cpuset.c 76.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6
/*
 *  kernel/cpuset.c
 *
 *  Processor and Memory placement constraints for sets of tasks.
 *
 *  Copyright (C) 2003 BULL SA.
P
Paul Jackson 已提交
7
 *  Copyright (C) 2004-2007 Silicon Graphics, Inc.
8
 *  Copyright (C) 2006 Google, Inc
L
Linus Torvalds 已提交
9 10 11 12
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
13
 *  2003-10-10 Written by Simon Derr.
L
Linus Torvalds 已提交
14
 *  2003-10-22 Updates by Stephen Hemminger.
15
 *  2004 May-July Rework by Paul Jackson.
16
 *  2006 Rework by Paul Menage to use generic cgroups
17 18
 *  2008 Rework of the scheduler domains and CPU hotplug handling
 *       by Max Krasnyansky
L
Linus Torvalds 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpuset.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/list.h>
37
#include <linux/mempolicy.h>
L
Linus Torvalds 已提交
38
#include <linux/mm.h>
39
#include <linux/memory.h>
40
#include <linux/export.h>
L
Linus Torvalds 已提交
41 42 43 44
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/pagemap.h>
#include <linux/proc_fs.h>
45
#include <linux/rcupdate.h>
L
Linus Torvalds 已提交
46
#include <linux/sched.h>
47
#include <linux/sched/mm.h>
48
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
49
#include <linux/seq_file.h>
50
#include <linux/security.h>
L
Linus Torvalds 已提交
51 52 53 54 55
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/time.h>
56
#include <linux/time64.h>
L
Linus Torvalds 已提交
57 58 59
#include <linux/backing-dev.h>
#include <linux/sort.h>

60
#include <linux/uaccess.h>
A
Arun Sharma 已提交
61
#include <linux/atomic.h>
62
#include <linux/mutex.h>
63
#include <linux/cgroup.h>
64
#include <linux/wait.h>
L
Linus Torvalds 已提交
65

66
DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
67
DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
68

69 70 71 72 73
/* See "Frequency meter" comments, below. */

struct fmeter {
	int cnt;		/* unprocessed events count */
	int val;		/* most recent output value */
74
	time64_t time;		/* clock (secs) when val computed */
75 76 77
	spinlock_t lock;	/* guards read or write of above */
};

L
Linus Torvalds 已提交
78
struct cpuset {
79 80
	struct cgroup_subsys_state css;

L
Linus Torvalds 已提交
81
	unsigned long flags;		/* "unsigned long" so bitops work */
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
	/*
	 * On default hierarchy:
	 *
	 * The user-configured masks can only be changed by writing to
	 * cpuset.cpus and cpuset.mems, and won't be limited by the
	 * parent masks.
	 *
	 * The effective masks is the real masks that apply to the tasks
	 * in the cpuset. They may be changed if the configured masks are
	 * changed or hotplug happens.
	 *
	 * effective_mask == configured_mask & parent's effective_mask,
	 * and if it ends up empty, it will inherit the parent's mask.
	 *
	 *
	 * On legacy hierachy:
	 *
	 * The user-configured masks are always the same with effective masks.
	 */

103 104 105 106 107 108 109
	/* user-configured CPUs and Memory Nodes allow to tasks */
	cpumask_var_t cpus_allowed;
	nodemask_t mems_allowed;

	/* effective CPUs and Memory Nodes allow to tasks */
	cpumask_var_t effective_cpus;
	nodemask_t effective_mems;
L
Linus Torvalds 已提交
110

111 112 113 114 115 116 117 118 119 120 121 122
	/*
	 * This is old Memory Nodes tasks took on.
	 *
	 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
	 * - A new cpuset's old_mems_allowed is initialized when some
	 *   task is moved into it.
	 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
	 *   cpuset.mems_allowed and have tasks' nodemask updated, and
	 *   then old_mems_allowed is updated to mems_allowed.
	 */
	nodemask_t old_mems_allowed;

123
	struct fmeter fmeter;		/* memory_pressure filter */
P
Paul Jackson 已提交
124

125 126 127 128 129 130
	/*
	 * Tasks are being attached to this cpuset.  Used to prevent
	 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
	 */
	int attach_in_progress;

P
Paul Jackson 已提交
131 132
	/* partition number for rebuild_sched_domains() */
	int pn;
133

134 135
	/* for custom sched domain */
	int relax_domain_level;
L
Linus Torvalds 已提交
136 137
};

138
static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
139
{
140
	return css ? container_of(css, struct cpuset, css) : NULL;
141 142 143 144 145
}

/* Retrieve the cpuset for a task */
static inline struct cpuset *task_cs(struct task_struct *task)
{
146
	return css_cs(task_css(task, cpuset_cgrp_id));
147 148
}

149
static inline struct cpuset *parent_cs(struct cpuset *cs)
T
Tejun Heo 已提交
150
{
T
Tejun Heo 已提交
151
	return css_cs(cs->css.parent);
T
Tejun Heo 已提交
152 153
}

154 155 156 157 158 159 160 161 162 163 164 165 166
#ifdef CONFIG_NUMA
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return task->mempolicy;
}
#else
static inline bool task_has_mempolicy(struct task_struct *task)
{
	return false;
}
#endif


L
Linus Torvalds 已提交
167 168
/* bits in struct cpuset flags field */
typedef enum {
T
Tejun Heo 已提交
169
	CS_ONLINE,
L
Linus Torvalds 已提交
170 171
	CS_CPU_EXCLUSIVE,
	CS_MEM_EXCLUSIVE,
172
	CS_MEM_HARDWALL,
173
	CS_MEMORY_MIGRATE,
P
Paul Jackson 已提交
174
	CS_SCHED_LOAD_BALANCE,
175 176
	CS_SPREAD_PAGE,
	CS_SPREAD_SLAB,
L
Linus Torvalds 已提交
177 178 179
} cpuset_flagbits_t;

/* convenient tests for these bits */
180
static inline bool is_cpuset_online(struct cpuset *cs)
T
Tejun Heo 已提交
181
{
182
	return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
T
Tejun Heo 已提交
183 184
}

L
Linus Torvalds 已提交
185 186
static inline int is_cpu_exclusive(const struct cpuset *cs)
{
187
	return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
188 189 190 191
}

static inline int is_mem_exclusive(const struct cpuset *cs)
{
192
	return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
L
Linus Torvalds 已提交
193 194
}

195 196 197 198 199
static inline int is_mem_hardwall(const struct cpuset *cs)
{
	return test_bit(CS_MEM_HARDWALL, &cs->flags);
}

P
Paul Jackson 已提交
200 201 202 203 204
static inline int is_sched_load_balance(const struct cpuset *cs)
{
	return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
}

205 206
static inline int is_memory_migrate(const struct cpuset *cs)
{
207
	return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
208 209
}

210 211 212 213 214 215 216 217 218 219
static inline int is_spread_page(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_PAGE, &cs->flags);
}

static inline int is_spread_slab(const struct cpuset *cs)
{
	return test_bit(CS_SPREAD_SLAB, &cs->flags);
}

L
Linus Torvalds 已提交
220
static struct cpuset top_cpuset = {
T
Tejun Heo 已提交
221 222
	.flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
		  (1 << CS_MEM_EXCLUSIVE)),
L
Linus Torvalds 已提交
223 224
};

225 226 227
/**
 * cpuset_for_each_child - traverse online children of a cpuset
 * @child_cs: loop cursor pointing to the current child
228
 * @pos_css: used for iteration
229 230 231 232 233
 * @parent_cs: target cpuset to walk children of
 *
 * Walk @child_cs through the online children of @parent_cs.  Must be used
 * with RCU read locked.
 */
234 235 236
#define cpuset_for_each_child(child_cs, pos_css, parent_cs)		\
	css_for_each_child((pos_css), &(parent_cs)->css)		\
		if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
237

238 239 240
/**
 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
 * @des_cs: loop cursor pointing to the current descendant
241
 * @pos_css: used for iteration
242 243 244
 * @root_cs: target cpuset to walk ancestor of
 *
 * Walk @des_cs through the online descendants of @root_cs.  Must be used
245
 * with RCU read locked.  The caller may modify @pos_css by calling
246 247
 * css_rightmost_descendant() to skip subtree.  @root_cs is included in the
 * iteration and the first node to be visited.
248
 */
249 250 251
#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs)	\
	css_for_each_descendant_pre((pos_css), &(root_cs)->css)		\
		if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
252

L
Linus Torvalds 已提交
253
/*
254 255 256 257
 * There are two global locks guarding cpuset structures - cpuset_mutex and
 * callback_lock. We also require taking task_lock() when dereferencing a
 * task's cpuset pointer. See "The task_lock() exception", at the end of this
 * comment.
258
 *
259
 * A task must hold both locks to modify cpusets.  If a task holds
260
 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
261
 * is the only task able to also acquire callback_lock and be able to
262 263 264
 * modify cpusets.  It can perform various checks on the cpuset structure
 * first, knowing nothing will change.  It can also allocate memory while
 * just holding cpuset_mutex.  While it is performing these checks, various
265 266
 * callback routines can briefly acquire callback_lock to query cpusets.
 * Once it is ready to make the changes, it takes callback_lock, blocking
267
 * everyone else.
268 269
 *
 * Calls to the kernel memory allocator can not be made while holding
270
 * callback_lock, as that would risk double tripping on callback_lock
271 272 273
 * from one of the callbacks into the cpuset code from within
 * __alloc_pages().
 *
274
 * If a task is only holding callback_lock, then it has read-only
275 276
 * access to cpusets.
 *
277 278 279
 * Now, the task_struct fields mems_allowed and mempolicy may be changed
 * by other task, we use alloc_lock in the task_struct fields to protect
 * them.
280
 *
281
 * The cpuset_common_file_read() handlers only hold callback_lock across
282 283 284
 * small pieces of code, such as when reading out possibly multi-word
 * cpumasks and nodemasks.
 *
285 286
 * Accessing a task's cpuset should be done in accordance with the
 * guidelines for accessing subsystem state in kernel/cgroup.c
L
Linus Torvalds 已提交
287 288
 */

289
static DEFINE_MUTEX(cpuset_mutex);
290
static DEFINE_SPINLOCK(callback_lock);
291

292 293
static struct workqueue_struct *cpuset_migrate_mm_wq;

294 295 296 297 298 299
/*
 * CPU / memory hotplug is handled asynchronously.
 */
static void cpuset_hotplug_workfn(struct work_struct *work);
static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);

300 301
static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);

302 303
/*
 * This is ugly, but preserves the userspace API for existing cpuset
304
 * users. If someone tries to mount the "cpuset" filesystem, we
305 306
 * silently switch it to mount "cgroup" instead
 */
A
Al Viro 已提交
307 308
static struct dentry *cpuset_mount(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name, void *data)
L
Linus Torvalds 已提交
309
{
310
	struct file_system_type *cgroup_fs = get_fs_type("cgroup");
A
Al Viro 已提交
311
	struct dentry *ret = ERR_PTR(-ENODEV);
312 313 314 315
	if (cgroup_fs) {
		char mountopts[] =
			"cpuset,noprefix,"
			"release_agent=/sbin/cpuset_release_agent";
A
Al Viro 已提交
316 317
		ret = cgroup_fs->mount(cgroup_fs, flags,
					   unused_dev_name, mountopts);
318 319 320
		put_filesystem(cgroup_fs);
	}
	return ret;
L
Linus Torvalds 已提交
321 322 323 324
}

static struct file_system_type cpuset_fs_type = {
	.name = "cpuset",
A
Al Viro 已提交
325
	.mount = cpuset_mount,
L
Linus Torvalds 已提交
326 327 328
};

