sonixb.c 45.5 KB
Newer Older
1 2 3
/*
 *		sonix sn9c102 (bayer) library
 *
4 5 6
 * Copyright (C) 2009-2011 Jean-François Moine <http://moinejf.free.fr>
 * Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
 * Add Pas106 Stefano Mozzi (C) 2004
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

23 24 25
/* Some documentation on known sonixb registers:

Reg	Use
26
sn9c101 / sn9c102:
27 28
0x10	high nibble red gain low nibble blue gain
0x11	low nibble green gain
29 30 31 32 33 34
sn9c103:
0x05	red gain 0-127
0x06	blue gain 0-127
0x07	green gain 0-127
all:
0x08-0x0f i2c / 3wire registers
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
0x12	hstart
0x13	vstart
0x15	hsize (hsize = register-value * 16)
0x16	vsize (vsize = register-value * 16)
0x17	bit 0 toggle compression quality (according to sn9c102 driver)
0x18	bit 7 enables compression, bit 4-5 set image down scaling:
	00 scale 1, 01 scale 1/2, 10, scale 1/4
0x19	high-nibble is sensor clock divider, changes exposure on sensors which
	use a clock generated by the bridge. Some sensors have their own clock.
0x1c	auto_exposure area (for avg_lum) startx (startx = register-value * 32)
0x1d	auto_exposure area (for avg_lum) starty (starty = register-value * 32)
0x1e	auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
0x1f	auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
*/

50 51
#define MODULE_NAME "sonixb"

52
#include <linux/input.h>
53 54
#include "gspca.h"

55
MODULE_AUTHOR("Jean-François Moine <http://moinejf.free.fr>");
56 57 58
MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
MODULE_LICENSE("GPL");

59 60 61 62 63 64 65 66 67 68
/* controls */
enum e_ctrl {
	BRIGHTNESS,
	GAIN,
	EXPOSURE,
	AUTOGAIN,
	FREQ,
	NCTRLS		/* number of controls */
};

69 70 71
/* specific webcam descriptor */
struct sd {
	struct gspca_dev gspca_dev;	/* !! must be the first item */
72 73 74

	struct gspca_ctrl ctrls[NCTRLS];

75
	atomic_t avg_lum;
76
	int prev_avg_lum;
77 78
	int exp_too_low_cnt;
	int exp_too_high_cnt;
79 80
	int header_read;
	u8 header[12]; /* Header without sof marker */
81 82

	unsigned char autogain_ignore_frames;
83
	unsigned char frames_to_drop;
84

85 86 87 88 89 90
	__u8 bridge;			/* Type of bridge */
#define BRIDGE_101 0
#define BRIDGE_102 0 /* We make no difference between 101 and 102 */
#define BRIDGE_103 1

	__u8 sensor;			/* Type of image sensor chip */
91 92 93 94 95 96 97 98 99
#define SENSOR_HV7131D 0
#define SENSOR_HV7131R 1
#define SENSOR_OV6650 2
#define SENSOR_OV7630 3
#define SENSOR_PAS106 4
#define SENSOR_PAS202 5
#define SENSOR_TAS5110C 6
#define SENSOR_TAS5110D 7
#define SENSOR_TAS5130CXX 8
100
	__u8 reg11;
101 102
};

103 104 105
typedef const __u8 sensor_init_t[8];

struct sensor_data {
106
	const __u8 *bridge_init;
107 108 109 110 111 112 113 114
	sensor_init_t *sensor_init;
	int sensor_init_size;
	int flags;
	unsigned ctrl_dis;
	__u8 sensor_addr;
};

/* sensor_data flags */
115
#define F_GAIN 0x01		/* has gain */
116
#define F_SIF  0x02		/* sif or vga */
117
#define F_COARSE_EXPO 0x04	/* exposure control is coarse */
118 119 120

/* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
#define MODE_RAW 0x10		/* raw bayer mode */
121
#define MODE_REDUCED_SIF 0x20	/* vga mode (320x240 / 160x120) on sif cam */
122 123

/* ctrl_dis helper macros */
124 125 126
#define NO_EXPO ((1 << EXPOSURE) | (1 << AUTOGAIN))
#define NO_FREQ (1 << FREQ)
#define NO_BRIGHTNESS (1 << BRIGHTNESS)
127

128 129 130 131 132 133 134 135
#define COMP 0xc7		/* 0x87 //0x07 */
#define COMP1 0xc9		/* 0x89 //0x09 */

#define MCK_INIT 0x63
#define MCK_INIT1 0x20		/*fixme: Bayer - 0x50 for JPEG ??*/

#define SYS_CLK 0x04

136
#define SENS(bridge, sensor, _flags, _ctrl_dis, _sensor_addr) \
137
{ \
138
	.bridge_init = bridge, \
139 140 141 142 143
	.sensor_init = sensor, \
	.sensor_init_size = sizeof(sensor), \
	.flags = _flags, .ctrl_dis = _ctrl_dis, .sensor_addr = _sensor_addr \
}

144
/* We calculate the autogain at the end of the transfer of a frame, at this
145 146 147 148
   moment a frame with the old settings is being captured and transmitted. So
   if we adjust the gain or exposure we must ignore atleast the next frame for
   the new settings to come into effect before doing any other adjustments. */
#define AUTOGAIN_IGNORE_FRAMES 1
149

150
/* V4L2 controls supported by the driver */
151 152 153
static void setbrightness(struct gspca_dev *gspca_dev);
static void setgain(struct gspca_dev *gspca_dev);
static void setexposure(struct gspca_dev *gspca_dev);
154
static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
155
static void setfreq(struct gspca_dev *gspca_dev);
156

