posix-timers.c 32.4 KB
Newer Older
L
Linus Torvalds 已提交
1
/*
2
 * linux/kernel/posix-timers.c
L
Linus Torvalds 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
 *
 *
 * 2002-10-15  Posix Clocks & timers
 *                           by George Anzinger george@mvista.com
 *
 *			     Copyright (C) 2002 2003 by MontaVista Software.
 *
 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
 *			     Copyright (C) 2004 Boris Hu
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 * General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *
 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
 */

/* These are all the functions necessary to implement
 * POSIX clocks & timers
 */
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
A
Arjan van de Ven 已提交
37
#include <linux/mutex.h>
38
#include <linux/sched/task.h>
L
Linus Torvalds 已提交
39

40
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
41 42 43
#include <linux/list.h>
#include <linux/init.h>
#include <linux/compiler.h>
44
#include <linux/hash.h>
45
#include <linux/posix-clock.h>
L
Linus Torvalds 已提交
46 47 48 49
#include <linux/posix-timers.h>
#include <linux/syscalls.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
50
#include <linux/export.h>
51
#include <linux/hashtable.h>
L
Linus Torvalds 已提交
52

53
#include "timekeeping.h"
54
#include "posix-timers.h"
55

L
Linus Torvalds 已提交
56
/*
57 58 59 60 61 62
 * Management arrays for POSIX timers. Timers are now kept in static hash table
 * with 512 entries.
 * Timer ids are allocated by local routine, which selects proper hash head by
 * key, constructed from current->signal address and per signal struct counter.
 * This keeps timer ids unique per process, but now they can intersect between
 * processes.
L
Linus Torvalds 已提交
63 64 65 66 67
 */

/*
 * Lets keep our timers in a slab cache :-)
 */
68
static struct kmem_cache *posix_timers_cache;
69 70 71

static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
static DEFINE_SPINLOCK(hash_lock);
L
Linus Torvalds 已提交
72

73 74
static const struct k_clock * const posix_clocks[];
static const struct k_clock *clockid_to_kclock(const clockid_t id);
75
static const struct k_clock clock_realtime, clock_monotonic;
76

L
Linus Torvalds 已提交
77 78 79 80 81 82 83 84 85
/*
 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
 * SIGEV values.  Here we put out an error if this assumption fails.
 */
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
#endif

86 87 88 89 90 91 92 93
/*
 * parisc wants ENOTSUP instead of EOPNOTSUPP
 */
#ifndef ENOTSUP
# define ENANOSLEEP_NOTSUP EOPNOTSUPP
#else
# define ENANOSLEEP_NOTSUP ENOTSUP
#endif
L
Linus Torvalds 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106

/*
 * The timer ID is turned into a timer address by idr_find().
 * Verifying a valid ID consists of:
 *
 * a) checking that idr_find() returns other than -1.
 * b) checking that the timer id matches the one in the timer itself.
 * c) that the timer owner is in the callers thread group.
 */

/*
 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
 *	    to implement others.  This structure defines the various
R
Richard Cochran 已提交
107
 *	    clocks.
L
Linus Torvalds 已提交
108 109 110 111 112 113 114 115 116
 *
 * RESOLUTION: Clock resolution is used to round up timer and interval
 *	    times, NOT to report clock times, which are reported with as
 *	    much resolution as the system can muster.  In some cases this
 *	    resolution may depend on the underlying clock hardware and
 *	    may not be quantifiable until run time, and only then is the
 *	    necessary code is written.	The standard says we should say
 *	    something about this issue in the documentation...
 *
R
Richard Cochran 已提交
117 118
 * FUNCTIONS: The CLOCKs structure defines possible functions to
 *	    handle various clock functions.
L
Linus Torvalds 已提交
119
 *
R
Richard Cochran 已提交
120 121 122 123
 *	    The standard POSIX timer management code assumes the
 *	    following: 1.) The k_itimer struct (sched.h) is used for
 *	    the timer.  2.) The list, it_lock, it_clock, it_id and
 *	    it_pid fields are not modified by timer code.
L
Linus Torvalds 已提交
124 125 126 127 128 129 130 131
 *
 * Permissions: It is assumed that the clock_settime() function defined
 *	    for each clock will take care of permission checks.	 Some
 *	    clocks may be set able by any user (i.e. local process
 *	    clocks) others not.	 Currently the only set able clock we
 *	    have is CLOCK_REALTIME and its high res counter part, both of
 *	    which we beg off on and pass to do_sys_settimeofday().
 */
N
Namhyung Kim 已提交
132 133 134 135 136 137 138
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);

