book3s_pr.c 46.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
23
#include <linux/export.h>
24 25 26 27 28 29 30
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
31
#include <linux/uaccess.h>
32 33 34 35
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
36
#include <asm/switch_to.h>
37
#include <asm/firmware.h>
38
#include <asm/setup.h>
39 40 41 42
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
43
#include <linux/module.h>
44
#include <linux/miscdevice.h>
45

46
#include "book3s.h"
47 48 49

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
50 51 52 53 54 55

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);
56
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
57 58 59 60 61 62

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
63
#define HPTE_R_M   _PAGE_COHERENT
64 65
#endif

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
}

static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	ulong pc = kvmppc_get_pc(vcpu);

	/* We are in DR only split real mode */
	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
		return;

	/* We have not fixed up the guest already */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
		return;

	/* The code is in fixupable address space */
	if (pc & SPLIT_HACK_MASK)
		return;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
}

void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);

95
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
96 97
{
#ifdef CONFIG_PPC_BOOK3S_64
98 99 100
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
101
	svcpu->in_use = 0;
102
	svcpu_put(svcpu);
103
#endif
104 105 106 107 108 109

	/* Disable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);

110
	vcpu->cpu = smp_processor_id();
111
#ifdef CONFIG_PPC_BOOK3S_32
112
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
113
#endif
114 115 116

	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
117 118
}

119
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
120 121
{
#ifdef CONFIG_PPC_BOOK3S_64
122
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
123
	if (svcpu->in_use) {
124
		kvmppc_copy_from_svcpu(vcpu);
125
	}
126 127 128
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
129 130
#endif

131 132 133
	if (kvmppc_is_split_real(vcpu))
		kvmppc_unfixup_split_real(vcpu);

134
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
135
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
136 137 138 139 140 141

	/* Enable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);

142
	vcpu->cpu = -1;
143 144
}

145
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
146
void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu)
147
{
148 149
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);

150 151 152 153 154 155 156 157 158 159 160 161 162 163
	svcpu->gpr[0] = vcpu->arch.regs.gpr[0];
	svcpu->gpr[1] = vcpu->arch.regs.gpr[1];
	svcpu->gpr[2] = vcpu->arch.regs.gpr[2];
	svcpu->gpr[3] = vcpu->arch.regs.gpr[3];
	svcpu->gpr[4] = vcpu->arch.regs.gpr[4];
	svcpu->gpr[5] = vcpu->arch.regs.gpr[5];
	svcpu->gpr[6] = vcpu->arch.regs.gpr[6];
	svcpu->gpr[7] = vcpu->arch.regs.gpr[7];
	svcpu->gpr[8] = vcpu->arch.regs.gpr[8];
	svcpu->gpr[9] = vcpu->arch.regs.gpr[9];
	svcpu->gpr[10] = vcpu->arch.regs.gpr[10];
	svcpu->gpr[11] = vcpu->arch.regs.gpr[11];
	svcpu->gpr[12] = vcpu->arch.regs.gpr[12];
	svcpu->gpr[13] = vcpu->arch.regs.gpr[13];
164
	svcpu->cr  = vcpu->arch.cr;
165 166 167 168
	svcpu->xer = vcpu->arch.regs.xer;
	svcpu->ctr = vcpu->arch.regs.ctr;
	svcpu->lr  = vcpu->arch.regs.link;
	svcpu->pc  = vcpu->arch.regs.nip;
169 170 171
#ifdef CONFIG_PPC_BOOK3S_64
	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
#endif
172 173 174 175 176
	/*
	 * Now also save the current time base value. We use this
	 * to find the guest purr and spurr value.
	 */
	vcpu->arch.entry_tb = get_tb();
177
	vcpu->arch.entry_vtb = get_vtb();
178 179
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.entry_ic = mfspr(SPRN_IC);
180
	svcpu->in_use = true;
181 182

	svcpu_put(svcpu);
183 184 185
}

/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
186
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu)
187
{
188
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
189 190 191 192 193 194 195 196

