sonixb.c 46.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 *		sonix sn9c102 (bayer) library
 *		Copyright (C) 2003 2004 Michel Xhaard mxhaard@magic.fr
 * Add Pas106 Stefano Mozzi (C) 2004
 *
 * V4L2 by Jean-Francois Moine <http://moinejf.free.fr>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

23 24 25
/* Some documentation on known sonixb registers:

Reg	Use
26
sn9c101 / sn9c102:
27 28
0x10	high nibble red gain low nibble blue gain
0x11	low nibble green gain
29 30 31 32 33 34
sn9c103:
0x05	red gain 0-127
0x06	blue gain 0-127
0x07	green gain 0-127
all:
0x08-0x0f i2c / 3wire registers
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
0x12	hstart
0x13	vstart
0x15	hsize (hsize = register-value * 16)
0x16	vsize (vsize = register-value * 16)
0x17	bit 0 toggle compression quality (according to sn9c102 driver)
0x18	bit 7 enables compression, bit 4-5 set image down scaling:
	00 scale 1, 01 scale 1/2, 10, scale 1/4
0x19	high-nibble is sensor clock divider, changes exposure on sensors which
	use a clock generated by the bridge. Some sensors have their own clock.
0x1c	auto_exposure area (for avg_lum) startx (startx = register-value * 32)
0x1d	auto_exposure area (for avg_lum) starty (starty = register-value * 32)
0x1e	auto_exposure area (for avg_lum) stopx (hsize = (0x1e - 0x1c) * 32)
0x1f	auto_exposure area (for avg_lum) stopy (vsize = (0x1f - 0x1d) * 32)
*/

50 51
#define MODULE_NAME "sonixb"

52
#include <linux/input.h>
53 54 55 56 57 58 59 60 61
#include "gspca.h"

MODULE_AUTHOR("Michel Xhaard <mxhaard@users.sourceforge.net>");
MODULE_DESCRIPTION("GSPCA/SN9C102 USB Camera Driver");
MODULE_LICENSE("GPL");

/* specific webcam descriptor */
struct sd {
	struct gspca_dev gspca_dev;	/* !! must be the first item */
62
	atomic_t avg_lum;
63
	int prev_avg_lum;
64 65
	int exp_too_low_cnt;
	int exp_too_high_cnt;
66 67
	int header_read;
	u8 header[12]; /* Header without sof marker */
68

69
	unsigned short exposure;
70
	unsigned char gain;
71
	unsigned char brightness;
72 73
	unsigned char autogain;
	unsigned char autogain_ignore_frames;
74
	unsigned char frames_to_drop;
75
	unsigned char freq;		/* light freq filter setting */
76

77 78 79 80 81 82
	__u8 bridge;			/* Type of bridge */
#define BRIDGE_101 0
#define BRIDGE_102 0 /* We make no difference between 101 and 102 */
#define BRIDGE_103 1

	__u8 sensor;			/* Type of image sensor chip */
83 84 85 86 87 88 89 90 91
#define SENSOR_HV7131D 0
#define SENSOR_HV7131R 1
#define SENSOR_OV6650 2
#define SENSOR_OV7630 3
#define SENSOR_PAS106 4
#define SENSOR_PAS202 5
#define SENSOR_TAS5110C 6
#define SENSOR_TAS5110D 7
#define SENSOR_TAS5130CXX 8
92
	__u8 reg11;
93 94
};

95 96 97
typedef const __u8 sensor_init_t[8];

struct sensor_data {
98
	const __u8 *bridge_init;
99 100 101 102 103 104 105 106
	sensor_init_t *sensor_init;
	int sensor_init_size;
	int flags;
	unsigned ctrl_dis;
	__u8 sensor_addr;
};

/* sensor_data flags */
107
#define F_GAIN 0x01		/* has gain */
108
#define F_SIF  0x02		/* sif or vga */
109
#define F_COARSE_EXPO 0x04	/* exposure control is coarse */
110 111 112

/* priv field of struct v4l2_pix_format flags (do not use low nibble!) */
#define MODE_RAW 0x10		/* raw bayer mode */
113
#define MODE_REDUCED_SIF 0x20	/* vga mode (320x240 / 160x120) on sif cam */
114 115

/* ctrl_dis helper macros */
116 117
#define NO_EXPO ((1 << EXPOSURE_IDX) | (1 << COARSE_EXPOSURE_IDX) | \
		 (1 << AUTOGAIN_IDX))
118 119
#define NO_FREQ (1 << FREQ_IDX)
#define NO_BRIGHTNESS (1 << BRIGHTNESS_IDX)
120

121 122 123 124 125 126 127 128
#define COMP 0xc7		/* 0x87 //0x07 */
#define COMP1 0xc9		/* 0x89 //0x09 */

#define MCK_INIT 0x63
#define MCK_INIT1 0x20		/*fixme: Bayer - 0x50 for JPEG ??*/

#define SYS_CLK 0x04

129
#define SENS(bridge, sensor, _flags, _ctrl_dis, _sensor_addr) \
130
{ \
131
	.bridge_init = bridge, \
132 133 134 135 136
	.sensor_init = sensor, \
	.sensor_init_size = sizeof(sensor), \
	.flags = _flags, .ctrl_dis = _ctrl_dis, .sensor_addr = _sensor_addr \
}

137
/* We calculate the autogain at the end of the transfer of a frame, at this
138 139 140 141
   moment a frame with the old settings is being captured and transmitted. So
   if we adjust the gain or exposure we must ignore atleast the next frame for
   the new settings to come into effect before doing any other adjustments. */
#define AUTOGAIN_IGNORE_FRAMES 1
142

143 144 145
/* V4L2 controls supported by the driver */
static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val);
146 147 148 149 150 151
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val);
static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val);
152 153
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val);
static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val);
154

155
static const struct ctrl sd_ctrls[] = {
156
#define BRIGHTNESS_IDX 0
157 158 159 160 161 162 163 164
	{
	    {
		.id      = V4L2_CID_BRIGHTNESS,
		.type    = V4L2_CTRL_TYPE_INTEGER,
		.name    = "Brightness",
		.minimum = 0,
		.maximum = 255,
		.step    = 1,
165 166
#define BRIGHTNESS_DEF 127
		.default_value = BRIGHTNESS_DEF,
167 168 169 170
	    },
	    .set = sd_setbrightness,
	    .get = sd_getbrightness,
	},
171
#define GAIN_IDX 1
172 173
	{
	    {
174
		.id      = V4L2_CID_GAIN,
175
		.type    = V4L2_CTRL_TYPE_INTEGER,
176
		.name    = "Gain",
177
		.minimum = 0,
178
		.maximum = 255,
179
		.step    = 1,
180
#define GAIN_DEF 127
181
#define GAIN_KNEE 230
182
		.default_value = GAIN_DEF,
183
	    },
184 185 186
	    .set = sd_setgain,
	    .get = sd_getgain,
	},
187
#define EXPOSURE_IDX 2
188 189 190 191 192
	{
		{
			.id = V4L2_CID_EXPOSURE,
			.type = V4L2_CTRL_TYPE_INTEGER,
			.name = "Exposure",
193 194
#define EXPOSURE_DEF  66 /*  33 ms / 30 fps (except on PASXXX) */
#define EXPOSURE_KNEE 200 /* 100 ms / 10 fps (except on PASXXX) */
195
			.minimum = 0,
196
			.maximum = 1023,
197 198 199 200 201 202 203
			.step = 1,
			.default_value = EXPOSURE_DEF,
			.flags = 0,
		},
		.set = sd_setexposure,
		.get = sd_getexposure,
	},
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#define COARSE_EXPOSURE_IDX 3
	{
		{
			.id = V4L2_CID_EXPOSURE,
			.type = V4L2_CTRL_TYPE_INTEGER,
			.name = "Exposure",
#define COARSE_EXPOSURE_DEF  2 /* 30 fps */
			.minimum = 2,
			.maximum = 15,
			.step = 1,
			.default_value = COARSE_EXPOSURE_DEF,
			.flags = 0,
		},
		.set = sd_setexposure,
		.get = sd_getexposure,
	},
#define AUTOGAIN_IDX 4
221 222 223 224 225 226 227 228
	{
		{
			.id = V4L2_CID_AUTOGAIN,
			.type = V4L2_CTRL_TYPE_BOOLEAN,
			.name = "Automatic Gain (and Exposure)",
			.minimum = 0,
			.maximum = 1,
			.step = 1,
229 230
#define AUTOGAIN_DEF 1
			.default_value = AUTOGAIN_DEF,
231 232 233 234
			.flags = 0,
		},
		.set = sd_setautogain,
		.get = sd_getautogain,
235
	},
236
#define FREQ_IDX 5
237 238 239 240 241 242 243 244
	{
		{
			.id	 = V4L2_CID_POWER_LINE_FREQUENCY,
			.type    = V4L2_CTRL_TYPE_MENU,
			.name    = "Light frequency filter",
			.minimum = 0,
			.maximum = 2,	/* 0: 0, 1: 50Hz, 2:60Hz */
			.step    = 1,
245
#define FREQ_DEF 0
246 247 248 249 250
			.default_value = FREQ_DEF,
		},
		.set = sd_setfreq,
		.get = sd_getfreq,
	},
251 252
};

