book3s_pr.c 45.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
 *
 * Authors:
 *    Alexander Graf <agraf@suse.de>
 *    Kevin Wolf <mail@kevin-wolf.de>
 *    Paul Mackerras <paulus@samba.org>
 *
 * Description:
 * Functions relating to running KVM on Book 3S processors where
 * we don't have access to hypervisor mode, and we run the guest
 * in problem state (user mode).
 *
 * This file is derived from arch/powerpc/kvm/44x.c,
 * by Hollis Blanchard <hollisb@us.ibm.com>.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 */

#include <linux/kvm_host.h>
23
#include <linux/export.h>
24 25 26 27 28 29 30 31 32 33 34 35
#include <linux/err.h>
#include <linux/slab.h>

#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
36
#include <asm/switch_to.h>
37
#include <asm/firmware.h>
38
#include <asm/hvcall.h>
39 40 41 42
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
43
#include <linux/module.h>
44
#include <linux/miscdevice.h>
45

46
#include "book3s.h"
47 48 49

#define CREATE_TRACE_POINTS
#include "trace_pr.h"
50 51 52 53 54 55

/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */

static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr);
56
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
57 58 59 60 61 62 63 64

/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
#endif

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
}

static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
{
	ulong msr = kvmppc_get_msr(vcpu);
	ulong pc = kvmppc_get_pc(vcpu);

	/* We are in DR only split real mode */
	if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
		return;

	/* We have not fixed up the guest already */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
		return;

	/* The code is in fixupable address space */
	if (pc & SPLIT_HACK_MASK)
		return;

	vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
	kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
}

void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);

94
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
95 96
{
#ifdef CONFIG_PPC_BOOK3S_64
97 98 99
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
	memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
	svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
100
	svcpu->in_use = 0;
101
	svcpu_put(svcpu);
102
#endif
103 104 105 106 107 108

	/* Disable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);

109
	vcpu->cpu = smp_processor_id();
110
#ifdef CONFIG_PPC_BOOK3S_32
111
	current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
112
#endif
113 114 115

	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
116 117
}

118
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
119 120
{
#ifdef CONFIG_PPC_BOOK3S_64
121
	struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
122 123 124
	if (svcpu->in_use) {
		kvmppc_copy_from_svcpu(vcpu, svcpu);
	}
125 126 127
	memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
	to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
	svcpu_put(svcpu);
128 129
#endif

130 131 132
	if (kvmppc_is_split_real(vcpu))
		kvmppc_unfixup_split_real(vcpu);

133
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
134
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
135 136 137 138 139 140

	/* Enable AIL if supported */
	if (cpu_has_feature(CPU_FTR_HVMODE) &&
	    cpu_has_feature(CPU_FTR_ARCH_207S))
		mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);

141
	vcpu->cpu = -1;
142 143
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
			  struct kvm_vcpu *vcpu)
{
	svcpu->gpr[0] = vcpu->arch.gpr[0];
	svcpu->gpr[1] = vcpu->arch.gpr[1];
	svcpu->gpr[2] = vcpu->arch.gpr[2];
	svcpu->gpr[3] = vcpu->arch.gpr[3];
	svcpu->gpr[4] = vcpu->arch.gpr[4];
	svcpu->gpr[5] = vcpu->arch.gpr[5];
	svcpu->gpr[6] = vcpu->arch.gpr[6];
	svcpu->gpr[7] = vcpu->arch.gpr[7];
	svcpu->gpr[8] = vcpu->arch.gpr[8];
	svcpu->gpr[9] = vcpu->arch.gpr[9];
	svcpu->gpr[10] = vcpu->arch.gpr[10];
	svcpu->gpr[11] = vcpu->arch.gpr[11];
	svcpu->gpr[12] = vcpu->arch.gpr[12];
	svcpu->gpr[13] = vcpu->arch.gpr[13];
	svcpu->cr  = vcpu->arch.cr;
	svcpu->xer = vcpu->arch.xer;
	svcpu->ctr = vcpu->arch.ctr;
	svcpu->lr  = vcpu->arch.lr;
	svcpu->pc  = vcpu->arch.pc;
167 168 169
#ifdef CONFIG_PPC_BOOK3S_64
	svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
#endif
170 171 172 173 174
	/*
	 * Now also save the current time base value. We use this
	 * to find the guest purr and spurr value.
	 */
	vcpu->arch.entry_tb = get_tb();
175
	vcpu->arch.entry_vtb = get_vtb();
176 177
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.entry_ic = mfspr(SPRN_IC);
178
	svcpu->in_use = true;
179 180 181 182 183 184
}

/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
			    struct kvmppc_book3s_shadow_vcpu *svcpu)
{
185 186 187 188 189 190 191 192 193 194 195 196 197
	/*
	 * vcpu_put would just call us again because in_use hasn't
	 * been updated yet.
	 */
	preempt_disable();

	/*
	 * Maybe we were already preempted and synced the svcpu from
	 * our preempt notifiers. Don't bother touching this svcpu then.
	 */
	if (!svcpu->in_use)
		goto out;

198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	vcpu->arch.gpr[0] = svcpu->gpr[0];
	vcpu->arch.gpr[1] = svcpu->gpr[1];
	vcpu->arch.gpr[2] = svcpu->gpr[2];
	vcpu->arch.gpr[3] = svcpu->gpr[3];
	vcpu->arch.gpr[4] = svcpu->gpr[4];
	vcpu->arch.gpr[5] = svcpu->gpr[5];
	vcpu->arch.gpr[6] = svcpu->gpr[6];
	vcpu->arch.gpr[7] = svcpu->gpr[7];
	vcpu->arch.gpr[8] = svcpu->gpr[8];
	vcpu->arch.gpr[9] = svcpu->gpr[9];
	vcpu->arch.gpr[10] = svcpu->gpr[10];
	vcpu->arch.gpr[11] = svcpu->gpr[11];
	vcpu->arch.gpr[12] = svcpu->gpr[12];
	vcpu->arch.gpr[13] = svcpu->gpr[13];
	vcpu->arch.cr  = svcpu->cr;
	vcpu->arch.xer = svcpu->xer;
	vcpu->arch.ctr = svcpu->ctr;
	vcpu->arch.lr  = svcpu->lr;
	vcpu->arch.pc  = svcpu->pc;
	vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
	vcpu->arch.fault_dar   = svcpu->fault_dar;
	vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
	vcpu->arch.last_inst   = svcpu->last_inst;
221 222 223
#ifdef CONFIG_PPC_BOOK3S_64
	vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
#endif
224 225 226 227 228
	/*
	 * Update purr and spurr using time base on exit.
	 */
	vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
	vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
229
	vcpu->arch.vtb += get_vtb() - vcpu->arch.entry_vtb;
230 231
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
232 233 234 235
	svcpu->in_use = false;

out:
	preempt_enable();
236 237
}

238
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
239
{
240 241
	int r = 1; /* Indicate we want to get back into the guest */