/*
329
 * Return in pmask the portion of a cpusets's cpus_allowed that
L
Linus Torvalds 已提交
330
 * are online.  If none are online, walk up the cpuset hierarchy
331
 * until we find one that does have some online cpus.
L
Linus Torvalds 已提交
332 333
 *
 * One way or another, we guarantee to return some non-empty subset
334
 * of cpu_online_mask.
L
Linus Torvalds 已提交
335
 *
336
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
337
 */
338
static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
L
Linus Torvalds 已提交
339
{
340
	while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
T
Tejun Heo 已提交
341
		cs = parent_cs(cs);
342 343 344 345 346 347 348 349 350 351 352 353
		if (unlikely(!cs)) {
			/*
			 * The top cpuset doesn't have any online cpu as a
			 * consequence of a race between cpuset_hotplug_work
			 * and cpu hotplug notifier.  But we know the top
			 * cpuset's effective_cpus is on its way to to be
			 * identical to cpu_online_mask.
			 */
			cpumask_copy(pmask, cpu_online_mask);
			return;
		}
	}
354
	cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
L
Linus Torvalds 已提交
355 356 357 358
}

/*
 * Return in *pmask the portion of a cpusets's mems_allowed that
359 360
 * are online, with memory.  If none are online with memory, walk
 * up the cpuset hierarchy until we find one that does have some
361
 * online mems.  The top cpuset always has some mems online.
L
Linus Torvalds 已提交
362 363
 *
 * One way or another, we guarantee to return some non-empty subset
364
 * of node_states[N_MEMORY].
L
Linus Torvalds 已提交
365
 *
366
 * Call with callback_lock or cpuset_mutex held.
L
Linus Torvalds 已提交
367
 */
368
static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
L
Linus Torvalds 已提交
369
{
370
	while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
T
Tejun Heo 已提交
371
		cs = parent_cs(cs);
372
	nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
L
Linus Torvalds 已提交
373 374
}

375 376 377
/*
 * update task's spread flag if cpuset's page/slab spread flag is set
 *
378
 * Call with callback_lock or cpuset_mutex held.
379 380 381 382 383
 */
static void cpuset_update_task_spread_flag(struct cpuset *cs,
					struct task_struct *tsk)
{
	if (is_spread_page(cs))
384
		task_set_spread_page(tsk);
385
	else
386 387
		task_clear_spread_page(tsk);

388
	if (is_spread_slab(cs))
389
		task_set_spread_slab(tsk);
390
	else
391
		task_clear_spread_slab(tsk);
392 393
}

L
Linus Torvalds 已提交
394 395 396 397 398
/*
 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
 *
 * One cpuset is a subset of another if all its allowed CPUs and
 * Memory Nodes are a subset of the other, and its exclusive flags
399
 * are only set if the other's are set.  Call holding cpuset_mutex.
L
Linus Torvalds 已提交
400 401 402 403
 */

static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
{
404
	return	cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
L
Linus Torvalds 已提交
405 406 407 408 409
		nodes_subset(p->mems_allowed, q->mems_allowed) &&
		is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
		is_mem_exclusive(p) <= is_mem_exclusive(q);
}

410 411 412 413
/**
 * alloc_trial_cpuset - allocate a trial cpuset
 * @cs: the cpuset that the trial cpuset duplicates
 */
414
static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
415
{
416 417 418 419 420 421
	struct cpuset *trial;

	trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
	if (!trial)
		return NULL;

422 423 424 425
	if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
		goto free_cpus;
426

427 428
	cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
	cpumask_copy(trial->effective_cpus, cs->effective_cpus);
429
	return trial;
430 431 432 433 434 435

free_cpus:
	free_cpumask_var(trial->cpus_allowed);
free_cs:
	kfree(trial);
	return NULL;
436 437 438 439 440 441 442 443
}

/**
 * free_trial_cpuset - free the trial cpuset
 * @trial: the trial cpuset to be freed
 */
static void free_trial_cpuset(struct cpuset *trial)
{
444
	free_cpumask_var(trial->effective_cpus);
445
	free_cpumask_var(trial->cpus_allowed);
446 447 448
	kfree(trial);
}

L
Linus Torvalds 已提交
449 450 451 452 453 454 455
/*
 * validate_change() - Used to validate that any proposed cpuset change
 *		       follows the structural rules for cpusets.
 *
 * If we replaced the flag and mask values of the current cpuset
 * (cur) with those values in the trial cpuset (trial), would
 * our various subset and exclusive rules still be valid?  Presumes
456
 * cpuset_mutex held.
L
Linus Torvalds 已提交
457 458 459 460 461 462 463 464 465 466 467 468
 *
 * 'cur' is the address of an actual, in-use cpuset.  Operations
 * such as list traversal that depend on the actual address of the
 * cpuset in the list must use cur below, not trial.
 *
 * 'trial' is the address of bulk structure copy of cur, with
 * perhaps one or more of the fields cpus_allowed, mems_allowed,
 * or flags changed to new, trial values.
 *
 * Return 0 if valid, -errno if not.
 */

469
static int validate_change(struct cpuset *cur, struct cpuset *trial)
L
Linus Torvalds 已提交
470
{
471
	struct cgroup_subsys_state *css;
L
Linus Torvalds 已提交
472
	struct cpuset *c, *par;
473 474 475
	int ret;

	rcu_read_lock();
L
Linus Torvalds 已提交
476 477

	/* Each of our child cpusets must be a subset of us */
478
	ret = -EBUSY;
479
	cpuset_for_each_child(c, css, cur)
480 481
		if (!is_cpuset_subset(c, trial))
			goto out;
L
Linus Torvalds 已提交
482 483

	/* Remaining checks don't apply to root cpuset */
484
	ret = 0;
485
	if (cur == &top_cpuset)
486
		goto out;
L
Linus Torvalds 已提交
487

T
Tejun Heo 已提交
488
	par = parent_cs(cur);
489

490
	/* On legacy hiearchy, we must be a subset of our parent cpuset. */
491
	ret = -EACCES;
492 493
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
	    !is_cpuset_subset(trial, par))
494
		goto out;
L
Linus Torvalds 已提交
495

496 497 498 499
	/*
	 * If either I or some sibling (!= me) is exclusive, we can't
	 * overlap
	 */
500
	ret = -EINVAL;
501
	cpuset_for_each_child(c, css, par) {
L
Linus Torvalds 已提交
502 503
		if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
		    c != cur &&
504
		    cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
505
			goto out;
L
Linus Torvalds 已提交
506 507 508
		if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
		    c != cur &&
		    nodes_intersects(trial->mems_allowed, c->mems_allowed))
509
			goto out;
L
Linus Torvalds 已提交
510 511
	}

512 513
	/*
	 * Cpusets with tasks - existing or newly being attached - can't
514
	 * be changed to have empty cpus_allowed or mems_allowed.
515
	 */
516
	ret = -ENOSPC;
517
	if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
518 519 520 521 522 523 524
		if (!cpumask_empty(cur->cpus_allowed) &&
		    cpumask_empty(trial->cpus_allowed))
			goto out;
		if (!nodes_empty(cur->mems_allowed) &&
		    nodes_empty(trial->mems_allowed))
			goto out;
	}
525

526 527 528 529 530 531 532 533 534 535
	/*
	 * We can't shrink if we won't have enough room for SCHED_DEADLINE
	 * tasks.
	 */
	ret = -EBUSY;
	if (is_cpu_exclusive(cur) &&
	    !cpuset_cpumask_can_shrink(cur->cpus_allowed,
				       trial->cpus_allowed))
		goto out;

536 537 538 539
	ret = 0;
out:
	rcu_read_unlock();
	return ret;
L
Linus Torvalds 已提交
540 541
}

542
#ifdef CONFIG_SMP
P
Paul Jackson 已提交
543
/*
544
 * Helper routine for generate_sched_domains().
545
 * Do cpusets a, b have overlapping effective cpus_allowed masks?
P
Paul Jackson 已提交
546 547 548
 */
static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
{
549
	return cpumask_intersects(a->effective_cpus, b->effective_cpus);
P
Paul Jackson 已提交
550 551
}

552 553 554 555 556 557 558 559
static void
update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
{
	if (dattr->relax_domain_level < c->relax_domain_level)
		dattr->relax_domain_level = c->relax_domain_level;
	return;
}

560 561
static void update_domain_attr_tree(struct sched_domain_attr *dattr,
				    struct cpuset *root_cs)
562
{
563
	struct cpuset *cp;
564
	struct cgroup_subsys_state *pos_css;
565

566
	rcu_read_lock();
567
	cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
568 569
		/* skip the whole subtree if @cp doesn't have any CPU */
		if (cpumask_empty(cp->cpus_allowed)) {
570
			pos_css = css_rightmost_descendant(pos_css);
571
			continue;
572
		}
573 574 575 576

		if (is_sched_load_balance(cp))
			update_domain_attr(dattr, cp);
	}
577
	rcu_read_unlock();
578 579
}

P
Paul Jackson 已提交
580
/*
581 582 583 584 585
 * generate_sched_domains()
 *
 * This function builds a partial partition of the systems CPUs
 * A 'partial partition' is a set of non-overlapping subsets whose
 * union is a subset of that set.
586
 * The output of this function needs to be passed to kernel/sched/core.c
587 588 589
 * partition_sched_domains() routine, which will rebuild the scheduler's
 * load balancing domains (sched domains) as specified by that partial
 * partition.
P
Paul Jackson 已提交
590
 *
L
Li Zefan 已提交
591
 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
P
Paul Jackson 已提交
592 593 594 595 596 597 598
 * for a background explanation of this.
 *
 * Does not return errors, on the theory that the callers of this
 * routine would rather not worry about failures to rebuild sched
 * domains when operating in the severe memory shortage situations
 * that could cause allocation failures below.
 *
599
 * Must be called with cpuset_mutex held.
P
Paul Jackson 已提交
600 601
 *
 * The three key local variables below are:
602
 *    q  - a linked-list queue of cpuset pointers, used to implement a
P
Paul Jackson 已提交
603 604 605 606 607 608 609 610 611 612 613 614
 *	   top-down scan of all cpusets.  This scan loads a pointer
 *	   to each cpuset marked is_sched_load_balance into the
 *	   array 'csa'.  For our purposes, rebuilding the schedulers
 *	   sched domains, we can ignore !is_sched_load_balance cpusets.
 *  csa  - (for CpuSet Array) Array of pointers to all the cpusets
 *	   that need to be load balanced, for convenient iterative
 *	   access by the subsequent code that finds the best partition,
 *	   i.e the set of domains (subsets) of CPUs such that the
 *	   cpus_allowed of every cpuset marked is_sched_load_balance
 *	   is a subset of one of these domains, while there are as
 *	   many such domains as possible, each as small as possible.
 * doms  - Conversion of 'csa' to an array of cpumasks, for passing to
615
 *	   the kernel/sched/core.c routine partition_sched_domains() in a
P
Paul Jackson 已提交
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
 *	   convenient format, that can be easily compared to the prior
 *	   value to determine what partition elements (sched domains)
 *	   were changed (added or removed.)
 *
 * Finding the best partition (set of domains):
 *	The triple nested loops below over i, j, k scan over the
 *	load balanced cpusets (using the array of cpuset pointers in
 *	csa[]) looking for pairs of cpusets that have overlapping
 *	cpus_allowed, but which don't have the same 'pn' partition
 *	number and gives them in the same partition number.  It keeps
 *	looping on the 'restart' label until it can no longer find
 *	any such pairs.
 *
 *	The union of the cpus_allowed masks from the set of
 *	all cpusets having the same 'pn' value then form the one
 *	element of the partition (one sched domain) to be passed to
 *	partition_sched_domains().
 */
634
static int generate_sched_domains(cpumask_var_t **domains,
635
			struct sched_domain_attr **attributes)
P
Paul Jackson 已提交
636 637 638 639 640
{
	struct cpuset *cp;	/* scans q */
	struct cpuset **csa;	/* array of all cpuset ptrs */
	int csn;		/* how many cpuset ptrs in csa so far */
	int i, j, k;		/* indices for partition finding loops */
641
	cpumask_var_t *doms;	/* resulting partition; i.e. sched domains */
642
	cpumask_var_t non_isolated_cpus;  /* load balanced CPUs */
643
	struct sched_domain_attr *dattr;  /* attributes for custom domains */
644
	int ndoms = 0;		/* number of sched domains in result */
645
	int nslot;		/* next empty doms[] struct cpumask slot */
646
	struct cgroup_subsys_state *pos_css;
P
Paul Jackson 已提交
647 648

	doms = NULL;
649
	dattr = NULL;
650
	csa = NULL;
P
Paul Jackson 已提交
651

652 653 654 655
	if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
		goto done;
	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);