253
static const struct v4l2_pix_format vga_mode[] = {
254 255
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
256
		.sizeimage = 160 * 120,
257 258
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2 | MODE_RAW},
259 260
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
261
		.sizeimage = 160 * 120 * 5 / 4,
262 263 264 265
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 2},
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
266
		.sizeimage = 320 * 240 * 5 / 4,
267 268 269 270
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
	{640, 480, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 640,
271
		.sizeimage = 640 * 480 * 5 / 4,
272 273
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
274
};
275
static const struct v4l2_pix_format sif_mode[] = {
276 277 278 279 280 281 282 283 284 285
	{160, 120, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW | MODE_REDUCED_SIF},
	{160, 120, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 160,
		.sizeimage = 160 * 120 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_REDUCED_SIF},
286 287
	{176, 144, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
		.bytesperline = 176,
288
		.sizeimage = 176 * 144,
289 290
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1 | MODE_RAW},
291 292
	{176, 144, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 176,
293
		.sizeimage = 176 * 144 * 5 / 4,
294 295
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 1},
296 297 298 299 300
	{320, 240, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 320,
		.sizeimage = 320 * 240 * 5 / 4,
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0 | MODE_REDUCED_SIF},
301 302
	{352, 288, V4L2_PIX_FMT_SN9C10X, V4L2_FIELD_NONE,
		.bytesperline = 352,
303
		.sizeimage = 352 * 288 * 5 / 4,
304 305
		.colorspace = V4L2_COLORSPACE_SRGB,
		.priv = 0},
306 307
};

308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
static const __u8 initHv7131d[] = {
	0x04, 0x03, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
	0x00, 0x00, 0x00, 0x02, 0x02, 0x00,
	0x28, 0x1e, 0x60, 0x8e, 0x42,
};
static const __u8 hv7131d_sensor_init[][8] = {
	{0xa0, 0x11, 0x01, 0x04, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x02, 0x00, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x28, 0x00, 0x00, 0x00, 0x00, 0x17},
	{0xa0, 0x11, 0x30, 0x30, 0x00, 0x00, 0x00, 0x17}, /* reset level */
	{0xa0, 0x11, 0x34, 0x02, 0x00, 0x00, 0x00, 0x17}, /* pixel bias volt */
};

static const __u8 initHv7131r[] = {
323 324
	0x46, 0x77, 0x00, 0x04, 0x00, 0x00, 0x00, 0x80, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
325
	0x00, 0x00, 0x00, 0x02, 0x01, 0x00,
326 327
	0x28, 0x1e, 0x60, 0x8a, 0x20,
};
328
static const __u8 hv7131r_sensor_init[][8] = {
329 330 331 332 333 334 335 336 337
	{0xc0, 0x11, 0x31, 0x38, 0x2a, 0x2e, 0x00, 0x10},
	{0xa0, 0x11, 0x01, 0x08, 0x2a, 0x2e, 0x00, 0x10},
	{0xb0, 0x11, 0x20, 0x00, 0xd0, 0x2e, 0x00, 0x10},
	{0xc0, 0x11, 0x25, 0x03, 0x0e, 0x28, 0x00, 0x16},
	{0xa0, 0x11, 0x30, 0x10, 0x0e, 0x28, 0x00, 0x15},
};
static const __u8 initOv6650[] = {
	0x44, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,
	0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
338
	0x00, 0x01, 0x01, 0x0a, 0x16, 0x12, 0x68, 0x8b,
339
	0x10,
340
};
341
static const __u8 ov6650_sensor_init[][8] = {
342
	/* Bright, contrast, etc are set through SCBB interface.
343
	 * AVCAP on win2 do not send any data on this controls. */
344
	/* Anyway, some registers appears to alter bright and constrat */
345 346

	/* Reset sensor */
347
	{0xa0, 0x60, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
348
	/* Set clock register 0x11 low nibble is clock divider */
349
	{0xd0, 0x60, 0x11, 0xc0, 0x1b, 0x18, 0xc1, 0x10},
350
	/* Next some unknown stuff */
351 352 353 354 355 356 357
	{0xb0, 0x60, 0x15, 0x00, 0x02, 0x18, 0xc1, 0x10},
/*	{0xa0, 0x60, 0x1b, 0x01, 0x02, 0x18, 0xc1, 0x10},
		 * THIS SET GREEN SCREEN
		 * (pixels could be innverted in decode kind of "brg",
		 * but blue wont be there. Avoid this data ... */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10}, /* format out? */
	{0xd0, 0x60, 0x26, 0x01, 0x14, 0xd8, 0xa4, 0x10},
358
	{0xa0, 0x60, 0x30, 0x3d, 0x0a, 0xd8, 0xa4, 0x10},
359 360 361 362 363 364 365 366 367
	/* Enable rgb brightness control */
	{0xa0, 0x60, 0x61, 0x08, 0x00, 0x00, 0x00, 0x10},
	/* HDG: Note windows uses the line below, which sets both register 0x60
	   and 0x61 I believe these registers of the ov6650 are identical as
	   those of the ov7630, because if this is true the windows settings
	   add a bit additional red gain and a lot additional blue gain, which
	   matches my findings that the windows settings make blue much too
	   blue and red a little too red.
	{0xb0, 0x60, 0x60, 0x66, 0x68, 0xd8, 0xa4, 0x10}, */
368
	/* Some more unknown stuff */
369 370 371
	{0xa0, 0x60, 0x68, 0x04, 0x68, 0xd8, 0xa4, 0x10},
	{0xd0, 0x60, 0x17, 0x24, 0xd6, 0x04, 0x94, 0x10}, /* Clipreg */
};
372

373 374 375
static const __u8 initOv7630[] = {
	0x04, 0x44, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80,	/* r01 .. r08 */
	0x21, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,	/* r09 .. r10 */
376
	0x00, 0x01, 0x01, 0x0a,				/* r11 .. r14 */
377
	0x28, 0x1e,			/* H & V sizes     r15 .. r16 */
378
	0x68, 0x8f, MCK_INIT1,				/* r17 .. r19 */
379
};
380
static const __u8 ov7630_sensor_init[][8] = {
381 382 383
	{0xa0, 0x21, 0x12, 0x80, 0x00, 0x00, 0x00, 0x10},
	{0xb0, 0x21, 0x01, 0x77, 0x3a, 0x00, 0x00, 0x10},
/*	{0xd0, 0x21, 0x12, 0x7c, 0x01, 0x80, 0x34, 0x10},	   jfm */
384
	{0xd0, 0x21, 0x12, 0x1c, 0x00, 0x80, 0x34, 0x10},	/* jfm */
385 386 387 388 389 390 391
	{0xa0, 0x21, 0x1b, 0x04, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x20, 0x44, 0x00, 0x80, 0x34, 0x10},
	{0xa0, 0x21, 0x23, 0xee, 0x00, 0x80, 0x34, 0x10},
	{0xd0, 0x21, 0x26, 0xa0, 0x9a, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2a, 0x80, 0x00, 0xa0, 0x30, 0x10},
	{0xb0, 0x21, 0x2f, 0x3d, 0x24, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x32, 0x86, 0x24, 0xa0, 0x30, 0x10},
392 393
	{0xb0, 0x21, 0x60, 0xa9, 0x4a, 0xa0, 0x30, 0x10},
/*	{0xb0, 0x21, 0x60, 0xa9, 0x42, 0xa0, 0x30, 0x10},	 * jfm */
394 395 396 397 398 399 400 401 402 403 404
	{0xa0, 0x21, 0x65, 0x00, 0x42, 0xa0, 0x30, 0x10},
	{0xa0, 0x21, 0x69, 0x38, 0x42, 0xa0, 0x30, 0x10},
	{0xc0, 0x21, 0x6f, 0x88, 0x0b, 0x00, 0x30, 0x10},
	{0xc0, 0x21, 0x74, 0x21, 0x8e, 0x00, 0x30, 0x10},
	{0xa0, 0x21, 0x7d, 0xf7, 0x8e, 0x00, 0x30, 0x10},
	{0xd0, 0x21, 0x17, 0x1c, 0xbd, 0x06, 0xf6, 0x10},
};

static const __u8 initPas106[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x81, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
405
	0x00, 0x00, 0x00, 0x04, 0x01, 0x00,
406
	0x16, 0x12, 0x24, COMP1, MCK_INIT1,
407 408
};
/* compression 0x86 mckinit1 0x2b */
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432