	/*
	 * Maybe we were already preempted and synced the svcpu from
	 * our preempt notifiers. Don't bother touching this svcpu then.
	 */
	if (!svcpu->in_use)
		goto out;

197 198 199 200 201 202 203 204 205 206 207 208 209 210
	vcpu->arch.regs.gpr[0] = svcpu->gpr[0];
	vcpu->arch.regs.gpr[1] = svcpu->gpr[1];
	vcpu->arch.regs.gpr[2] = svcpu->gpr[2];
	vcpu->arch.regs.gpr[3] = svcpu->gpr[3];
	vcpu->arch.regs.gpr[4] = svcpu->gpr[4];
	vcpu->arch.regs.gpr[5] = svcpu->gpr[5];
	vcpu->arch.regs.gpr[6] = svcpu->gpr[6];
	vcpu->arch.regs.gpr[7] = svcpu->gpr[7];
	vcpu->arch.regs.gpr[8] = svcpu->gpr[8];
	vcpu->arch.regs.gpr[9] = svcpu->gpr[9];
	vcpu->arch.regs.gpr[10] = svcpu->gpr[10];
	vcpu->arch.regs.gpr[11] = svcpu->gpr[11];
	vcpu->arch.regs.gpr[12] = svcpu->gpr[12];
	vcpu->arch.regs.gpr[13] = svcpu->gpr[13];
211
	vcpu->arch.cr  = svcpu->cr;
212 213 214 215
	vcpu->arch.regs.xer = svcpu->xer;
	vcpu->arch.regs.ctr = svcpu->ctr;
	vcpu->arch.regs.link  = svcpu->lr;
	vcpu->arch.regs.nip  = svcpu->pc;
216 217 218 219
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
220 221 222
#ifdef CONFIG_PPC_BOOK3S_64
	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
#endif
223 224 225 226 227
	/*
	 * Update purr and spurr using time base on exit.
	 */
	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
228
	to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb;
229 230
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
231 232 233
	svcpu->in_use = false;

out:
234
	svcpu_put(svcpu);
235 236
}

237
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
238
{
239 240
	int r = 1; /* Indicate we want to get back into the guest */

241 242 243 244
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
245 246

	return r;
247 248
}

249
/************* MMU Notifiers *************/
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
279

280 281
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
282
{
283
	do_kvm_unmap_hva(kvm, start, end);
284 285 286 287

	return 0;
}

A
Andres Lagar-Cavilla 已提交
288 289
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
			  unsigned long end)
290 291 292 293 294
{
	/* XXX could be more clever ;) */
	return 0;
}

295
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
296 297 298 299 300
{
	/* XXX could be more clever ;) */
	return 0;
}

301
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
302 303
{
	/* The page will get remapped properly on its next fault */
304
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
305 306 307 308
}

/*****************************************/

309 310
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
311 312
	ulong guest_msr = kvmppc_get_msr(vcpu);
	ulong smsr = guest_msr;
313 314

	/* Guest MSR values */
315
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
316 317 318
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
319
	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
320 321 322 323 324 325 326
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
#endif
	vcpu->arch.shadow_msr = smsr;
}

327
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
328
{
329
	ulong old_msr = kvmppc_get_msr(vcpu);
330 331 332 333 334 335

#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

	msr &= to_book3s(vcpu)->msr_mask;
336
	kvmppc_set_msr_fast(vcpu, msr);
337 338 339 340 341
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
342
			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
343 344 345 346
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
347
			kvmppc_set_msr_fast(vcpu, msr);
348 349 350
		}
	}

351 352 353 354 355
	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
	else
		kvmppc_unfixup_split_real(vcpu);

356
	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
	 * page will be instanciated when calling into RTAS. Note: We
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

387
	/* Preload FPU if it's enabled */
388
	if (kvmppc_get_msr(vcpu) & MSR_FP)
389 390 391
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}