P
Paul Jackson 已提交
656 657
	/* Special case for the 99% of systems with one, full, sched domain */
	if (is_sched_load_balance(&top_cpuset)) {
658 659
		ndoms = 1;
		doms = alloc_sched_domains(ndoms);
P
Paul Jackson 已提交
660
		if (!doms)
661 662
			goto done;

663 664 665
		dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
		if (dattr) {
			*dattr = SD_ATTR_INIT;
666
			update_domain_attr_tree(dattr, &top_cpuset);
667
		}
668 669
		cpumask_and(doms[0], top_cpuset.effective_cpus,
				     non_isolated_cpus);
670 671

		goto done;
P
Paul Jackson 已提交
672 673
	}

674
	csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
P
Paul Jackson 已提交
675 676 677 678
	if (!csa)
		goto done;
	csn = 0;

679
	rcu_read_lock();
680
	cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
681 682
		if (cp == &top_cpuset)
			continue;
683
		/*
684 685 686 687 688 689
		 * Continue traversing beyond @cp iff @cp has some CPUs and
		 * isn't load balancing.  The former is obvious.  The
		 * latter: All child cpusets contain a subset of the
		 * parent's cpus, so just skip them, and then we call
		 * update_domain_attr_tree() to calc relax_domain_level of
		 * the corresponding sched domain.
690
		 */
691
		if (!cpumask_empty(cp->cpus_allowed) &&
692 693
		    !(is_sched_load_balance(cp) &&
		      cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
694
			continue;
695

696 697 698 699
		if (is_sched_load_balance(cp))
			csa[csn++] = cp;

		/* skip @cp's subtree */
700
		pos_css = css_rightmost_descendant(pos_css);
701 702
	}
	rcu_read_unlock();
P
Paul Jackson 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730

	for (i = 0; i < csn; i++)
		csa[i]->pn = i;
	ndoms = csn;

restart:
	/* Find the best partition (set of sched domains) */
	for (i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
		int apn = a->pn;

		for (j = 0; j < csn; j++) {
			struct cpuset *b = csa[j];
			int bpn = b->pn;

			if (apn != bpn && cpusets_overlap(a, b)) {
				for (k = 0; k < csn; k++) {
					struct cpuset *c = csa[k];

					if (c->pn == bpn)
						c->pn = apn;
				}
				ndoms--;	/* one less element */
				goto restart;
			}
		}
	}

731 732 733 734
	/*
	 * Now we know how many domains to create.
	 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
	 */
735
	doms = alloc_sched_domains(ndoms);
736
	if (!doms)
737 738 739 740 741 742
		goto done;

	/*
	 * The rest of the code, including the scheduler, can deal with
	 * dattr==NULL case. No need to abort if alloc fails.
	 */
743
	dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
P
Paul Jackson 已提交
744 745 746

	for (nslot = 0, i = 0; i < csn; i++) {
		struct cpuset *a = csa[i];
747
		struct cpumask *dp;
P
Paul Jackson 已提交
748 749
		int apn = a->pn;

750 751 752 753 754
		if (apn < 0) {
			/* Skip completed partitions */
			continue;
		}

755
		dp = doms[nslot];
756 757 758 759

		if (nslot == ndoms) {
			static int warnings = 10;
			if (warnings) {
760 761
				pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
					nslot, ndoms, csn, i, apn);
762
				warnings--;
P
Paul Jackson 已提交
763
			}
764 765
			continue;
		}
P
Paul Jackson 已提交
766

767
		cpumask_clear(dp);
768 769 770 771 772 773
		if (dattr)
			*(dattr + nslot) = SD_ATTR_INIT;
		for (j = i; j < csn; j++) {
			struct cpuset *b = csa[j];

			if (apn == b->pn) {
774
				cpumask_or(dp, dp, b->effective_cpus);
775
				cpumask_and(dp, dp, non_isolated_cpus);
776 777 778 779 780
				if (dattr)
					update_domain_attr_tree(dattr + nslot, b);

				/* Done with this partition */
				b->pn = -1;
P
Paul Jackson 已提交
781 782
			}
		}
783
		nslot++;
P
Paul Jackson 已提交
784 785 786
	}
	BUG_ON(nslot != ndoms);

787
done:
788
	free_cpumask_var(non_isolated_cpus);
789 790
	kfree(csa);

791 792 793 794 795 796 797
	/*
	 * Fallback to the default domain if kmalloc() failed.
	 * See comments in partition_sched_domains().
	 */
	if (doms == NULL)
		ndoms = 1;

798 799 800 801 802 803 804 805
	*domains    = doms;
	*attributes = dattr;
	return ndoms;
}

/*
 * Rebuild scheduler domains.
 *
806 807 808 809 810
 * If the flag 'sched_load_balance' of any cpuset with non-empty
 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
 * which has that flag enabled, or if any cpuset with a non-empty
 * 'cpus' is removed, then call this routine to rebuild the
 * scheduler's dynamic sched domains.
811
 *
812
 * Call with cpuset_mutex held.  Takes get_online_cpus().
813
 */
814
static void rebuild_sched_domains_locked(void)
815 816
{
	struct sched_domain_attr *attr;
817
	cpumask_var_t *doms;
818 819
	int ndoms;

820
	lockdep_assert_held(&cpuset_mutex);
821
	get_online_cpus();
822

823 824 825 826 827
	/*
	 * We have raced with CPU hotplug. Don't do anything to avoid
	 * passing doms with offlined cpu to partition_sched_domains().
	 * Anyways, hotplug work item will rebuild sched domains.
	 */
828
	if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
829 830
		goto out;

831 832 833 834 835
	/* Generate domain masks and attrs */
	ndoms = generate_sched_domains(&doms, &attr);

	/* Have scheduler rebuild the domains */
	partition_sched_domains(ndoms, doms, attr);
836
out:
837
	put_online_cpus();
838
}
839
#else /* !CONFIG_SMP */
840
static void rebuild_sched_domains_locked(void)
841 842 843
{
}
#endif /* CONFIG_SMP */
P
Paul Jackson 已提交
844

845 846
void rebuild_sched_domains(void)
{
847
	mutex_lock(&cpuset_mutex);
848
	rebuild_sched_domains_locked();
849
	mutex_unlock(&cpuset_mutex);
P
Paul Jackson 已提交
850 851
}

852 853 854 855
/**
 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
 *
856 857 858
 * Iterate through each task of @cs updating its cpus_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
859
 */
860
static void update_tasks_cpumask(struct cpuset *cs)
861
{
862 863 864 865 866
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
867
		set_cpus_allowed_ptr(task, cs->effective_cpus);
868
	css_task_iter_end(&it);
869 870
}

871
/*
872 873 874 875 876 877
 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_cpus: temp variable for calculating new effective_cpus
 *
 * When congifured cpumask is changed, the effective cpumasks of this cpuset
 * and all its descendants need to be updated.
878
 *
879
 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
880 881 882
 *
 * Called with cpuset_mutex held
 */
883
static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
884 885
{
	struct cpuset *cp;
886
	struct cgroup_subsys_state *pos_css;
887
	bool need_rebuild_sched_domains = false;
888 889

	rcu_read_lock();
890 891 892 893 894
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);

895 896 897 898
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some CPUs.
		 */
899 900
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    cpumask_empty(new_cpus))
901 902
			cpumask_copy(new_cpus, parent->effective_cpus);

903 904 905 906
		/* Skip the whole subtree if the cpumask remains the same. */
		if (cpumask_equal(new_cpus, cp->effective_cpus)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
907
		}
908

909
		if (!css_tryget_online(&cp->css))
910 911 912
			continue;
		rcu_read_unlock();

913
		spin_lock_irq(&callback_lock);
914
		cpumask_copy(cp->effective_cpus, new_cpus);
915
		spin_unlock_irq(&callback_lock);
916

917
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
918 919
			!cpumask_equal(cp->cpus_allowed, cp->effective_cpus));

920
		update_tasks_cpumask(cp);
921

922 923 924 925 926 927 928 929
		/*
		 * If the effective cpumask of any non-empty cpuset is changed,
		 * we need to rebuild sched domains.
		 */
		if (!cpumask_empty(cp->cpus_allowed) &&
		    is_sched_load_balance(cp))
			need_rebuild_sched_domains = true;

930 931 932 933
		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
934 935 936

	if (need_rebuild_sched_domains)
		rebuild_sched_domains_locked();
937 938
}

C
Cliff Wickman 已提交
939 940 941
/**
 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
 * @cs: the cpuset to consider
942
 * @trialcs: trial cpuset
C
Cliff Wickman 已提交
943 944
 * @buf: buffer of cpu numbers written to this cpuset
 */
945 946
static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
			  const char *buf)
L
Linus Torvalds 已提交
947
{
C
Cliff Wickman 已提交
948
	int retval;
L
Linus Torvalds 已提交
949

950
	/* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
951 952 953
	if (cs == &top_cpuset)
		return -EACCES;

954
	/*
955
	 * An empty cpus_allowed is ok only if the cpuset has no tasks.
956 957 958
	 * Since cpulist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have cpus.
959
	 */
960
	if (!*buf) {
961
		cpumask_clear(trialcs->cpus_allowed);
962
	} else {
963
		retval = cpulist_parse(buf, trialcs->cpus_allowed);
964 965
		if (retval < 0)
			return retval;
966

967 968
		if (!cpumask_subset(trialcs->cpus_allowed,
				    top_cpuset.cpus_allowed))
969
			return -EINVAL;
970
	}
P
Paul Jackson 已提交
971

P
Paul Menage 已提交
972
	/* Nothing to do if the cpus didn't change */
973
	if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
P
Paul Menage 已提交
974
		return 0;
C
Cliff Wickman 已提交
975

976 977 978 979
	retval = validate_change(cs, trialcs);
	if (retval < 0)
		return retval;

980
	spin_lock_irq(&callback_lock);
981
	cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
982
	spin_unlock_irq(&callback_lock);
P
Paul Jackson 已提交
983

984 985
	/* use trialcs->cpus_allowed as a temp variable */
	update_cpumasks_hier(cs, trialcs->cpus_allowed);
986
	return 0;
L
Linus Torvalds 已提交
987 988
}

989
/*
990 991 992 993 994
 * Migrate memory region from one set of nodes to another.  This is
 * performed asynchronously as it can be called from process migration path
 * holding locks involved in process management.  All mm migrations are
 * performed in the queued order and can be waited for by flushing
 * cpuset_migrate_mm_wq.
995 996
 */

997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
struct cpuset_migrate_mm_work {
	struct work_struct	work;
	struct mm_struct	*mm;
	nodemask_t		from;
	nodemask_t		to;
};

static void cpuset_migrate_mm_workfn(struct work_struct *work)
{
	struct cpuset_migrate_mm_work *mwork =
		container_of(work, struct cpuset_migrate_mm_work, work);

	/* on a wq worker, no need to worry about %current's mems_allowed */
	do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
	mmput(mwork->mm);
	kfree(mwork);
}

1015 1016 1017
static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
							const nodemask_t *to)
{
1018
	struct cpuset_migrate_mm_work *mwork;
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
	if (mwork) {
		mwork->mm = mm;
		mwork->from = *from;
		mwork->to = *to;
		INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
		queue_work(cpuset_migrate_mm_wq, &mwork->work);
	} else {
		mmput(mm);
	}
}
1031

1032
static void cpuset_post_attach(void)
1033 1034
{
	flush_workqueue(cpuset_migrate_mm_wq);
1035 1036
}