/* "Known" PAS106B registers:
  0x02 clock divider
  0x03 Variable framerate bits 4-11
  0x04 Var framerate bits 0-3, one must leave the 4 msb's at 0 !!
       The variable framerate control must never be set lower then 300,
       which sets the framerate at 90 / reg02, otherwise vsync is lost.
  0x05 Shutter Time Line Offset, this can be used as an exposure control:
       0 = use full frame time, 255 = no exposure at all
       Note this may never be larger then "var-framerate control" / 2 - 2.
       When var-framerate control is < 514, no exposure is reached at the max
       allowed value for the framerate control value, rather then at 255.
  0x06 Shutter Time Pixel Offset, like reg05 this influences exposure, but
       only a very little bit, leave at 0xcd
  0x07 offset sign bit (bit0 1 > negative offset)
  0x08 offset
  0x09 Blue Gain
  0x0a Green1 Gain
  0x0b Green2 Gain
  0x0c Red Gain
  0x0e Global gain
  0x13 Write 1 to commit settings to sensor
*/

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static const __u8 pas106_sensor_init[][8] = {
	/* Pixel Clock Divider 6 */
	{ 0xa1, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time MSB (also seen as 0x12) */
	{ 0xa1, 0x40, 0x03, 0x13, 0x00, 0x00, 0x00, 0x14 },
	/* Frame Time LSB (also seen as 0x05) */
	{ 0xa1, 0x40, 0x04, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Line Offset (also seen as 0x6d) */
	{ 0xa1, 0x40, 0x05, 0x65, 0x00, 0x00, 0x00, 0x14 },
	/* Shutter Time Pixel Offset (also seen as 0xb1) */
	{ 0xa1, 0x40, 0x06, 0xcd, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Sign (also seen 0x00) */
	{ 0xa1, 0x40, 0x07, 0xc1, 0x00, 0x00, 0x00, 0x14 },
	/* Black Level Subtract Level (also seen 0x01) */
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	{ 0xa1, 0x40, 0x08, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain B Pixel 5 a */
	{ 0xa1, 0x40, 0x09, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G1 Pixel 1 5 */
	{ 0xa1, 0x40, 0x0a, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain G2 Pixel 1 0 5 */
	{ 0xa1, 0x40, 0x0b, 0x04, 0x00, 0x00, 0x00, 0x14 },
	/* Color Gain R Pixel 3 1 */
	{ 0xa1, 0x40, 0x0c, 0x05, 0x00, 0x00, 0x00, 0x14 },
	/* Color GainH  Pixel */
	{ 0xa1, 0x40, 0x0d, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* Global Gain */
	{ 0xa1, 0x40, 0x0e, 0x0e, 0x00, 0x00, 0x00, 0x14 },
	/* Contrast */
	{ 0xa1, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x14 },
	/* H&V synchro polarity */
	{ 0xa1, 0x40, 0x10, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x11, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* DAC scale */
	{ 0xa1, 0x40, 0x12, 0x06, 0x00, 0x00, 0x00, 0x14 },
	/* ?default */
	{ 0xa1, 0x40, 0x14, 0x02, 0x00, 0x00, 0x00, 0x14 },
	/* Validate Settings */
	{ 0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14 },
473
};
474

475 476 477
static const __u8 initPas202[] = {
	0x44, 0x44, 0x21, 0x30, 0x00, 0x00, 0x00, 0x80, 0x40, 0x00, 0x00, 0x00,
	0x00, 0x00,
478
	0x00, 0x00, 0x00, 0x06, 0x03, 0x0a,
479
	0x28, 0x1e, 0x20, 0x89, 0x20,
480
};
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

/* "Known" PAS202BCB registers:
  0x02 clock divider
  0x04 Variable framerate bits 6-11 (*)
  0x05 Var framerate  bits 0-5, one must leave the 2 msb's at 0 !!
  0x07 Blue Gain
  0x08 Green Gain
  0x09 Red Gain
  0x0b offset sign bit (bit0 1 > negative offset)
  0x0c offset
  0x0e Unknown image is slightly brighter when bit 0 is 0, if reg0f is 0 too,
       leave at 1 otherwise we get a jump in our exposure control
  0x0f Exposure 0-255, 0 = use full frame time, 255 = no exposure at all
  0x10 Master gain 0 - 31
  0x11 write 1 to apply changes
  (*) The variable framerate control must never be set lower then 500
      which sets the framerate at 30 / reg02, otherwise vsync is lost.
*/
499
static const __u8 pas202_sensor_init[][8] = {
500 501 502 503
	/* Set the clock divider to 4 -> 30 / 4 = 7.5 fps, we would like
	   to set it lower, but for some reason the bridge starts missing
	   vsync's then */
	{0xa0, 0x40, 0x02, 0x04, 0x00, 0x00, 0x00, 0x10},
504 505
	{0xd0, 0x40, 0x04, 0x07, 0x34, 0x00, 0x09, 0x10},
	{0xd0, 0x40, 0x08, 0x01, 0x00, 0x00, 0x01, 0x10},
506
	{0xd0, 0x40, 0x0c, 0x00, 0x0c, 0x01, 0x32, 0x10},
507 508 509 510 511 512 513 514
	{0xd0, 0x40, 0x10, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x15, 0x70, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x18, 0x00, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x03, 0x56, 0x01, 0x00, 0x63, 0x10},
	{0xa0, 0x40, 0x11, 0x01, 0x01, 0x00, 0x63, 0x10},
};

515
static const __u8 initTas5110c[] = {
516 517
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
518
	0x00, 0x00, 0x00, 0x45, 0x09, 0x0a,
519 520
	0x16, 0x12, 0x60, 0x86, 0x2b,
};
521 522 523 524
/* Same as above, except a different hstart */
static const __u8 initTas5110d[] = {
	0x44, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
525
	0x00, 0x00, 0x00, 0x41, 0x09, 0x0a,
526 527
	0x16, 0x12, 0x60, 0x86, 0x2b,
};
528 529 530 531 532 533 534 535 536
static const __u8 tas5110_sensor_init[][8] = {
	{0x30, 0x11, 0x00, 0x00, 0x0c, 0x00, 0x00, 0x10},
	{0x30, 0x11, 0x02, 0x20, 0xa9, 0x00, 0x00, 0x10},
	{0xa0, 0x61, 0x9a, 0xca, 0x00, 0x00, 0x00, 0x17},
};

static const __u8 initTas5130[] = {
	0x04, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x11, 0x00, 0x00, 0x00,
	0x00, 0x00,
537
	0x00, 0x00, 0x00, 0x68, 0x0c, 0x0a,
538 539 540
	0x28, 0x1e, 0x60, COMP, MCK_INIT,
};
static const __u8 tas5130_sensor_init[][8] = {
541
/*	{0x30, 0x11, 0x00, 0x40, 0x47, 0x00, 0x00, 0x10},
542 543 544 545 546 547
					* shutter 0x47 short exposure? */
	{0x30, 0x11, 0x00, 0x40, 0x01, 0x00, 0x00, 0x10},
					/* shutter 0x01 long exposure */
	{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10},
};

