2030 2031 2032
	 * we're going to unload/reload.
	 * The following also reacquires the RPM reference the core passed
	 * to the driver during loading, which is dropped in
	 * intel_runtime_pm_enable(). We have to hand back the control of the
	 * device to the core with this reference held.
	 */
2033
	intel_display_set_init_power(dev_priv, true);
2034 2035 2036 2037

	/* Remove the refcount we took to keep power well support disabled. */
	if (!i915.disable_power_well)
		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2038 2039 2040 2041 2042 2043 2044

	/*
	 * Remove the refcount we took in intel_runtime_pm_enable() in case
	 * the platform doesn't support runtime PM.
	 */
	if (!HAS_RUNTIME_PM(dev_priv))
		pm_runtime_put(device);
2045 2046
}

2047
static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	struct i915_power_well *power_well;
	int i;

	mutex_lock(&power_domains->lock);
	for_each_power_well(i, power_well, POWER_DOMAIN_MASK, power_domains) {
		power_well->ops->sync_hw(dev_priv, power_well);
		power_well->hw_enabled = power_well->ops->is_enabled(dev_priv,
								     power_well);
	}
	mutex_unlock(&power_domains->lock);
}

2062 2063 2064 2065 2066 2067
static void skl_display_core_init(struct drm_i915_private *dev_priv,
				  bool resume)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	uint32_t val;

2068 2069
	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
	/* enable PCH reset handshake */
	val = I915_READ(HSW_NDE_RSTWRN_OPT);
	I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);

	/* enable PG1 and Misc I/O */
	mutex_lock(&power_domains->lock);
	skl_pw1_misc_io_init(dev_priv);
	mutex_unlock(&power_domains->lock);

	if (!resume)
		return;

	skl_init_cdclk(dev_priv);

	if (dev_priv->csr.dmc_payload)
		intel_csr_load_program(dev_priv);
}

static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
{
	struct i915_power_domains *power_domains = &dev_priv->power_domains;

2092 2093
	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);

2094 2095 2096 2097 2098 2099 2100 2101 2102
	skl_uninit_cdclk(dev_priv);

	/* The spec doesn't call for removing the reset handshake flag */
	/* disable PG1 and Misc I/O */
	mutex_lock(&power_domains->lock);
	skl_pw1_misc_io_fini(dev_priv);
	mutex_unlock(&power_domains->lock);
}

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
static void chv_phy_control_init(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *cmn_bc =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
	struct i915_power_well *cmn_d =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_D);

	/*
	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
	 * workaround never ever read DISPLAY_PHY_CONTROL, and
	 * instead maintain a shadow copy ourselves. Use the actual
2114 2115
	 * power well state and lane status to reconstruct the
	 * expected initial value.
2116 2117
	 */
	dev_priv->chv_phy_control =
2118 2119
		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);

	/*
	 * If all lanes are disabled we leave the override disabled
	 * with all power down bits cleared to match the state we
	 * would use after disabling the port. Otherwise enable the
	 * override and set the lane powerdown bits accding to the
	 * current lane status.
	 */
	if (cmn_bc->ops->is_enabled(dev_priv, cmn_bc)) {
		uint32_t status = I915_READ(DPLL(PIPE_A));
		unsigned int mask;

		mask = status & DPLL_PORTB_READY_MASK;
		if (mask == 0xf)
			mask = 0x0;
		else
			dev_priv->chv_phy_control |=
				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);

		dev_priv->chv_phy_control |=
			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);

		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
		if (mask == 0xf)
			mask = 0x0;
		else
			dev_priv->chv_phy_control |=
				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);

		dev_priv->chv_phy_control |=
			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);

2155
		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
2156 2157 2158 2159

		dev_priv->chv_phy_assert[DPIO_PHY0] = false;
	} else {
		dev_priv->chv_phy_assert[DPIO_PHY0] = true;
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	}

	if (cmn_d->ops->is_enabled(dev_priv, cmn_d)) {
		uint32_t status = I915_READ(DPIO_PHY_STATUS);
		unsigned int mask;

		mask = status & DPLL_PORTD_READY_MASK;

		if (mask == 0xf)
			mask = 0x0;
		else
			dev_priv->chv_phy_control |=
				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);

		dev_priv->chv_phy_control |=
			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);