#define lock_timer(tid, flags)						   \
({	struct k_itimer *__timr;					   \
	__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags));  \
	__timr;								   \
})
L
Linus Torvalds 已提交
139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
static int hash(struct signal_struct *sig, unsigned int nr)
{
	return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
}

static struct k_itimer *__posix_timers_find(struct hlist_head *head,
					    struct signal_struct *sig,
					    timer_t id)
{
	struct k_itimer *timer;

	hlist_for_each_entry_rcu(timer, head, t_hash) {
		if ((timer->it_signal == sig) && (timer->it_id == id))
			return timer;
	}
	return NULL;
}

static struct k_itimer *posix_timer_by_id(timer_t id)
{
	struct signal_struct *sig = current->signal;
	struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];

	return __posix_timers_find(head, sig, id);
}

static int posix_timer_add(struct k_itimer *timer)
{
	struct signal_struct *sig = current->signal;
	int first_free_id = sig->posix_timer_id;
	struct hlist_head *head;
	int ret = -ENOENT;

	do {
		spin_lock(&hash_lock);
		head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
		if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
			hlist_add_head_rcu(&timer->t_hash, head);
			ret = sig->posix_timer_id;
		}
		if (++sig->posix_timer_id < 0)
			sig->posix_timer_id = 0;
		if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
			/* Loop over all possible ids completed */
			ret = -EAGAIN;
		spin_unlock(&hash_lock);
	} while (ret == -ENOENT);
	return ret;
}

L
Linus Torvalds 已提交
190 191 192 193 194
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
	spin_unlock_irqrestore(&timr->it_lock, flags);
}

195
/* Get clock_realtime */
196
static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
197
{
198
	ktime_get_real_ts64(tp);
199 200 201
	return 0;
}

202 203
/* Set clock_realtime */
static int posix_clock_realtime_set(const clockid_t which_clock,
204
				    const struct timespec64 *tp)
205
{
206
	return do_sys_settimeofday64(tp, NULL);
207 208
}

209 210 211 212 213 214
static int posix_clock_realtime_adj(const clockid_t which_clock,
				    struct timex *t)
{
	return do_adjtimex(t);
}

215 216 217
/*
 * Get monotonic time for posix timers
 */
218
static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
219
{
220
	ktime_get_ts64(tp);
221 222
	return 0;
}
L
Linus Torvalds 已提交
223

224
/*
225
 * Get monotonic-raw time for posix timers
226
 */
227
static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
228
{
229
	getrawmonotonic64(tp);
230 231 232
	return 0;
}

233

234
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
235
{
236
	*tp = current_kernel_time64();
237 238 239 240
	return 0;
}

static int posix_get_monotonic_coarse(clockid_t which_clock,
241
						struct timespec64 *tp)
242
{
243
	*tp = get_monotonic_coarse64();
244 245 246
	return 0;
}

247
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
248
{
249
	*tp = ktime_to_timespec64(KTIME_LOW_RES);
250 251
	return 0;
}
252

253
static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
254
{
255
	get_monotonic_boottime64(tp);
256 257 258
	return 0;
}

259
static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
J
John Stultz 已提交
260
{
261
	timekeeping_clocktai64(tp);
J
John Stultz 已提交
262 263
	return 0;
}
264

265
static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
266 267 268 269 270 271
{
	tp->tv_sec = 0;
	tp->tv_nsec = hrtimer_resolution;
	return 0;
}

L
Linus Torvalds 已提交
272 273 274 275 276 277
/*
 * Initialize everything, well, just everything in Posix clocks/timers ;)
 */
static __init int init_posix_timers(void)
{
	posix_timers_cache = kmem_cache_create("posix_timers_cache",
278 279
					sizeof (struct k_itimer), 0, SLAB_PANIC,
					NULL);
L
Linus Torvalds 已提交
280 281 282 283
	return 0;
}
__initcall(init_posix_timers);

284
static void common_hrtimer_rearm(struct k_itimer *timr)
L
Linus Torvalds 已提交
285
{
286 287
	struct hrtimer *timer = &timr->it.real.timer;

288
	if (!timr->it_interval)
L
Linus Torvalds 已提交
289 290
		return;

D
Davide Libenzi 已提交
291 292
	timr->it_overrun += (unsigned int) hrtimer_forward(timer,
						timer->base->get_time(),
293
						timr->it_interval);
294
	hrtimer_restart(timer);
L
Linus Torvalds 已提交
295 296 297 298 299 300 301 302 303 304
}

/*
 * This function is exported for use by the signal deliver code.  It is
 * called just prior to the info block being released and passes that
 * block to us.  It's function is to update the overrun entry AND to
 * restart the timer.  It should only be called if the timer is to be
 * restarted (i.e. we have flagged this in the sys_private entry of the
 * info block).
 *
L
Lucas De Marchi 已提交
305
 * To protect against the timer going away while the interrupt is queued,
L
Linus Torvalds 已提交
306 307
 * we require that the it_requeue_pending flag be set.
 */
308
void posixtimer_rearm(struct siginfo *info)
L
Linus Torvalds 已提交
309 310 311 312 313
{
	struct k_itimer *timr;
	unsigned long flags;

	timr = lock_timer(info->si_tid, &flags);
314 315
	if (!timr)
		return;
L
Linus Torvalds 已提交
316

317
	if (timr->it_requeue_pending == info->si_sys_private) {
318
		timr->kclock->timer_rearm(timr);
L
Linus Torvalds 已提交
319

320
		timr->it_active = 1;
321 322 323 324
		timr->it_overrun_last = timr->it_overrun;
		timr->it_overrun = -1;
		++timr->it_requeue_pending;