548
static struct sensor_data sensor_data[] = {
549 550 551 552 553 554 555 556 557 558 559
SENS(initHv7131d, hv7131d_sensor_init, F_GAIN, NO_BRIGHTNESS|NO_FREQ, 0),
SENS(initHv7131r, hv7131r_sensor_init, 0, NO_BRIGHTNESS|NO_EXPO|NO_FREQ, 0),
SENS(initOv6650, ov6650_sensor_init, F_GAIN|F_SIF, 0, 0x60),
SENS(initOv7630, ov7630_sensor_init, F_GAIN, 0, 0x21),
SENS(initPas106, pas106_sensor_init, F_GAIN|F_SIF, NO_FREQ, 0),
SENS(initPas202, pas202_sensor_init, F_GAIN, NO_FREQ, 0),
SENS(initTas5110c, tas5110_sensor_init, F_GAIN|F_SIF|F_COARSE_EXPO,
	NO_BRIGHTNESS|NO_FREQ, 0),
SENS(initTas5110d, tas5110_sensor_init, F_GAIN|F_SIF|F_COARSE_EXPO,
	NO_BRIGHTNESS|NO_FREQ, 0),
SENS(initTas5130, tas5130_sensor_init, 0, NO_EXPO|NO_FREQ, 0),
560 561
};

562 563 564
/* get one byte in gspca_dev->usb_buf */
static void reg_r(struct gspca_dev *gspca_dev,
		  __u16 value)
565
{
566 567
	usb_control_msg(gspca_dev->dev,
			usb_rcvctrlpipe(gspca_dev->dev, 0),
568 569 570 571
			0,			/* request */
			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
572
			gspca_dev->usb_buf, 1,
573 574 575
			500);
}

576 577 578 579
static void reg_w(struct gspca_dev *gspca_dev,
		  __u16 value,
		  const __u8 *buffer,
		  int len)
580
{
581
#ifdef GSPCA_DEBUG
582
	if (len > USB_BUF_SZ) {
583 584 585 586
		PDEBUG(D_ERR|D_PACK, "reg_w: buffer overflow");
		return;
	}
#endif
587 588 589 590 591 592 593 594 595 596 597 598
	memcpy(gspca_dev->usb_buf, buffer, len);
	usb_control_msg(gspca_dev->dev,
			usb_sndctrlpipe(gspca_dev->dev, 0),
			0x08,			/* request */
			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE,
			value,
			0,			/* index */
			gspca_dev->usb_buf, len,
			500);
}

static int i2c_w(struct gspca_dev *gspca_dev, const __u8 *buffer)
599 600 601 602
{
	int retry = 60;

	/* is i2c ready */
603
	reg_w(gspca_dev, 0x08, buffer, 8);
604 605
	while (retry--) {
		msleep(10);
606
		reg_r(gspca_dev, 0x08);
607 608 609
		if (gspca_dev->usb_buf[0] & 0x04) {
			if (gspca_dev->usb_buf[0] & 0x08)
				return -1;
610
			return 0;
611
		}
612 613 614 615
	}
	return -1;
}

616
static void i2c_w_vector(struct gspca_dev *gspca_dev,
617 618 619
			const __u8 buffer[][8], int len)
{
	for (;;) {
620
		reg_w(gspca_dev, 0x08, *buffer, 8);
621 622 623 624 625 626 627 628 629 630 631 632 633
		len -= 8;
		if (len <= 0)
			break;
		buffer++;
	}
}

static void setbrightness(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 value;

	switch (sd->sensor) {
634
	case  SENSOR_OV6650:
635 636
	case  SENSOR_OV7630: {
		__u8 i2cOV[] =
637
			{0xa0, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x10};
638 639

		/* change reg 0x06 */
640
		i2cOV[1] = sensor_data[sd->sensor].sensor_addr;
641
		i2cOV[3] = sd->brightness;
642
		if (i2c_w(gspca_dev, i2cOV) < 0)
643 644 645
			goto err;
		break;
	    }
646
	case SENSOR_PAS106:
647
	case SENSOR_PAS202: {
648 649
		__u8 i2cpbright[] =
			{0xb0, 0x40, 0x0b, 0x00, 0x00, 0x00, 0x00, 0x16};
650
		__u8 i2cpdoit[] =
651 652
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};

653 654 655 656 657 658
		/* PAS106 uses reg 7 and 8 instead of b and c */
		if (sd->sensor == SENSOR_PAS106) {
			i2cpbright[2] = 7;
			i2cpdoit[2] = 0x13;
		}

659 660 661 662 663 664 665 666 667
		if (sd->brightness < 127) {
			/* change reg 0x0b, signreg */
			i2cpbright[3] = 0x01;
			/* set reg 0x0c, offset */
			i2cpbright[4] = 127 - sd->brightness;
		} else
			i2cpbright[4] = sd->brightness - 127;

		if (i2c_w(gspca_dev, i2cpbright) < 0)
668
			goto err;
669
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
670 671 672
			goto err;
		break;
	    }
673
	case SENSOR_TAS5130CXX: {
674 675 676 677 678 679
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

		value = 0xff - sd->brightness;
		i2c[4] = value;
		PDEBUG(D_CONF, "brightness %d : %d", value, i2c[4]);
680
		if (i2c_w(gspca_dev, i2c) < 0)
681 682 683 684 685 686 687 688
			goto err;
		break;
	    }
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error brightness");
}
689 690 691 692

static void setsensorgain(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;
693
	unsigned char gain = sd->gain;
694 695

	switch (sd->sensor) {
696 697 698 699 700 701 702
	case SENSOR_HV7131D: {
		__u8 i2c[] =
			{0xc0, 0x11, 0x31, 0x00, 0x00, 0x00, 0x00, 0x17};

		i2c[3] = 0x3f - (sd->gain / 4);
		i2c[4] = 0x3f - (sd->gain / 4);
		i2c[5] = 0x3f - (sd->gain / 4);
703

704 705 706 707
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
708 709
	case SENSOR_TAS5110C:
	case SENSOR_TAS5110D: {
710 711 712
		__u8 i2c[] =
			{0x30, 0x11, 0x02, 0x20, 0x70, 0x00, 0x00, 0x10};

713
		i2c[4] = 255 - gain;
714
		if (i2c_w(gspca_dev, i2c) < 0)
715
			goto err;
716 717
		break;
	    }
718

719 720 721
	case SENSOR_OV6650:
		gain >>= 1;
		/* fall thru */
722
	case SENSOR_OV7630: {
723
		__u8 i2c[] = {0xa0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10};
724

725
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
726
		i2c[3] = gain >> 2;
727 728 729 730
		if (i2c_w(gspca_dev, i2c) < 0)
			goto err;
		break;
	    }
731
	case SENSOR_PAS106:
732 733
	case SENSOR_PAS202: {
		__u8 i2cpgain[] =
734
			{0xa0, 0x40, 0x10, 0x00, 0x00, 0x00, 0x00, 0x15};
735 736
		__u8 i2cpcolorgain[] =
			{0xc0, 0x40, 0x07, 0x00, 0x00, 0x00, 0x00, 0x15};
737 738 739 740 741 742 743 744 745 746
		__u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};

		/* PAS106 uses different regs (and has split green gains) */
		if (sd->sensor == SENSOR_PAS106) {
			i2cpgain[2] = 0x0e;
			i2cpcolorgain[0] = 0xd0;
			i2cpcolorgain[2] = 0x09;
			i2cpdoit[2] = 0x13;
		}
747 748 749 750 751

		i2cpgain[3] = sd->gain >> 3;
		i2cpcolorgain[3] = sd->gain >> 4;
		i2cpcolorgain[4] = sd->gain >> 4;
		i2cpcolorgain[5] = sd->gain >> 4;
752
		i2cpcolorgain[6] = sd->gain >> 4;
753 754 755 756 757 758 759 760 761

		if (i2c_w(gspca_dev, i2cpgain) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpcolorgain) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
			goto err;
		break;
	    }
762 763 764 765 766 767 768
	}
	return;
err:
	PDEBUG(D_ERR, "i2c error gain");
}

static void setgain(struct gspca_dev *gspca_dev)
769 770 771
{
	struct sd *sd = (struct sd *) gspca_dev;
	__u8 gain;
772
	__u8 buf[3] = { 0, 0, 0 };
773 774 775 776 777 778

	if (sensor_data[sd->sensor].flags & F_GAIN) {
		/* Use the sensor gain to do the actual gain */
		setsensorgain(gspca_dev);
		return;
	}
779