1037
/*
1038 1039 1040 1041
 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
 * @tsk: the task to change
 * @newmems: new nodes that the task will be set
 *
1042 1043 1044 1045
 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
 * and rebind an eventual tasks' mempolicy. If the task is allocating in
 * parallel, it might temporarily see an empty intersection, which results in
 * a seqlock check and retry before OOM or allocation failure.
1046 1047 1048 1049
 */
static void cpuset_change_task_nodemask(struct task_struct *tsk,
					nodemask_t *newmems)
{
1050 1051
	task_lock(tsk);

1052 1053
	local_irq_disable();
	write_seqcount_begin(&tsk->mems_allowed_seq);
1054

1055
	nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1056
	mpol_rebind_task(tsk, newmems);
1057
	tsk->mems_allowed = *newmems;
1058

1059 1060
	write_seqcount_end(&tsk->mems_allowed_seq);
	local_irq_enable();
1061

1062
	task_unlock(tsk);
1063 1064
}

1065 1066
static void *cpuset_being_rebound;

1067 1068 1069 1070
/**
 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
 *
1071 1072 1073
 * Iterate through each task of @cs updating its mems_allowed to the
 * effective cpuset's.  As this function is called with cpuset_mutex held,
 * cpuset membership stays stable.
1074
 */
1075
static void update_tasks_nodemask(struct cpuset *cs)
L
Linus Torvalds 已提交
1076
{
1077
	static nodemask_t newmems;	/* protected by cpuset_mutex */
1078 1079
	struct css_task_iter it;
	struct task_struct *task;
1080

1081
	cpuset_being_rebound = cs;		/* causes mpol_dup() rebind */
1082

1083
	guarantee_online_mems(cs, &newmems);
1084

1085
	/*
1086 1087 1088 1089
	 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
	 * take while holding tasklist_lock.  Forks can happen - the
	 * mpol_dup() cpuset_being_rebound check will catch such forks,
	 * and rebind their vma mempolicies too.  Because we still hold
1090
	 * the global cpuset_mutex, we know that no other rebind effort
1091
	 * will be contending for the global variable cpuset_being_rebound.
1092
	 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1093
	 * is idempotent.  Also migrate pages in each mm to new nodes.
1094
	 */
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it))) {
		struct mm_struct *mm;
		bool migrate;

		cpuset_change_task_nodemask(task, &newmems);

		mm = get_task_mm(task);
		if (!mm)
			continue;

		migrate = is_memory_migrate(cs);

		mpol_rebind_mm(mm, &cs->mems_allowed);
		if (migrate)
			cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1111 1112
		else
			mmput(mm);
1113 1114
	}
	css_task_iter_end(&it);
1115

1116 1117 1118 1119 1120 1121
	/*
	 * All the tasks' nodemasks have been updated, update
	 * cs->old_mems_allowed.
	 */
	cs->old_mems_allowed = newmems;

1122
	/* We're done rebinding vmas to this cpuset's new mems_allowed. */
1123
	cpuset_being_rebound = NULL;
L
Linus Torvalds 已提交
1124 1125
}

1126
/*
1127 1128 1129
 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
 * @cs: the cpuset to consider
 * @new_mems: a temp variable for calculating new effective_mems
1130
 *
1131 1132
 * When configured nodemask is changed, the effective nodemasks of this cpuset
 * and all its descendants need to be updated.
1133
 *
1134
 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1135 1136 1137
 *
 * Called with cpuset_mutex held
 */
1138
static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1139 1140
{
	struct cpuset *cp;
1141
	struct cgroup_subsys_state *pos_css;
1142 1143

	rcu_read_lock();
1144 1145 1146 1147 1148
	cpuset_for_each_descendant_pre(cp, pos_css, cs) {
		struct cpuset *parent = parent_cs(cp);

		nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);

1149 1150 1151 1152
		/*
		 * If it becomes empty, inherit the effective mask of the
		 * parent, which is guaranteed to have some MEMs.
		 */
1153 1154
		if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
		    nodes_empty(*new_mems))
1155 1156
			*new_mems = parent->effective_mems;

1157 1158 1159 1160
		/* Skip the whole subtree if the nodemask remains the same. */
		if (nodes_equal(*new_mems, cp->effective_mems)) {
			pos_css = css_rightmost_descendant(pos_css);
			continue;
1161
		}
1162

1163
		if (!css_tryget_online(&cp->css))
1164 1165 1166
			continue;
		rcu_read_unlock();

1167
		spin_lock_irq(&callback_lock);
1168
		cp->effective_mems = *new_mems;
1169
		spin_unlock_irq(&callback_lock);
1170

1171
		WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1172
			!nodes_equal(cp->mems_allowed, cp->effective_mems));
1173

1174
		update_tasks_nodemask(cp);
1175 1176 1177 1178 1179 1180 1181

		rcu_read_lock();
		css_put(&cp->css);
	}
	rcu_read_unlock();
}

1182 1183 1184
/*
 * Handle user request to change the 'mems' memory placement
 * of a cpuset.  Needs to validate the request, update the
1185 1186 1187 1188
 * cpusets mems_allowed, and for each task in the cpuset,
 * update mems_allowed and rebind task's mempolicy and any vma
 * mempolicies and if the cpuset is marked 'memory_migrate',
 * migrate the tasks pages to the new memory.
1189
 *
1190
 * Call with cpuset_mutex held. May take callback_lock during call.
1191 1192 1193 1194
 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
 * their mempolicies to the cpusets new mems_allowed.
 */
1195 1196
static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
			   const char *buf)
1197 1198 1199 1200
{
	int retval;

	/*
1201
	 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1202 1203
	 * it's read-only
	 */
1204 1205 1206 1207
	if (cs == &top_cpuset) {
		retval = -EACCES;
		goto done;
	}
1208 1209 1210 1211 1212 1213 1214 1215

	/*
	 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
	 * Since nodelist_parse() fails on an empty mask, we special case
	 * that parsing.  The validate_change() call ensures that cpusets
	 * with tasks have memory.
	 */
	if (!*buf) {
1216
		nodes_clear(trialcs->mems_allowed);
1217
	} else {
1218
		retval = nodelist_parse(buf, trialcs->mems_allowed);
1219 1220 1221
		if (retval < 0)
			goto done;

1222
		if (!nodes_subset(trialcs->mems_allowed,
1223 1224
				  top_cpuset.mems_allowed)) {
			retval = -EINVAL;
1225 1226
			goto done;
		}
1227
	}
1228 1229

	if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1230 1231 1232
		retval = 0;		/* Too easy - nothing to do */
		goto done;
	}
1233
	retval = validate_change(cs, trialcs);
1234 1235 1236
	if (retval < 0)
		goto done;

1237
	spin_lock_irq(&callback_lock);
1238
	cs->mems_allowed = trialcs->mems_allowed;
1239
	spin_unlock_irq(&callback_lock);
1240

1241
	/* use trialcs->mems_allowed as a temp variable */
1242
	update_nodemasks_hier(cs, &trialcs->mems_allowed);
1243 1244 1245 1246
done:
	return retval;
}

1247 1248
int current_cpuset_is_being_rebound(void)
{
1249 1250 1251 1252 1253 1254 1255
	int ret;

	rcu_read_lock();
	ret = task_cs(current) == cpuset_being_rebound;
	rcu_read_unlock();

	return ret;
1256 1257
}

1258
static int update_relax_domain_level(struct cpuset *cs, s64 val)
1259
{
1260
#ifdef CONFIG_SMP
1261
	if (val < -1 || val >= sched_domain_level_max)
1262
		return -EINVAL;
1263
#endif
1264 1265 1266

	if (val != cs->relax_domain_level) {
		cs->relax_domain_level = val;
1267 1268
		if (!cpumask_empty(cs->cpus_allowed) &&
		    is_sched_load_balance(cs))
1269
			rebuild_sched_domains_locked();
1270 1271 1272 1273 1274
	}

	return 0;
}

1275
/**
1276 1277 1278
 * update_tasks_flags - update the spread flags of tasks in the cpuset.
 * @cs: the cpuset in which each task's spread flags needs to be changed
 *
1279 1280 1281
 * Iterate through each task of @cs updating its spread flags.  As this
 * function is called with cpuset_mutex held, cpuset membership stays
 * stable.
1282
 */
1283
static void update_tasks_flags(struct cpuset *cs)
1284
{
1285 1286 1287 1288 1289 1290 1291
	struct css_task_iter it;
	struct task_struct *task;

	css_task_iter_start(&cs->css, &it);
	while ((task = css_task_iter_next(&it)))
		cpuset_update_task_spread_flag(cs, task);
	css_task_iter_end(&it);
1292 1293
}

L
Linus Torvalds 已提交
1294 1295
/*
 * update_flag - read a 0 or a 1 in a file and update associated flag
1296 1297 1298
 * bit:		the bit to update (see cpuset_flagbits_t)
 * cs:		the cpuset to update
 * turning_on: 	whether the flag is being set or cleared
1299
 *
1300
 * Call with cpuset_mutex held.
L
Linus Torvalds 已提交
1301 1302
 */

1303 1304
static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
		       int turning_on)
L
Linus Torvalds 已提交
1305
{
1306
	struct cpuset *trialcs;
R
Rakib Mullick 已提交
1307
	int balance_flag_changed;
1308 1309
	int spread_flag_changed;
	int err;
L
Linus Torvalds 已提交
1310

1311 1312 1313 1314
	trialcs = alloc_trial_cpuset(cs);
	if (!trialcs)
		return -ENOMEM;

L
Linus Torvalds 已提交
1315
	if (turning_on)
1316
		set_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1317
	else
1318
		clear_bit(bit, &trialcs->flags);
L
Linus Torvalds 已提交
1319

1320
	err = validate_change(cs, trialcs);
1321
	if (err < 0)
1322
		goto out;
P
Paul Jackson 已提交
1323 1324

	balance_flag_changed = (is_sched_load_balance(cs) !=
1325
				is_sched_load_balance(trialcs));
P
Paul Jackson 已提交
1326

1327 1328 1329
	spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
			|| (is_spread_page(cs) != is_spread_page(trialcs)));

1330
	spin_lock_irq(&callback_lock);
1331
	cs->flags = trialcs->flags;
1332
	spin_unlock_irq(&callback_lock);
1333

1334
	if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1335
		rebuild_sched_domains_locked();
P
Paul Jackson 已提交
1336

1337
	if (spread_flag_changed)
1338
		update_tasks_flags(cs);
1339 1340 1341
out:
	free_trial_cpuset(trialcs);
	return err;
L
Linus Torvalds 已提交
1342 1343
}

1344
/*
A
Adrian Bunk 已提交
1345
 * Frequency meter - How fast is some event occurring?
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
 *
 * These routines manage a digitally filtered, constant time based,
 * event frequency meter.  There are four routines:
 *   fmeter_init() - initialize a frequency meter.
 *   fmeter_markevent() - called each time the event happens.
 *   fmeter_getrate() - returns the recent rate of such events.
 *   fmeter_update() - internal routine used to update fmeter.
 *
 * A common data structure is passed to each of these routines,
 * which is used to keep track of the state required to manage the
 * frequency meter and its digital filter.
 *
 * The filter works on the number of events marked per unit time.
 * The filter is single-pole low-pass recursive (IIR).  The time unit
 * is 1 second.  Arithmetic is done using 32-bit integers scaled to
 * simulate 3 decimal digits of precision (multiplied by 1000).
 *
 * With an FM_COEF of 933, and a time base of 1 second, the filter
 * has a half-life of 10 seconds, meaning that if the events quit
 * happening, then the rate returned from the fmeter_getrate()
 * will be cut in half each 10 seconds, until it converges to zero.
 *
 * It is not worth doing a real infinitely recursive filter.  If more
 * than FM_MAXTICKS ticks have elapsed since the last filter event,
 * just compute FM_MAXTICKS ticks worth, by which point the level
 * will be stable.
 *
 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
 * arithmetic overflow in the fmeter_update() routine.
 *
 * Given the simple 32 bit integer arithmetic used, this meter works
 * best for reporting rates between one per millisecond (msec) and
 * one per 32 (approx) seconds.  At constant rates faster than one
 * per msec it maxes out at values just under 1,000,000.  At constant
 * rates between one per msec, and one per second it will stabilize
 * to a value N*1000, where N is the rate of events per second.
 * At constant rates between one per second and one per 32 seconds,
 * it will be choppy, moving up on the seconds that have an event,
 * and then decaying until the next event.  At rates slower than
 * about one in 32 seconds, it decays all the way back to zero between
 * each event.
 */