325
		info->si_overrun += timr->it_overrun_last;
326 327
	}

328
	unlock_timer(timr, flags);
L
Linus Torvalds 已提交
329 330
}

331
int posix_timer_event(struct k_itimer *timr, int si_private)
L
Linus Torvalds 已提交
332
{
333 334
	struct task_struct *task;
	int shared, ret = -1;
335 336
	/*
	 * FIXME: if ->sigq is queued we can race with
337
	 * dequeue_signal()->posixtimer_rearm().
338 339
	 *
	 * If dequeue_signal() sees the "right" value of
340
	 * si_sys_private it calls posixtimer_rearm().
341
	 * We re-queue ->sigq and drop ->it_lock().
342
	 * posixtimer_rearm() locks the timer
343 344 345
	 * and re-schedules it while ->sigq is pending.
	 * Not really bad, but not that we want.
	 */
L
Linus Torvalds 已提交
346 347
	timr->sigq->info.si_sys_private = si_private;

348 349 350 351 352 353 354
	rcu_read_lock();
	task = pid_task(timr->it_pid, PIDTYPE_PID);
	if (task) {
		shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
		ret = send_sigqueue(timr->sigq, task, shared);
	}
	rcu_read_unlock();
355 356
	/* If we failed to send the signal the timer stops. */
	return ret > 0;
L
Linus Torvalds 已提交
357 358 359 360 361 362 363 364 365
}

/*
 * This function gets called when a POSIX.1b interval timer expires.  It
 * is used as a callback from the kernel internal timer.  The
 * run_timer_list code ALWAYS calls with interrupts on.

 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 */
366
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
L
Linus Torvalds 已提交
367
{
368
	struct k_itimer *timr;
L
Linus Torvalds 已提交
369
	unsigned long flags;
370
	int si_private = 0;
371
	enum hrtimer_restart ret = HRTIMER_NORESTART;
L
Linus Torvalds 已提交
372

373
	timr = container_of(timer, struct k_itimer, it.real.timer);
L
Linus Torvalds 已提交
374 375
	spin_lock_irqsave(&timr->it_lock, flags);

376
	timr->it_active = 0;
377
	if (timr->it_interval != 0)
378
		si_private = ++timr->it_requeue_pending;
L
Linus Torvalds 已提交
379

380 381 382 383 384 385
	if (posix_timer_event(timr, si_private)) {
		/*
		 * signal was not sent because of sig_ignor
		 * we will not get a call back to restart it AND
		 * it should be restarted.
		 */
386
		if (timr->it_interval != 0) {
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
			ktime_t now = hrtimer_cb_get_time(timer);

			/*
			 * FIXME: What we really want, is to stop this
			 * timer completely and restart it in case the
			 * SIG_IGN is removed. This is a non trivial
			 * change which involves sighand locking
			 * (sigh !), which we don't want to do late in
			 * the release cycle.
			 *
			 * For now we just let timers with an interval
			 * less than a jiffie expire every jiffie to
			 * avoid softirq starvation in case of SIG_IGN
			 * and a very small interval, which would put
			 * the timer right back on the softirq pending
			 * list. By moving now ahead of time we trick
			 * hrtimer_forward() to expire the timer
			 * later, while we still maintain the overrun
			 * accuracy, but have some inconsistency in
			 * the timer_gettime() case. This is at least
			 * better than a starved softirq. A more
			 * complex fix which solves also another related
			 * inconsistency is already in the pipeline.
			 */
#ifdef CONFIG_HIGH_RES_TIMERS
			{
T
Thomas Gleixner 已提交
413
				ktime_t kj = NSEC_PER_SEC / HZ;
414

415
				if (timr->it_interval < kj)
416 417 418
					now = ktime_add(now, kj);
			}
#endif
D
Davide Libenzi 已提交
419
			timr->it_overrun += (unsigned int)
420
				hrtimer_forward(timer, now,
421
						timr->it_interval);
422
			ret = HRTIMER_RESTART;
423
			++timr->it_requeue_pending;
424
			timr->it_active = 1;
L
Linus Torvalds 已提交
425 426 427
		}
	}

428 429 430
	unlock_timer(timr, flags);
	return ret;
}
L
Linus Torvalds 已提交
431

432
static struct pid *good_sigevent(sigevent_t * event)
L
Linus Torvalds 已提交
433 434 435 436
{
	struct task_struct *rtn = current->group_leader;

	if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
437
		(!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
438
		 !same_thread_group(rtn, current) ||
L
Linus Torvalds 已提交
439 440 441 442 443 444 445
		 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
		return NULL;

	if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
	    ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
		return NULL;

446
	return task_pid(rtn);
L
Linus Torvalds 已提交
447 448 449 450 451
}

static struct k_itimer * alloc_posix_timer(void)
{
	struct k_itimer *tmr;
452
	tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
453 454 455 456
	if (!tmr)
		return tmr;
	if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
		kmem_cache_free(posix_timers_cache, tmr);
457
		return NULL;
L
Linus Torvalds 已提交
458
	}
459
	memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
L
Linus Torvalds 已提交
460 461 462
	return tmr;
}