780 781 782 783 784 785 786 787 788 789 790 791
	if (sd->bridge == BRIDGE_103) {
		gain = sd->gain >> 1;
		buf[0] = gain; /* Red */
		buf[1] = gain; /* Green */
		buf[2] = gain; /* Blue */
		reg_w(gspca_dev, 0x05, buf, 3);
	} else {
		gain = sd->gain >> 4;
		buf[0] = gain << 4 | gain; /* Red and blue */
		buf[1] = gain; /* Green */
		reg_w(gspca_dev, 0x10, buf, 2);
	}
792 793 794 795 796 797 798
}

static void setexposure(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
	case SENSOR_HV7131D: {
		/* Note the datasheet wrongly says line mode exposure uses reg
		   0x26 and 0x27, testing has shown 0x25 + 0x26 */
		__u8 i2c[] = {0xc0, 0x11, 0x25, 0x00, 0x00, 0x00, 0x00, 0x17};
		/* The HV7131D's exposure goes from 0 - 65535, we scale our
		   exposure of 0-1023 to 0-6138. There are 2 reasons for this:
		   1) This puts our exposure knee of 200 at approx the point
		      where the framerate starts dropping
		   2) At 6138 the framerate has already dropped to 2 fps,
		      going any lower makes little sense */
		__u16 reg = sd->exposure * 6;
		i2c[3] = reg >> 8;
		i2c[4] = reg & 0xff;
		if (i2c_w(gspca_dev, i2c) != 0)
			goto err;
		break;
	    }
816 817
	case SENSOR_TAS5110C:
	case SENSOR_TAS5110D: {
818 819 820
		/* register 19's high nibble contains the sn9c10x clock divider
		   The high nibble configures the no fps according to the
		   formula: 60 / high_nibble. With a maximum of 30 fps */
821
		__u8 reg = sd->exposure;
822
		reg = (reg << 4) | 0x0b;
823
		reg_w(gspca_dev, 0x19, &reg, 1);
824 825
		break;
	    }
826
	case SENSOR_OV6650:
827
	case SENSOR_OV7630: {
828 829
		/* The ov6650 / ov7630 have 2 registers which both influence
		   exposure, register 11, whose low nibble sets the nr off fps
830 831 832 833 834 835 836 837 838 839 840 841
		   according to: fps = 30 / (low_nibble + 1)

		   The fps configures the maximum exposure setting, but it is
		   possible to use less exposure then what the fps maximum
		   allows by setting register 10. register 10 configures the
		   actual exposure as quotient of the full exposure, with 0
		   being no exposure at all (not very usefull) and reg10_max
		   being max exposure possible at that framerate.

		   The code maps our 0 - 510 ms exposure ctrl to these 2
		   registers, trying to keep fps as high as possible.
		*/
842 843 844
		__u8 i2c[] = {0xb0, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x10};
		int reg10, reg11, reg10_max;

845 846 847 848 849
		/* ov6645 datasheet says reg10_max is 9a, but that uses
		   tline * 2 * reg10 as formula for calculating texpo, the
		   ov6650 probably uses the same formula as the 7730 which uses
		   tline * 4 * reg10, which explains why the reg10max we've
		   found experimentally for the ov6650 is exactly half that of
850
		   the ov6645. The ov7630 datasheet says the max is 0x41. */
851 852 853 854 855
		if (sd->sensor == SENSOR_OV6650) {
			reg10_max = 0x4d;
			i2c[4] = 0xc0; /* OV6650 needs non default vsync pol */
		} else
			reg10_max = 0x41;
856

857
		reg11 = (15 * sd->exposure + 999) / 1000;
858 859 860 861 862
		if (reg11 < 1)
			reg11 = 1;
		else if (reg11 > 16)
			reg11 = 16;

863 864 865 866 867
		/* In 640x480, if the reg11 has less than 4, the image is
		   unstable (the bridge goes into a higher compression mode
		   which we have not reverse engineered yet). */
		if (gspca_dev->width == 640 && reg11 < 4)
			reg11 = 4;
868

869
		/* frame exposure time in ms = 1000 * reg11 / 30    ->
870 871
		reg10 = (sd->exposure / 2) * reg10_max / (1000 * reg11 / 30) */
		reg10 = (sd->exposure * 15 * reg10_max) / (1000 * reg11);
872

873 874 875 876 877 878
		/* Don't allow this to get below 10 when using autogain, the
		   steps become very large (relatively) when below 10 causing
		   the image to oscilate from much too dark, to much too bright
		   and back again. */
		if (sd->autogain && reg10 < 10)
			reg10 = 10;
879 880 881 882
		else if (reg10 > reg10_max)
			reg10 = reg10_max;

		/* Write reg 10 and reg11 low nibble */
883
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
884 885
		i2c[3] = reg10;
		i2c[4] |= reg11 - 1;
886 887

		/* If register 11 didn't change, don't change it */
888
		if (sd->reg11 == reg11)
889 890 891 892 893
			i2c[0] = 0xa0;

		if (i2c_w(gspca_dev, i2c) == 0)
			sd->reg11 = reg11;
		else
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
			goto err;
		break;
	    }
	case SENSOR_PAS202: {
		__u8 i2cpframerate[] =
			{0xb0, 0x40, 0x04, 0x00, 0x00, 0x00, 0x00, 0x16};
		__u8 i2cpexpo[] =
			{0xa0, 0x40, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x16};
		const __u8 i2cpdoit[] =
			{0xa0, 0x40, 0x11, 0x01, 0x00, 0x00, 0x00, 0x16};
		int framerate_ctrl;

		/* The exposure knee for the autogain algorithm is 200
		   (100 ms / 10 fps on other sensors), for values below this
		   use the control for setting the partial frame expose time,
		   above that use variable framerate. This way we run at max
		   framerate (640x480@7.5 fps, 320x240@10fps) until the knee
		   is reached. Using the variable framerate control above 200
		   is better then playing around with both clockdiv + partial
		   frame exposure times (like we are doing with the ov chips),
		   as that sometimes leads to jumps in the exposure control,
		   which are bad for auto exposure. */
		if (sd->exposure < 200) {
			i2cpexpo[3] = 255 - (sd->exposure * 255) / 200;
			framerate_ctrl = 500;
		} else {
			/* The PAS202's exposure control goes from 0 - 4095,
			   but anything below 500 causes vsync issues, so scale
			   our 200-1023 to 500-4095 */
			framerate_ctrl = (sd->exposure - 200) * 1000 / 229 +
					 500;
		}

		i2cpframerate[3] = framerate_ctrl >> 6;
		i2cpframerate[4] = framerate_ctrl & 0x3f;
		if (i2c_w(gspca_dev, i2cpframerate) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpexpo) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
			goto err;
935 936
		break;
	    }
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	case SENSOR_PAS106: {
		__u8 i2cpframerate[] =
			{0xb1, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00, 0x14};
		__u8 i2cpexpo[] =
			{0xa1, 0x40, 0x05, 0x00, 0x00, 0x00, 0x00, 0x14};
		const __u8 i2cpdoit[] =
			{0xa1, 0x40, 0x13, 0x01, 0x00, 0x00, 0x00, 0x14};
		int framerate_ctrl;

		/* For values below 150 use partial frame exposure, above
		   that use framerate ctrl */
		if (sd->exposure < 150) {
			i2cpexpo[3] = 150 - sd->exposure;
			framerate_ctrl = 300;
		} else {
			/* The PAS106's exposure control goes from 0 - 4095,
			   but anything below 300 causes vsync issues, so scale
			   our 150-1023 to 300-4095 */
			framerate_ctrl = (sd->exposure - 150) * 1000 / 230 +
					 300;
		}

		i2cpframerate[3] = framerate_ctrl >> 4;
		i2cpframerate[4] = framerate_ctrl & 0x0f;
		if (i2c_w(gspca_dev, i2cpframerate) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpexpo) < 0)
			goto err;
		if (i2c_w(gspca_dev, i2cpdoit) < 0)
			goto err;
		break;
	    }
969
	}
970 971 972
	return;
err:
	PDEBUG(D_ERR, "i2c error exposure");
973 974
}