2177
		dev_priv->chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
2178 2179 2180 2181

		dev_priv->chv_phy_assert[DPIO_PHY1] = false;
	} else {
		dev_priv->chv_phy_assert[DPIO_PHY1] = true;
2182 2183 2184 2185 2186 2187
	}

	I915_WRITE(DISPLAY_PHY_CONTROL, dev_priv->chv_phy_control);

	DRM_DEBUG_KMS("Initial PHY_CONTROL=0x%08x\n",
		      dev_priv->chv_phy_control);
2188 2189
}

2190 2191 2192 2193 2194 2195 2196 2197
static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
{
	struct i915_power_well *cmn =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DPIO_CMN_BC);
	struct i915_power_well *disp2d =
		lookup_power_well(dev_priv, PUNIT_POWER_WELL_DISP2D);

	/* If the display might be already active skip this */
2198 2199
	if (cmn->ops->is_enabled(dev_priv, cmn) &&
	    disp2d->ops->is_enabled(dev_priv, disp2d) &&
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	    I915_READ(DPIO_CTL) & DPIO_CMNRST)
		return;

	DRM_DEBUG_KMS("toggling display PHY side reset\n");

	/* cmnlane needs DPLL registers */
	disp2d->ops->enable(dev_priv, disp2d);

	/*
	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
	 * Need to assert and de-assert PHY SB reset by gating the
	 * common lane power, then un-gating it.
	 * Simply ungating isn't enough to reset the PHY enough to get
	 * ports and lanes running.
	 */
	cmn->ops->disable(dev_priv, cmn);
}

2218 2219 2220 2221 2222 2223 2224
/**
 * intel_power_domains_init_hw - initialize hardware power domain state
 * @dev_priv: i915 device instance
 *
 * This function initializes the hardware power domain state and enables all
 * power domains using intel_display_set_init_power().
 */
2225
void intel_power_domains_init_hw(struct drm_i915_private *dev_priv, bool resume)
2226 2227 2228 2229 2230 2231
{
	struct drm_device *dev = dev_priv->dev;
	struct i915_power_domains *power_domains = &dev_priv->power_domains;

	power_domains->initializing = true;

2232 2233 2234
	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
		skl_display_core_init(dev_priv, resume);
	} else if (IS_CHERRYVIEW(dev)) {
2235
		mutex_lock(&power_domains->lock);
2236
		chv_phy_control_init(dev_priv);
2237
		mutex_unlock(&power_domains->lock);
2238
	} else if (IS_VALLEYVIEW(dev)) {
2239 2240 2241 2242 2243 2244 2245
		mutex_lock(&power_domains->lock);
		vlv_cmnlane_wa(dev_priv);
		mutex_unlock(&power_domains->lock);
	}

	/* For now, we need the power well to be always enabled. */
	intel_display_set_init_power(dev_priv, true);
2246 2247 2248
	/* Disable power support if the user asked so. */
	if (!i915.disable_power_well)
		intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
2249
	intel_power_domains_sync_hw(dev_priv);
2250 2251 2252
	power_domains->initializing = false;
}

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
/**
 * intel_power_domains_suspend - suspend power domain state
 * @dev_priv: i915 device instance
 *
 * This function prepares the hardware power domain state before entering
 * system suspend. It must be paired with intel_power_domains_init_hw().
 */
void intel_power_domains_suspend(struct drm_i915_private *dev_priv)
{
	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
		skl_display_core_uninit(dev_priv);
2264 2265 2266 2267 2268 2269 2270

	/*
	 * Even if power well support was disabled we still want to disable
	 * power wells while we are system suspended.
	 */
	if (!i915.disable_power_well)
		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
2271 2272
}

2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
/**
 * intel_runtime_pm_get - grab a runtime pm reference
 * @dev_priv: i915 device instance
 *
 * This function grabs a device-level runtime pm reference (mostly used for GEM
 * code to ensure the GTT or GT is on) and ensures that it is powered up.
 *
 * Any runtime pm reference obtained by this function must have a symmetric
 * call to intel_runtime_pm_put() to release the reference again.
 */
2283 2284 2285 2286 2287 2288
void intel_runtime_pm_get(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

	pm_runtime_get_sync(device);
2289 2290

	atomic_inc(&dev_priv->pm.wakeref_count);
2291
	assert_rpm_wakelock_held(dev_priv);
2292 2293
}