157 158
static const struct ctrl sd_ctrls[NCTRLS] = {
[BRIGHTNESS] = {
159 160 161 162 163 164 165
	    {
		.id      = V4L2_CID_BRIGHTNESS,
		.type    = V4L2_CTRL_TYPE_INTEGER,
		.name    = "Brightness",
		.minimum = 0,
		.maximum = 255,
		.step    = 1,
166
		.default_value = 127,
167
	    },
168
	    .set_control = setbrightness
169
	},
170
[GAIN] = {
171
	    {
172
		.id      = V4L2_CID_GAIN,
173
		.type    = V4L2_CTRL_TYPE_INTEGER,
174
		.name    = "Gain",
175
		.minimum = 0,
176
		.maximum = 255,
177
		.step    = 1,
178
#define GAIN_KNEE 230
179
		.default_value = 127,
180
	    },
181
	    .set_control = setgain
182
	},
183
[EXPOSURE] = {
184 185 186 187 188
		{
			.id = V4L2_CID_EXPOSURE,
			.type = V4L2_CTRL_TYPE_INTEGER,
			.name = "Exposure",
			.minimum = 0,
189
			.maximum = 1023,
190
			.step = 1,
191 192 193
			.default_value = 66,
				/*  33 ms / 30 fps (except on PASXXX) */
#define EXPOSURE_KNEE 200	/* 100 ms / 10 fps (except on PASXXX) */
194 195
			.flags = 0,
		},
196
		.set_control = setexposure
197
	},
198 199 200
/* for coarse exposure */
#define COARSE_EXPOSURE_MIN 2
#define COARSE_EXPOSURE_MAX 15
201
#define COARSE_EXPOSURE_DEF  2 /* 30 fps */
202
[AUTOGAIN] = {
203 204 205 206 207 208 209
		{
			.id = V4L2_CID_AUTOGAIN,
			.type = V4L2_CTRL_TYPE_BOOLEAN,
			.name = "Automatic Gain (and Exposure)",
			.minimum = 0,
			.maximum = 1,
			.step = 1,
210 211
#define AUTOGAIN_DEF 1
			.default_value = AUTOGAIN_DEF,
212
			.flags = V4L2_CTRL_FLAG_UPDATE
213 214
		},
		.set = sd_setautogain,
215
	},
216
[FREQ] = {
217 218 219 220 221 222 223
		{
			.id	 = V4L2_CID_POWER_LINE_FREQUENCY,
			.type    = V4L2_CTRL_TYPE_MENU,
			.name    = "Light frequency filter",
			.minimum = 0,
			.maximum = 2,	/* 0: 0, 1: 50Hz, 2:60Hz */
			.step    = 1,
224
#define FREQ_DEF 0
225 226
			.default_value = FREQ_DEF,
		},
227
		.set_control = setfreq
228
	},
229 230
};

231
static const struct v4l2_pix_format vga_mode[] = {
232 233
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
234
		.sizeimage = 160 * 120,
235 236
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2 | MODE_RAW},
237 238
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
239
		.sizeimage = 160 * 120 * 5 / 4,
240 241 242 243
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2},
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
244
		.sizeimage = 320 * 240 * 5 / 4,
245 246 247 248
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 640,
249
		.sizeimage = 640 * 480 * 5 / 4,
250 251
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
252
};
253
static const struct v4l2_pix_format sif_mode[] = {
254 255 256 257 258 259 260 261 262 263
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_REDUCED_SIF},
264 265
	{176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 176,
266
		.sizeimage = 176 * 144,
267 268
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW},
269 270
	{176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 176,
271
		.sizeimage = 176 * 144 * 5 / 4,
272 273
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
274 275 276 277 278
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0 | MODE_REDUCED_SIF},
279 280
	{352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 352,
281
		.sizeimage = 352 * 288 * 5 / 4,
282 283
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
284 285
};

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
static const __u8 initHv7131d[] = {
	0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
	0x00, 0x00, 0x00, 0x02, 0x02, 0x00,
	0x28, 0x1e, 0x60, 0x8e, 0x42,
};
static const __u8 hv7131d_sensor_init[][8] = {
	{0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */
	{0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */
};

static const __u8 initHv7131r[] = {
301 302
	0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
303
	0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
304 305
	0x28, 0x1e, 0x60, 0x8a, 0x20,
};
306
static const __u8 hv7131r_sensor_init[][8] = {
307 308 309 310 311 312 313 314 315
	{0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
	{0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
	{0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
	{0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
	{0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
};
static const __u8 initOv6650[] = {
	0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
	0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
316
	0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
317
	0x10,
318
};
319
static const __u8 ov6650_sensor_init[][8] = {
320
	/* Bright, contrast, etc are set through SCBB interface.
321
	 * AVCAP on win2 do not send any data on this controls. */
322
	/* Anyway, some registers appears to alter bright and constrat */
323 324

	/* Reset sensor */
325
	{0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
326
	/* Set clock register 0x11 low nibble is clock divider */
327
	{0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
328
	/* Next some unknown stuff */
329 330 331 332 333 334 335
	{0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
/*	{0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
		 * THIS SET GREEN SCREEN
		 * (pixels could be innverted in decode kind of "brg",
		 * but blue wont be there. Avoid this data ... */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
336
	{0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10},
337 338 339 340 341 342 343 344 345
	/* Enable rgb brightness control */
	{0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
	/* HDG: Note windows uses the line below, which sets both register 0x60
	   and 0x61 I believe these registers of the ov6650 are identical as
	   those of the ov7630, because if this is true the windows settings
	   add a bit additional red gain and a lot additional blue gain, which
	   matches my findings that the windows settings make blue much too
	   blue and red a little too red.
	{0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
346
	/* Some more unknown stuff */
347 348 349
	{0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
	{0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
};
350

351 352 353
static const __u8 initOv7630[] = {
	0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,	/* r09 .. r10 */
354
	0x00, 0x01, 0x01, 0x0a,				/* r11 .. r14 */
355
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
356
	0x68, 0x8f, MCK_INIT1,				/* r17 .. r19 */
357
};
358
static const __u8 ov7630_sensor_init[][8] = {
359 360 361
	{0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
	{0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
/*	{0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10},	   jfm */
362
	{0xd0, 0x21, 0x12, 0x5c, 0x00, 0x80, 0x34, 0x10},	/* jfm */
363 364 365 366 367 368 369
	{0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
	{0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
370 371
	{0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
/*	{0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10},	 * jfm */
372 373 374 375 376 377 378 379 380 381 382
	{0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
	{0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
	{0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
	{0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
	{0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
};

static const __u8 initPas106[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
383
	0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
384
	0x16, 0x12, 0x24, COMP1, MCK_INIT1,
385 386
};
/* compression 0x86 mckinit1 0x2b */
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

/* "Known" PAS106B registers:
  0x02 clock divider
  0x03 Variable framerate bits 4-11
  0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !!
       The variable framerate control must never be set lower then 300,
       which sets the framerate at 90 / reg02, otherwise vsync is lost.
  0x05 Shutter Time Line Offset, this can be used as an exposure control:
       0 = use full frame time, 255 = no exposure at all
       Note this may never be larger then "var-framerate control" / 2 - 2.
       When var-framerate control is < 514, no exposure is reached at the max
       allowed value for the framerate control value, rather then at 255.
  0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but
       only a very little bit, leave at 0xcd
  0x07 offset sign bit (bit0 1 > negative offset)
  0x08 offset
  0x09 Blue Gain
  0x0a Green1 Gain
  0x0b Green2 Gain
  0x0c Red Gain
  0x0e Global gain
  0x13 Write 1 to commit settings to sensor
*/