975 976 977 978 979
static void setfreq(struct gspca_dev *gspca_dev)
{
	struct sd *sd = (struct sd *) gspca_dev;

	switch (sd->sensor) {
980
	case SENSOR_OV6650:
981
	case SENSOR_OV7630: {
982
		/* Framerate adjust register for artificial light 50 hz flicker
983 984 985
		   compensation, for the ov6650 this is identical to ov6630
		   0x2b register, see ov6630 datasheet.
		   0x4f / 0x8a -> (30 fps -> 25 fps), 0x00 -> no adjustment */
986
		__u8 i2c[] = {0xa0, 0x00, 0x2b, 0x00, 0x00, 0x00, 0x00, 0x10};
987 988 989 990 991 992 993
		switch (sd->freq) {
		default:
/*		case 0:			 * no filter*/
/*		case 2:			 * 60 hz */
			i2c[3] = 0;
			break;
		case 1:			/* 50 hz */
994 995
			i2c[3] = (sd->sensor == SENSOR_OV6650)
					? 0x4f : 0x8a;
996 997
			break;
		}
998
		i2c[1] = sensor_data[sd->sensor].sensor_addr;
999 1000 1001 1002 1003 1004 1005
		if (i2c_w(gspca_dev, i2c) < 0)
			PDEBUG(D_ERR, "i2c error setfreq");
		break;
	    }
	}
}

1006 1007
#include "coarse_expo_autogain.h"

1008 1009
static void do_autogain(struct gspca_dev *gspca_dev)
{
1010
	int deadzone, desired_avg_lum, result;
1011 1012 1013
	struct sd *sd = (struct sd *) gspca_dev;
	int avg_lum = atomic_read(&sd->avg_lum);

1014 1015 1016 1017 1018
	if (avg_lum == -1 || !sd->autogain)
		return;

	if (sd->autogain_ignore_frames > 0) {
		sd->autogain_ignore_frames--;
1019
		return;
1020
	}
1021

1022 1023 1024
	/* SIF / VGA sensors have a different autoexposure area and thus
	   different avg_lum values for the same picture brightness */
	if (sensor_data[sd->sensor].flags & F_SIF) {
1025 1026 1027
		deadzone = 500;
		/* SIF sensors tend to overexpose, so keep this small */
		desired_avg_lum = 5000;
1028
	} else {
1029
		deadzone = 1500;
1030
		desired_avg_lum = 13000;
1031 1032
	}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	if (sensor_data[sd->sensor].flags & F_COARSE_EXPO)
		result = gspca_coarse_grained_expo_autogain(gspca_dev, avg_lum,
				sd->brightness * desired_avg_lum / 127,
				deadzone);
	else
		result = gspca_auto_gain_n_exposure(gspca_dev, avg_lum,
				sd->brightness * desired_avg_lum / 127,
				deadzone, GAIN_KNEE, EXPOSURE_KNEE);

	if (result) {
1043
		PDEBUG(D_FRAM, "autogain: gain changed: gain: %d expo: %d",
1044
			(int)sd->gain, (int)sd->exposure);
1045
		sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
1046
	}
1047 1048 1049 1050 1051 1052 1053 1054
}

/* this function is called at probe time */
static int sd_config(struct gspca_dev *gspca_dev,
			const struct usb_device_id *id)
{
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam;
1055 1056 1057 1058

	reg_r(gspca_dev, 0x00);
	if (gspca_dev->usb_buf[0] != 0x10)
		return -ENODEV;
1059

1060
	/* copy the webcam info from the device id */
1061 1062 1063
	sd->sensor = id->driver_info >> 8;
	sd->bridge = id->driver_info & 0xff;
	gspca_dev->ctrl_dis = sensor_data[sd->sensor].ctrl_dis;
1064 1065

	cam = &gspca_dev->cam;
1066
	if (!(sensor_data[sd->sensor].flags & F_SIF)) {
1067
		cam->cam_mode = vga_mode;
1068
		cam->nmodes = ARRAY_SIZE(vga_mode);
1069 1070
	} else {
		cam->cam_mode = sif_mode;
1071
		cam->nmodes = ARRAY_SIZE(sif_mode);
1072
	}
1073 1074
	cam->npkt = 36;			/* 36 packets per ISOC message */

1075 1076
	sd->brightness = BRIGHTNESS_DEF;
	sd->gain = GAIN_DEF;
1077 1078 1079 1080 1081 1082 1083
	if (sensor_data[sd->sensor].flags & F_COARSE_EXPO) {
		sd->exposure = COARSE_EXPOSURE_DEF;
		gspca_dev->ctrl_dis |= (1 << EXPOSURE_IDX);
	} else {
		sd->exposure = EXPOSURE_DEF;
		gspca_dev->ctrl_dis |= (1 << COARSE_EXPOSURE_IDX);
	}
1084 1085 1086 1087
	if (gspca_dev->ctrl_dis & (1 << AUTOGAIN_IDX))
		sd->autogain = 0; /* Disable do_autogain callback */
	else
		sd->autogain = AUTOGAIN_DEF;
1088
	sd->freq = FREQ_DEF;
1089

1090 1091 1092
	return 0;
}

1093 1094
/* this function is called at probe and resume time */
static int sd_init(struct gspca_dev *gspca_dev)
1095
{
1096 1097 1098 1099
	const __u8 stop = 0x09; /* Disable stream turn of LED */

	reg_w(gspca_dev, 0x01, &stop, 1);

1100 1101 1102 1103
	return 0;
}

/* -- start the camera -- */
1104
static int sd_start(struct gspca_dev *gspca_dev)
1105 1106
{
	struct sd *sd = (struct sd *) gspca_dev;
1107
	struct cam *cam = &gspca_dev->cam;
1108 1109
	int i, mode;
	__u8 regs[0x31];
1110

1111
	mode = cam->cam_mode[gspca_dev->curr_mode].priv & 0x07;
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
	/* Copy registers 0x01 - 0x19 from the template */
	memcpy(&regs[0x01], sensor_data[sd->sensor].bridge_init, 0x19);
	/* Set the mode */
	regs[0x18] |= mode << 4;

	/* Set bridge gain to 1.0 */
	if (sd->bridge == BRIDGE_103) {
		regs[0x05] = 0x20; /* Red */
		regs[0x06] = 0x20; /* Green */
		regs[0x07] = 0x20; /* Blue */
	} else {
		regs[0x10] = 0x00; /* Red and blue */
		regs[0x11] = 0x00; /* Green */
	}

	/* Setup pixel numbers and auto exposure window */
	if (sensor_data[sd->sensor].flags & F_SIF) {
		regs[0x1a] = 0x14; /* HO_SIZE 640, makes no sense */
		regs[0x1b] = 0x0a; /* VO_SIZE 320, makes no sense */
		regs[0x1c] = 0x02; /* AE H-start 64 */
		regs[0x1d] = 0x02; /* AE V-start 64 */
		regs[0x1e] = 0x09; /* AE H-end 288 */
		regs[0x1f] = 0x07; /* AE V-end 224 */
	} else {
		regs[0x1a] = 0x1d; /* HO_SIZE 960, makes no sense */
		regs[0x1b] = 0x10; /* VO_SIZE 512, makes no sense */
1138
		regs[0x1c] = 0x05; /* AE H-start 160 */
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		regs[0x1d] = 0x03; /* AE V-start 96 */
		regs[0x1e] = 0x0f; /* AE H-end 480 */
		regs[0x1f] = 0x0c; /* AE V-end 384 */
	}

	/* Setup the gamma table (only used with the sn9c103 bridge) */
	for (i = 0; i < 16; i++)
		regs[0x20 + i] = i * 16;
	regs[0x20 + i] = 255;