E
Eric Dumazet 已提交
463 464 465 466 467 468 469
static void k_itimer_rcu_free(struct rcu_head *head)
{
	struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);

	kmem_cache_free(posix_timers_cache, tmr);
}

L
Linus Torvalds 已提交
470 471 472 473 474 475
#define IT_ID_SET	1
#define IT_ID_NOT_SET	0
static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
{
	if (it_id_set) {
		unsigned long flags;
476 477 478
		spin_lock_irqsave(&hash_lock, flags);
		hlist_del_rcu(&tmr->t_hash);
		spin_unlock_irqrestore(&hash_lock, flags);
L
Linus Torvalds 已提交
479
	}
480
	put_pid(tmr->it_pid);
L
Linus Torvalds 已提交
481
	sigqueue_free(tmr->sigq);
E
Eric Dumazet 已提交
482
	call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
L
Linus Torvalds 已提交
483 484
}

485 486 487 488 489 490
static int common_timer_create(struct k_itimer *new_timer)
{
	hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
	return 0;
}

L
Linus Torvalds 已提交
491 492
/* Create a POSIX.1b interval timer. */

493 494 495
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
		struct sigevent __user *, timer_event_spec,
		timer_t __user *, created_timer_id)
L
Linus Torvalds 已提交
496
{
497
	const struct k_clock *kc = clockid_to_kclock(which_clock);
498
	struct k_itimer *new_timer;
499
	int error, new_timer_id;
L
Linus Torvalds 已提交
500 501 502
	sigevent_t event;
	int it_id_set = IT_ID_NOT_SET;

503
	if (!kc)
L
Linus Torvalds 已提交
504
		return -EINVAL;
505 506
	if (!kc->timer_create)
		return -EOPNOTSUPP;
L
Linus Torvalds 已提交
507 508 509 510 511 512

	new_timer = alloc_posix_timer();
	if (unlikely(!new_timer))
		return -EAGAIN;

	spin_lock_init(&new_timer->it_lock);
513 514 515
	new_timer_id = posix_timer_add(new_timer);
	if (new_timer_id < 0) {
		error = new_timer_id;
L
Linus Torvalds 已提交
516 517 518 519 520 521
		goto out;
	}

	it_id_set = IT_ID_SET;
	new_timer->it_id = (timer_t) new_timer_id;
	new_timer->it_clock = which_clock;
522
	new_timer->kclock = kc;
L
Linus Torvalds 已提交
523 524 525 526 527 528 529
	new_timer->it_overrun = -1;

	if (timer_event_spec) {
		if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
			error = -EFAULT;
			goto out;
		}
530
		rcu_read_lock();
531
		new_timer->it_pid = get_pid(good_sigevent(&event));
532
		rcu_read_unlock();
533
		if (!new_timer->it_pid) {
L
Linus Torvalds 已提交
534 535 536 537
			error = -EINVAL;
			goto out;
		}
	} else {
538
		memset(&event.sigev_value, 0, sizeof(event.sigev_value));
539 540 541
		event.sigev_notify = SIGEV_SIGNAL;
		event.sigev_signo = SIGALRM;
		event.sigev_value.sival_int = new_timer->it_id;
542
		new_timer->it_pid = get_pid(task_tgid(current));
L
Linus Torvalds 已提交
543 544
	}

545 546 547
	new_timer->it_sigev_notify     = event.sigev_notify;
	new_timer->sigq->info.si_signo = event.sigev_signo;
	new_timer->sigq->info.si_value = event.sigev_value;
548
	new_timer->sigq->info.si_tid   = new_timer->it_id;
549
	new_timer->sigq->info.si_code  = SI_TIMER;
550

551 552 553 554 555 556
	if (copy_to_user(created_timer_id,
			 &new_timer_id, sizeof (new_timer_id))) {
		error = -EFAULT;
		goto out;
	}

557
	error = kc->timer_create(new_timer);
558 559 560
	if (error)
		goto out;

561
	spin_lock_irq(&current->sighand->siglock);
562
	new_timer->it_signal = current->signal;
563 564
	list_add(&new_timer->list, &current->signal->posix_timers);
	spin_unlock_irq(&current->sighand->siglock);
565 566

	return 0;
567
	/*
L
Linus Torvalds 已提交
568 569 570 571 572 573
	 * In the case of the timer belonging to another task, after
	 * the task is unlocked, the timer is owned by the other task
	 * and may cease to exist at any time.  Don't use or modify
	 * new_timer after the unlock call.
	 */
out:
574
	release_posix_timer(new_timer, it_id_set);
L
Linus Torvalds 已提交
575 576 577 578 579 580 581 582 583 584
	return error;
}

/*
 * Locking issues: We need to protect the result of the id look up until
 * we get the timer locked down so it is not deleted under us.  The
 * removal is done under the idr spinlock so we use that here to bridge
 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 * be release with out holding the timer lock.
 */
N
Namhyung Kim 已提交
585
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
L
Linus Torvalds 已提交
586 587
{
	struct k_itimer *timr;
E
Eric Dumazet 已提交
588

589 590 591 592 593 594 595
	/*
	 * timer_t could be any type >= int and we want to make sure any
	 * @timer_id outside positive int range fails lookup.
	 */
	if ((unsigned long long)timer_id > INT_MAX)
		return NULL;