#define FM_COEF 933		/* coefficient for half-life of 10 secs */
1390
#define FM_MAXTICKS ((u32)99)   /* useless computing more ticks than this */
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
#define FM_MAXCNT 1000000	/* limit cnt to avoid overflow */
#define FM_SCALE 1000		/* faux fixed point scale */

/* Initialize a frequency meter */
static void fmeter_init(struct fmeter *fmp)
{
	fmp->cnt = 0;
	fmp->val = 0;
	fmp->time = 0;
	spin_lock_init(&fmp->lock);
}

/* Internal meter update - process cnt events and update value */
static void fmeter_update(struct fmeter *fmp)
{
1406 1407 1408 1409 1410
	time64_t now;
	u32 ticks;

	now = ktime_get_seconds();
	ticks = now - fmp->time;
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444

	if (ticks == 0)
		return;

	ticks = min(FM_MAXTICKS, ticks);
	while (ticks-- > 0)
		fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
	fmp->time = now;

	fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
	fmp->cnt = 0;
}

/* Process any previous ticks, then bump cnt by one (times scale). */
static void fmeter_markevent(struct fmeter *fmp)
{
	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
	spin_unlock(&fmp->lock);
}

/* Process any previous ticks, then return current value. */
static int fmeter_getrate(struct fmeter *fmp)
{
	int val;

	spin_lock(&fmp->lock);
	fmeter_update(fmp);
	val = fmp->val;
	spin_unlock(&fmp->lock);
	return val;
}

1445 1446
static struct cpuset *cpuset_attach_old_cs;

1447
/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1448
static int cpuset_can_attach(struct cgroup_taskset *tset)
1449
{
1450 1451
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1452 1453
	struct task_struct *task;
	int ret;
L
Linus Torvalds 已提交
1454

1455
	/* used later by cpuset_attach() */
1456 1457
	cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
	cs = css_cs(css);
1458

1459 1460
	mutex_lock(&cpuset_mutex);

1461
	/* allow moving tasks into an empty cpuset if on default hierarchy */
1462
	ret = -ENOSPC;
1463
	if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1464
	    (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1465
		goto out_unlock;
1466

1467
	cgroup_taskset_for_each(task, css, tset) {
1468 1469
		ret = task_can_attach(task, cs->cpus_allowed);
		if (ret)
1470 1471 1472 1473
			goto out_unlock;
		ret = security_task_setscheduler(task);
		if (ret)
			goto out_unlock;
1474
	}
1475

1476 1477 1478 1479 1480
	/*
	 * Mark attach is in progress.  This makes validate_change() fail
	 * changes which zero cpus/mems_allowed.
	 */
	cs->attach_in_progress++;
1481 1482 1483 1484
	ret = 0;
out_unlock:
	mutex_unlock(&cpuset_mutex);
	return ret;
1485
}
1486

1487
static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1488
{
1489 1490 1491 1492 1493 1494
	struct cgroup_subsys_state *css;
	struct cpuset *cs;

	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1495
	mutex_lock(&cpuset_mutex);
1496
	css_cs(css)->attach_in_progress--;
1497
	mutex_unlock(&cpuset_mutex);
1498
}
L
Linus Torvalds 已提交
1499

1500
/*
1501
 * Protected by cpuset_mutex.  cpus_attach is used only by cpuset_attach()
1502 1503 1504 1505 1506
 * but we can't allocate it dynamically there.  Define it global and
 * allocate from cpuset_init().
 */
static cpumask_var_t cpus_attach;

1507
static void cpuset_attach(struct cgroup_taskset *tset)
1508
{
1509
	/* static buf protected by cpuset_mutex */
1510
	static nodemask_t cpuset_attach_nodemask_to;
1511
	struct task_struct *task;
1512
	struct task_struct *leader;
1513 1514
	struct cgroup_subsys_state *css;
	struct cpuset *cs;
1515
	struct cpuset *oldcs = cpuset_attach_old_cs;
1516

1517 1518 1519
	cgroup_taskset_first(tset, &css);
	cs = css_cs(css);

1520 1521
	mutex_lock(&cpuset_mutex);

1522 1523 1524 1525
	/* prepare for attach */
	if (cs == &top_cpuset)
		cpumask_copy(cpus_attach, cpu_possible_mask);
	else
1526
		guarantee_online_cpus(cs, cpus_attach);
1527

1528
	guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1529

1530
	cgroup_taskset_for_each(task, css, tset) {
1531 1532 1533 1534 1535 1536 1537 1538 1539
		/*
		 * can_attach beforehand should guarantee that this doesn't
		 * fail.  TODO: have a better way to handle failure here
		 */
		WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));

		cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
		cpuset_update_task_spread_flag(cs, task);
	}
1540

1541
	/*
1542 1543
	 * Change mm for all threadgroup leaders. This is expensive and may
	 * sleep and should be moved outside migration path proper.
1544
	 */
1545
	cpuset_attach_nodemask_to = cs->effective_mems;
1546
	cgroup_taskset_for_each_leader(leader, css, tset) {
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559
		struct mm_struct *mm = get_task_mm(leader);

		if (mm) {
			mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);

			/*
			 * old_mems_allowed is the same with mems_allowed
			 * here, except if this task is being moved
			 * automatically due to hotplug.  In that case
			 * @mems_allowed has been updated and is empty, so
			 * @old_mems_allowed is the right nodesets that we
			 * migrate mm from.
			 */
1560
			if (is_memory_migrate(cs))
1561 1562
				cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
						  &cpuset_attach_nodemask_to);
1563 1564
			else
				mmput(mm);
1565
		}
1566
	}
1567

1568
	cs->old_mems_allowed = cpuset_attach_nodemask_to;
1569

1570
	cs->attach_in_progress--;
1571 1572
	if (!cs->attach_in_progress)
		wake_up(&cpuset_attach_wq);
1573 1574

	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1575 1576 1577 1578 1579
}

/* The various types of files and directories in a cpuset file system */

typedef enum {
1580
	FILE_MEMORY_MIGRATE,
L
Linus Torvalds 已提交
1581 1582
	FILE_CPULIST,
	FILE_MEMLIST,
1583 1584
	FILE_EFFECTIVE_CPULIST,
	FILE_EFFECTIVE_MEMLIST,
L
Linus Torvalds 已提交
1585 1586
	FILE_CPU_EXCLUSIVE,
	FILE_MEM_EXCLUSIVE,
1587
	FILE_MEM_HARDWALL,
P
Paul Jackson 已提交
1588
	FILE_SCHED_LOAD_BALANCE,
1589
	FILE_SCHED_RELAX_DOMAIN_LEVEL,
1590 1591
	FILE_MEMORY_PRESSURE_ENABLED,
	FILE_MEMORY_PRESSURE,
1592 1593
	FILE_SPREAD_PAGE,
	FILE_SPREAD_SLAB,
L
Linus Torvalds 已提交
1594 1595
} cpuset_filetype_t;

1596 1597
static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
			    u64 val)
1598
{
1599
	struct cpuset *cs = css_cs(css);
1600
	cpuset_filetype_t type = cft->private;
1601
	int retval = 0;
1602

1603
	mutex_lock(&cpuset_mutex);
1604 1605
	if (!is_cpuset_online(cs)) {
		retval = -ENODEV;
1606
		goto out_unlock;
1607
	}
1608 1609

	switch (type) {
L
Linus Torvalds 已提交
1610
	case FILE_CPU_EXCLUSIVE:
1611
		retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1612 1613
		break;
	case FILE_MEM_EXCLUSIVE:
1614
		retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
L
Linus Torvalds 已提交
1615
		break;
1616 1617 1618
	case FILE_MEM_HARDWALL:
		retval = update_flag(CS_MEM_HARDWALL, cs, val);
		break;
P
Paul Jackson 已提交
1619
	case FILE_SCHED_LOAD_BALANCE:
1620
		retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1621
		break;
1622
	case FILE_MEMORY_MIGRATE:
1623
		retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1624
		break;
1625
	case FILE_MEMORY_PRESSURE_ENABLED:
1626
		cpuset_memory_pressure_enabled = !!val;
1627
		break;
1628
	case FILE_SPREAD_PAGE:
1629
		retval = update_flag(CS_SPREAD_PAGE, cs, val);
1630 1631
		break;
	case FILE_SPREAD_SLAB:
1632
		retval = update_flag(CS_SPREAD_SLAB, cs, val);
1633
		break;
L
Linus Torvalds 已提交
1634 1635
	default:
		retval = -EINVAL;
1636
		break;
L
Linus Torvalds 已提交
1637
	}
1638 1639
out_unlock:
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
1640 1641 1642
	return retval;
}

1643 1644
static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
			    s64 val)
1645
{
1646
	struct cpuset *cs = css_cs(css);
1647
	cpuset_filetype_t type = cft->private;
1648
	int retval = -ENODEV;
1649

1650 1651 1652
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1653

1654 1655 1656 1657 1658 1659 1660 1661
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		retval = update_relax_domain_level(cs, val);
		break;
	default:
		retval = -EINVAL;
		break;
	}
1662 1663
out_unlock:
	mutex_unlock(&cpuset_mutex);
1664 1665 1666
	return retval;
}

1667 1668 1669
/*
 * Common handling for a write to a "cpus" or "mems" file.
 */
1670 1671
static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
1672
{
1673
	struct cpuset *cs = css_cs(of_css(of));
1674
	struct cpuset *trialcs;
1675
	int retval = -ENODEV;
1676

1677 1678
	buf = strstrip(buf);

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	/*
	 * CPU or memory hotunplug may leave @cs w/o any execution
	 * resources, in which case the hotplug code asynchronously updates
	 * configuration and transfers all tasks to the nearest ancestor
	 * which can execute.
	 *
	 * As writes to "cpus" or "mems" may restore @cs's execution
	 * resources, wait for the previously scheduled operations before
	 * proceeding, so that we don't end up keep removing tasks added
	 * after execution capability is restored.
1689 1690 1691 1692 1693 1694 1695 1696
	 *
	 * cpuset_hotplug_work calls back into cgroup core via
	 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
	 * operation like this one can lead to a deadlock through kernfs
	 * active_ref protection.  Let's break the protection.  Losing the
	 * protection is okay as we check whether @cs is online after
	 * grabbing cpuset_mutex anyway.  This only happens on the legacy
	 * hierarchies.
1697
	 */
1698 1699
	css_get(&cs->css);
	kernfs_break_active_protection(of->kn);
1700 1701
	flush_work(&cpuset_hotplug_work);

1702 1703 1704
	mutex_lock(&cpuset_mutex);
	if (!is_cpuset_online(cs))
		goto out_unlock;
1705

1706
	trialcs = alloc_trial_cpuset(cs);
1707 1708
	if (!trialcs) {
		retval = -ENOMEM;
1709
		goto out_unlock;
1710
	}
1711

1712
	switch (of_cft(of)->private) {
1713
	case FILE_CPULIST:
1714
		retval = update_cpumask(cs, trialcs, buf);
1715 1716
		break;
	case FILE_MEMLIST:
1717
		retval = update_nodemask(cs, trialcs, buf);
1718 1719 1720 1721 1722
		break;
	default:
		retval = -EINVAL;
		break;
	}
1723 1724

	free_trial_cpuset(trialcs);
1725 1726
out_unlock:
	mutex_unlock(&cpuset_mutex);
1727 1728
	kernfs_unbreak_active_protection(of->kn);
	css_put(&cs->css);
1729
	flush_workqueue(cpuset_migrate_mm_wq);
1730
	return retval ?: nbytes;
1731 1732
}