	/* Special cases where some regs depend on mode or bridge */
1150
	switch (sd->sensor) {
1151
	case SENSOR_TAS5130CXX:
1152 1153
		/* FIXME / TESTME
		   probably not mode specific at all most likely the upper
1154 1155
		   nibble of 0x19 is exposure (clock divider) just as with
		   the tas5110, we need someone to test this. */
1156
		regs[0x19] = mode ? 0x23 : 0x43;
1157
		break;
1158 1159 1160 1161 1162 1163 1164 1165 1166
	case SENSOR_OV7630:
		/* FIXME / TESTME for some reason with the 101/102 bridge the
		   clock is set to 12 Mhz (reg1 == 0x04), rather then 24.
		   Also the hstart needs to go from 1 to 2 when using a 103,
		   which is likely related. This does not seem right. */
		if (sd->bridge == BRIDGE_103) {
			regs[0x01] = 0x44; /* Select 24 Mhz clock */
			regs[0x12] = 0x02; /* Set hstart to 2 */
		}
1167
	}
1168
	/* Disable compression when the raw bayer format has been selected */
1169
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW)
1170
		regs[0x18] &= ~0x80;
1171 1172 1173

	/* Vga mode emulation on SIF sensor? */
	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_REDUCED_SIF) {
1174 1175 1176 1177
		regs[0x12] += 16;	/* hstart adjust */
		regs[0x13] += 24;	/* vstart adjust */
		regs[0x15]  = 320 / 16; /* hsize */
		regs[0x16]  = 240 / 16; /* vsize */
1178
	}
1179

1180
	/* reg 0x01 bit 2 video transfert on */
1181
	reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1182
	/* reg 0x17 SensorClk enable inv Clk 0x60 */
1183
	reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1184
	/* Set the registers from the template */
1185 1186
	reg_w(gspca_dev, 0x01, &regs[0x01],
	      (sd->bridge == BRIDGE_103) ? 0x30 : 0x1f);
1187 1188 1189 1190 1191

	/* Init the sensor */
	i2c_w_vector(gspca_dev, sensor_data[sd->sensor].sensor_init,
			sensor_data[sd->sensor].sensor_init_size);

1192
	/* Mode / bridge specific sensor setup */
1193 1194 1195 1196 1197 1198 1199
	switch (sd->sensor) {
	case SENSOR_PAS202: {
		const __u8 i2cpclockdiv[] =
			{0xa0, 0x40, 0x02, 0x03, 0x00, 0x00, 0x00, 0x10};
		/* clockdiv from 4 to 3 (7.5 -> 10 fps) when in low res mode */
		if (mode)
			i2c_w(gspca_dev, i2cpclockdiv);
1200
		break;
1201
	    }
1202 1203 1204 1205 1206 1207 1208 1209 1210
	case SENSOR_OV7630:
		/* FIXME / TESTME We should be able to handle this identical
		   for the 101/102 and the 103 case */
		if (sd->bridge == BRIDGE_103) {
			const __u8 i2c[] = { 0xa0, 0x21, 0x13,
					     0x80, 0x00, 0x00, 0x00, 0x10 };
			i2c_w(gspca_dev, i2c);
		}
		break;
1211
	}
1212
	/* H_size V_size 0x28, 0x1e -> 640x480. 0x16, 0x12 -> 352x288 */
1213
	reg_w(gspca_dev, 0x15, &regs[0x15], 2);
1214
	/* compression register */
1215
	reg_w(gspca_dev, 0x18, &regs[0x18], 1);
1216
	/* H_start */
1217
	reg_w(gspca_dev, 0x12, &regs[0x12], 1);
1218
	/* V_START */
1219
	reg_w(gspca_dev, 0x13, &regs[0x13], 1);
1220 1221
	/* reset 0x17 SensorClk enable inv Clk 0x60 */
				/*fixme: ov7630 [17]=68 8f (+20 if 102)*/
1222
	reg_w(gspca_dev, 0x17, &regs[0x17], 1);
1223
	/*MCKSIZE ->3 */	/*fixme: not ov7630*/
1224
	reg_w(gspca_dev, 0x19, &regs[0x19], 1);
1225
	/* AE_STRX AE_STRY AE_ENDX AE_ENDY */
1226
	reg_w(gspca_dev, 0x1c, &regs[0x1c], 4);
1227
	/* Enable video transfert */
1228
	reg_w(gspca_dev, 0x01, &regs[0x01], 1);
1229
	/* Compression */
1230
	reg_w(gspca_dev, 0x18, &regs[0x18], 2);
1231 1232
	msleep(20);

1233 1234
	sd->reg11 = -1;

1235
	setgain(gspca_dev);
1236
	setbrightness(gspca_dev);
1237
	setexposure(gspca_dev);
1238
	setfreq(gspca_dev);
1239

1240
	sd->frames_to_drop = 0;
1241
	sd->autogain_ignore_frames = 0;
1242 1243
	sd->exp_too_high_cnt = 0;
	sd->exp_too_low_cnt = 0;
1244
	atomic_set(&sd->avg_lum, -1);
1245
	return 0;
1246 1247 1248 1249
}

static void sd_stopN(struct gspca_dev *gspca_dev)
{
1250
	sd_init(gspca_dev);
1251 1252
}

1253
static u8* find_sof(struct gspca_dev *gspca_dev, u8 *data, int len)
1254
{
1255
	struct sd *sd = (struct sd *) gspca_dev;
1256
	int i, header_size = (sd->bridge == BRIDGE_103) ? 18 : 12;
1257

1258 1259 1260 1261 1262 1263 1264 1265 1266
	/* frames start with:
	 *	ff ff 00 c4 c4 96	synchro
	 *	00		(unknown)
	 *	xx		(frame sequence / size / compression)
	 *	(xx)		(idem - extra byte for sn9c103)
	 *	ll mm		brightness sum inside auto exposure
	 *	ll mm		brightness sum outside auto exposure
	 *	(xx xx xx xx xx)	audio values for snc103
	 */
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	for (i = 0; i < len; i++) {
		switch (sd->header_read) {
		case 0:
			if (data[i] == 0xff)
				sd->header_read++;
			break;
		case 1:
			if (data[i] == 0xff)
				sd->header_read++;
			else
				sd->header_read = 0;
			break;
		case 2:
			if (data[i] == 0x00)
				sd->header_read++;
			else if (data[i] != 0xff)
				sd->header_read = 0;
			break;
		case 3:
			if (data[i] == 0xc4)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		case 4:
			if (data[i] == 0xc4)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		case 5:
			if (data[i] == 0x96)
				sd->header_read++;
			else if (data[i] == 0xff)
				sd->header_read = 1;
			else
				sd->header_read = 0;
			break;
		default:
			sd->header[sd->header_read - 6] = data[i];
			sd->header_read++;
			if (sd->header_read == header_size) {
				sd->header_read = 0;
				return data + i + 1;
1315 1316 1317
			}
		}
	}
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	return NULL;
}

static void sd_pkt_scan(struct gspca_dev *gspca_dev,
			u8 *data,			/* isoc packet */
			int len)			/* iso packet length */
{
	int fr_h_sz = 0, lum_offset = 0, len_after_sof = 0;
	struct sd *sd = (struct sd *) gspca_dev;
	struct cam *cam = &gspca_dev->cam;
	u8 *sof;

	sof = find_sof(gspca_dev, data, len);
	if (sof) {
		if (sd->bridge == BRIDGE_103) {
			fr_h_sz = 18;
			lum_offset = 3;
		} else {
			fr_h_sz = 12;
			lum_offset = 2;
		}

		len_after_sof = len - (sof - data);
		len = (sof - data) - fr_h_sz;
		if (len < 0)
			len = 0;
	}
1345 1346 1347 1348

	if (cam->cam_mode[gspca_dev->curr_mode].priv & MODE_RAW) {
		/* In raw mode we sometimes get some garbage after the frame
		   ignore this */
1349
		int used;
1350 1351
		int size = cam->cam_mode[gspca_dev->curr_mode].sizeimage;

1352
		used = gspca_dev->image_len;
1353 1354 1355 1356
		if (used + len > size)
			len = size - used;
	}

1357
	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384

	if (sof) {
		int  lum = sd->header[lum_offset] +
			  (sd->header[lum_offset + 1] << 8);