E
Eric Dumazet 已提交
596
	rcu_read_lock();
597
	timr = posix_timer_by_id(timer_id);
L
Linus Torvalds 已提交
598
	if (timr) {
E
Eric Dumazet 已提交
599
		spin_lock_irqsave(&timr->it_lock, *flags);
600
		if (timr->it_signal == current->signal) {
E
Eric Dumazet 已提交
601
			rcu_read_unlock();
602 603
			return timr;
		}
E
Eric Dumazet 已提交
604
		spin_unlock_irqrestore(&timr->it_lock, *flags);
605
	}
E
Eric Dumazet 已提交
606
	rcu_read_unlock();
L
Linus Torvalds 已提交
607

608
	return NULL;
L
Linus Torvalds 已提交
609 610
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624
static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return __hrtimer_expires_remaining_adjusted(timer, now);
}

static int common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
{
	struct hrtimer *timer = &timr->it.real.timer;

	return (int)hrtimer_forward(timer, now, timr->it_interval);
}

L
Linus Torvalds 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
/*
 * Get the time remaining on a POSIX.1b interval timer.  This function
 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 * mess with irq.
 *
 * We have a couple of messes to clean up here.  First there is the case
 * of a timer that has a requeue pending.  These timers should appear to
 * be in the timer list with an expiry as if we were to requeue them
 * now.
 *
 * The second issue is the SIGEV_NONE timer which may be active but is
 * not really ever put in the timer list (to save system resources).
 * This timer may be expired, and if so, we will do it here.  Otherwise
 * it is the same as a requeue pending timer WRT to what we should
 * report.
 */
641
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
L
Linus Torvalds 已提交
642
{
643
	const struct k_clock *kc = timr->kclock;
644
	ktime_t now, remaining, iv;
645 646
	struct timespec64 ts64;
	bool sig_none;
L
Linus Torvalds 已提交
647

648
	sig_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE;
649
	iv = timr->it_interval;
650

651
	/* interval timer ? */
652
	if (iv) {
653
		cur_setting->it_interval = ktime_to_timespec64(iv);
654 655 656 657 658 659 660 661
	} else if (!timr->it_active) {
		/*
		 * SIGEV_NONE oneshot timers are never queued. Check them
		 * below.
		 */
		if (!sig_none)
			return;
	}
662

663 664 665 666 667 668
	/*
	 * The timespec64 based conversion is suboptimal, but it's not
	 * worth to implement yet another callback.
	 */
	kc->clock_get(timr->it_clock, &ts64);
	now = timespec64_to_ktime(ts64);
669

670
	/*
671 672
	 * When a requeue is pending or this is a SIGEV_NONE timer move the
	 * expiry time forward by intervals, so expiry is > now.
673
	 */
674 675
	if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
		timr->it_overrun += kc->timer_forward(timr, now);
676

677
	remaining = kc->timer_remaining(timr, now);
678
	/* Return 0 only, when the timer is expired and not pending */
T
Thomas Gleixner 已提交
679
	if (remaining <= 0) {
680 681 682 683
		/*
		 * A single shot SIGEV_NONE timer must return 0, when
		 * it is expired !
		 */
684
		if (!sig_none)
685
			cur_setting->it_value.tv_nsec = 1;
686
	} else {
687
		cur_setting->it_value = ktime_to_timespec64(remaining);
688
	}
L
Linus Torvalds 已提交
689 690 691
}

/* Get the time remaining on a POSIX.1b interval timer. */
692 693
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
		struct itimerspec __user *, setting)
L
Linus Torvalds 已提交
694
{
695
	struct itimerspec64 cur_setting64;
L
Linus Torvalds 已提交
696
	struct itimerspec cur_setting;
697
	struct k_itimer *timr;
698
	const struct k_clock *kc;
L
Linus Torvalds 已提交
699
	unsigned long flags;
700
	int ret = 0;
L
Linus Torvalds 已提交
701 702 703 704 705

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

706
	memset(&cur_setting64, 0, sizeof(cur_setting64));
707
	kc = timr->kclock;
708 709 710
	if (WARN_ON_ONCE(!kc || !kc->timer_get))
		ret = -EINVAL;
	else
711
		kc->timer_get(timr, &cur_setting64);
L
Linus Torvalds 已提交
712 713 714

	unlock_timer(timr, flags);

715
	cur_setting = itimerspec64_to_itimerspec(&cur_setting64);
716
	if (!ret && copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
L
Linus Torvalds 已提交
717 718
		return -EFAULT;