392
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
393 394 395 396 397 398 399 400
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
401 402
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
403
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
404
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
405 406 407 408
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
409 410
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
411
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
412
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
413 414
	}

415 416
	kvmppc_sanity_check(vcpu);

417 418 419 420 421 422 423 424 425 426 427 428
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

429 430 431 432 433 434 435 436 437 438 439 440
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
441 442
	case PVR_POWER8E:
	case PVR_POWER8NVL:
443 444 445 446 447
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
488
	if (is_error_page(hpage))
489 490 491 492 493 494 495
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
496
	page = kmap_atomic(hpage);
497 498 499

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
500 501
		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
			page[i] &= cpu_to_be32(0xfffffff7);
502

503
	kunmap_atomic(page);
504 505 506
	put_page(hpage);
}

507
static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
508 509 510
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

511
	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
512 513
		mp_pa = (uint32_t)mp_pa;

514 515
	gpa &= ~0xFFFULL;
	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
516
		return true;
517 518
	}

519
	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
520 521 522 523 524 525
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
526
	bool iswrite = false;
527 528 529
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
530
	struct kvmppc_pte pte = { 0 };
531 532
	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
533 534 535
	u64 vsid;

	relocated = data ? dr : ir;
536 537
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
538 539 540

	/* Resolve real address if translation turned on */
	if (relocated) {
541
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
542 543 544 545 546 547 548
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
549
		pte.page_size = MMU_PAGE_64K;
550
		pte.wimg = HPTE_R_M;
551 552
	}

553
	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
554 555 556 557
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
558 559 560 561 562
		if (!data &&
		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
			pte.raddr &= ~SPLIT_HACK_MASK;
		/* fall through */
563 564 565
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

566
		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

	if (page_found == -ENOENT) {
		/* Page not found in guest PTE entries */
589 590 591 592 593
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
594 595 596
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EPERM) {
		/* Storage protection */
597 598 599 600 601 602 603
		u32 dsisr = vcpu->arch.fault_dsisr;
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
		kvmppc_set_dsisr(vcpu, dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
604 605 606
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
607
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
608
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
609
	} else if (kvmppc_visible_gpa(vcpu, pte.raddr)) {
610 611 612 613 614 615 616 617
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
618
		/* The guest's PTE is not mapped yet. Map on the host */
619 620 621 622 623
		if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) {
			/* Exit KVM if mapping failed */
			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
			return RESUME_HOST;
		}
624 625 626
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
627
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
628 629 630 631 632
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
633
		vcpu->arch.vaddr_accessed = pte.eaddr;
634 635 636 637 638 639 640 641 642 643 644 645 646
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;

647 648 649 650 651 652 653 654 655
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
656 657 658 659 660 661
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

662 663 664 665
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
666
		 * registers into thread.fp_state.fpr[].
667
		 */
668
		if (t->regs->msr & MSR_FP)
669
			giveup_fpu(current);
670
		t->fp_save_area = NULL;
671 672
	}

673
#ifdef CONFIG_ALTIVEC
674
	if (msr & MSR_VEC) {
675 676
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
677
		t->vr_save_area = NULL;
678
	}
679
#endif
680

681
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
682 683 684
	kvmppc_recalc_shadow_msr(vcpu);
}

685 686 687 688 689 690 691 692
/* Give up facility (TAR / EBB / DSCR) */
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
		/* Facility not available to the guest, ignore giveup request*/
		return;
	}
693 694 695 696 697 698 699 700

	switch (fac) {
	case FSCR_TAR_LG:
		vcpu->arch.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, current->thread.tar);
		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
		break;
	}
701 702 703
#endif
}

704 705 706 707 708 709 710 711 712 713
/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

714
	if (!(kvmppc_get_msr(vcpu) & msr)) {
715 716 717 718
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
734 735
	}