411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
static const __u8 pas106_sensor_init[][8] = {
	/* Pixel Clock Divider 6 */
	{ 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time MSB (also seen as 0x12) */
	{ 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time LSB (also seen as 0x05) */
	{ 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Line Offset (also seen as 0x6d) */
	{ 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Pixel Offset (also seen as 0xb1) */
	{ 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Sign (also seen 0x00) */
	{ 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Level (also seen 0x01) */
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain B Pixel 5 a */
	{ 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G1 Pixel 1 5 */
	{ 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G2 Pixel 1 0 5 */
	{ 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain R Pixel 3 1 */
	{ 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color GainH  Pixel */
	{ 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* Global Gain */
	{ 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
	/* Contrast */
	{ 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* H&V synchro polarity */
	{ 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* DAC scale */
	{ 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
	/* Validate Settings */
	{ 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
451
};
452

453 454 455
static const __u8 initPas202[] = {
	0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
456
	0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
457
	0x28, 0x1e, 0x20, 0x89, 0x20,
458
};
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

/* "Known" PAS202BCB registers:
  0x02 clock divider
  0x04 Variable framerate bits 6-11 (*)
  0x05 Var framerate  bits 0-5, one must leave the 2 msb's at 0 !!
  0x07 Blue Gain
  0x08 Green Gain
  0x09 Red Gain
  0x0b offset sign bit (bit0 1 > negative offset)
  0x0c offset
  0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too,
       leave at 1 otherwise we get a jump in our exposure control
  0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all
  0x10 Master gain 0 - 31
  0x11 write 1 to apply changes
  (*) The variable framerate control must never be set lower then 500
      which sets the framerate at 30 / reg02, otherwise vsync is lost.
*/
477
static const __u8 pas202_sensor_init[][8] = {
478 479 480 481
	/* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like
	   to set it lower, but for some reason the bridge starts missing
	   vsync's then */
	{0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10},
482 483
	{0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
	{0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
484
	{0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10},
485 486 487 488 489 490 491 492
	{0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
};

493
static const __u8 initTas5110c[] = {
494 495
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
496
	0x00, 0x00, 0x00, 0x45, 0x09, 0x0a,
497 498
	0x16, 0x12, 0x60, 0x86, 0x2b,
};
499 500 501 502
/* Same as above, except a different hstart */
static const __u8 initTas5110d[] = {
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
503
	0x00, 0x00, 0x00, 0x41, 0x09, 0x0a,
504 505
	0x16, 0x12, 0x60, 0x86, 0x2b,
};
506 507
/* tas5110c is 3 wire, tas5110d is 2 wire (regular i2c) */
static const __u8 tas5110c_sensor_init[][8] = {
508 509
	{0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
	{0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
510 511 512 513 514 515 516 517
};
/* Known TAS5110D registers
 * reg02: gain, bit order reversed!! 0 == max gain, 255 == min gain
 * reg03: bit3: vflip, bit4: ~hflip, bit7: ~gainboost (~ == inverted)
 *        Note: writing reg03 seems to only work when written together with 02
 */
static const __u8 tas5110d_sensor_init[][8] = {
	{0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17}, /* reset */
518 519 520 521 522
};

static const __u8 initTas5130[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
523
	0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a,
524 525 526
	0x28, 0x1e, 0x60, COMP, MCK_INIT,
};
static const __u8 tas5130_sensor_init[][8] = {
527
/*	{0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
528 529 530 531 532 533
					* shutter 0x47 short exposure? */
	{0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
					/* shutter 0x01 long exposure */
	{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
};

534
static const struct sensor_data sensor_data[] = {
535 536 537 538 539 540
SENS(initHv7131d, hv7131d_sensor_init, F_GAIN, NO_BRIGHTNESS|NO_FREQ, 0),
SENS(initHv7131r, hv7131r_sensor_init, 0, NO_BRIGHTNESS|NO_EXPO|NO_FREQ, 0),
SENS(initOv6650, ov6650_sensor_init, F_GAIN|F_SIF, 0, 0x60),
SENS(initOv7630, ov7630_sensor_init, F_GAIN, 0, 0x21),
SENS(initPas106, pas106_sensor_init, F_GAIN|F_SIF, NO_FREQ, 0),
SENS(initPas202, pas202_sensor_init, F_GAIN, NO_FREQ, 0),
541
SENS(initTas5110c, tas5110c_sensor_init, F_GAIN|F_SIF|F_COARSE_EXPO,
542
	NO_BRIGHTNESS|NO_FREQ, 0),
543
SENS(initTas5110d, tas5110d_sensor_init, F_GAIN|F_SIF|F_COARSE_EXPO,
544
	NO_BRIGHTNESS|NO_FREQ, 0),
545 546
SENS(initTas5130, tas5130_sensor_init, F_GAIN,
	NO_BRIGHTNESS|NO_EXPO|NO_FREQ, 0),
547 548
};

549 550 551
/* get one byte in gspca_dev->usb_buf */
static void reg_r(struct gspca_dev *gspca_dev,
		  __u16 value)
552
{
553 554
	usb_control_msg(gspca_dev->dev,
			usb_rcvctrlpipe(gspca_dev->dev, 0),
555 556 557 558
			0,			/* request */
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
559
			gspca_dev->usb_buf, 1,
560 561 562
			500);
}

563 564 565 566
static void reg_w(struct gspca_dev *gspca_dev,
		  __u16 value,
		  const __u8 *buffer,
		  int len)
567
{
568
#ifdef GSPCA_DEBUG
569
	if (len > USB_BUF_SZ) {
570 571 572 573
		PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
		return;
	}
#endif
574 575 576 577 578 579 580 581 582 583 584 585
	memcpy(gspca_dev->usb_buf, buffer, len);
	usb_control_msg(gspca_dev->dev,
			usb_sndctrlpipe(gspca_dev->dev, 0),
			0x08,			/* request */
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
			gspca_dev->usb_buf, len,
			500);
}

static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
586 587 588 589
{
	int retry = 60;

	/* is i2c ready */
590
	reg_w(gspca_dev, 0x08, buffer, 8);
591 592
	while (retry--) {
		msleep(10);
593
		reg_r(gspca_dev, 0x08);
594 595 596
		if (gspca_dev->usb_buf[0] & 0x04) {
			if (gspca_dev->usb_buf[0] & 0x08)
				return -1;
597
			return 0;
598
		}
599 600 601 602
	}
	return -1;
}

603
static void i2c_w_vector(struct gspca_dev *gspca_dev,
604 605 606
			const __u8 buffer[][8], int len)
{
	for (;;) {
607
		reg_w(gspca_dev, 0x08, *buffer, 8);
608 609 610 611 612 613 614 615 616 617 618 619
		len -= 8;
		if (len <= 0)
			break;
		buffer++;
	}
}

static void setbrightness(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
620
	case  SENSOR_OV6650:
621 622
	case  SENSOR_OV7630: {
		__u8 i2cOV[] =
623
			{0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
624 625