719
	return ret;
L
Linus Torvalds 已提交
720
}
721

L
Linus Torvalds 已提交
722 723 724 725 726 727
/*
 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 * be the overrun of the timer last delivered.  At the same time we are
 * accumulating overruns on the next timer.  The overrun is frozen when
 * the signal is delivered, either at the notify time (if the info block
 * is not queued) or at the actual delivery time (as we are informed by
728
 * the call back to posixtimer_rearm().  So all we need to do is
L
Linus Torvalds 已提交
729 730
 * to pick up the frozen overrun.
 */
731
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
L
Linus Torvalds 已提交
732 733 734
{
	struct k_itimer *timr;
	int overrun;
735
	unsigned long flags;
L
Linus Torvalds 已提交
736 737 738 739 740 741 742 743 744 745 746

	timr = lock_timer(timer_id, &flags);
	if (!timr)
		return -EINVAL;

	overrun = timr->it_overrun_last;
	unlock_timer(timr, flags);

	return overrun;
}

747 748 749 750 751 752 753
static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
			       bool absolute, bool sigev_none)
{
	struct hrtimer *timer = &timr->it.real.timer;
	enum hrtimer_mode mode;

	mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
754 755 756 757 758 759 760 761 762 763 764 765
	/*
	 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they become CLOCK_MONOTONIC based under the
	 * hood. See hrtimer_init(). Update timr->kclock, so the generic
	 * functions which use timr->kclock->clock_get() work.
	 *
	 * Note: it_clock stays unmodified, because the next timer_set() might
	 * use ABSTIME, so it needs to switch back.
	 */
	if (timr->it_clock == CLOCK_REALTIME)
		timr->kclock = absolute ? &clock_realtime : &clock_monotonic;

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
	timr->it.real.timer.function = posix_timer_fn;

	if (!absolute)
		expires = ktime_add_safe(expires, timer->base->get_time());
	hrtimer_set_expires(timer, expires);

	if (!sigev_none)
		hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}

static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
{
	return hrtimer_try_to_cancel(&timr->it.real.timer);
}

L
Linus Torvalds 已提交
782
/* Set a POSIX.1b interval timer. */
783 784 785
int common_timer_set(struct k_itimer *timr, int flags,
		     struct itimerspec64 *new_setting,
		     struct itimerspec64 *old_setting)
L
Linus Torvalds 已提交
786
{
787 788 789
	const struct k_clock *kc = timr->kclock;
	bool sigev_none;
	ktime_t expires;
L
Linus Torvalds 已提交
790 791 792 793

	if (old_setting)
		common_timer_get(timr, old_setting);

794
	/* Prevent rearming by clearing the interval */
795
	timr->it_interval = 0;
L
Linus Torvalds 已提交
796
	/*
797 798
	 * Careful here. On SMP systems the timer expiry function could be
	 * active and spinning on timr->it_lock.
L
Linus Torvalds 已提交
799
	 */
800
	if (kc->timer_try_to_cancel(timr) < 0)
L
Linus Torvalds 已提交
801 802
		return TIMER_RETRY;

803 804
	timr->it_active = 0;
	timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
L
Linus Torvalds 已提交
805 806 807
		~REQUEUE_PENDING;
	timr->it_overrun_last = 0;

808
	/* Switch off the timer when it_value is zero */
809 810
	if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
		return 0;
L
Linus Torvalds 已提交
811

812
	timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
813 814
	expires = timespec64_to_ktime(new_setting->it_value);
	sigev_none = (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE;
815

816 817
	kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
	timr->it_active = !sigev_none;
L
Linus Torvalds 已提交
818 819 820 821
	return 0;
}

/* Set a POSIX.1b interval timer */
822 823 824
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
		const struct itimerspec __user *, new_setting,
		struct itimerspec __user *, old_setting)
L
Linus Torvalds 已提交
825
{
826 827
	struct itimerspec64 new_spec64, old_spec64;
	struct itimerspec64 *rtn = old_setting ? &old_spec64 : NULL;
L
Linus Torvalds 已提交
828
	struct itimerspec new_spec, old_spec;
829
	struct k_itimer *timr;
830
	unsigned long flag;
831
	const struct k_clock *kc;
832
	int error = 0;
L
Linus Torvalds 已提交
833 834 835 836 837 838

	if (!new_setting)
		return -EINVAL;

	if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
		return -EFAULT;
839
	new_spec64 = itimerspec_to_itimerspec64(&new_spec);
L
Linus Torvalds 已提交
840

841 842
	if (!timespec64_valid(&new_spec64.it_interval) ||
	    !timespec64_valid(&new_spec64.it_value))
L
Linus Torvalds 已提交
843
		return -EINVAL;
844 845
	if (rtn)
		memset(rtn, 0, sizeof(*rtn));
L
Linus Torvalds 已提交
846 847 848 849 850
retry:
	timr = lock_timer(timer_id, &flag);
	if (!timr)
		return -EINVAL;

851
	kc = timr->kclock;
852 853 854
	if (WARN_ON_ONCE(!kc || !kc->timer_set))
		error = -EINVAL;
	else
855
		error = kc->timer_set(timr, flags, &new_spec64, rtn);
L
Linus Torvalds 已提交
856 857 858 859 860 861 862

	unlock_timer(timr, flag);
	if (error == TIMER_RETRY) {
		rtn = NULL;	// We already got the old time...
		goto retry;
	}

863
	old_spec = itimerspec64_to_itimerspec(&old_spec64);
864 865
	if (old_setting && !error &&
	    copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
L
Linus Torvalds 已提交
866 867 868 869 870
		error = -EFAULT;

	return error;
}

871
int common_timer_del(struct k_itimer *timer)
L
Linus Torvalds 已提交
872
{
873
	const struct k_clock *kc = timer->kclock;
874