L
Linus Torvalds 已提交
1733 1734 1735 1736 1737 1738 1739 1740
/*
 * These ascii lists should be read in a single call, by using a user
 * buffer large enough to hold the entire map.  If read in smaller
 * chunks, there is no guarantee of atomicity.  Since the display format
 * used, list of ranges of sequential numbers, is variable length,
 * and since these maps can change value dynamically, one could read
 * gibberish by doing partial reads while a list was changing.
 */
1741
static int cpuset_common_seq_show(struct seq_file *sf, void *v)
L
Linus Torvalds 已提交
1742
{
1743 1744
	struct cpuset *cs = css_cs(seq_css(sf));
	cpuset_filetype_t type = seq_cft(sf)->private;
1745
	int ret = 0;
L
Linus Torvalds 已提交
1746

1747
	spin_lock_irq(&callback_lock);
L
Linus Torvalds 已提交
1748 1749 1750

	switch (type) {
	case FILE_CPULIST:
1751
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
L
Linus Torvalds 已提交
1752 1753
		break;
	case FILE_MEMLIST:
1754
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
L
Linus Torvalds 已提交
1755
		break;
1756
	case FILE_EFFECTIVE_CPULIST:
1757
		seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1758 1759
		break;
	case FILE_EFFECTIVE_MEMLIST:
1760
		seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1761
		break;
L
Linus Torvalds 已提交
1762
	default:
1763
		ret = -EINVAL;
L
Linus Torvalds 已提交
1764 1765
	}

1766
	spin_unlock_irq(&callback_lock);
1767
	return ret;
L
Linus Torvalds 已提交
1768 1769
}

1770
static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1771
{
1772
	struct cpuset *cs = css_cs(css);
1773 1774 1775 1776 1777 1778
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_CPU_EXCLUSIVE:
		return is_cpu_exclusive(cs);
	case FILE_MEM_EXCLUSIVE:
		return is_mem_exclusive(cs);
1779 1780
	case FILE_MEM_HARDWALL:
		return is_mem_hardwall(cs);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
	case FILE_SCHED_LOAD_BALANCE:
		return is_sched_load_balance(cs);
	case FILE_MEMORY_MIGRATE:
		return is_memory_migrate(cs);
	case FILE_MEMORY_PRESSURE_ENABLED:
		return cpuset_memory_pressure_enabled;
	case FILE_MEMORY_PRESSURE:
		return fmeter_getrate(&cs->fmeter);
	case FILE_SPREAD_PAGE:
		return is_spread_page(cs);
	case FILE_SPREAD_SLAB:
		return is_spread_slab(cs);
	default:
		BUG();
	}
1796 1797 1798

	/* Unreachable but makes gcc happy */
	return 0;
1799
}
L
Linus Torvalds 已提交
1800

1801
static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1802
{
1803
	struct cpuset *cs = css_cs(css);
1804 1805 1806 1807 1808 1809 1810
	cpuset_filetype_t type = cft->private;
	switch (type) {
	case FILE_SCHED_RELAX_DOMAIN_LEVEL:
		return cs->relax_domain_level;
	default:
		BUG();
	}
1811 1812 1813

	/* Unrechable but makes gcc happy */
	return 0;
1814 1815
}

L
Linus Torvalds 已提交
1816 1817 1818 1819 1820

/*
 * for the common functions, 'private' gives the type of file
 */

1821 1822 1823
static struct cftype files[] = {
	{
		.name = "cpus",
1824
		.seq_show = cpuset_common_seq_show,
1825
		.write = cpuset_write_resmask,
1826
		.max_write_len = (100U + 6 * NR_CPUS),
1827 1828 1829 1830 1831
		.private = FILE_CPULIST,
	},

	{
		.name = "mems",
1832
		.seq_show = cpuset_common_seq_show,
1833
		.write = cpuset_write_resmask,
1834
		.max_write_len = (100U + 6 * MAX_NUMNODES),
1835 1836 1837
		.private = FILE_MEMLIST,
	},

1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	{
		.name = "effective_cpus",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_CPULIST,
	},

	{
		.name = "effective_mems",
		.seq_show = cpuset_common_seq_show,
		.private = FILE_EFFECTIVE_MEMLIST,
	},

1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
	{
		.name = "cpu_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_CPU_EXCLUSIVE,
	},

	{
		.name = "mem_exclusive",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_EXCLUSIVE,
	},

1864 1865 1866 1867 1868 1869 1870
	{
		.name = "mem_hardwall",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEM_HARDWALL,
	},

1871 1872 1873 1874 1875 1876 1877 1878 1879
	{
		.name = "sched_load_balance",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SCHED_LOAD_BALANCE,
	},

	{
		.name = "sched_relax_domain_level",
1880 1881
		.read_s64 = cpuset_read_s64,
		.write_s64 = cpuset_write_s64,
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
		.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
	},

	{
		.name = "memory_migrate",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_MIGRATE,
	},

	{
		.name = "memory_pressure",
		.read_u64 = cpuset_read_u64,
	},

	{
		.name = "memory_spread_page",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_PAGE,
	},

	{
		.name = "memory_spread_slab",
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_SPREAD_SLAB,
	},
1910

1911 1912 1913 1914 1915 1916 1917
	{
		.name = "memory_pressure_enabled",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_u64 = cpuset_read_u64,
		.write_u64 = cpuset_write_u64,
		.private = FILE_MEMORY_PRESSURE_ENABLED,
	},
L
Linus Torvalds 已提交
1918

1919 1920
	{ }	/* terminate */
};
L
Linus Torvalds 已提交
1921 1922

/*
1923
 *	cpuset_css_alloc - allocate a cpuset css
L
Li Zefan 已提交
1924
 *	cgrp:	control group that the new cpuset will be part of
L
Linus Torvalds 已提交
1925 1926
 */

1927 1928
static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
L
Linus Torvalds 已提交
1929
{
T
Tejun Heo 已提交
1930
	struct cpuset *cs;
L
Linus Torvalds 已提交
1931

1932
	if (!parent_css)
1933
		return &top_cpuset.css;
1934

T
Tejun Heo 已提交
1935
	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
L
Linus Torvalds 已提交
1936
	if (!cs)
1937
		return ERR_PTR(-ENOMEM);
1938 1939 1940 1941
	if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
		goto free_cs;
	if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
		goto free_cpus;
L
Linus Torvalds 已提交
1942

P
Paul Jackson 已提交
1943
	set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1944
	cpumask_clear(cs->cpus_allowed);
1945
	nodes_clear(cs->mems_allowed);
1946 1947
	cpumask_clear(cs->effective_cpus);
	nodes_clear(cs->effective_mems);
1948
	fmeter_init(&cs->fmeter);
1949
	cs->relax_domain_level = -1;
L
Linus Torvalds 已提交
1950

T
Tejun Heo 已提交
1951
	return &cs->css;
1952 1953 1954 1955 1956 1957

free_cpus:
	free_cpumask_var(cs->cpus_allowed);
free_cs:
	kfree(cs);
	return ERR_PTR(-ENOMEM);
T
Tejun Heo 已提交
1958 1959
}

1960
static int cpuset_css_online(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
1961
{
1962
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
1963
	struct cpuset *parent = parent_cs(cs);
1964
	struct cpuset *tmp_cs;
1965
	struct cgroup_subsys_state *pos_css;
T
Tejun Heo 已提交
1966 1967 1968 1969

	if (!parent)
		return 0;

1970 1971
	mutex_lock(&cpuset_mutex);

T
Tejun Heo 已提交
1972
	set_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
1973 1974 1975 1976
	if (is_spread_page(parent))
		set_bit(CS_SPREAD_PAGE, &cs->flags);
	if (is_spread_slab(parent))
		set_bit(CS_SPREAD_SLAB, &cs->flags);
L
Linus Torvalds 已提交
1977

1978
	cpuset_inc();
1979

1980
	spin_lock_irq(&callback_lock);
1981
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1982 1983 1984
		cpumask_copy(cs->effective_cpus, parent->effective_cpus);
		cs->effective_mems = parent->effective_mems;
	}
1985
	spin_unlock_irq(&callback_lock);
1986

1987
	if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1988
		goto out_unlock;
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

	/*
	 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
	 * set.  This flag handling is implemented in cgroup core for
	 * histrical reasons - the flag may be specified during mount.
	 *
	 * Currently, if any sibling cpusets have exclusive cpus or mem, we
	 * refuse to clone the configuration - thereby refusing the task to
	 * be entered, and as a result refusing the sys_unshare() or
	 * clone() which initiated it.  If this becomes a problem for some
	 * users who wish to allow that scenario, then this could be
	 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
	 * (and likewise for mems) to the new cgroup.
	 */
2003
	rcu_read_lock();
2004
	cpuset_for_each_child(tmp_cs, pos_css, parent) {
2005 2006
		if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
			rcu_read_unlock();
2007
			goto out_unlock;
2008
		}
2009
	}
2010
	rcu_read_unlock();
2011

2012
	spin_lock_irq(&callback_lock);
2013
	cs->mems_allowed = parent->mems_allowed;
2014
	cs->effective_mems = parent->mems_allowed;
2015
	cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2016
	cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
D
Dan Carpenter 已提交
2017
	spin_unlock_irq(&callback_lock);
2018 2019
out_unlock:
	mutex_unlock(&cpuset_mutex);
T
Tejun Heo 已提交
2020 2021 2022
	return 0;
}

2023 2024 2025 2026 2027 2028
/*
 * If the cpuset being removed has its flag 'sched_load_balance'
 * enabled, then simulate turning sched_load_balance off, which
 * will call rebuild_sched_domains_locked().
 */

2029
static void cpuset_css_offline(struct cgroup_subsys_state *css)
T
Tejun Heo 已提交
2030
{
2031
	struct cpuset *cs = css_cs(css);
T
Tejun Heo 已提交
2032

2033
	mutex_lock(&cpuset_mutex);
T
Tejun Heo 已提交
2034 2035 2036 2037

	if (is_sched_load_balance(cs))
		update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);

2038
	cpuset_dec();
T
Tejun Heo 已提交
2039
	clear_bit(CS_ONLINE, &cs->flags);
T
Tejun Heo 已提交
2040

2041
	mutex_unlock(&cpuset_mutex);
L
Linus Torvalds 已提交
2042 2043
}

2044
static void cpuset_css_free(struct cgroup_subsys_state *css)
L
Linus Torvalds 已提交
2045
{
2046
	struct cpuset *cs = css_cs(css);
L
Linus Torvalds 已提交
2047

2048
	free_cpumask_var(cs->effective_cpus);
2049
	free_cpumask_var(cs->cpus_allowed);
2050
	kfree(cs);
L
Linus Torvalds 已提交
2051 2052
}

2053 2054 2055
static void cpuset_bind(struct cgroup_subsys_state *root_css)
{
	mutex_lock(&cpuset_mutex);
2056
	spin_lock_irq(&callback_lock);
2057

2058
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2059 2060 2061 2062 2063 2064 2065 2066
		cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
		top_cpuset.mems_allowed = node_possible_map;
	} else {
		cpumask_copy(top_cpuset.cpus_allowed,
			     top_cpuset.effective_cpus);
		top_cpuset.mems_allowed = top_cpuset.effective_mems;
	}

2067
	spin_unlock_irq(&callback_lock);
2068 2069 2070
	mutex_unlock(&cpuset_mutex);
}

2071 2072 2073 2074 2075
/*
 * Make sure the new task conform to the current state of its parent,
 * which could have been changed by cpuset just after it inherits the
 * state from the parent and before it sits on the cgroup's task list.
 */
2076
static void cpuset_fork(struct task_struct *task)
2077 2078 2079 2080 2081 2082 2083 2084
{
	if (task_css_is_root(task, cpuset_cgrp_id))
		return;

	set_cpus_allowed_ptr(task, &current->cpus_allowed);
	task->mems_allowed = current->mems_allowed;
}