		/* change reg 0x06 */
626
		i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
627
		i2cOV[3] = sd->ctrls[BRIGHTNESS].val;
628
		if (i2c_w(gspca_dev, i2cOV) < 0)
629 630 631
			goto err;
		break;
	    }
632
	case SENSOR_PAS106:
633
	case SENSOR_PAS202: {
634 635
		__u8 i2cpbright[] =
			{0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16};
636
		__u8 i2cpdoit[] =
637 638
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};

639 640 641 642 643 644
		/* PAS106 uses reg 7 and 8 instead of b and c */
		if (sd->sensor == SENSOR_PAS106) {
			i2cpbright[2] = 7;
			i2cpdoit[2] = 0x13;
		}

645
		if (sd->ctrls[BRIGHTNESS].val < 127) {
646 647 648
			/* change reg 0x0b, signreg */
			i2cpbright[3] = 0x01;
			/* set reg 0x0c, offset */
649
			i2cpbright[4] = 127 - sd->ctrls[BRIGHTNESS].val;
650
		} else
651
			i2cpbright[4] = sd->ctrls[BRIGHTNESS].val - 127;
652 653

		if (i2c_w(gspca_dev, i2cpbright) < 0)
654
			goto err;
655
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
656 657 658 659 660 661 662 663
			goto err;
		break;
	    }
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error brightness");
}
664 665 666 667

static void setsensorgain(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
668
	u8 gain = sd->ctrls[GAIN].val;
669 670

	switch (sd->sensor) {
671 672 673 674
	case SENSOR_HV7131D: {
		__u8 i2c[] =
			{0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17};

675 676 677
		i2c[3] = 0x3f - (gain / 4);
		i2c[4] = 0x3f - (gain / 4);
		i2c[5] = 0x3f - (gain / 4);
678

679 680 681 682
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
683 684
	case SENSOR_TAS5110C:
	case SENSOR_TAS5130CXX: {
685 686 687
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

688
		i2c[4] = 255 - gain;
689
		if (i2c_w(gspca_dev, i2c) < 0)
690
			goto err;
691 692
		break;
	    }
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	case SENSOR_TAS5110D: {
		__u8 i2c[] = {
			0xb0, 0x61, 0x02, 0x00, 0x10, 0x00, 0x00, 0x17 };
		gain = 255 - gain;
		/* The bits in the register are the wrong way around!! */
		i2c[3] |= (gain & 0x80) >> 7;
		i2c[3] |= (gain & 0x40) >> 5;
		i2c[3] |= (gain & 0x20) >> 3;
		i2c[3] |= (gain & 0x10) >> 1;
		i2c[3] |= (gain & 0x08) << 1;
		i2c[3] |= (gain & 0x04) << 3;
		i2c[3] |= (gain & 0x02) << 5;
		i2c[3] |= (gain & 0x01) << 7;
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
710

711 712 713
	case SENSOR_OV6650:
		gain >>= 1;
		/* fall thru */
714
	case SENSOR_OV7630: {
715
		__u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
716

717
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
718
		i2c[3] = gain >> 2;
719 720 721 722
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
723
	case SENSOR_PAS106:
724 725
	case SENSOR_PAS202: {
		__u8 i2cpgain[] =
726
			{0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15};
727 728
		__u8 i2cpcolorgain[] =
			{0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15};
729 730 731 732 733 734 735 736 737 738
		__u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};

		/* PAS106 uses different regs (and has split green gains) */
		if (sd->sensor == SENSOR_PAS106) {
			i2cpgain[2] = 0x0e;
			i2cpcolorgain[0] = 0xd0;
			i2cpcolorgain[2] = 0x09;
			i2cpdoit[2] = 0x13;
		}
739

740 741 742 743 744
		i2cpgain[3] = gain >> 3;
		i2cpcolorgain[3] = gain >> 4;
		i2cpcolorgain[4] = gain >> 4;
		i2cpcolorgain[5] = gain >> 4;
		i2cpcolorgain[6] = gain >> 4;
745 746 747 748 749 750 751 752 753

		if (i2c_w(gspca_dev, i2cpgain) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpcolorgain) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
			goto err;
		break;
	    }
754 755 756 757 758 759 760
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error gain");
}

static void setgain(struct gspca_dev *gspca_dev)
761 762 763
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 gain;
764
	__u8 buf[3] = { 0, 0, 0 };
765 766 767 768 769 770

	if (sensor_data[sd->sensor].flags & F_GAIN) {
		/* Use the sensor gain to do the actual gain */
		setsensorgain(gspca_dev);
		return;
	}
771

772
	if (sd->bridge == BRIDGE_103) {
773
		gain = sd->ctrls[GAIN].val >> 1;
774 775 776 777 778
		buf[0] = gain; /* Red */
		buf[1] = gain; /* Green */
		buf[2] = gain; /* Blue */
		reg_w(gspca_dev, 0x05, buf, 3);
	} else {
779
		gain = sd->ctrls[GAIN].val >> 4;
780 781 782 783
		buf[0] = gain << 4 | gain; /* Red and blue */
		buf[1] = gain; /* Green */
		reg_w(gspca_dev, 0x10, buf, 2);
	}
784 785 786 787 788 789 790
}

static void setexposure(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
791 792 793 794 795 796 797 798 799 800
	case SENSOR_HV7131D: {
		/* Note the datasheet wrongly says line mode exposure uses reg
		   0x26 and 0x27, testing has shown 0x25 + 0x26 */
		__u8 i2c[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17};
		/* The HV7131D's exposure goes from 0 - 65535, we scale our
		   exposure of 0-1023 to 0-6138. There are 2 reasons for this:
		   1) This puts our exposure knee of 200 at approx the point
		      where the framerate starts dropping
		   2) At 6138 the framerate has already dropped to 2 fps,
		      going any lower makes little sense */
801 802
		u16 reg = sd->ctrls[EXPOSURE].val * 6;

803 804 805 806 807 808
		i2c[3] = reg >> 8;
		i2c[4] = reg & 0xff;
		if (i2c_w(gspca_dev, i2c) != 0)
			goto err;
		break;
	    }
809 810
	case SENSOR_TAS5110C:
	case SENSOR_TAS5110D: {
811 812 813
		/* register 19's high nibble contains the sn9c10x clock divider
		   The high nibble configures the no fps according to the
		   formula: 60 / high_nibble. With a maximum of 30 fps */
814 815
		u8 reg = sd->ctrls[EXPOSURE].val;

816
		reg = (reg << 4) | 0x0b;
817
		reg_w(gspca_dev, 0x19, &reg, 1);
818 819
		break;
	    }
820
	case SENSOR_OV6650:
821
	case SENSOR_OV7630: {
822 823
		/* The ov6650 / ov7630 have 2 registers which both influence
		   exposure, register 11, whose low nibble sets the nr off fps
824 825 826 827 828 829 830 831 832 833 834 835
		   according to: fps = 30 / (low_nibble + 1)

		   The fps configures the maximum exposure setting, but it is
		   possible to use less exposure then what the fps maximum
		   allows by setting register 10. register 10 configures the
		   actual exposure as quotient of the full exposure, with 0
		   being no exposure at all (not very usefull) and reg10_max
		   being max exposure possible at that framerate.