242 243 244 245
	/* We misuse TLB_FLUSH to indicate that we want to clear
	   all shadow cache entries */
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_mmu_pte_flush(vcpu, 0, 0);
246 247

	return r;
248 249
}

250
/************* MMU Notifiers *************/
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
			     unsigned long end)
{
	long i;
	struct kvm_vcpu *vcpu;
	struct kvm_memslots *slots;
	struct kvm_memory_slot *memslot;

	slots = kvm_memslots(kvm);
	kvm_for_each_memslot(memslot, slots) {
		unsigned long hva_start, hva_end;
		gfn_t gfn, gfn_end;

		hva_start = max(start, memslot->userspace_addr);
		hva_end = min(end, memslot->userspace_addr +
					(memslot->npages << PAGE_SHIFT));
		if (hva_start >= hva_end)
			continue;
		/*
		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
		 * {gfn, gfn+1, ..., gfn_end-1}.
		 */
		gfn = hva_to_gfn_memslot(hva_start, memslot);
		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
		kvm_for_each_vcpu(i, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
					      gfn_end << PAGE_SHIFT);
	}
}
280

281
static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva)
282 283 284
{
	trace_kvm_unmap_hva(hva);

285
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
286 287 288 289

	return 0;
}

290 291
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
				  unsigned long end)
292
{
293
	do_kvm_unmap_hva(kvm, start, end);
294 295 296 297

	return 0;
}

A
Andres Lagar-Cavilla 已提交
298 299
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
			  unsigned long end)
300 301 302 303 304
{
	/* XXX could be more clever ;) */
	return 0;
}

305
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
306 307 308 309 310
{
	/* XXX could be more clever ;) */
	return 0;
}

311
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
312 313
{
	/* The page will get remapped properly on its next fault */
314
	do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
315 316 317 318
}

/*****************************************/

319 320
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
321 322
	ulong guest_msr = kvmppc_get_msr(vcpu);
	ulong smsr = guest_msr;
323 324

	/* Guest MSR values */
325
	smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
326 327 328
	/* Process MSR values */
	smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
	/* External providers the guest reserved */
329
	smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
330 331 332 333 334 335 336
	/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
	smsr |= MSR_ISF | MSR_HV;
#endif
	vcpu->arch.shadow_msr = smsr;
}

337
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
338
{
339
	ulong old_msr = kvmppc_get_msr(vcpu);
340 341 342 343 344 345

#ifdef EXIT_DEBUG
	printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif

	msr &= to_book3s(vcpu)->msr_mask;
346
	kvmppc_set_msr_fast(vcpu, msr);
347 348 349 350 351
	kvmppc_recalc_shadow_msr(vcpu);

	if (msr & MSR_POW) {
		if (!vcpu->arch.pending_exceptions) {
			kvm_vcpu_block(vcpu);
352
			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
353 354 355 356
			vcpu->stat.halt_wakeup++;

			/* Unset POW bit after we woke up */
			msr &= ~MSR_POW;
357
			kvmppc_set_msr_fast(vcpu, msr);
358 359 360
		}
	}

361 362 363 364 365
	if (kvmppc_is_split_real(vcpu))
		kvmppc_fixup_split_real(vcpu);
	else
		kvmppc_unfixup_split_real(vcpu);

366
	if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
		   (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
		kvmppc_mmu_flush_segments(vcpu);
		kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));

		/* Preload magic page segment when in kernel mode */
		if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
			struct kvm_vcpu_arch *a = &vcpu->arch;

			if (msr & MSR_DR)
				kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
			else
				kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
		}
	}

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	/*
	 * When switching from 32 to 64-bit, we may have a stale 32-bit
	 * magic page around, we need to flush it. Typically 32-bit magic
	 * page will be instanciated when calling into RTAS. Note: We
	 * assume that such transition only happens while in kernel mode,
	 * ie, we never transition from user 32-bit to kernel 64-bit with
	 * a 32-bit magic page around.
	 */
	if (vcpu->arch.magic_page_pa &&
	    !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
		/* going from RTAS to normal kernel code */
		kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
				     ~0xFFFUL);
	}

397
	/* Preload FPU if it's enabled */
398
	if (kvmppc_get_msr(vcpu) & MSR_FP)
399 400 401
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}

402
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
403 404 405 406 407 408 409 410
{
	u32 host_pvr;

	vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
	vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
	if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
		kvmppc_mmu_book3s_64_init(vcpu);
411 412
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0xfff00000;
413
		to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
414
		vcpu->arch.cpu_type = KVM_CPU_3S_64;
415 416 417 418
	} else
#endif
	{
		kvmppc_mmu_book3s_32_init(vcpu);
419 420
		if (!to_book3s(vcpu)->hior_explicit)
			to_book3s(vcpu)->hior = 0;
421
		to_book3s(vcpu)->msr_mask = 0xffffffffULL;
422
		vcpu->arch.cpu_type = KVM_CPU_3S_32;
423 424
	}

425 426
	kvmppc_sanity_check(vcpu);

427 428 429 430 431 432 433 434 435 436 437 438
	/* If we are in hypervisor level on 970, we can tell the CPU to
	 * treat DCBZ as 32 bytes store */
	vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
	if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
	    !strcmp(cur_cpu_spec->platform, "ppc970"))
		vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;

	/* Cell performs badly if MSR_FEx are set. So let's hope nobody
	   really needs them in a VM on Cell and force disable them. */
	if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
		to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
	/*
	 * If they're asking for POWER6 or later, set the flag
	 * indicating that we can do multiple large page sizes
	 * and 1TB segments.
	 * Also set the flag that indicates that tlbie has the large
	 * page bit in the RB operand instead of the instruction.
	 */
	switch (PVR_VER(pvr)) {
	case PVR_POWER6:
	case PVR_POWER7:
	case PVR_POWER7p:
	case PVR_POWER8:
		vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
			BOOK3S_HFLAG_NEW_TLBIE;
		break;
	}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
#ifdef CONFIG_PPC_BOOK3S_32
	/* 32 bit Book3S always has 32 byte dcbz */
	vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif

	/* On some CPUs we can execute paired single operations natively */
	asm ( "mfpvr %0" : "=r"(host_pvr));
	switch (host_pvr) {
	case 0x00080200:	/* lonestar 2.0 */
	case 0x00088202:	/* lonestar 2.2 */
	case 0x70000100:	/* gekko 1.0 */
	case 0x00080100:	/* gekko 2.0 */
	case 0x00083203:	/* gekko 2.3a */
	case 0x00083213:	/* gekko 2.3b */
	case 0x00083204:	/* gekko 2.4 */
	case 0x00083214:	/* gekko 2.4e (8SE) - retail HW2 */
	case 0x00087200:	/* broadway */
		vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
		/* Enable HID2.PSE - in case we need it later */
		mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
	}
}

/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
 * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
 * emulate 32 bytes dcbz length.
 *
 * The Book3s_64 inventors also realized this case and implemented a special bit
 * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
 *
 * My approach here is to patch the dcbz instruction on executing pages.
 */
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
	struct page *hpage;
	u64 hpage_offset;
	u32 *page;
	int i;

	hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
496
	if (is_error_page(hpage))
497 498 499 500 501 502 503
		return;

	hpage_offset = pte->raddr & ~PAGE_MASK;
	hpage_offset &= ~0xFFFULL;
	hpage_offset /= 4;

	get_page(hpage);
504
	page = kmap_atomic(hpage);
505 506 507

	/* patch dcbz into reserved instruction, so we trap */
	for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
508 509
		if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
			page[i] &= cpu_to_be32(0xfffffff7);
510

511
	kunmap_atomic(page);
512 513 514
	put_page(hpage);
}

515
static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
516 517 518
{
	ulong mp_pa = vcpu->arch.magic_page_pa;

519
	if (!(kvmppc_get_msr(vcpu) & MSR_SF))
520 521
		mp_pa = (uint32_t)mp_pa;

522 523
	gpa &= ~0xFFFULL;
	if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
524
		return true;
525 526
	}

527
	return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
528 529 530 531 532 533
}

int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
			    ulong eaddr, int vec)
{
	bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
534
	bool iswrite = false;
535 536 537 538 539
	int r = RESUME_GUEST;
	int relocated;
	int page_found = 0;
	struct kvmppc_pte pte;
	bool is_mmio = false;
540 541
	bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
	bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
542 543 544
	u64 vsid;

	relocated = data ? dr : ir;
545 546
	if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
		iswrite = true;
547 548 549

	/* Resolve real address if translation turned on */
	if (relocated) {
550
		page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
551 552 553 554 555 556 557
	} else {
		pte.may_execute = true;
		pte.may_read = true;
		pte.may_write = true;
		pte.raddr = eaddr & KVM_PAM;
		pte.eaddr = eaddr;
		pte.vpage = eaddr >> 12;
558
		pte.page_size = MMU_PAGE_64K;
559 560
	}

561
	switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
562 563 564 565
	case 0:
		pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
		break;
	case MSR_DR:
566 567 568 569 570
		if (!data &&
		    (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
		    ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
			pte.raddr &= ~SPLIT_HACK_MASK;
		/* fall through */
571 572 573
	case MSR_IR:
		vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);

574
		if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
			pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
		else
			pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
		pte.vpage |= vsid;

		if (vsid == -1)
			page_found = -EINVAL;
		break;
	}

	if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
	   (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
		/*
		 * If we do the dcbz hack, we have to NX on every execution,
		 * so we can patch the executing code. This renders our guest
		 * NX-less.
		 */
		pte.may_execute = !data;
	}

	if (page_found == -ENOENT) {
		/* Page not found in guest PTE entries */
597 598 599 600 601
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
602 603 604
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EPERM) {
		/* Storage protection */
605 606 607 608 609 610 611
		u32 dsisr = vcpu->arch.fault_dsisr;
		u64 ssrr1 = vcpu->arch.shadow_srr1;
		u64 msr = kvmppc_get_msr(vcpu);
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
		dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
		kvmppc_set_dsisr(vcpu, dsisr);
		kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
612 613 614
		kvmppc_book3s_queue_irqprio(vcpu, vec);
	} else if (page_found == -EINVAL) {
		/* Page not found in guest SLB */
615
		kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
616 617
		kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
	} else if (!is_mmio &&
618
		   kvmppc_visible_gpa(vcpu, pte.raddr)) {
619 620 621 622 623 624 625 626
		if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
			/*
			 * There is already a host HPTE there, presumably
			 * a read-only one for a page the guest thinks
			 * is writable, so get rid of it first.
			 */
			kvmppc_mmu_unmap_page(vcpu, &pte);
		}
627
		/* The guest's PTE is not mapped yet. Map on the host */
628
		kvmppc_mmu_map_page(vcpu, &pte, iswrite);
629 630 631
		if (data)
			vcpu->stat.sp_storage++;
		else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
632
			 (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
633 634 635 636 637
			kvmppc_patch_dcbz(vcpu, &pte);
	} else {
		/* MMIO */
		vcpu->stat.mmio_exits++;
		vcpu->arch.paddr_accessed = pte.raddr;
638
		vcpu->arch.vaddr_accessed = pte.eaddr;
639 640 641 642 643 644 645 646 647 648 649 650 651
		r = kvmppc_emulate_mmio(run, vcpu);
		if ( r == RESUME_HOST_NV )
			r = RESUME_HOST;
	}

	return r;
}

/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
	struct thread_struct *t = &current->thread;

652 653 654 655 656 657 658 659 660
	/*
	 * VSX instructions can access FP and vector registers, so if
	 * we are giving up VSX, make sure we give up FP and VMX as well.
	 */
	if (msr & MSR_VSX)
		msr |= MSR_FP | MSR_VEC;

	msr &= vcpu->arch.guest_owned_ext;
	if (!msr)
661 662 663 664 665 666
		return;

#ifdef DEBUG_EXT
	printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif

667 668 669 670
	if (msr & MSR_FP) {
		/*
		 * Note that on CPUs with VSX, giveup_fpu stores
		 * both the traditional FP registers and the added VSX
671
		 * registers into thread.fp_state.fpr[].
672
		 */
673
		if (t->regs->msr & MSR_FP)
674
			giveup_fpu(current);
675
		t->fp_save_area = NULL;
676 677
	}