2085
struct cgroup_subsys cpuset_cgrp_subsys = {
2086 2087 2088 2089 2090 2091 2092
	.css_alloc	= cpuset_css_alloc,
	.css_online	= cpuset_css_online,
	.css_offline	= cpuset_css_offline,
	.css_free	= cpuset_css_free,
	.can_attach	= cpuset_can_attach,
	.cancel_attach	= cpuset_cancel_attach,
	.attach		= cpuset_attach,
2093
	.post_attach	= cpuset_post_attach,
2094
	.bind		= cpuset_bind,
2095
	.fork		= cpuset_fork,
2096
	.legacy_cftypes	= files,
2097
	.early_init	= true,
2098 2099
};

L
Linus Torvalds 已提交
2100 2101 2102 2103 2104 2105 2106 2107
/**
 * cpuset_init - initialize cpusets at system boot
 *
 * Description: Initialize top_cpuset and the cpuset internal file system,
 **/

int __init cpuset_init(void)
{
2108
	int err = 0;
L
Linus Torvalds 已提交
2109

N
Nicholas Mc Guire 已提交
2110 2111
	BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
	BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2112

2113
	cpumask_setall(top_cpuset.cpus_allowed);
2114
	nodes_setall(top_cpuset.mems_allowed);
2115 2116
	cpumask_setall(top_cpuset.effective_cpus);
	nodes_setall(top_cpuset.effective_mems);
L
Linus Torvalds 已提交
2117

2118
	fmeter_init(&top_cpuset.fmeter);
P
Paul Jackson 已提交
2119
	set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2120
	top_cpuset.relax_domain_level = -1;
L
Linus Torvalds 已提交
2121 2122 2123

	err = register_filesystem(&cpuset_fs_type);
	if (err < 0)
2124 2125
		return err;

N
Nicholas Mc Guire 已提交
2126
	BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2127

2128
	return 0;
L
Linus Torvalds 已提交
2129 2130
}

2131
/*
2132
 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2133 2134
 * or memory nodes, we need to walk over the cpuset hierarchy,
 * removing that CPU or node from all cpusets.  If this removes the
2135 2136
 * last CPU or node from a cpuset, then move the tasks in the empty
 * cpuset to its next-highest non-empty parent.
2137
 */
2138 2139 2140 2141 2142 2143 2144 2145
static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
{
	struct cpuset *parent;

	/*
	 * Find its next-highest non-empty parent, (top cpuset
	 * has online cpus, so can't be empty).
	 */
T
Tejun Heo 已提交
2146
	parent = parent_cs(cs);
2147
	while (cpumask_empty(parent->cpus_allowed) ||
2148
			nodes_empty(parent->mems_allowed))
T
Tejun Heo 已提交
2149
		parent = parent_cs(parent);
2150

2151
	if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2152
		pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
T
Tejun Heo 已提交
2153 2154
		pr_cont_cgroup_name(cs->css.cgroup);
		pr_cont("\n");
2155
	}
2156 2157
}

2158 2159 2160 2161
static void
hotplug_update_tasks_legacy(struct cpuset *cs,
			    struct cpumask *new_cpus, nodemask_t *new_mems,
			    bool cpus_updated, bool mems_updated)
2162 2163 2164
{
	bool is_empty;

2165
	spin_lock_irq(&callback_lock);
2166 2167 2168 2169
	cpumask_copy(cs->cpus_allowed, new_cpus);
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->mems_allowed = *new_mems;
	cs->effective_mems = *new_mems;
2170
	spin_unlock_irq(&callback_lock);
2171 2172 2173 2174 2175

	/*
	 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
	 * as the tasks will be migratecd to an ancestor.
	 */
2176
	if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2177
		update_tasks_cpumask(cs);
2178
	if (mems_updated && !nodes_empty(cs->mems_allowed))
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
		update_tasks_nodemask(cs);

	is_empty = cpumask_empty(cs->cpus_allowed) ||
		   nodes_empty(cs->mems_allowed);

	mutex_unlock(&cpuset_mutex);

	/*
	 * Move tasks to the nearest ancestor with execution resources,
	 * This is full cgroup operation which will also call back into
	 * cpuset. Should be done outside any lock.
	 */
	if (is_empty)
		remove_tasks_in_empty_cpuset(cs);

	mutex_lock(&cpuset_mutex);
}

2197 2198 2199 2200
static void
hotplug_update_tasks(struct cpuset *cs,
		     struct cpumask *new_cpus, nodemask_t *new_mems,
		     bool cpus_updated, bool mems_updated)
2201
{
2202 2203 2204 2205 2206
	if (cpumask_empty(new_cpus))
		cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
	if (nodes_empty(*new_mems))
		*new_mems = parent_cs(cs)->effective_mems;

2207
	spin_lock_irq(&callback_lock);
2208 2209
	cpumask_copy(cs->effective_cpus, new_cpus);
	cs->effective_mems = *new_mems;
2210
	spin_unlock_irq(&callback_lock);
2211

2212
	if (cpus_updated)
2213
		update_tasks_cpumask(cs);
2214
	if (mems_updated)
2215 2216 2217
		update_tasks_nodemask(cs);
}

2218
/**
2219
 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2220
 * @cs: cpuset in interest
2221
 *
2222 2223 2224
 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
 * offline, update @cs accordingly.  If @cs ends up with no CPU or memory,
 * all its tasks are moved to the nearest ancestor with both resources.
2225
 */
2226
static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2227
{
2228 2229 2230 2231
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
	bool cpus_updated;
	bool mems_updated;
2232 2233
retry:
	wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2234

2235
	mutex_lock(&cpuset_mutex);
2236

2237 2238 2239 2240 2241 2242 2243 2244 2245
	/*
	 * We have raced with task attaching. We wait until attaching
	 * is finished, so we won't attach a task to an empty cpuset.
	 */
	if (cs->attach_in_progress) {
		mutex_unlock(&cpuset_mutex);
		goto retry;
	}

2246 2247
	cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
	nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2248

2249 2250
	cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
	mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2251

2252
	if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2253 2254
		hotplug_update_tasks(cs, &new_cpus, &new_mems,
				     cpus_updated, mems_updated);
2255
	else
2256 2257
		hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
					    cpus_updated, mems_updated);
2258

2259
	mutex_unlock(&cpuset_mutex);
2260 2261
}

2262
/**
2263
 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2264
 *
2265 2266 2267 2268 2269
 * This function is called after either CPU or memory configuration has
 * changed and updates cpuset accordingly.  The top_cpuset is always
 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
 * order to make cpusets transparent (of no affect) on systems that are
 * actively using CPU hotplug but making no active use of cpusets.
2270
 *
2271
 * Non-root cpusets are only affected by offlining.  If any CPUs or memory
2272 2273
 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
 * all descendants.
2274
 *
2275 2276
 * Note that CPU offlining during suspend is ignored.  We don't modify
 * cpusets across suspend/resume cycles at all.
2277
 */
2278
static void cpuset_hotplug_workfn(struct work_struct *work)
2279
{
2280 2281
	static cpumask_t new_cpus;
	static nodemask_t new_mems;
2282
	bool cpus_updated, mems_updated;
2283
	bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2284

2285
	mutex_lock(&cpuset_mutex);
2286

2287 2288 2289
	/* fetch the available cpus/mems and find out which changed how */
	cpumask_copy(&new_cpus, cpu_active_mask);
	new_mems = node_states[N_MEMORY];
2290

2291 2292
	cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
	mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2293

2294 2295
	/* synchronize cpus_allowed to cpu_active_mask */
	if (cpus_updated) {
2296
		spin_lock_irq(&callback_lock);
2297 2298
		if (!on_dfl)
			cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2299
		cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2300
		spin_unlock_irq(&callback_lock);
2301 2302
		/* we don't mess with cpumasks of tasks in top_cpuset */
	}
2303

2304 2305
	/* synchronize mems_allowed to N_MEMORY */
	if (mems_updated) {
2306
		spin_lock_irq(&callback_lock);
2307 2308
		if (!on_dfl)
			top_cpuset.mems_allowed = new_mems;
2309
		top_cpuset.effective_mems = new_mems;
2310
		spin_unlock_irq(&callback_lock);
2311
		update_tasks_nodemask(&top_cpuset);
2312
	}
2313

2314 2315
	mutex_unlock(&cpuset_mutex);

2316 2317
	/* if cpus or mems changed, we need to propagate to descendants */
	if (cpus_updated || mems_updated) {
2318
		struct cpuset *cs;
2319
		struct cgroup_subsys_state *pos_css;
2320

2321
		rcu_read_lock();
2322
		cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2323
			if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2324 2325
				continue;
			rcu_read_unlock();
2326

2327
			cpuset_hotplug_update_tasks(cs);
2328

2329 2330 2331 2332 2333
			rcu_read_lock();
			css_put(&cs->css);
		}
		rcu_read_unlock();
	}
2334

2335
	/* rebuild sched domains if cpus_allowed has changed */
2336 2337
	if (cpus_updated)
		rebuild_sched_domains();
2338 2339
}

2340
void cpuset_update_active_cpus(void)
2341
{
2342 2343 2344 2345 2346 2347
	/*
	 * We're inside cpu hotplug critical region which usually nests
	 * inside cgroup synchronization.  Bounce actual hotplug processing
	 * to a work item to avoid reverse locking order.
	 */
	schedule_work(&cpuset_hotplug_work);
2348 2349
}

2350
/*
2351 2352
 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
 * Call this routine anytime after node_states[N_MEMORY] changes.
2353
 * See cpuset_update_active_cpus() for CPU hotplug handling.
2354
 */
2355 2356
static int cpuset_track_online_nodes(struct notifier_block *self,
				unsigned long action, void *arg)
2357
{
2358
	schedule_work(&cpuset_hotplug_work);
2359
	return NOTIFY_OK;
2360
}
2361 2362 2363 2364 2365

static struct notifier_block cpuset_track_online_nodes_nb = {
	.notifier_call = cpuset_track_online_nodes,
	.priority = 10,		/* ??! */
};
2366

L
Linus Torvalds 已提交
2367 2368 2369 2370
/**
 * cpuset_init_smp - initialize cpus_allowed
 *
 * Description: Finish top cpuset after cpu, node maps are initialized
2371
 */
L
Linus Torvalds 已提交
2372 2373
void __init cpuset_init_smp(void)
{
2374
	cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2375
	top_cpuset.mems_allowed = node_states[N_MEMORY];
2376
	top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2377

2378 2379 2380
	cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
	top_cpuset.effective_mems = node_states[N_MEMORY];

2381
	register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2382 2383 2384

	cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
	BUG_ON(!cpuset_migrate_mm_wq);
L
Linus Torvalds 已提交
2385 2386 2387 2388 2389
}

/**
 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2390
 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
L
Linus Torvalds 已提交
2391
 *
2392
 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
L
Linus Torvalds 已提交
2393
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2394
 * subset of cpu_online_mask, even if this means going outside the
L
Linus Torvalds 已提交
2395 2396 2397
 * tasks cpuset.
 **/

2398
void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
L
Linus Torvalds 已提交
2399
{
2400 2401 2402
	unsigned long flags;

	spin_lock_irqsave(&callback_lock, flags);
2403
	rcu_read_lock();
2404
	guarantee_online_cpus(task_cs(tsk), pmask);
2405
	rcu_read_unlock();
2406
	spin_unlock_irqrestore(&callback_lock, flags);
L
Linus Torvalds 已提交
2407 2408
}

2409
void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2410 2411
{
	rcu_read_lock();
2412
	do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	rcu_read_unlock();