875 876
	timer->it_interval = 0;
	if (kc->timer_try_to_cancel(timer) < 0)
L
Linus Torvalds 已提交
877
		return TIMER_RETRY;
878
	timer->it_active = 0;
L
Linus Torvalds 已提交
879 880 881 882 883
	return 0;
}

static inline int timer_delete_hook(struct k_itimer *timer)
{
884
	const struct k_clock *kc = timer->kclock;
885 886 887 888

	if (WARN_ON_ONCE(!kc || !kc->timer_del))
		return -EINVAL;
	return kc->timer_del(timer);
L
Linus Torvalds 已提交
889 890 891
}

/* Delete a POSIX.1b interval timer. */
892
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
L
Linus Torvalds 已提交
893 894
{
	struct k_itimer *timer;
895
	unsigned long flags;
L
Linus Torvalds 已提交
896 897 898 899 900 901

retry_delete:
	timer = lock_timer(timer_id, &flags);
	if (!timer)
		return -EINVAL;

902
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
903 904 905
		unlock_timer(timer, flags);
		goto retry_delete;
	}
906

L
Linus Torvalds 已提交
907 908 909 910 911 912 913
	spin_lock(&current->sighand->siglock);
	list_del(&timer->list);
	spin_unlock(&current->sighand->siglock);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
914
	timer->it_signal = NULL;
915

L
Linus Torvalds 已提交
916 917 918 919
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
	return 0;
}
920

L
Linus Torvalds 已提交
921 922 923
/*
 * return timer owned by the process, used by exit_itimers
 */
924
static void itimer_delete(struct k_itimer *timer)
L
Linus Torvalds 已提交
925 926 927 928 929 930
{
	unsigned long flags;

retry_delete:
	spin_lock_irqsave(&timer->it_lock, flags);

931
	if (timer_delete_hook(timer) == TIMER_RETRY) {
L
Linus Torvalds 已提交
932 933 934 935 936 937 938 939
		unlock_timer(timer, flags);
		goto retry_delete;
	}
	list_del(&timer->list);
	/*
	 * This keeps any tasks waiting on the spin lock from thinking
	 * they got something (see the lock code above).
	 */
940
	timer->it_signal = NULL;
941

L
Linus Torvalds 已提交
942 943 944 945 946
	unlock_timer(timer, flags);
	release_posix_timer(timer, IT_ID_SET);
}

/*
947
 * This is called by do_exit or de_thread, only when there are no more
L
Linus Torvalds 已提交
948 949 950 951 952 953 954 955 956 957 958 959
 * references to the shared signal_struct.
 */
void exit_itimers(struct signal_struct *sig)
{
	struct k_itimer *tmr;

	while (!list_empty(&sig->posix_timers)) {
		tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
		itimer_delete(tmr);
	}
}

960 961
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
		const struct timespec __user *, tp)
L
Linus Torvalds 已提交
962
{
963
	const struct k_clock *kc = clockid_to_kclock(which_clock);
964
	struct timespec64 new_tp64;
L
Linus Torvalds 已提交
965 966
	struct timespec new_tp;

967
	if (!kc || !kc->clock_set)
L
Linus Torvalds 已提交
968
		return -EINVAL;
969

L
Linus Torvalds 已提交
970 971
	if (copy_from_user(&new_tp, tp, sizeof (*tp)))
		return -EFAULT;
972
	new_tp64 = timespec_to_timespec64(new_tp);
L
Linus Torvalds 已提交
973

974
	return kc->clock_set(which_clock, &new_tp64);
L
Linus Torvalds 已提交
975 976
}

977 978
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
		struct timespec __user *,tp)
L
Linus Torvalds 已提交
979
{
980
	const struct k_clock *kc = clockid_to_kclock(which_clock);
981
	struct timespec64 kernel_tp64;
L
Linus Torvalds 已提交
982 983 984
	struct timespec kernel_tp;
	int error;

985
	if (!kc)
L
Linus Torvalds 已提交
986
		return -EINVAL;
987

988 989
	error = kc->clock_get(which_clock, &kernel_tp64);
	kernel_tp = timespec64_to_timespec(kernel_tp64);
990

L
Linus Torvalds 已提交
991 992 993 994 995 996
	if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
		error = -EFAULT;

	return error;
}

997 998 999
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
		struct timex __user *, utx)
{
1000
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
	struct timex ktx;
	int err;

	if (!kc)
		return -EINVAL;
	if (!kc->clock_adj)
		return -EOPNOTSUPP;

	if (copy_from_user(&ktx, utx, sizeof(ktx)))
		return -EFAULT;

	err = kc->clock_adj(which_clock, &ktx);

1014
	if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
1015 1016 1017 1018 1019
		return -EFAULT;

	return err;
}

1020 1021
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
		struct timespec __user *, tp)
L
Linus Torvalds 已提交
1022
{
1023
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1024
	struct timespec64 rtn_tp64;
L
Linus Torvalds 已提交
1025 1026 1027
	struct timespec rtn_tp;
	int error;

1028
	if (!kc)
L
Linus Torvalds 已提交
1029 1030
		return -EINVAL;