678
#ifdef CONFIG_ALTIVEC
679
	if (msr & MSR_VEC) {
680 681
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
682
		t->vr_save_area = NULL;
683
	}
684
#endif
685

686
	vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
687 688 689
	kvmppc_recalc_shadow_msr(vcpu);
}

690 691 692 693 694 695 696 697
/* Give up facility (TAR / EBB / DSCR) */
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
		/* Facility not available to the guest, ignore giveup request*/
		return;
	}
698 699 700 701 702 703 704 705

	switch (fac) {
	case FSCR_TAR_LG:
		vcpu->arch.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, current->thread.tar);
		vcpu->arch.shadow_fscr &= ~FSCR_TAR;
		break;
	}
706 707 708
#endif
}

709 710 711 712 713 714 715 716 717 718
/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
			     ulong msr)
{
	struct thread_struct *t = &current->thread;

	/* When we have paired singles, we emulate in software */
	if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
		return RESUME_GUEST;

719
	if (!(kvmppc_get_msr(vcpu) & msr)) {
720 721 722 723
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		return RESUME_GUEST;
	}

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	if (msr == MSR_VSX) {
		/* No VSX?  Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
		if (!cpu_has_feature(CPU_FTR_VSX))
#endif
		{
			kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
			return RESUME_GUEST;
		}

		/*
		 * We have to load up all the FP and VMX registers before
		 * we can let the guest use VSX instructions.
		 */
		msr = MSR_FP | MSR_VEC | MSR_VSX;
739 740
	}

741 742 743 744 745
	/* See if we already own all the ext(s) needed */
	msr &= ~vcpu->arch.guest_owned_ext;
	if (!msr)
		return RESUME_GUEST;

746 747 748 749
#ifdef DEBUG_EXT
	printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif

750
	if (msr & MSR_FP) {
751
		preempt_disable();
752
		enable_kernel_fp();
753
		load_fp_state(&vcpu->arch.fp);
754
		disable_kernel_fp();
755
		t->fp_save_area = &vcpu->arch.fp;
756
		preempt_enable();
757 758 759
	}

	if (msr & MSR_VEC) {
760
#ifdef CONFIG_ALTIVEC
761
		preempt_disable();
762
		enable_kernel_altivec();
763
		load_vr_state(&vcpu->arch.vr);
764
		disable_kernel_altivec();
765
		t->vr_save_area = &vcpu->arch.vr;
766
		preempt_enable();
767 768 769
#endif
	}

770
	t->regs->msr |= msr;
771 772 773 774 775 776
	vcpu->arch.guest_owned_ext |= msr;
	kvmppc_recalc_shadow_msr(vcpu);

	return RESUME_GUEST;
}

777 778 779 780 781 782 783 784 785 786 787 788
/*
 * Kernel code using FP or VMX could have flushed guest state to
 * the thread_struct; if so, get it back now.
 */
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
	unsigned long lost_ext;

	lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
	if (!lost_ext)
		return;

789
	if (lost_ext & MSR_FP) {
790
		preempt_disable();
791
		enable_kernel_fp();
792
		load_fp_state(&vcpu->arch.fp);
793
		disable_kernel_fp();
794
		preempt_enable();
795
	}
796
#ifdef CONFIG_ALTIVEC
797
	if (lost_ext & MSR_VEC) {
798
		preempt_disable();
799
		enable_kernel_altivec();
800
		load_vr_state(&vcpu->arch.vr);
801
		disable_kernel_altivec();
802
		preempt_enable();
803
	}
804
#endif
805 806 807
	current->thread.regs->msr |= lost_ext;
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
#ifdef CONFIG_PPC_BOOK3S_64

static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
{
	/* Inject the Interrupt Cause field and trigger a guest interrupt */
	vcpu->arch.fscr &= ~(0xffULL << 56);
	vcpu->arch.fscr |= (fac << 56);
	kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
}

static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
{
	enum emulation_result er = EMULATE_FAIL;

	if (!(kvmppc_get_msr(vcpu) & MSR_PR))
		er = kvmppc_emulate_instruction(vcpu->run, vcpu);

	if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
		/* Couldn't emulate, trigger interrupt in guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
	}
}

/* Enable facilities (TAR, EBB, DSCR) for the guest */
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
{
834
	bool guest_fac_enabled;
835 836
	BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
	/*
	 * Not every facility is enabled by FSCR bits, check whether the
	 * guest has this facility enabled at all.
	 */
	switch (fac) {
	case FSCR_TAR_LG:
	case FSCR_EBB_LG:
		guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
		break;
	case FSCR_TM_LG:
		guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
		break;
	default:
		guest_fac_enabled = false;
		break;
	}

	if (!guest_fac_enabled) {
855 856 857 858 859 860
		/* Facility not enabled by the guest */
		kvmppc_trigger_fac_interrupt(vcpu, fac);
		return RESUME_GUEST;
	}

	switch (fac) {
861 862 863 864 865 866
	case FSCR_TAR_LG:
		/* TAR switching isn't lazy in Linux yet */
		current->thread.tar = mfspr(SPRN_TAR);
		mtspr(SPRN_TAR, vcpu->arch.tar);
		vcpu->arch.shadow_fscr |= FSCR_TAR;
		break;
867 868 869 870 871 872 873
	default:
		kvmppc_emulate_fac(vcpu, fac);
		break;
	}

	return RESUME_GUEST;
}
874 875 876 877 878 879 880 881 882

void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
{
	if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
		/* TAR got dropped, drop it in shadow too */
		kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
	}
	vcpu->arch.fscr = fscr;
}
883 884
#endif

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr | MSR_SE);
	}
}

static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
{
	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
		u64 msr = kvmppc_get_msr(vcpu);

		kvmppc_set_msr(vcpu, msr & ~MSR_SE);
	}
}

903 904
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
			  unsigned int exit_nr)
905 906
{
	int r = RESUME_HOST;
907
	int s;
908 909 910 911 912 913

	vcpu->stat.sum_exits++;

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

914
	/* We get here with MSR.EE=1 */
915

916
	trace_kvm_exit(exit_nr, vcpu);
917
	kvm_guest_exit();
918

919 920
	switch (exit_nr) {
	case BOOK3S_INTERRUPT_INST_STORAGE:
921
	{
922
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
923 924
		vcpu->stat.pf_instruc++;

925 926 927
		if (kvmppc_is_split_real(vcpu))
			kvmppc_fixup_split_real(vcpu);