		   The code maps our 0 - 510 ms exposure ctrl to these 2
		   registers, trying to keep fps as high as possible.
		*/
836 837 838
		__u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
		int reg10, reg11, reg10_max;

839 840 841 842 843
		/* ov6645 datasheet says reg10_max is 9a, but that uses
		   tline * 2 * reg10 as formula for calculating texpo, the
		   ov6650 probably uses the same formula as the 7730 which uses
		   tline * 4 * reg10, which explains why the reg10max we've
		   found experimentally for the ov6650 is exactly half that of
844
		   the ov6645. The ov7630 datasheet says the max is 0x41. */
845 846 847 848 849
		if (sd->sensor == SENSOR_OV6650) {
			reg10_max = 0x4d;
			i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
		} else
			reg10_max = 0x41;
850

851
		reg11 = (15 * sd->ctrls[EXPOSURE].val + 999) / 1000;
852 853 854 855 856
		if (reg11 < 1)
			reg11 = 1;
		else if (reg11 > 16)
			reg11 = 16;

857 858 859 860 861
		/* In 640x480, if the reg11 has less than 4, the image is
		   unstable (the bridge goes into a higher compression mode
		   which we have not reverse engineered yet). */
		if (gspca_dev->width == 640 && reg11 < 4)
			reg11 = 4;
862

863
		/* frame exposure time in ms = 1000 * reg11 / 30    ->
864 865 866 867
		reg10 = (sd->ctrls[EXPOSURE].val / 2) * reg10_max
				/ (1000 * reg11 / 30) */
		reg10 = (sd->ctrls[EXPOSURE].val * 15 * reg10_max)
				/ (1000 * reg11);
868

869 870 871 872
		/* Don't allow this to get below 10 when using autogain, the
		   steps become very large (relatively) when below 10 causing
		   the image to oscilate from much too dark, to much too bright
		   and back again. */
873
		if (sd->ctrls[AUTOGAIN].val && reg10 < 10)
874
			reg10 = 10;
875 876 877 878
		else if (reg10 > reg10_max)
			reg10 = reg10_max;

		/* Write reg 10 and reg11 low nibble */
879
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
880 881
		i2c[3] = reg10;
		i2c[4] |= reg11 - 1;
882 883

		/* If register 11 didn't change, don't change it */
884
		if (sd->reg11 == reg11)
885 886 887 888 889
			i2c[0] = 0xa0;

		if (i2c_w(gspca_dev, i2c) == 0)
			sd->reg11 = reg11;
		else
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
			goto err;
		break;
	    }
	case SENSOR_PAS202: {
		__u8 i2cpframerate[] =
			{0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16};
		__u8 i2cpexpo[] =
			{0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16};
		const __u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
		int framerate_ctrl;

		/* The exposure knee for the autogain algorithm is 200
		   (100 ms / 10 fps on other sensors), for values below this
		   use the control for setting the partial frame expose time,
		   above that use variable framerate. This way we run at max
		   framerate (640x480@7.5 fps, 320x240@10fps) until the knee
		   is reached. Using the variable framerate control above 200
		   is better then playing around with both clockdiv + partial
		   frame exposure times (like we are doing with the ov chips),
		   as that sometimes leads to jumps in the exposure control,
		   which are bad for auto exposure. */
912 913 914
		if (sd->ctrls[EXPOSURE].val < 200) {
			i2cpexpo[3] = 255 - (sd->ctrls[EXPOSURE].val * 255)
						/ 200;
915 916 917 918 919
			framerate_ctrl = 500;
		} else {
			/* The PAS202's exposure control goes from 0 - 4095,
			   but anything below 500 causes vsync issues, so scale
			   our 200-1023 to 500-4095 */
920 921
			framerate_ctrl = (sd->ctrls[EXPOSURE].val - 200)
							* 1000 / 229 +  500;
922 923 924 925 926 927 928 929 930 931
		}

		i2cpframerate[3] = framerate_ctrl >> 6;
		i2cpframerate[4] = framerate_ctrl & 0x3f;
		if (i2c_w(gspca_dev, i2cpframerate) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpexpo) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
			goto err;
932 933
		break;
	    }
934 935 936 937 938 939 940 941 942 943 944
	case SENSOR_PAS106: {
		__u8 i2cpframerate[] =
			{0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14};
		__u8 i2cpexpo[] =
			{0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14};
		const __u8 i2cpdoit[] =
			{0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14};
		int framerate_ctrl;

		/* For values below 150 use partial frame exposure, above
		   that use framerate ctrl */
945 946
		if (sd->ctrls[EXPOSURE].val < 150) {
			i2cpexpo[3] = 150 - sd->ctrls[EXPOSURE].val;
947 948 949 950 951
			framerate_ctrl = 300;
		} else {
			/* The PAS106's exposure control goes from 0 - 4095,
			   but anything below 300 causes vsync issues, so scale
			   our 150-1023 to 300-4095 */
952 953
			framerate_ctrl = (sd->ctrls[EXPOSURE].val - 150)
						* 1000 / 230 + 300;
954 955 956 957 958 959 960 961 962 963 964 965
		}

		i2cpframerate[3] = framerate_ctrl >> 4;
		i2cpframerate[4] = framerate_ctrl & 0x0f;
		if (i2c_w(gspca_dev, i2cpframerate) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpexpo) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
			goto err;
		break;
	    }
966
	}
967 968 969
	return;
err:
	PDEBUG(D_ERR, "i2c error exposure");
970 971
}

972 973 974 975 976
static void setfreq(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
977
	case SENSOR_OV6650:
978
	case SENSOR_OV7630: {
979
		/* Framerate adjust register for artificial light 50 hz flicker
980 981 982
		   compensation, for the ov6650 this is identical to ov6630
		   0x2b register, see ov6630 datasheet.
		   0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
983
		__u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
984
		switch (sd->ctrls[FREQ].val) {
985 986 987 988 989 990
		default:
/*		case 0:			 * no filter*/
/*		case 2:			 * 60 hz */
			i2c[3] = 0;
			break;
		case 1:			/* 50 hz */
991 992
			i2c[3] = (sd->sensor == SENSOR_OV6650)
					? 0x4f : 0x8a;
993 994
			break;
		}
995
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
996 997 998 999 1000 1001 1002
		if (i2c_w(gspca_dev, i2c) < 0)
			PDEBUG(D_ERR, "i2c error setfreq");
		break;
	    }
	}
}