736 737 738 739 740
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

741 742 743 744
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

745
	if (msr & MSR_FP) {
746
		preempt_disable();
747
		enable_kernel_fp();
748
		load_fp_state(&vcpu->arch.fp);
749
		disable_kernel_fp();
750
		t->fp_save_area = &vcpu->arch.fp;
751
		preempt_enable();
752 753 754
	}

	if (msr & MSR_VEC) {
755
#ifdef CONFIG_ALTIVEC
756
		preempt_disable();
757
		enable_kernel_altivec();
758
		load_vr_state(&vcpu->arch.vr);
759
		disable_kernel_altivec();
760
		t->vr_save_area = &vcpu->arch.vr;
761
		preempt_enable();
762 763 764
#endif
	}

765
	t->regs->msr |= msr;
766 767 768 769 770 771
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

772 773 774 775 776 777 778 779 780 781 782 783
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

784
	if (lost_ext & MSR_FP) {
785
		preempt_disable();
786
		enable_kernel_fp();
787
		load_fp_state(&vcpu->arch.fp);
788
		disable_kernel_fp();
789
		preempt_enable();
790
	}
791
#ifdef CONFIG_ALTIVEC
792
	if (lost_ext & MSR_VEC) {
793
		preempt_disable();
794
		enable_kernel_altivec();
795
		load_vr_state(&vcpu->arch.vr);
796
		disable_kernel_altivec();
797
		preempt_enable();
798
	}
799
#endif
800 801 802
	current->thread.regs->msr |= lost_ext;
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
#ifdef CONFIG_PPC_BOOK3S_64

static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
{
	/* Inject the Interrupt Cause field and trigger a guest interrupt */
	vcpu->arch.fscr &= ~(0xffULL << 56);
	vcpu->arch.fscr |= (fac << 56);
	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
}

static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
{
	enum emulation_result er = EMULATE_FAIL;

	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
		er = kvmppc_emulate_instruction(vcpu->run, vcpu);

	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
		/* Couldn't emulate, trigger interrupt in guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
	}
}

/* Enable facilities (TAR, EBB, DSCR) for the guest */
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
{
829
	bool guest_fac_enabled;
830 831
	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	/*
	 * Not every facility is enabled by FSCR bits, check whether the
	 * guest has this facility enabled at all.
	 */
	switch (fac) {
	case FSCR_TAR_LG:
	case FSCR_EBB_LG:
		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
		break;
	case FSCR_TM_LG:
		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
		break;
	default:
		guest_fac_enabled = false;
		break;
	}

	if (!guest_fac_enabled) {
850 851 852 853 854 855
		/* Facility not enabled by the guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
		return RESUME_GUEST;
	}

	switch (fac) {
856 857 858 859 860 861
	case FSCR_TAR_LG:
		/* TAR switching isn't lazy in Linux yet */
		current->thread.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, vcpu->arch.tar);
		vcpu->arch.shadow_fscr |= FSCR_TAR;
		break;
862 863 864 865 866 867 868
	default:
		kvmppc_emulate_fac(vcpu, fac);
		break;
	}

	return RESUME_GUEST;
}
869 870 871 872 873 874 875 876 877

void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
{
	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
		/* TAR got dropped, drop it in shadow too */
		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
	}
	vcpu->arch.fscr = fscr;
}
878 879
#endif

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr | MSR_SE);
	}
}

static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
	}
}

898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu,
				  unsigned int exit_nr)
{
	enum emulation_result er;
	ulong flags;
	u32 last_inst;
	int emul, r;

	/*
	 * shadow_srr1 only contains valid flags if we came here via a program
	 * exception. The other exceptions (emulation assist, FP unavailable,
	 * etc.) do not provide flags in SRR1, so use an illegal-instruction
	 * exception when injecting a program interrupt into the guest.
	 */
	if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
	else
		flags = SRR1_PROGILL;

	emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
	if (emul != EMULATE_DONE)
		return RESUME_GUEST;

	if (kvmppc_get_msr(vcpu) & MSR_PR) {
#ifdef EXIT_DEBUG
		pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
			kvmppc_get_pc(vcpu), last_inst);
#endif
		if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) {
			kvmppc_core_queue_program(vcpu, flags);
			return RESUME_GUEST;
		}
	}