928 929 930
#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
931 932 933 934 935 936
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
937
			svcpu_put(svcpu);
938 939 940 941 942
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
				r = RESUME_GUEST;
				break;
			}
943 944 945 946
		}
#endif

		/* only care about PTEG not found errors, but leave NX alone */
947
		if (shadow_srr1 & 0x40000000) {
948
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
949
			r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
950
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
951 952 953 954 955 956 957 958 959 960 961
			vcpu->stat.sp_instruc++;
		} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
			  (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
			/*
			 * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
			 *     so we can't use the NX bit inside the guest. Let's cross our fingers,
			 *     that no guest that needs the dcbz hack does NX.
			 */
			kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
			r = RESUME_GUEST;
		} else {
962 963 964
			u64 msr = kvmppc_get_msr(vcpu);
			msr |= shadow_srr1 & 0x58000000;
			kvmppc_set_msr_fast(vcpu, msr);
965 966 967 968
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
969
	}
970 971 972
	case BOOK3S_INTERRUPT_DATA_STORAGE:
	{
		ulong dar = kvmppc_get_fault_dar(vcpu);
973
		u32 fault_dsisr = vcpu->arch.fault_dsisr;
974 975 976 977 978
		vcpu->stat.pf_storage++;

#ifdef CONFIG_PPC_BOOK3S_32
		/* We set segments as unused segments when invalidating them. So
		 * treat the respective fault as segment fault. */
979 980 981 982 983 984
		{
			struct kvmppc_book3s_shadow_vcpu *svcpu;
			u32 sr;

			svcpu = svcpu_get(vcpu);
			sr = svcpu->sr[dar >> SID_SHIFT];
985
			svcpu_put(svcpu);
986 987 988 989 990
			if (sr == SR_INVALID) {
				kvmppc_mmu_map_segment(vcpu, dar);
				r = RESUME_GUEST;
				break;
			}
991 992 993
		}
#endif

994 995 996 997 998 999 1000
		/*
		 * We need to handle missing shadow PTEs, and
		 * protection faults due to us mapping a page read-only
		 * when the guest thinks it is writable.
		 */
		if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
			int idx = srcu_read_lock(&vcpu->kvm->srcu);
1001
			r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
1002
			srcu_read_unlock(&vcpu->kvm->srcu, idx);
1003
		} else {
1004 1005
			kvmppc_set_dar(vcpu, dar);
			kvmppc_set_dsisr(vcpu, fault_dsisr);
1006 1007 1008 1009 1010 1011 1012
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
	}
	case BOOK3S_INTERRUPT_DATA_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
1013
			kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_DATA_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_INST_SEGMENT:
		if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
			kvmppc_book3s_queue_irqprio(vcpu,
				BOOK3S_INTERRUPT_INST_SEGMENT);
		}
		r = RESUME_GUEST;
		break;
	/* We're good on these - the host merely wanted to get our attention */
	case BOOK3S_INTERRUPT_DECREMENTER:
1028
	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1029
	case BOOK3S_INTERRUPT_DOORBELL:
1030
	case BOOK3S_INTERRUPT_H_DOORBELL:
1031 1032 1033 1034
		vcpu->stat.dec_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_EXTERNAL:
1035 1036
	case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
	case BOOK3S_INTERRUPT_EXTERNAL_HV:
1037 1038 1039 1040 1041 1042 1043
		vcpu->stat.ext_intr_exits++;
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PERFMON:
		r = RESUME_GUEST;
		break;
	case BOOK3S_INTERRUPT_PROGRAM:
1044
	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1045 1046 1047
	{
		enum emulation_result er;
		ulong flags;
1048 1049
		u32 last_inst;
		int emul;
1050 1051

program_interrupt:
1052
		flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
1053

1054 1055 1056 1057 1058 1059
		emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
		if (emul != EMULATE_DONE) {
			r = RESUME_GUEST;
			break;
		}

1060
		if (kvmppc_get_msr(vcpu) & MSR_PR) {
1061
#ifdef EXIT_DEBUG
1062 1063
			pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
				kvmppc_get_pc(vcpu), last_inst);
1064
#endif
1065
			if ((last_inst & 0xff0007ff) !=
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
			    (INS_DCBZ & 0xfffffff7)) {
				kvmppc_core_queue_program(vcpu, flags);
				r = RESUME_GUEST;
				break;
			}
		}

		vcpu->stat.emulated_inst_exits++;
		er = kvmppc_emulate_instruction(run, vcpu);
		switch (er) {
		case EMULATE_DONE:
			r = RESUME_GUEST_NV;
			break;
		case EMULATE_AGAIN:
			r = RESUME_GUEST;
			break;
		case EMULATE_FAIL:
			printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
1084
			       __func__, kvmppc_get_pc(vcpu), last_inst);
1085 1086 1087 1088 1089 1090 1091
			kvmppc_core_queue_program(vcpu, flags);
			r = RESUME_GUEST;
			break;
		case EMULATE_DO_MMIO:
			run->exit_reason = KVM_EXIT_MMIO;
			r = RESUME_HOST_NV;
			break;
1092
		case EMULATE_EXIT_USER:
1093 1094
			r = RESUME_HOST_NV;
			break;
1095 1096 1097 1098 1099 1100
		default:
			BUG();
		}
		break;
	}
	case BOOK3S_INTERRUPT_SYSCALL:
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
	{
		u32 last_sc;
		int emul;

		/* Get last sc for papr */
		if (vcpu->arch.papr_enabled) {
			/* The sc instuction points SRR0 to the next inst */
			emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
			if (emul != EMULATE_DONE) {
				kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
				r = RESUME_GUEST;
				break;
			}
		}

1116
		if (vcpu->arch.papr_enabled &&
1117
		    (last_sc == 0x44000022) &&
1118
		    !(kvmppc_get_msr(vcpu) & MSR_PR)) {
1119 1120 1121 1122
			/* SC 1 papr hypercalls */
			ulong cmd = kvmppc_get_gpr(vcpu, 3);
			int i;