1003
#include "autogain_functions.h"
1004

1005 1006
static void do_autogain(struct gspca_dev *gspca_dev)
{
1007
	int deadzone, desired_avg_lum, result;
1008 1009 1010
	struct sd *sd = (struct sd *) gspca_dev;
	int avg_lum = atomic_read(&sd->avg_lum);

1011 1012
	if ((gspca_dev->ctrl_dis & (1 << AUTOGAIN)) ||
	    avg_lum == -1 || !sd->ctrls[AUTOGAIN].val)
1013 1014 1015 1016
		return;

	if (sd->autogain_ignore_frames > 0) {
		sd->autogain_ignore_frames--;
1017
		return;
1018
	}
1019

1020 1021 1022
	/* SIF / VGA sensors have a different autoexposure area and thus
	   different avg_lum values for the same picture brightness */
	if (sensor_data[sd->sensor].flags & F_SIF) {
1023 1024 1025
		deadzone = 500;
		/* SIF sensors tend to overexpose, so keep this small */
		desired_avg_lum = 5000;
1026
	} else {
1027
		deadzone = 1500;
1028
		desired_avg_lum = 13000;
1029 1030
	}

1031
	if (sensor_data[sd->sensor].flags & F_COARSE_EXPO)
1032 1033 1034
		result = coarse_grained_expo_autogain(gspca_dev, avg_lum,
				sd->ctrls[BRIGHTNESS].val
						* desired_avg_lum / 127,
1035 1036
				deadzone);
	else
1037 1038 1039
		result = auto_gain_n_exposure(gspca_dev, avg_lum,
				sd->ctrls[BRIGHTNESS].val
						* desired_avg_lum / 127,
1040 1041 1042
				deadzone, GAIN_KNEE, EXPOSURE_KNEE);

	if (result) {
1043
		PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d",
1044 1045
			(int) sd->ctrls[GAIN].val,
			(int) sd->ctrls[EXPOSURE].val);
1046
		sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
1047
	}
1048 1049 1050 1051 1052 1053 1054 1055
}

/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
			const struct usb_device_id *id)
{
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam;
1056 1057 1058 1059

	reg_r(gspca_dev, 0x00);
	if (gspca_dev->usb_buf[0] != 0x10)
		return -ENODEV;
1060

1061
	/* copy the webcam info from the device id */
1062 1063
	sd->sensor = id->driver_info >> 8;
	sd->bridge = id->driver_info & 0xff;
1064

1065
	gspca_dev->ctrl_dis = sensor_data[sd->sensor].ctrl_dis;
1066 1067 1068 1069
#if AUTOGAIN_DEF
	if (!(gspca_dev->ctrl_dis & (1 << AUTOGAIN)))
		gspca_dev->ctrl_inac = (1 << GAIN) | (1 << EXPOSURE);
#endif
1070 1071

	cam = &gspca_dev->cam;
1072
	cam->ctrls = sd->ctrls;
1073
	if (!(sensor_data[sd->sensor].flags & F_SIF)) {
1074
		cam->cam_mode = vga_mode;
1075
		cam->nmodes = ARRAY_SIZE(vga_mode);
1076 1077
	} else {
		cam->cam_mode = sif_mode;
1078
		cam->nmodes = ARRAY_SIZE(sif_mode);
1079
	}
1080 1081
	cam->npkt = 36;			/* 36 packets per ISOC message */

1082
	if (sensor_data[sd->sensor].flags & F_COARSE_EXPO) {
1083 1084 1085
		sd->ctrls[EXPOSURE].min = COARSE_EXPOSURE_MIN;
		sd->ctrls[EXPOSURE].max = COARSE_EXPOSURE_MAX;
		sd->ctrls[EXPOSURE].def = COARSE_EXPOSURE_DEF;
1086
	}
1087

1088 1089 1090
	return 0;
}

1091 1092
/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
1093
{
1094 1095 1096 1097
	const __u8 stop = 0x09; /* Disable stream turn of LED */

	reg_w(gspca_dev, 0x01, &stop, 1);

1098 1099 1100 1101
	return 0;
}

/* -- start the camera -- */
1102
static int sd_start(struct gspca_dev *gspca_dev)
1103 1104
{
	struct sd *sd = (struct sd *) gspca_dev;
1105
	struct cam *cam = &gspca_dev->cam;
1106 1107
	int i, mode;
	__u8 regs[0x31];
1108

1109
	mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	/* Copy registers 0x01 - 0x19 from the template */
	memcpy(&regs[0x01], sensor_data[sd->sensor].bridge_init, 0x19);
	/* Set the mode */
	regs[0x18] |= mode << 4;

	/* Set bridge gain to 1.0 */
	if (sd->bridge == BRIDGE_103) {
		regs[0x05] = 0x20; /* Red */
		regs[0x06] = 0x20; /* Green */
		regs[0x07] = 0x20; /* Blue */
	} else {
		regs[0x10] = 0x00; /* Red and blue */
		regs[0x11] = 0x00; /* Green */
	}

	/* Setup pixel numbers and auto exposure window */
	if (sensor_data[sd->sensor].flags & F_SIF) {
		regs[0x1a] = 0x14; /* HO_SIZE 640, makes no sense */
		regs[0x1b] = 0x0a; /* VO_SIZE 320, makes no sense */
		regs[0x1c] = 0x02; /* AE H-start 64 */
		regs[0x1d] = 0x02; /* AE V-start 64 */
		regs[0x1e] = 0x09; /* AE H-end 288 */
		regs[0x1f] = 0x07; /* AE V-end 224 */
	} else {
		regs[0x1a] = 0x1d; /* HO_SIZE 960, makes no sense */
		regs[0x1b] = 0x10; /* VO_SIZE 512, makes no sense */
1136
		regs[0x1c] = 0x05; /* AE H-start 160 */
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
		regs[0x1d] = 0x03; /* AE V-start 96 */
		regs[0x1e] = 0x0f; /* AE H-end 480 */
		regs[0x1f] = 0x0c; /* AE V-end 384 */
	}

	/* Setup the gamma table (only used with the sn9c103 bridge) */
	for (i = 0; i < 16; i++)
		regs[0x20 + i] = i * 16;
	regs[0x20 + i] = 255;