	vcpu->stat.emulated_inst_exits++;
	er = kvmppc_emulate_instruction(run, vcpu);
	switch (er) {
	case EMULATE_DONE:
		r = RESUME_GUEST_NV;
		break;
	case EMULATE_AGAIN:
		r = RESUME_GUEST;
		break;
	case EMULATE_FAIL:
		pr_crit("%s: emulation at %lx failed (%08x)\n",
			__func__, kvmppc_get_pc(vcpu), last_inst);
		kvmppc_core_queue_program(vcpu, flags);
		r = RESUME_GUEST;
		break;
	case EMULATE_DO_MMIO:
		run->exit_reason = KVM_EXIT_MMIO;
		r = RESUME_HOST_NV;
		break;
	case EMULATE_EXIT_USER:
		r = RESUME_HOST_NV;
		break;
	default:
		BUG();
	}

	return r;
}

961 962
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
963 964
{
	int r = RESUME_HOST;
965
	int s;
966 967 968 969 970 971

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

972
	/* We get here with MSR.EE=1 */
973

974
	trace_kvm_exit(exit_nr, vcpu);
975
	guest_exit();
976

977 978
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
979
	{
980
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
981 982
		vcpu->stat.pf_instruc++;

983 984 985
		if (kvmppc_is_split_real(vcpu))
			kvmppc_fixup_split_real(vcpu);

986 987 988
#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
989 990 991 992 993 994
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
995
			svcpu_put(svcpu);
996 997 998 999 1000
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
1001 1002 1003 1004
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
1005
		if (shadow_srr1 & 0x40000000) {
1006
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1007
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
1008
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
1020 1021 1022
			u64 msr = kvmppc_get_msr(vcpu);
			msr |= shadow_srr1 & 0x58000000;
			kvmppc_set_msr_fast(vcpu, msr);
1023 1024 1025 1026
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1027
	}
1028 1029 1030
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
1031
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
1032 1033 1034 1035 1036
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
1037 1038 1039 1040 1041 1042
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
1043
			svcpu_put(svcpu);
1044 1045 1046 1047 1048
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
1049 1050 1051
		}
#endif

1052 1053 1054 1055 1056 1057 1058
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1059
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
1060
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1061
		} else {
1062 1063
			kvmppc_set_dar(vcpu, dar);
			kvmppc_set_dsisr(vcpu, fault_dsisr);
1064 1065 1066 1067 1068 1069 1070
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1071
			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
1086
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1087
	case BOOK3S_INTERRUPT_DOORBELL:
1088
	case BOOK3S_INTERRUPT_H_DOORBELL:
1089 1090 1091 1092
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1093 1094
	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1095 1096 1097 1098 1099 1100 1101
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
1102
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1103
		r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1104 1105
		break;
	case BOOK3S_INTERRUPT_SYSCALL:
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	{
		u32 last_sc;
		int emul;

		/* Get last sc for papr */
		if (vcpu->arch.papr_enabled) {
			/* The sc instuction points SRR0 to the next inst */
			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
			if (emul != EMULATE_DONE) {
				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
				r = RESUME_GUEST;
				break;
			}
		}

1121
		if (vcpu->arch.papr_enabled &&
1122
		    (last_sc == 0x44000022) &&
1123
		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1124 1125 1126 1127
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

1128
#ifdef CONFIG_PPC_BOOK3S_64
1129 1130 1131 1132
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
1133
#endif
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
1155
		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1167
	}
1168 1169 1170 1171 1172
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;
1173 1174 1175 1176 1177
		int emul;
		u32 last_inst;

		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
			/* Do paired single instruction emulation */
1178 1179
			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
						    &last_inst);
1180
			if (emul == EMULATE_DONE)
1181
				r = kvmppc_exit_pr_progint(run, vcpu, exit_nr);
1182 1183
			else
				r = RESUME_GUEST;
1184