1123
#ifdef CONFIG_PPC_BOOK3S_64
1124 1125 1126 1127
			if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
				r = RESUME_GUEST;
				break;
			}
1128
#endif
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

			run->papr_hcall.nr = cmd;
			for (i = 0; i < 9; ++i) {
				ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
				run->papr_hcall.args[i] = gpr;
			}
			run->exit_reason = KVM_EXIT_PAPR_HCALL;
			vcpu->arch.hcall_needed = 1;
			r = RESUME_HOST;
		} else if (vcpu->arch.osi_enabled &&
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
		    (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
		    (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
			/* MOL hypercalls */
			u64 *gprs = run->osi.gprs;
			int i;

			run->exit_reason = KVM_EXIT_OSI;
			for (i = 0; i < 32; i++)
				gprs[i] = kvmppc_get_gpr(vcpu, i);
			vcpu->arch.osi_needed = 1;
			r = RESUME_HOST_NV;
1150
		} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			vcpu->stat.syscall_exits++;
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1162
	}
1163 1164 1165 1166 1167
	case BOOK3S_INTERRUPT_FP_UNAVAIL:
	case BOOK3S_INTERRUPT_ALTIVEC:
	case BOOK3S_INTERRUPT_VSX:
	{
		int ext_msr = 0;
1168 1169 1170 1171 1172
		int emul;
		u32 last_inst;

		if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
			/* Do paired single instruction emulation */
1173 1174
			emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
						    &last_inst);
1175 1176 1177 1178
			if (emul == EMULATE_DONE)
				goto program_interrupt;
			else
				r = RESUME_GUEST;
1179

1180
			break;
1181 1182
		}

1183 1184 1185 1186
		/* Enable external provider */
		switch (exit_nr) {
		case BOOK3S_INTERRUPT_FP_UNAVAIL:
			ext_msr = MSR_FP;
1187
			break;
1188 1189 1190

		case BOOK3S_INTERRUPT_ALTIVEC:
			ext_msr = MSR_VEC;
1191
			break;
1192 1193 1194

		case BOOK3S_INTERRUPT_VSX:
			ext_msr = MSR_VSX;
1195 1196
			break;
		}
1197 1198

		r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
1199 1200 1201
		break;
	}
	case BOOK3S_INTERRUPT_ALIGNMENT:
1202
	{
1203 1204
		u32 last_inst;
		int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
1205 1206

		if (emul == EMULATE_DONE) {
1207 1208 1209 1210 1211 1212 1213 1214 1215
			u32 dsisr;
			u64 dar;

			dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
			dar = kvmppc_alignment_dar(vcpu, last_inst);

			kvmppc_set_dsisr(vcpu, dsisr);
			kvmppc_set_dar(vcpu, dar);

1216 1217 1218 1219
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		}
		r = RESUME_GUEST;
		break;
1220
	}
1221 1222 1223 1224 1225 1226
#ifdef CONFIG_PPC_BOOK3S_64
	case BOOK3S_INTERRUPT_FAC_UNAVAIL:
		kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
		r = RESUME_GUEST;
		break;
#endif
1227 1228 1229 1230
	case BOOK3S_INTERRUPT_MACHINE_CHECK:
		kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
		r = RESUME_GUEST;
		break;
1231 1232 1233 1234 1235 1236 1237 1238 1239
	case BOOK3S_INTERRUPT_TRACE:
		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
			run->exit_reason = KVM_EXIT_DEBUG;
			r = RESUME_HOST;
		} else {
			kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
			r = RESUME_GUEST;
		}
		break;
1240
	default:
1241
	{
1242
		ulong shadow_srr1 = vcpu->arch.shadow_srr1;
1243 1244
		/* Ugh - bork here! What did we get? */
		printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
1245
			exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
1246 1247 1248 1249
		r = RESUME_HOST;
		BUG();
		break;
	}
1250
	}
1251 1252 1253 1254 1255

	if (!(r & RESUME_HOST)) {
		/* To avoid clobbering exit_reason, only check for signals if
		 * we aren't already exiting to userspace for some other
		 * reason. */
1256 1257 1258 1259 1260 1261 1262

		/*
		 * Interrupts could be timers for the guest which we have to
		 * inject again, so let's postpone them until we're in the guest
		 * and if we really did time things so badly, then we just exit
		 * again due to a host external interrupt.
		 */
1263
		s = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1264
		if (s <= 0)
1265
			r = s;
S
Scott Wood 已提交
1266 1267
		else {
			/* interrupts now hard-disabled */
1268
			kvmppc_fix_ee_before_entry();
1269
		}
S
Scott Wood 已提交
1270

1271
		kvmppc_handle_lost_ext(vcpu);
1272 1273 1274 1275 1276 1277 1278
	}

	trace_kvm_book3s_reenter(r, vcpu);

	return r;
}

1279 1280
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

	sregs->pvr = vcpu->arch.pvr;

	sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
			sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
		}
	} else {
		for (i = 0; i < 16; i++)
1295
			sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305

		for (i = 0; i < 8; i++) {
			sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
			sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
		}
	}

	return 0;
}

1306 1307
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
					    struct kvm_sregs *sregs)
1308 1309 1310 1311
{
	struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
	int i;

1312
	kvmppc_set_pvr_pr(vcpu, sregs->pvr);
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

	vcpu3s->sdr1 = sregs->u.s.sdr1;
	if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
		for (i = 0; i < 64; i++) {
			vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
						    sregs->u.s.ppc64.slb[i].slbe);
		}
	} else {
		for (i = 0; i < 16; i++) {
			vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
		}
		for (i = 0; i < 8; i++) {
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
				       (u32)sregs->u.s.ppc32.ibat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
				       (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
				       (u32)sregs->u.s.ppc32.dbat[i]);
			kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
				       (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
		}
	}

	/* Flush the MMU after messing with the segments */
	kvmppc_mmu_pte_flush(vcpu, 0, 0);

	return 0;
}

1342 1343
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1344
{
1345
	int r = 0;
1346

1347
	switch (id) {
1348 1349 1350
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
1351
	case KVM_REG_PPC_HIOR:
1352
		*val = get_reg_val(id, to_book3s(vcpu)->hior);
1353
		break;
1354
	case KVM_REG_PPC_LPCR:
1355
	case KVM_REG_PPC_LPCR_64:
1356 1357 1358 1359 1360 1361 1362 1363
		/*
		 * We are only interested in the LPCR_ILE bit
		 */
		if (vcpu->arch.intr_msr & MSR_LE)
			*val = get_reg_val(id, LPCR_ILE);
		else
			*val = get_reg_val(id, 0);
		break;
1364
	default:
1365
		r = -EINVAL;
1366 1367 1368 1369 1370 1371
		break;
	}

	return r;
}

1372 1373 1374 1375 1376 1377 1378 1379
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
	if (new_lpcr & LPCR_ILE)
		vcpu->arch.intr_msr |= MSR_LE;
	else
		vcpu->arch.intr_msr &= ~MSR_LE;
}