		/* When exposure changes midway a frame we
		   get a lum of 0 in this case drop 2 frames
		   as the frames directly after an exposure
		   change have an unstable image. Sometimes lum
		   *really* is 0 (cam used in low light with
		   low exposure setting), so do not drop frames
		   if the previous lum was 0 too. */
		if (lum == 0 && sd->prev_avg_lum != 0) {
			lum = -1;
			sd->frames_to_drop = 2;
			sd->prev_avg_lum = 0;
		} else
			sd->prev_avg_lum = lum;
		atomic_set(&sd->avg_lum, lum);

		if (sd->frames_to_drop)
			sd->frames_to_drop--;
		else
			gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);

		gspca_frame_add(gspca_dev, FIRST_PACKET, sof, len_after_sof);
	}
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
}

static int sd_setbrightness(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->brightness = val;
	if (gspca_dev->streaming)
		setbrightness(gspca_dev);
	return 0;
}

static int sd_getbrightness(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->brightness;
	return 0;
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
static int sd_setgain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->gain = val;
	if (gspca_dev->streaming)
		setgain(gspca_dev);
	return 0;
}

static int sd_getgain(struct gspca_dev *gspca_dev, __s32 *val)
1416 1417 1418
{
	struct sd *sd = (struct sd *) gspca_dev;

1419 1420 1421 1422 1423 1424 1425 1426 1427
	*val = sd->gain;
	return 0;
}

static int sd_setexposure(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->exposure = val;
1428
	if (gspca_dev->streaming)
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
		setexposure(gspca_dev);
	return 0;
}

static int sd_getexposure(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->exposure;
	return 0;
}

static int sd_setautogain(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->autogain = val;
1446 1447 1448
	sd->exp_too_high_cnt = 0;
	sd->exp_too_low_cnt = 0;

1449 1450 1451 1452
	/* when switching to autogain set defaults to make sure
	   we are on a valid point of the autogain gain /
	   exposure knee graph, and give this change time to
	   take effect before doing autogain. */
1453
	if (sd->autogain && !(sensor_data[sd->sensor].flags & F_COARSE_EXPO)) {
1454 1455 1456 1457 1458 1459 1460 1461 1462
		sd->exposure = EXPOSURE_DEF;
		sd->gain = GAIN_DEF;
		if (gspca_dev->streaming) {
			sd->autogain_ignore_frames = AUTOGAIN_IGNORE_FRAMES;
			setexposure(gspca_dev);
			setgain(gspca_dev);
		}
	}

1463 1464 1465
	return 0;
}

1466
static int sd_getautogain(struct gspca_dev *gspca_dev, __s32 *val)
1467 1468 1469
{
	struct sd *sd = (struct sd *) gspca_dev;

1470
	*val = sd->autogain;
1471 1472 1473
	return 0;
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
static int sd_setfreq(struct gspca_dev *gspca_dev, __s32 val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	sd->freq = val;
	if (gspca_dev->streaming)
		setfreq(gspca_dev);
	return 0;
}

static int sd_getfreq(struct gspca_dev *gspca_dev, __s32 *val)
{
	struct sd *sd = (struct sd *) gspca_dev;

	*val = sd->freq;
	return 0;
}

static int sd_querymenu(struct gspca_dev *gspca_dev,
			struct v4l2_querymenu *menu)
{
	switch (menu->id) {
	case V4L2_CID_POWER_LINE_FREQUENCY:
		switch (menu->index) {
		case 0:		/* V4L2_CID_POWER_LINE_FREQUENCY_DISABLED */
			strcpy((char *) menu->name, "NoFliker");
			return 0;
		case 1:		/* V4L2_CID_POWER_LINE_FREQUENCY_50HZ */
			strcpy((char *) menu->name, "50 Hz");
			return 0;
		case 2:		/* V4L2_CID_POWER_LINE_FREQUENCY_60HZ */
			strcpy((char *) menu->name, "60 Hz");
			return 0;
		}
		break;
	}
	return -EINVAL;
}

1513
#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static int sd_int_pkt_scan(struct gspca_dev *gspca_dev,
			u8 *data,		/* interrupt packet data */
			int len)		/* interrupt packet length */
{
	int ret = -EINVAL;

	if (len == 1 && data[0] == 1) {
		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 1);
		input_sync(gspca_dev->input_dev);
		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
		input_sync(gspca_dev->input_dev);
		ret = 0;
	}

	return ret;
}
#endif

1532
/* sub-driver description */
1533
static const struct sd_desc sd_desc = {
1534 1535 1536 1537
	.name = MODULE_NAME,
	.ctrls = sd_ctrls,
	.nctrls = ARRAY_SIZE(sd_ctrls),
	.config = sd_config,
1538
	.init = sd_init,
1539 1540 1541
	.start = sd_start,
	.stopN = sd_stopN,
	.pkt_scan = sd_pkt_scan,
1542
	.querymenu = sd_querymenu,
1543
	.dq_callback = do_autogain,
1544
#if defined(CONFIG_INPUT) || defined(CONFIG_INPUT_MODULE)
1545 1546
	.int_pkt_scan = sd_int_pkt_scan,
#endif
1547 1548 1549
};

/* -- module initialisation -- */
1550 1551 1552
#define SB(sensor, bridge) \
	.driver_info = (SENSOR_ ## sensor << 8) | BRIDGE_ ## bridge

1553

1554
static const struct usb_device_id device_table[] __devinitconst = {
1555 1556 1557
	{USB_DEVICE(0x0c45, 0x6001), SB(TAS5110C, 102)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6005), SB(TAS5110C, 101)}, /* TAS5110C1B */
	{USB_DEVICE(0x0c45, 0x6007), SB(TAS5110D, 101)}, /* TAS5110D */
1558 1559 1560
	{USB_DEVICE(0x0c45, 0x6009), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x600d), SB(PAS106, 101)},
	{USB_DEVICE(0x0c45, 0x6011), SB(OV6650, 101)},
1561
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1562 1563 1564
	{USB_DEVICE(0x0c45, 0x6019), SB(OV7630, 101)},
	{USB_DEVICE(0x0c45, 0x6024), SB(TAS5130CXX, 102)},
	{USB_DEVICE(0x0c45, 0x6025), SB(TAS5130CXX, 102)},
1565
#endif
1566 1567
	{USB_DEVICE(0x0c45, 0x6028), SB(PAS202, 102)},
	{USB_DEVICE(0x0c45, 0x6029), SB(PAS106, 102)},
1568 1569
	{USB_DEVICE(0x0c45, 0x602a), SB(HV7131D, 102)},
	/* {USB_DEVICE(0x0c45, 0x602b), SB(MI0343, 102)}, */
1570
	{USB_DEVICE(0x0c45, 0x602c), SB(OV7630, 102)},
1571 1572
	{USB_DEVICE(0x0c45, 0x602d), SB(HV7131R, 102)},
	{USB_DEVICE(0x0c45, 0x602e), SB(OV7630, 102)},
1573
	/* {USB_DEVICE(0x0c45, 0x602b), SB(MI03XX, 102)}, */ /* MI0343 MI0360 MI0330 */
1574
	{USB_DEVICE(0x0c45, 0x608f), SB(OV7630, 103)},
1575
#if !defined CONFIG_USB_SN9C102 && !defined CONFIG_USB_SN9C102_MODULE
1576
	{USB_DEVICE(0x0c45, 0x60af), SB(PAS202, 103)},
1577
#endif
1578
	{USB_DEVICE(0x0c45, 0x60b0), SB(OV7630, 103)},
1579 1580 1581 1582 1583
	{}
};
MODULE_DEVICE_TABLE(usb, device_table);

/* -- device connect -- */
1584
static int __devinit sd_probe(struct usb_interface *intf,
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
			const struct usb_device_id *id)
{
	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
				THIS_MODULE);
}

static struct usb_driver sd_driver = {
	.name = MODULE_NAME,
	.id_table = device_table,
	.probe = sd_probe,
	.disconnect = gspca_disconnect,
1596 1597 1598 1599
#ifdef CONFIG_PM
	.suspend = gspca_suspend,
	.resume = gspca_resume,
#endif
1600 1601 1602 1603 1604
};

/* -- module insert / remove -- */
static int __init sd_mod_init(void)
{
1605
	return usb_register(&sd_driver);
1606 1607 1608 1609 1610 1611 1612 1613
}
static void __exit sd_mod_exit(void)
{
	usb_deregister(&sd_driver);
}

module_init(sd_mod_init);
module_exit(sd_mod_exit);