1185
			break;
1186 1187
		}

1188 1189 1190 1191
		/* Enable external provider */
		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL:
			ext_msr = MSR_FP;
1192
			break;
1193 1194 1195

		case BOOK3S_INTERRUPT_ALTIVEC:
			ext_msr = MSR_VEC;
1196
			break;
1197 1198 1199

		case BOOK3S_INTERRUPT_VSX:
			ext_msr = MSR_VSX;
1200 1201
			break;
		}
1202 1203

		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1204 1205 1206
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
1207
	{
1208 1209
		u32 last_inst;
		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1210 1211

		if (emul == EMULATE_DONE) {
1212 1213 1214 1215 1216 1217 1218 1219 1220
			u32 dsisr;
			u64 dar;

			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
			dar = kvmppc_alignment_dar(vcpu, last_inst);

			kvmppc_set_dsisr(vcpu, dsisr);
			kvmppc_set_dar(vcpu, dar);

1221 1222 1223 1224
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
1225
	}
1226 1227 1228 1229 1230 1231
#ifdef CONFIG_PPC_BOOK3S_64
	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
		kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
		r = RESUME_GUEST;
		break;
#endif
1232 1233 1234 1235
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
1236 1237 1238 1239 1240 1241 1242 1243 1244
	case BOOK3S_INTERRUPT_TRACE:
		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
			run->exit_reason = KVM_EXIT_DEBUG;
			r = RESUME_HOST;
		} else {
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1245
	default:
1246
	{
1247
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1248 1249
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1250
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1251 1252 1253 1254
		r = RESUME_HOST;
		BUG();
		break;
	}
1255
	}
1256 1257 1258 1259 1260

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1261 1262 1263 1264 1265 1266 1267

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1268
		s = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1269
		if (s <= 0)
1270
			r = s;
S
Scott Wood 已提交
1271 1272
		else {
			/* interrupts now hard-disabled */
1273
			kvmppc_fix_ee_before_entry();
1274
		}
S
Scott Wood 已提交
1275

1276
		kvmppc_handle_lost_ext(vcpu);
1277 1278 1279 1280 1281 1282 1283
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1284 1285
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
1300
			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1311 1312
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1313 1314 1315 1316
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1317
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1318 1319

	vcpu3s->sdr1 = sregs->u.s.sdr1;
1320
#ifdef CONFIG_PPC_BOOK3S_64
1321
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
1322 1323 1324 1325
		/* Flush all SLB entries */
		vcpu->arch.mmu.slbmte(vcpu, 0, 0);
		vcpu->arch.mmu.slbia(vcpu);

1326
		for (i = 0; i < 64; i++) {
1327 1328 1329 1330 1331
			u64 rb = sregs->u.s.ppc64.slb[i].slbe;
			u64 rs = sregs->u.s.ppc64.slb[i].slbv;

			if (rb & SLB_ESID_V)
				vcpu->arch.mmu.slbmte(vcpu, rs, rb);
1332
		}
1333 1334 1335
	} else
#endif
	{
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1357 1358
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1359
{
1360
	int r = 0;
1361

1362
	switch (id) {
1363 1364 1365
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1366
	case KVM_REG_PPC_HIOR:
1367
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1368
		break;
1369 1370 1371
	case KVM_REG_PPC_VTB:
		*val = get_reg_val(id, to_book3s(vcpu)->vtb);
		break;
1372
	case KVM_REG_PPC_LPCR:
1373
	case KVM_REG_PPC_LPCR_64:
1374 1375 1376 1377 1378 1379 1380 1381
		/*
		 * We are only interested in the LPCR_ILE bit
		 */
		if (vcpu->arch.intr_msr & MSR_LE)
			*val = get_reg_val(id, LPCR_ILE);
		else
			*val = get_reg_val(id, 0);
		break;
1382
	default:
1383
		r = -EINVAL;
1384 1385 1386 1387 1388 1389
		break;
	}

	return r;
}

1390 1391 1392 1393 1394 1395 1396 1397
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	if (new_lpcr & LPCR_ILE)
		vcpu->arch.intr_msr |= MSR_LE;
	else
		vcpu->arch.intr_msr &= ~MSR_LE;
}