1380 1381
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
				 union kvmppc_one_reg *val)
1382
{
1383
	int r = 0;
1384

1385
	switch (id) {
1386
	case KVM_REG_PPC_HIOR:
1387 1388
		to_book3s(vcpu)->hior = set_reg_val(id, *val);
		to_book3s(vcpu)->hior_explicit = true;
1389
		break;
1390
	case KVM_REG_PPC_LPCR:
1391
	case KVM_REG_PPC_LPCR_64:
1392 1393
		kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
		break;
1394
	default:
1395
		r = -EINVAL;
1396 1397 1398 1399 1400 1401
		break;
	}

	return r;
}

1402 1403
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
						   unsigned int id)
1404 1405 1406 1407 1408 1409
{
	struct kvmppc_vcpu_book3s *vcpu_book3s;
	struct kvm_vcpu *vcpu;
	int err = -ENOMEM;
	unsigned long p;

1410 1411
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu)
1412 1413 1414 1415 1416
		goto out;

	vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
	if (!vcpu_book3s)
		goto free_vcpu;
1417
	vcpu->arch.book3s = vcpu_book3s;
1418

1419
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1420 1421 1422 1423
	vcpu->arch.shadow_vcpu =
		kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
	if (!vcpu->arch.shadow_vcpu)
		goto free_vcpu3s;
1424
#endif
1425 1426 1427 1428 1429

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_shadow_vcpu;

1430
	err = -ENOMEM;
1431 1432 1433
	p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
	if (!p)
		goto uninit_vcpu;
1434
	vcpu->arch.shared = (void *)p;
1435
#ifdef CONFIG_PPC_BOOK3S_64
1436 1437 1438 1439 1440 1441 1442
	/* Always start the shared struct in native endian mode */
#ifdef __BIG_ENDIAN__
        vcpu->arch.shared_big_endian = true;
#else
        vcpu->arch.shared_big_endian = false;
#endif

1443 1444 1445 1446 1447
	/*
	 * Default to the same as the host if we're on sufficiently
	 * recent machine that we have 1TB segments;
	 * otherwise default to PPC970FX.
	 */
1448
	vcpu->arch.pvr = 0x3C0301;
1449 1450
	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		vcpu->arch.pvr = mfspr(SPRN_PVR);
1451
	vcpu->arch.intr_msr = MSR_SF;
1452 1453 1454 1455
#else
	/* default to book3s_32 (750) */
	vcpu->arch.pvr = 0x84202;
#endif
1456
	kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
1457 1458
	vcpu->arch.slb_nr = 64;

1459
	vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469

	err = kvmppc_mmu_init(vcpu);
	if (err < 0)
		goto uninit_vcpu;

	return vcpu;

uninit_vcpu:
	kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
1470
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1471 1472
	kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
1473
#endif
1474
	vfree(vcpu_book3s);
1475 1476
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1477 1478 1479 1480
out:
	return ERR_PTR(err);
}

1481
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
1482 1483 1484 1485 1486
{
	struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);

	free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
	kvm_vcpu_uninit(vcpu);
1487
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
1488 1489
	kfree(vcpu->arch.shadow_vcpu);
#endif
1490
	vfree(vcpu_book3s);
1491
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1492 1493
}

1494
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1495 1496 1497 1498 1499 1500
{
	int ret;
#ifdef CONFIG_ALTIVEC
	unsigned long uninitialized_var(vrsave);
#endif

1501 1502 1503
	/* Check if we can run the vcpu at all */
	if (!vcpu->arch.sane) {
		kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1504 1505
		ret = -EINVAL;
		goto out;
1506 1507
	}

1508 1509
	kvmppc_setup_debug(vcpu);

1510 1511 1512 1513 1514 1515
	/*
	 * Interrupts could be timers for the guest which we have to inject
	 * again, so let's postpone them until we're in the guest and if we
	 * really did time things so badly, then we just exit again due to
	 * a host external interrupt.
	 */
1516
	ret = kvmppc_prepare_to_enter(vcpu);
S
Scott Wood 已提交
1517
	if (ret <= 0)
1518
		goto out;
S
Scott Wood 已提交
1519
	/* interrupts now hard-disabled */
1520

A
Anton Blanchard 已提交
1521 1522
	/* Save FPU, Altivec and VSX state */
	giveup_all(current);
1523 1524

	/* Preload FPU if it's enabled */
1525
	if (kvmppc_get_msr(vcpu) & MSR_FP)
1526 1527
		kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);

1528
	kvmppc_fix_ee_before_entry();
1529 1530 1531

	ret = __kvmppc_vcpu_run(kvm_run, vcpu);

1532 1533
	kvmppc_clear_debug(vcpu);

1534 1535
	/* No need for kvm_guest_exit. It's done in handle_exit.
	   We also get here with interrupts enabled. */
1536 1537

	/* Make sure we save the guest FPU/Altivec/VSX state */
1538 1539
	kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);

1540 1541 1542
	/* Make sure we save the guest TAR/EBB/DSCR state */
	kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);

1543
out:
1544
	vcpu->mode = OUTSIDE_GUEST_MODE;
1545 1546 1547
	return ret;
}

1548 1549 1550
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
1551 1552
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
					 struct kvm_dirty_log *log)
1553
{
1554
	struct kvm_memslots *slots;
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	struct kvm_memory_slot *memslot;
	struct kvm_vcpu *vcpu;
	ulong ga, ga_end;
	int is_dirty = 0;
	int r;
	unsigned long n;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* If nothing is dirty, don't bother messing with page tables. */
	if (is_dirty) {
1570 1571
		slots = kvm_memslots(kvm);
		memslot = id_to_memslot(slots, log->slot);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588

		ga = memslot->base_gfn << PAGE_SHIFT;
		ga_end = ga + (memslot->npages << PAGE_SHIFT);

		kvm_for_each_vcpu(n, vcpu, kvm)
			kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);

		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}

	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
}

1589 1590
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
					 struct kvm_memory_slot *memslot)
1591
{
1592 1593
	return;
}
1594

1595 1596
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
					struct kvm_memory_slot *memslot,
1597
					const struct kvm_userspace_memory_region *mem)
1598
{
1599 1600 1601
	return 0;
}