	/* Special cases where some regs depend on mode or bridge */
1148
	switch (sd->sensor) {
1149
	case SENSOR_TAS5130CXX:
1150 1151
		/* FIXME / TESTME
		   probably not mode specific at all most likely the upper
1152 1153
		   nibble of 0x19 is exposure (clock divider) just as with
		   the tas5110, we need someone to test this. */
1154
		regs[0x19] = mode ? 0x23 : 0x43;
1155
		break;
1156 1157 1158 1159 1160 1161 1162 1163 1164
	case SENSOR_OV7630:
		/* FIXME / TESTME for some reason with the 101/102 bridge the
		   clock is set to 12 Mhz (reg1 == 0x04), rather then 24.
		   Also the hstart needs to go from 1 to 2 when using a 103,
		   which is likely related. This does not seem right. */
		if (sd->bridge == BRIDGE_103) {
			regs[0x01] = 0x44; /* Select 24 Mhz clock */
			regs[0x12] = 0x02; /* Set hstart to 2 */
		}
1165
	}
1166
	/* Disable compression when the raw bayer format has been selected */
1167
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
1168
		regs[0x18] &= ~0x80;
1169 1170 1171

	/* Vga mode emulation on SIF sensor? */
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
1172 1173 1174 1175
		regs[0x12] += 16;	/* hstart adjust */
		regs[0x13] += 24;	/* vstart adjust */
		regs[0x15]  = 320 / 16; /* hsize */
		regs[0x16]  = 240 / 16; /* vsize */
1176
	}
1177

1178
	/* reg 0x01 bit 2 video transfert on */
1179
	reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1180
	/* reg 0x17 SensorClk enable inv Clk 0x60 */
1181
	reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1182
	/* Set the registers from the template */
1183 1184
	reg_w(gspca_dev, 0x01, &regs[0x01],
	      (sd->bridge == BRIDGE_103) ? 0x30 : 0x1f);
1185 1186 1187 1188 1189

	/* Init the sensor */
	i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
			sensor_data[sd->sensor].sensor_init_size);

1190
	/* Mode / bridge specific sensor setup */
1191 1192 1193 1194 1195 1196 1197
	switch (sd->sensor) {
	case SENSOR_PAS202: {
		const __u8 i2cpclockdiv[] =
			{0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10};
		/* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */
		if (mode)
			i2c_w(gspca_dev, i2cpclockdiv);
1198
		break;
1199
	    }
1200 1201 1202 1203 1204 1205 1206 1207 1208
	case SENSOR_OV7630:
		/* FIXME / TESTME We should be able to handle this identical
		   for the 101/102 and the 103 case */
		if (sd->bridge == BRIDGE_103) {
			const __u8 i2c[] = { 0xa0, 0x21, 0x13,
					     0x80, 0x00, 0x00, 0x00, 0x10 };
			i2c_w(gspca_dev, i2c);
		}
		break;
1209
	}
1210
	/* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
1211
	reg_w(gspca_dev, 0x15, &regs[0x15], 2);
1212
	/* compression register */
1213
	reg_w(gspca_dev, 0x18, &regs[0x18], 1);
1214
	/* H_start */
1215
	reg_w(gspca_dev, 0x12, &regs[0x12], 1);
1216
	/* V_START */
1217
	reg_w(gspca_dev, 0x13, &regs[0x13], 1);
1218 1219
	/* reset 0x17 SensorClk enable inv Clk 0x60 */
				/*fixme: ov7630 [17]=68 8f (+20 if 102)*/
1220
	reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1221
	/*MCKSIZE ->3 */	/*fixme: not ov7630*/
1222
	reg_w(gspca_dev, 0x19, &regs[0x19], 1);
1223
	/* AE_STRX AE_STRY AE_ENDX AE_ENDY */
1224
	reg_w(gspca_dev, 0x1c, &regs[0x1c], 4);
1225
	/* Enable video transfert */
1226
	reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1227
	/* Compression */
1228
	reg_w(gspca_dev, 0x18, &regs[0x18], 2);
1229 1230
	msleep(20);

1231 1232
	sd->reg11 = -1;

1233
	setgain(gspca_dev);
1234
	setbrightness(gspca_dev);
1235
	setexposure(gspca_dev);
1236
	setfreq(gspca_dev);
1237

1238
	sd->frames_to_drop = 0;
1239
	sd->autogain_ignore_frames = 0;
1240 1241
	sd->exp_too_high_cnt = 0;
	sd->exp_too_low_cnt = 0;
1242
	atomic_set(&sd->avg_lum, -1);
1243
	return 0;
1244 1245 1246 1247
}

static void sd_stopN(struct gspca_dev *gspca_dev)
{
1248
	sd_init(gspca_dev);
1249 1250
}

1251
static u8* find_sof(struct gspca_dev *gspca_dev, u8 *data, int len)
1252
{
1253
	struct sd *sd = (struct sd *) gspca_dev;
1254
	int i, header_size = (sd->bridge == BRIDGE_103) ? 18 : 12;
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264
	/* frames start with:
	 *	ff ff 00 c4 c4 96	synchro
	 *	00		(unknown)
	 *	xx		(frame sequence / size / compression)
	 *	(xx)		(idem - extra byte for sn9c103)
	 *	ll mm		brightness sum inside auto exposure
	 *	ll mm		brightness sum outside auto exposure
	 *	(xx xx xx xx xx)	audio values for snc103
	 */
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	for (i = 0; i < len; i++) {
		switch (sd->header_read) {
		case 0:
			if (data[i] == 0xff)
				sd->header_read++;
			break;
		case 1:
			if (data[i] == 0xff)
				sd->header_read++;
			else
				sd->header_read = 0;
			break;
		case 2:
			if (data[i] == 0x00)
				sd->header_read++;
			else if (data[i] != 0xff)
				sd->header_read = 0;
			break;
		case 3:
			if (data[i] == 0xc4)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		case 4:
			if (data[i] == 0xc4)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		case 5:
			if (data[i] == 0x96)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		default:
			sd->header[sd->header_read - 6] = data[i];
			sd->header_read++;
			if (sd->header_read == header_size) {
				sd->header_read = 0;
				return data + i + 1;
1313 1314 1315
			}
		}
	}
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	return NULL;
}

static void sd_pkt_scan(struct gspca_dev *gspca_dev,
			u8 *data,			/* isoc packet */
			int len)			/* iso packet length */
{
	int fr_h_sz = 0, lum_offset = 0, len_after_sof = 0;
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam = &gspca_dev->cam;
	u8 *sof;

	sof = find_sof(gspca_dev, data, len);
	if (sof) {
		if (sd->bridge == BRIDGE_103) {
			fr_h_sz = 18;
			lum_offset = 3;
		} else {
			fr_h_sz = 12;
			lum_offset = 2;
		}

		len_after_sof = len - (sof - data);
		len = (sof - data) - fr_h_sz;
		if (len < 0)
			len = 0;
	}
1343 1344 1345 1346