1398 1399
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1400
{
1401
	int r = 0;
1402

1403
	switch (id) {
1404
	case KVM_REG_PPC_HIOR:
1405 1406
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1407
		break;
1408 1409 1410
	case KVM_REG_PPC_VTB:
		to_book3s(vcpu)->vtb = set_reg_val(id, *val);
		break;
1411
	case KVM_REG_PPC_LPCR:
1412
	case KVM_REG_PPC_LPCR_64:
1413 1414
		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
		break;
1415
	default:
1416
		r = -EINVAL;
1417 1418 1419 1420 1421 1422
		break;
	}

	return r;
}

1423 1424
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
						   unsigned int id)
1425 1426 1427 1428 1429 1430
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	struct kvm_vcpu *vcpu;
	int err = -ENOMEM;
	unsigned long p;

1431 1432
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu)
1433 1434 1435 1436 1437
		goto out;

	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
		goto free_vcpu;
1438
	vcpu->arch.book3s = vcpu_book3s;
1439

1440
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1441 1442 1443 1444
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1445
#endif
1446 1447 1448 1449 1450

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_shadow_vcpu;

1451
	err = -ENOMEM;
1452 1453 1454
	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
		goto uninit_vcpu;
1455
	vcpu->arch.shared = (void *)p;
1456
#ifdef CONFIG_PPC_BOOK3S_64
1457 1458 1459 1460 1461 1462 1463
	/* Always start the shared struct in native endian mode */
#ifdef __BIG_ENDIAN__
        vcpu->arch.shared_big_endian = true;
#else
        vcpu->arch.shared_big_endian = false;
#endif

1464 1465 1466 1467 1468
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1469
	vcpu->arch.pvr = 0x3C0301;
1470 1471
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1472
	vcpu->arch.intr_msr = MSR_SF;
1473 1474 1475 1476
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
#endif
1477
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1478 1479
	vcpu->arch.slb_nr = 64;

1480
	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
		goto uninit_vcpu;

	return vcpu;

uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
1491
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1492 1493
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1494
#endif
1495
	vfree(vcpu_book3s);
1496 1497
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1498 1499 1500 1501
out:
	return ERR_PTR(err);
}

1502
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1503 1504 1505 1506 1507
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
	kvm_vcpu_uninit(vcpu);
1508
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1509 1510
	kfree(vcpu->arch.shadow_vcpu);
#endif
1511
	vfree(vcpu_book3s);
1512
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1513 1514
}

1515
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1516 1517 1518 1519 1520 1521
{
	int ret;
#ifdef CONFIG_ALTIVEC
	unsigned long uninitialized_var(vrsave);
#endif

1522 1523 1524
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1525 1526
		ret = -EINVAL;
		goto out;
1527 1528
	}

1529 1530
	kvmppc_setup_debug(vcpu);

1531 1532 1533 1534 1535 1536
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1537
	ret = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1538
	if (ret <= 0)
1539
		goto out;
S
Scott Wood 已提交
1540
	/* interrupts now hard-disabled */
1541

A
Anton Blanchard 已提交
1542 1543
	/* Save FPU, Altivec and VSX state */
	giveup_all(current);
1544 1545

	/* Preload FPU if it's enabled */
1546
	if (kvmppc_get_msr(vcpu) & MSR_FP)
1547 1548
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1549
	kvmppc_fix_ee_before_entry();
1550 1551 1552

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1553 1554
	kvmppc_clear_debug(vcpu);

1555
	/* No need for guest_exit. It's done in handle_exit.
1556
	   We also get here with interrupts enabled. */
1557 1558

	/* Make sure we save the guest FPU/Altivec/VSX state */
1559 1560
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

1561 1562 1563
	/* Make sure we save the guest TAR/EBB/DSCR state */
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);