1602
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
1603
				const struct kvm_userspace_memory_region *mem,
1604 1605
				const struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new)
1606
{
1607
	return;
1608 1609
}

1610 1611
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
					struct kvm_memory_slot *dont)
1612
{
1613
	return;
1614 1615
}

1616 1617
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
					 unsigned long npages)
1618 1619 1620 1621
{
	return 0;
}

1622

1623
#ifdef CONFIG_PPC64
1624 1625
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1626
{
1627 1628 1629 1630
	long int i;
	struct kvm_vcpu *vcpu;

	info->flags = 0;
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

	/* SLB is always 64 entries */
	info->slb_size = 64;

	/* Standard 4k base page size segment */
	info->sps[0].page_shift = 12;
	info->sps[0].slb_enc = 0;
	info->sps[0].enc[0].page_shift = 12;
	info->sps[0].enc[0].pte_enc = 0;

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
	/*
	 * 64k large page size.
	 * We only want to put this in if the CPUs we're emulating
	 * support it, but unfortunately we don't have a vcpu easily
	 * to hand here to test.  Just pick the first vcpu, and if
	 * that doesn't exist yet, report the minimum capability,
	 * i.e., no 64k pages.
	 * 1T segment support goes along with 64k pages.
	 */
	i = 1;
	vcpu = kvm_get_vcpu(kvm, 0);
	if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
		info->flags = KVM_PPC_1T_SEGMENTS;
		info->sps[i].page_shift = 16;
		info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
		info->sps[i].enc[0].page_shift = 16;
		info->sps[i].enc[0].pte_enc = 1;
		++i;
	}

1661
	/* Standard 16M large page size segment */
1662 1663 1664 1665
	info->sps[i].page_shift = 24;
	info->sps[i].slb_enc = SLB_VSID_L;
	info->sps[i].enc[0].page_shift = 24;
	info->sps[i].enc[0].pte_enc = 0;
1666

1667 1668
	return 0;
}
1669 1670 1671
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
					 struct kvm_ppc_smmu_info *info)
1672
{
1673 1674
	/* We should not get called */
	BUG();
1675
}
1676
#endif /* CONFIG_PPC64 */
1677

1678 1679 1680
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);

1681
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
1682
{
1683
	mutex_init(&kvm->arch.hpt_mutex);
1684

1685 1686 1687 1688 1689
#ifdef CONFIG_PPC_BOOK3S_64
	/* Start out with the default set of hcalls enabled */
	kvmppc_pr_init_default_hcalls(kvm);
#endif

1690 1691 1692 1693 1694 1695
	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		if (++kvm_global_user_count == 1)
			pSeries_disable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1696 1697 1698
	return 0;
}

1699
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
1700
{
1701 1702 1703
#ifdef CONFIG_PPC64
	WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
1704 1705 1706 1707 1708 1709 1710 1711

	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
		spin_lock(&kvm_global_user_count_lock);
		BUG_ON(kvm_global_user_count == 0);
		if (--kvm_global_user_count == 0)
			pSeries_enable_reloc_on_exc();
		spin_unlock(&kvm_global_user_count_lock);
	}
1712 1713
}

1714
static int kvmppc_core_check_processor_compat_pr(void)
1715
{
1716 1717 1718 1719 1720
	/*
	 * Disable KVM for Power9 untill the required bits merged.
	 */
	if (cpu_has_feature(CPU_FTR_ARCH_300))
		return -EIO;
1721 1722
	return 0;
}
1723

1724 1725 1726 1727 1728
static long kvm_arch_vm_ioctl_pr(struct file *filp,
				 unsigned int ioctl, unsigned long arg)
{
	return -ENOTTY;
}
1729

1730
static struct kvmppc_ops kvm_ops_pr = {
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
	.get_one_reg = kvmppc_get_one_reg_pr,
	.set_one_reg = kvmppc_set_one_reg_pr,
	.vcpu_load   = kvmppc_core_vcpu_load_pr,
	.vcpu_put    = kvmppc_core_vcpu_put_pr,
	.set_msr     = kvmppc_set_msr_pr,
	.vcpu_run    = kvmppc_vcpu_run_pr,
	.vcpu_create = kvmppc_core_vcpu_create_pr,
	.vcpu_free   = kvmppc_core_vcpu_free_pr,
	.check_requests = kvmppc_core_check_requests_pr,
	.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
	.flush_memslot = kvmppc_core_flush_memslot_pr,
	.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
	.commit_memory_region = kvmppc_core_commit_memory_region_pr,
	.unmap_hva = kvm_unmap_hva_pr,
	.unmap_hva_range = kvm_unmap_hva_range_pr,
	.age_hva  = kvm_age_hva_pr,
	.test_age_hva = kvm_test_age_hva_pr,
	.set_spte_hva = kvm_set_spte_hva_pr,
	.mmu_destroy  = kvmppc_mmu_destroy_pr,
	.free_memslot = kvmppc_core_free_memslot_pr,
	.create_memslot = kvmppc_core_create_memslot_pr,
	.init_vm = kvmppc_core_init_vm_pr,
	.destroy_vm = kvmppc_core_destroy_vm_pr,
	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
	.emulate_op = kvmppc_core_emulate_op_pr,
	.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
	.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
	.fast_vcpu_kick = kvm_vcpu_kick,
	.arch_vm_ioctl  = kvm_arch_vm_ioctl_pr,
1762 1763 1764
#ifdef CONFIG_PPC_BOOK3S_64
	.hcall_implemented = kvmppc_hcall_impl_pr,
#endif
1765 1766
};

1767 1768

int kvmppc_book3s_init_pr(void)
1769 1770 1771
{
	int r;

1772 1773
	r = kvmppc_core_check_processor_compat_pr();
	if (r < 0)
1774 1775
		return r;

1776 1777
	kvm_ops_pr.owner = THIS_MODULE;
	kvmppc_pr_ops = &kvm_ops_pr;
1778

1779
	r = kvmppc_mmu_hpte_sysinit();
1780 1781 1782
	return r;
}

1783
void kvmppc_book3s_exit_pr(void)
1784
{
1785
	kvmppc_pr_ops = NULL;
1786 1787 1788
	kvmppc_mmu_hpte_sysexit();
}

1789 1790 1791 1792 1793
/*
 * We only support separate modules for book3s 64
 */
#ifdef CONFIG_PPC_BOOK3S_64

1794 1795
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
1796 1797

MODULE_LICENSE("GPL");
1798 1799
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
1800
#endif