1031 1032
	error = kc->clock_getres(which_clock, &rtn_tp64);
	rtn_tp = timespec64_to_timespec(rtn_tp64);
L
Linus Torvalds 已提交
1033

1034
	if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
L
Linus Torvalds 已提交
1035 1036 1037 1038 1039
		error = -EFAULT;

	return error;
}

1040 1041 1042 1043
/*
 * nanosleep for monotonic and realtime clocks
 */
static int common_nsleep(const clockid_t which_clock, int flags,
1044
			 struct timespec64 *tsave, struct timespec __user *rmtp)
1045
{
1046 1047 1048
	return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
				 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
				 which_clock);
1049
}
L
Linus Torvalds 已提交
1050

1051 1052 1053
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
		const struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
L
Linus Torvalds 已提交
1054
{
1055
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1056
	struct timespec64 t64;
L
Linus Torvalds 已提交
1057 1058
	struct timespec t;

1059
	if (!kc)
L
Linus Torvalds 已提交
1060
		return -EINVAL;
1061 1062
	if (!kc->nsleep)
		return -ENANOSLEEP_NOTSUP;
L
Linus Torvalds 已提交
1063 1064 1065 1066

	if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
		return -EFAULT;

1067 1068
	t64 = timespec_to_timespec64(t);
	if (!timespec64_valid(&t64))
L
Linus Torvalds 已提交
1069 1070
		return -EINVAL;

1071
	return kc->nsleep(which_clock, flags, &t64, rmtp);
L
Linus Torvalds 已提交
1072
}
1073 1074 1075 1076 1077

/*
 * This will restart clock_nanosleep. This is required only by
 * compat_clock_nanosleep_restart for now.
 */
1078
long clock_nanosleep_restart(struct restart_block *restart_block)
1079
{
1080
	clockid_t which_clock = restart_block->nanosleep.clockid;
1081
	const struct k_clock *kc = clockid_to_kclock(which_clock);
1082 1083 1084

	if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
		return -EINVAL;
1085

1086
	return kc->nsleep_restart(restart_block);
1087
}
1088 1089

static const struct k_clock clock_realtime = {
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_clock_realtime_get,
	.clock_set		= posix_clock_realtime_set,
	.clock_adj		= posix_clock_realtime_adj,
	.nsleep			= common_nsleep,
	.nsleep_restart		= hrtimer_nanosleep_restart,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1105 1106 1107
};

static const struct k_clock clock_monotonic = {
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_ktime_get_ts,
	.nsleep			= common_nsleep,
	.nsleep_restart		= hrtimer_nanosleep_restart,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1121 1122 1123
};

static const struct k_clock clock_monotonic_raw = {
1124 1125
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_monotonic_raw,
1126 1127 1128
};

static const struct k_clock clock_realtime_coarse = {
1129 1130
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_realtime_coarse,
1131 1132 1133
};

static const struct k_clock clock_monotonic_coarse = {
1134 1135
	.clock_getres		= posix_get_coarse_res,
	.clock_get		= posix_get_monotonic_coarse,
1136 1137 1138
};

static const struct k_clock clock_tai = {
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_tai,
	.nsleep			= common_nsleep,
	.nsleep_restart		= hrtimer_nanosleep_restart,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1152 1153 1154
};

static const struct k_clock clock_boottime = {
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	.clock_getres		= posix_get_hrtimer_res,
	.clock_get		= posix_get_boottime,
	.nsleep			= common_nsleep,
	.nsleep_restart		= hrtimer_nanosleep_restart,
	.timer_create		= common_timer_create,
	.timer_set		= common_timer_set,
	.timer_get		= common_timer_get,
	.timer_del		= common_timer_del,
	.timer_rearm		= common_hrtimer_rearm,
	.timer_forward		= common_hrtimer_forward,
	.timer_remaining	= common_hrtimer_remaining,
	.timer_try_to_cancel	= common_hrtimer_try_to_cancel,
	.timer_arm		= common_hrtimer_arm,
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
};

static const struct k_clock * const posix_clocks[] = {
	[CLOCK_REALTIME]		= &clock_realtime,
	[CLOCK_MONOTONIC]		= &clock_monotonic,
	[CLOCK_PROCESS_CPUTIME_ID]	= &clock_process,
	[CLOCK_THREAD_CPUTIME_ID]	= &clock_thread,
	[CLOCK_MONOTONIC_RAW]		= &clock_monotonic_raw,
	[CLOCK_REALTIME_COARSE]		= &clock_realtime_coarse,
	[CLOCK_MONOTONIC_COARSE]	= &clock_monotonic_coarse,
	[CLOCK_BOOTTIME]		= &clock_boottime,
	[CLOCK_REALTIME_ALARM]		= &alarm_clock,
	[CLOCK_BOOTTIME_ALARM]		= &alarm_clock,
	[CLOCK_TAI]			= &clock_tai,
};

static const struct k_clock *clockid_to_kclock(const clockid_t id)
{
	if (id < 0)
		return (id & CLOCKFD_MASK) == CLOCKFD ?
			&clock_posix_dynamic : &clock_posix_cpu;

	if (id >= ARRAY_SIZE(posix_clocks) || !posix_clocks[id])
		return NULL;
	return posix_clocks[id];
}