1564
out:
1565
	vcpu->mode = OUTSIDE_GUEST_MODE;
1566 1567 1568
	return ret;
}

1569 1570 1571
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1572 1573
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1574
{
1575
	struct kvm_memslots *slots;
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
1591 1592
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1610 1611
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
1612
{
1613 1614
	return;
}
1615

1616 1617
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
1618
					const struct kvm_userspace_memory_region *mem)
1619
{
1620 1621 1622
	return 0;
}

1623
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1624
				const struct kvm_userspace_memory_region *mem,
1625 1626
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
1627
{
1628
	return;
1629 1630
}

1631 1632
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1633
{
1634
	return;
1635 1636
}

1637 1638
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
1639 1640 1641 1642
{
	return 0;
}

1643

1644
#ifdef CONFIG_PPC64
1645 1646
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1647
{
1648 1649 1650 1651
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1682
	/* Standard 16M large page size segment */
1683 1684 1685 1686
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
1687

1688 1689
	return 0;
}
1690 1691 1692
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1693
{
1694 1695
	/* We should not get called */
	BUG();
1696
}
1697
#endif /* CONFIG_PPC64 */
1698

1699 1700 1701
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

1702
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1703
{
1704
	mutex_init(&kvm->arch.hpt_mutex);
1705

1706 1707 1708 1709 1710
#ifdef CONFIG_PPC_BOOK3S_64
	/* Start out with the default set of hcalls enabled */
	kvmppc_pr_init_default_hcalls(kvm);
#endif

1711 1712 1713
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
1714
			pseries_disable_reloc_on_exc();
1715 1716
		spin_unlock(&kvm_global_user_count_lock);
	}
1717 1718 1719
	return 0;
}

1720
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1721
{
1722 1723 1724
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
1725 1726 1727 1728 1729

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
1730
			pseries_enable_reloc_on_exc();
1731 1732
		spin_unlock(&kvm_global_user_count_lock);
	}
1733 1734
}

1735
static int kvmppc_core_check_processor_compat_pr(void)
1736
{
1737
	/*
1738 1739 1740 1741 1742 1743 1744
	 * PR KVM can work on POWER9 inside a guest partition
	 * running in HPT mode.  It can't work if we are using
	 * radix translation (because radix provides no way for
	 * a process to have unique translations in quadrant 3)
	 * or in a bare-metal HPT-mode host (because POWER9
	 * uses a modified HPTE format which the PR KVM code
	 * has not been adapted to use).
1745
	 */
1746 1747
	if (cpu_has_feature(CPU_FTR_ARCH_300) &&
	    (radix_enabled() || cpu_has_feature(CPU_FTR_HVMODE)))
1748
		return -EIO;
1749 1750
	return 0;
}
1751

1752 1753 1754 1755 1756
static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}
1757

1758
static struct kvmppc_ops kvm_ops_pr = {
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
1789 1790 1791
#ifdef CONFIG_PPC_BOOK3S_64
	.hcall_implemented = kvmppc_hcall_impl_pr,
#endif
1792 1793
};

1794 1795

int kvmppc_book3s_init_pr(void)
1796 1797 1798
{
	int r;

1799 1800
	r = kvmppc_core_check_processor_compat_pr();
	if (r < 0)
1801 1802
		return r;

1803 1804
	kvm_ops_pr.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_pr;
1805

1806
	r = kvmppc_mmu_hpte_sysinit();
1807 1808 1809
	return r;
}

1810
void kvmppc_book3s_exit_pr(void)
1811
{
1812
	kvmppc_pr_ops = NULL;
1813 1814 1815
	kvmppc_mmu_hpte_sysexit();
}

1816 1817 1818 1819 1820
/*
 * We only support separate modules for book3s 64
 */
#ifdef CONFIG_PPC_BOOK3S_64

1821 1822
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
1823 1824

MODULE_LICENSE("GPL");
1825 1826
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
1827
#endif