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
/**
 * intel_runtime_pm_get_if_in_use - grab a runtime pm reference if device in use
 * @dev_priv: i915 device instance
 *
 * This function grabs a device-level runtime pm reference if the device is
 * already in use and ensures that it is powered up.
 *
 * Any runtime pm reference obtained by this function must have a symmetric
 * call to intel_runtime_pm_put() to release the reference again.
 */
bool intel_runtime_pm_get_if_in_use(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;
	int ret;

	if (!IS_ENABLED(CONFIG_PM))
		return true;

	ret = pm_runtime_get_if_in_use(device);

	/*
	 * In cases runtime PM is disabled by the RPM core and we get an
	 * -EINVAL return value we are not supposed to call this function,
	 * since the power state is undefined. This applies atm to the
	 * late/early system suspend/resume handlers.
	 */
	WARN_ON_ONCE(ret < 0);
	if (ret <= 0)
		return false;

	atomic_inc(&dev_priv->pm.wakeref_count);
	assert_rpm_wakelock_held(dev_priv);

	return true;
}

2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
/**
 * intel_runtime_pm_get_noresume - grab a runtime pm reference
 * @dev_priv: i915 device instance
 *
 * This function grabs a device-level runtime pm reference (mostly used for GEM
 * code to ensure the GTT or GT is on).
 *
 * It will _not_ power up the device but instead only check that it's powered
 * on.  Therefore it is only valid to call this functions from contexts where
 * the device is known to be powered up and where trying to power it up would
 * result in hilarity and deadlocks. That pretty much means only the system
 * suspend/resume code where this is used to grab runtime pm references for
 * delayed setup down in work items.
 *
 * Any runtime pm reference obtained by this function must have a symmetric
 * call to intel_runtime_pm_put() to release the reference again.
 */
2348 2349 2350 2351 2352
void intel_runtime_pm_get_noresume(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

2353
	assert_rpm_wakelock_held(dev_priv);
2354
	pm_runtime_get_noresume(device);
2355 2356

	atomic_inc(&dev_priv->pm.wakeref_count);
2357 2358
}

2359 2360 2361 2362 2363 2364 2365 2366
/**
 * intel_runtime_pm_put - release a runtime pm reference
 * @dev_priv: i915 device instance
 *
 * This function drops the device-level runtime pm reference obtained by
 * intel_runtime_pm_get() and might power down the corresponding
 * hardware block right away if this is the last reference.
 */
2367 2368 2369 2370 2371
void intel_runtime_pm_put(struct drm_i915_private *dev_priv)
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

2372
	assert_rpm_wakelock_held(dev_priv);
2373 2374
	if (atomic_dec_and_test(&dev_priv->pm.wakeref_count))
		atomic_inc(&dev_priv->pm.atomic_seq);
2375

2376 2377 2378 2379
	pm_runtime_mark_last_busy(device);
	pm_runtime_put_autosuspend(device);
}

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
/**
 * intel_runtime_pm_enable - enable runtime pm
 * @dev_priv: i915 device instance
 *
 * This function enables runtime pm at the end of the driver load sequence.
 *
 * Note that this function does currently not enable runtime pm for the
 * subordinate display power domains. That is only done on the first modeset
 * using intel_display_set_init_power().
 */
2390
void intel_runtime_pm_enable(struct drm_i915_private *dev_priv)
2391 2392 2393 2394
{
	struct drm_device *dev = dev_priv->dev;
	struct device *device = &dev->pdev->dev;

2395 2396 2397
	pm_runtime_set_autosuspend_delay(device, 10000); /* 10s */
	pm_runtime_mark_last_busy(device);

2398 2399 2400 2401 2402 2403
	/*
	 * Take a permanent reference to disable the RPM functionality and drop
	 * it only when unloading the driver. Use the low level get/put helpers,
	 * so the driver's own RPM reference tracking asserts also work on
	 * platforms without RPM support.
	 */
2404 2405
	if (!HAS_RUNTIME_PM(dev)) {
		pm_runtime_dont_use_autosuspend(device);
2406
		pm_runtime_get_sync(device);
2407 2408 2409
	} else {
		pm_runtime_use_autosuspend(device);
	}
2410

2411 2412 2413 2414 2415
	/*
	 * The core calls the driver load handler with an RPM reference held.
	 * We drop that here and will reacquire it during unloading in
	 * intel_power_domains_fini().
	 */
2416 2417 2418
	pm_runtime_put_autosuspend(device);
}