	/*
	 * We own tsk->cpus_allowed, nobody can change it under us.
	 *
	 * But we used cs && cs->cpus_allowed lockless and thus can
	 * race with cgroup_attach_task() or update_cpumask() and get
	 * the wrong tsk->cpus_allowed. However, both cases imply the
	 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
	 * which takes task_rq_lock().
	 *
	 * If we are called after it dropped the lock we must see all
	 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
	 * set any mask even if it is not right from task_cs() pov,
	 * the pending set_cpus_allowed_ptr() will fix things.
2428 2429 2430
	 *
	 * select_fallback_rq() will fix things ups and set cpu_possible_mask
	 * if required.
2431 2432 2433
	 */
}

2434
void __init cpuset_init_current_mems_allowed(void)
L
Linus Torvalds 已提交
2435
{
2436
	nodes_setall(current->mems_allowed);
L
Linus Torvalds 已提交
2437 2438
}

2439 2440 2441 2442 2443 2444
/**
 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
 *
 * Description: Returns the nodemask_t mems_allowed of the cpuset
 * attached to the specified @tsk.  Guaranteed to return some non-empty
2445
 * subset of node_states[N_MEMORY], even if this means going outside the
2446 2447 2448 2449 2450 2451
 * tasks cpuset.
 **/

nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
{
	nodemask_t mask;
2452
	unsigned long flags;
2453

2454
	spin_lock_irqsave(&callback_lock, flags);
2455
	rcu_read_lock();
2456
	guarantee_online_mems(task_cs(tsk), &mask);
2457
	rcu_read_unlock();
2458
	spin_unlock_irqrestore(&callback_lock, flags);
2459 2460 2461 2462

	return mask;
}

2463
/**
2464 2465
 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
 * @nodemask: the nodemask to be checked
2466
 *
2467
 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
L
Linus Torvalds 已提交
2468
 */
2469
int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
L
Linus Torvalds 已提交
2470
{
2471
	return nodes_intersects(*nodemask, current->mems_allowed);
L
Linus Torvalds 已提交
2472 2473
}

2474
/*
2475 2476
 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
 * mem_hardwall ancestor to the specified cpuset.  Call holding
2477
 * callback_lock.  If no ancestor is mem_exclusive or mem_hardwall
2478
 * (an unusual configuration), then returns the root cpuset.
2479
 */
2480
static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2481
{
T
Tejun Heo 已提交
2482 2483
	while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
		cs = parent_cs(cs);
2484 2485 2486
	return cs;
}

2487
/**
2488
 * cpuset_node_allowed - Can we allocate on a memory node?
2489
 * @node: is this an allowed node?
2490
 * @gfp_mask: memory allocation flags
2491
 *
2492 2493 2494 2495
 * If we're in interrupt, yes, we can always allocate.  If @node is set in
 * current's mems_allowed, yes.  If it's not a __GFP_HARDWALL request and this
 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
 * yes.  If current has access to memory reserves due to TIF_MEMDIE, yes.
2496 2497 2498
 * Otherwise, no.
 *
 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2499 2500
 * and do not allow allocations outside the current tasks cpuset
 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2501
 * GFP_KERNEL allocations are not so marked, so can escape to the
2502
 * nearest enclosing hardwalled ancestor cpuset.
2503
 *
2504
 * Scanning up parent cpusets requires callback_lock.  The
2505 2506 2507 2508
 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
 * current tasks mems_allowed came up empty on the first pass over
 * the zonelist.  So only GFP_KERNEL allocations, if all nodes in the
2509
 * cpuset are short of memory, might require taking the callback_lock.
2510
 *
2511
 * The first call here from mm/page_alloc:get_page_from_freelist()
2512 2513 2514
 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
 * so no allocation on a node outside the cpuset is allowed (unless
 * in interrupt, of course).
2515 2516 2517 2518 2519 2520
 *
 * The second pass through get_page_from_freelist() doesn't even call
 * here for GFP_ATOMIC calls.  For those calls, the __alloc_pages()
 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
 * in alloc_flags.  That logic and the checks below have the combined
 * affect that:
2521 2522
 *	in_interrupt - any node ok (current task context irrelevant)
 *	GFP_ATOMIC   - any node ok
2523
 *	TIF_MEMDIE   - any node ok
2524
 *	GFP_KERNEL   - any node in enclosing hardwalled cpuset ok
2525
 *	GFP_USER     - only nodes in current tasks mems allowed ok.
2526
 */
2527
bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
L
Linus Torvalds 已提交
2528
{
2529
	struct cpuset *cs;		/* current cpuset ancestors */
2530
	int allowed;			/* is allocation in zone z allowed? */
2531
	unsigned long flags;
2532

2533
	if (in_interrupt())
2534
		return true;
2535
	if (node_isset(node, current->mems_allowed))
2536
		return true;
2537 2538 2539 2540 2541
	/*
	 * Allow tasks that have access to memory reserves because they have
	 * been OOM killed to get memory anywhere.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)))
2542
		return true;
2543
	if (gfp_mask & __GFP_HARDWALL)	/* If hardwall request, stop here */
2544
		return false;
2545

2546
	if (current->flags & PF_EXITING) /* Let dying task have memory */
2547
		return true;
2548

2549
	/* Not hardwall and node outside mems_allowed: scan up cpusets */
2550
	spin_lock_irqsave(&callback_lock, flags);
2551

2552
	rcu_read_lock();
2553
	cs = nearest_hardwall_ancestor(task_cs(current));
2554
	allowed = node_isset(node, cs->mems_allowed);
2555
	rcu_read_unlock();
2556

2557
	spin_unlock_irqrestore(&callback_lock, flags);
2558
	return allowed;
L
Linus Torvalds 已提交
2559 2560
}

2561
/**
2562 2563
 * cpuset_mem_spread_node() - On which node to begin search for a file page
 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
 *
 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
 * tasks in a cpuset with is_spread_page or is_spread_slab set),
 * and if the memory allocation used cpuset_mem_spread_node()
 * to determine on which node to start looking, as it will for
 * certain page cache or slab cache pages such as used for file
 * system buffers and inode caches, then instead of starting on the
 * local node to look for a free page, rather spread the starting
 * node around the tasks mems_allowed nodes.
 *
 * We don't have to worry about the returned node being offline
 * because "it can't happen", and even if it did, it would be ok.
 *
 * The routines calling guarantee_online_mems() are careful to
 * only set nodes in task->mems_allowed that are online.  So it
 * should not be possible for the following code to return an
 * offline node.  But if it did, that would be ok, as this routine
 * is not returning the node where the allocation must be, only
 * the node where the search should start.  The zonelist passed to
 * __alloc_pages() will include all nodes.  If the slab allocator
 * is passed an offline node, it will fall back to the local node.
 * See kmem_cache_alloc_node().
 */

2588
static int cpuset_spread_node(int *rotor)
2589
{
2590
	return *rotor = next_node_in(*rotor, current->mems_allowed);
2591
}
2592 2593 2594

int cpuset_mem_spread_node(void)
{
2595 2596 2597 2598
	if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
		current->cpuset_mem_spread_rotor =
			node_random(&current->mems_allowed);

2599 2600 2601 2602 2603
	return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
}

int cpuset_slab_spread_node(void)
{
2604 2605 2606 2607
	if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
		current->cpuset_slab_spread_rotor =
			node_random(&current->mems_allowed);

2608 2609 2610
	return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
}

2611 2612
EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);

2613
/**
2614 2615 2616 2617 2618 2619 2620 2621
 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
 * @tsk1: pointer to task_struct of some task.
 * @tsk2: pointer to task_struct of some other task.
 *
 * Description: Return true if @tsk1's mems_allowed intersects the
 * mems_allowed of @tsk2.  Used by the OOM killer to determine if
 * one of the task's memory usage might impact the memory available
 * to the other.
2622 2623
 **/

2624 2625
int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
				   const struct task_struct *tsk2)
2626
{
2627
	return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2628 2629
}

2630
/**
2631
 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2632
 *
2633
 * Description: Prints current's name, cpuset name, and cached copy of its
2634
 * mems_allowed to the kernel log.
2635
 */
2636
void cpuset_print_current_mems_allowed(void)
2637
{
2638
	struct cgroup *cgrp;
2639

2640
	rcu_read_lock();
2641

2642 2643
	cgrp = task_cs(current)->css.cgroup;
	pr_info("%s cpuset=", current->comm);
T
Tejun Heo 已提交
2644
	pr_cont_cgroup_name(cgrp);
2645 2646
	pr_cont(" mems_allowed=%*pbl\n",
		nodemask_pr_args(&current->mems_allowed));
2647

2648
	rcu_read_unlock();
2649 2650
}

2651 2652 2653 2654 2655 2656
/*
 * Collection of memory_pressure is suppressed unless
 * this flag is enabled by writing "1" to the special
 * cpuset file 'memory_pressure_enabled' in the root cpuset.
 */

2657
int cpuset_memory_pressure_enabled __read_mostly;
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

/**
 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
 *
 * Keep a running average of the rate of synchronous (direct)
 * page reclaim efforts initiated by tasks in each cpuset.
 *
 * This represents the rate at which some task in the cpuset
 * ran low on memory on all nodes it was allowed to use, and
 * had to enter the kernels page reclaim code in an effort to
 * create more free memory by tossing clean pages or swapping
 * or writing dirty pages.
 *
 * Display to user space in the per-cpuset read-only file
 * "memory_pressure".  Value displayed is an integer
 * representing the recent rate of entry into the synchronous
 * (direct) page reclaim by any task attached to the cpuset.
 **/

void __cpuset_memory_pressure_bump(void)
{
2679
	rcu_read_lock();
2680
	fmeter_markevent(&task_cs(current)->fmeter);
2681
	rcu_read_unlock();
2682 2683
}

2684
#ifdef CONFIG_PROC_PID_CPUSET
L
Linus Torvalds 已提交
2685 2686 2687 2688
/*
 * proc_cpuset_show()
 *  - Print tasks cpuset path into seq_file.
 *  - Used for /proc/<pid>/cpuset.
2689 2690
 *  - No need to task_lock(tsk) on this tsk->cpuset reference, as it
 *    doesn't really matter if tsk->cpuset changes after we read it,
2691
 *    and we take cpuset_mutex, keeping cpuset_attach() from changing it
2692
 *    anyway.
L
Linus Torvalds 已提交
2693
 */
Z
Zefan Li 已提交
2694 2695
int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
		     struct pid *pid, struct task_struct *tsk)
L
Linus Torvalds 已提交
2696
{
2697
	char *buf;
2698
	struct cgroup_subsys_state *css;
2699
	int retval;
L
Linus Torvalds 已提交
2700

2701
	retval = -ENOMEM;
T
Tejun Heo 已提交
2702
	buf = kmalloc(PATH_MAX, GFP_KERNEL);
L
Linus Torvalds 已提交
2703
	if (!buf)
2704 2705
		goto out;

2706
	css = task_get_css(tsk, cpuset_cgrp_id);
2707 2708
	retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
				current->nsproxy->cgroup_ns);
2709
	css_put(css);
2710
	if (retval >= PATH_MAX)
2711 2712
		retval = -ENAMETOOLONG;
	if (retval < 0)
Z
Zefan Li 已提交
2713
		goto out_free;
2714
	seq_puts(m, buf);
L
Linus Torvalds 已提交
2715
	seq_putc(m, '\n');
T
Tejun Heo 已提交
2716
	retval = 0;
2717
out_free:
L
Linus Torvalds 已提交
2718
	kfree(buf);
2719
out:
L
Linus Torvalds 已提交
2720 2721
	return retval;
}
2722
#endif /* CONFIG_PROC_PID_CPUSET */
L
Linus Torvalds 已提交
2723

2724
/* Display task mems_allowed in /proc/<pid>/status file. */
2725 2726
void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
{
2727 2728 2729 2730
	seq_printf(m, "Mems_allowed:\t%*pb\n",
		   nodemask_pr_args(&task->mems_allowed));
	seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
		   nodemask_pr_args(&task->mems_allowed));
L
Linus Torvalds 已提交
2731
}