	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
		/* In raw mode we sometimes get some garbage after the frame
		   ignore this */
1347
		int used;
1348 1349
		int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;

1350
		used = gspca_dev->image_len;
1351 1352 1353 1354
		if (used + len > size)
			len = size - used;
	}

1355
	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

	if (sof) {
		int  lum = sd->header[lum_offset] +
			  (sd->header[lum_offset + 1] << 8);

		/* When exposure changes midway a frame we
		   get a lum of 0 in this case drop 2 frames
		   as the frames directly after an exposure
		   change have an unstable image. Sometimes lum
		   *really* is 0 (cam used in low light with
		   low exposure setting), so do not drop frames
		   if the previous lum was 0 too. */
		if (lum == 0 && sd->prev_avg_lum != 0) {
			lum = -1;
			sd->frames_to_drop = 2;
			sd->prev_avg_lum = 0;
		} else
			sd->prev_avg_lum = lum;
		atomic_set(&sd->avg_lum, lum);

		if (sd->frames_to_drop)
			sd->frames_to_drop--;
		else
			gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);

		gspca_frame_add(gspca_dev, FIRST_PACKET, sof, len_after_sof);
	}
1383 1384
}

1385 1386 1387 1388
static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

1389
	sd->ctrls[AUTOGAIN].val = val;
1390 1391 1392
	sd->exp_too_high_cnt = 0;
	sd->exp_too_low_cnt = 0;

1393 1394 1395 1396
	/* when switching to autogain set defaults to make sure
	   we are on a valid point of the autogain gain /
	   exposure knee graph, and give this change time to
	   take effect before doing autogain. */
1397 1398 1399 1400
	if (sd->ctrls[AUTOGAIN].val
	 && !(sensor_data[sd->sensor].flags & F_COARSE_EXPO)) {
		sd->ctrls[EXPOSURE].val = sd->ctrls[EXPOSURE].def;
		sd->ctrls[GAIN].val = sd->ctrls[GAIN].def;
1401 1402 1403 1404 1405 1406 1407
		if (gspca_dev->streaming) {
			sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
			setexposure(gspca_dev);
			setgain(gspca_dev);
		}
	}

1408 1409 1410 1411 1412
	if (sd->ctrls[AUTOGAIN].val)
		gspca_dev->ctrl_inac = (1 << GAIN) | (1 << EXPOSURE);
	else
		gspca_dev->ctrl_inac = 0;

1413 1414 1415
	return 0;
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static int sd_querymenu(struct gspca_dev *gspca_dev,
			struct v4l2_querymenu *menu)
{
	switch (menu->id) {
	case V4L2_CID_POWER_LINE_FREQUENCY:
		switch (menu->index) {
		case 0:		/* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
			strcpy((char *) menu->name, "NoFliker");
			return 0;
		case 1:		/* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
			strcpy((char *) menu->name, "50 Hz");
			return 0;
		case 2:		/* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
			strcpy((char *) menu->name, "60 Hz");
			return 0;
		}
		break;
	}
	return -EINVAL;
}

1437
#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
static int sd_int_pkt_scan(struct gspca_dev *gspca_dev,
			u8 *data,		/* interrupt packet data */
			int len)		/* interrupt packet length */
{
	int ret = -EINVAL;

	if (len == 1 && data[0] == 1) {
		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1);
		input_sync(gspca_dev->input_dev);
		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
		input_sync(gspca_dev->input_dev);
		ret = 0;
	}

	return ret;
}
#endif

1456
/* sub-driver description */
1457
static const struct sd_desc sd_desc = {
1458 1459 1460 1461
	.name = MODULE_NAME,
	.ctrls = sd_ctrls,
	.nctrls = ARRAY_SIZE(sd_ctrls),
	.config = sd_config,
1462
	.init = sd_init,
1463 1464 1465
	.start = sd_start,
	.stopN = sd_stopN,
	.pkt_scan = sd_pkt_scan,
1466
	.querymenu = sd_querymenu,
1467
	.dq_callback = do_autogain,
1468
#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
1469 1470
	.int_pkt_scan = sd_int_pkt_scan,
#endif
1471 1472 1473
};

/* -- module initialisation -- */
1474 1475 1476
#define SB(sensor, bridge) \
	.driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge

1477

1478
static const struct usb_device_id device_table[] = {
1479 1480 1481
	{USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */
1482 1483 1484 1485
	{USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
	{USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
1486
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1487 1488
	{USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
	{USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
1489
#endif
1490 1491
	{USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
	{USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
1492 1493
	{USB_DEVICE(0x0c45, 0x602a), SB(HV7131D, 102)},
	/* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */
1494
	{USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1495 1496
	{USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
	{USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1497 1498 1499 1500 1501
	/* {USB_DEVICE(0x0c45, 0x6030), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */
	/* {USB_DEVICE(0x0c45, 0x6082), SB(MI03XX, 103)}, */ /* MI0343 MI0360 */
	{USB_DEVICE(0x0c45, 0x6083), SB(HV7131D, 103)},
	{USB_DEVICE(0x0c45, 0x608c), SB(HV7131R, 103)},
	/* {USB_DEVICE(0x0c45, 0x608e), SB(CISVF10, 103)}, */
1502
	{USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1503 1504
	{USB_DEVICE(0x0c45, 0x60a8), SB(PAS106, 103)},
	{USB_DEVICE(0x0c45, 0x60aa), SB(TAS5130CXX, 103)},
1505
	{USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1506
	{USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1507 1508 1509 1510 1511
	{}
};
MODULE_DEVICE_TABLE(usb, device_table);

/* -- device connect -- */
1512
static int sd_probe(struct usb_interface *intf,
1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
			const struct usb_device_id *id)
{
	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
				THIS_MODULE);
}

static struct usb_driver sd_driver = {
	.name = MODULE_NAME,
	.id_table = device_table,
	.probe = sd_probe,
	.disconnect = gspca_disconnect,
1524 1525 1526 1527
#ifdef CONFIG_PM
	.suspend = gspca_suspend,
	.resume = gspca_resume,
#endif
1528 1529 1530 1531 1532
};

/* -- module insert / remove -- */
static int __init sd_mod_init(void)
{
1533
	return usb_register(&sd_driver);
1534 1535 1536 1537 1538 1539 1540 1541
}
static void __exit sd_mod_exit(void)
{
	usb_deregister(&sd_driver);
}

module_init(sd_mod_init);
module_exit(sd_mod_exit);