rt2500usb.c 60.9 KB
Newer Older
1
/*
2
	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 4 5 6 7 8 9 10 11 12 13 14 15
	<http://rt2x00.serialmonkey.com>

	This program is free software; you can redistribute it and/or modify
	it under the terms of the GNU General Public License as published by
	the Free Software Foundation; either version 2 of the License, or
	(at your option) any later version.

	This program is distributed in the hope that it will be useful,
	but WITHOUT ANY WARRANTY; without even the implied warranty of
	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
	GNU General Public License for more details.

	You should have received a copy of the GNU General Public License
16
	along with this program; if not, see <http://www.gnu.org/licenses/>.
17 18 19 20 21 22 23 24 25 26 27 28
 */

/*
	Module: rt2500usb
	Abstract: rt2500usb device specific routines.
	Supported chipsets: RT2570.
 */

#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/kernel.h>
#include <linux/module.h>
29
#include <linux/slab.h>
30 31 32 33 34 35
#include <linux/usb.h>

#include "rt2x00.h"
#include "rt2x00usb.h"
#include "rt2500usb.h"

36 37 38
/*
 * Allow hardware encryption to be disabled.
 */
39
static bool modparam_nohwcrypt;
40 41 42
module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");

43 44 45 46 47 48 49
/*
 * Register access.
 * All access to the CSR registers will go through the methods
 * rt2500usb_register_read and rt2500usb_register_write.
 * BBP and RF register require indirect register access,
 * and use the CSR registers BBPCSR and RFCSR to achieve this.
 * These indirect registers work with busy bits,
50
 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access
51 52 53 54
 * the register while taking a REGISTER_BUSY_DELAY us delay
 * between each attampt. When the busy bit is still set at that time,
 * the access attempt is considered to have failed,
 * and we will print an error.
55
 * If the csr_mutex is already held then the _lock variants must
56
 * be used instead.
57
 */
58 59
static u16 rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
				   const unsigned int offset)
60 61 62 63
{
	__le16 reg;
	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
				      USB_VENDOR_REQUEST_IN, offset,
64
				      &reg, sizeof(reg));
65
	return le16_to_cpu(reg);
66 67
}

68 69
static u16 rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
					const unsigned int offset)
70 71 72 73
{
	__le16 reg;
	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
				       USB_VENDOR_REQUEST_IN, offset,
74
				       &reg, sizeof(reg), REGISTER_TIMEOUT);
75
	return le16_to_cpu(reg);
76 77
}

78
static void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
79 80 81 82 83 84
					    const unsigned int offset,
					    u16 value)
{
	__le16 reg = cpu_to_le16(value);
	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
				      USB_VENDOR_REQUEST_OUT, offset,
85
				      &reg, sizeof(reg));
86 87
}

88
static void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
89 90 91 92 93 94
						 const unsigned int offset,
						 u16 value)
{
	__le16 reg = cpu_to_le16(value);
	rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
				       USB_VENDOR_REQUEST_OUT, offset,
95
				       &reg, sizeof(reg), REGISTER_TIMEOUT);
96 97
}

98
static void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
99 100 101 102 103
						 const unsigned int offset,
						 void *value, const u16 length)
{
	rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
				      USB_VENDOR_REQUEST_OUT, offset,
104
				      value, length);
105 106
}

107 108 109 110
static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
				  const unsigned int offset,
				  struct rt2x00_field16 field,
				  u16 *reg)
111 112 113
{
	unsigned int i;

114
	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
115
		*reg = rt2500usb_register_read_lock(rt2x00dev, offset);
116 117
		if (!rt2x00_get_field16(*reg, field))
			return 1;
118 119 120
		udelay(REGISTER_BUSY_DELAY);
	}

121 122
	rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n",
		   offset, *reg);
123 124 125
	*reg = ~0;

	return 0;
126 127
}

128 129 130 131 132
#define WAIT_FOR_BBP(__dev, __reg) \
	rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
#define WAIT_FOR_RF(__dev, __reg) \
	rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))

A
Adam Baker 已提交
133
static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
134 135 136 137
				const unsigned int word, const u8 value)
{
	u16 reg;

138
	mutex_lock(&rt2x00dev->csr_mutex);
139

140
	/*
141 142
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the new data into the register.
143
	 */
144 145 146 147 148
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
149

150 151
		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
	}
152

153
	mutex_unlock(&rt2x00dev->csr_mutex);
154 155
}

156 157
static u8 rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
			     const unsigned int word)
158 159
{
	u16 reg;
160
	u8 value;
161

162
	mutex_lock(&rt2x00dev->csr_mutex);
163

164
	/*
165 166 167 168 169 170
	 * Wait until the BBP becomes available, afterwards we
	 * can safely write the read request into the register.
	 * After the data has been written, we wait until hardware
	 * returns the correct value, if at any time the register
	 * doesn't become available in time, reg will be 0xffffffff
	 * which means we return 0xff to the caller.
171
	 */
172 173 174 175
	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
		rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
176

177
		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
178

179
		if (WAIT_FOR_BBP(rt2x00dev, &reg))
180
			reg = rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7);
181
	}
182

183
	value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
184

185
	mutex_unlock(&rt2x00dev->csr_mutex);
186 187

	return value;
188 189
}

A
Adam Baker 已提交
190
static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
191 192 193 194
			       const unsigned int word, const u32 value)
{
	u16 reg;

195
	mutex_lock(&rt2x00dev->csr_mutex);
196

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
	/*
	 * Wait until the RF becomes available, afterwards we
	 * can safely write the new data into the register.
	 */
	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
		reg = 0;
		rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);

		reg = 0;
		rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
		rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
		rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
		rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);

		rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
		rt2x00_rf_write(rt2x00dev, word, value);
214 215
	}

216
	mutex_unlock(&rt2x00dev->csr_mutex);
217 218 219
}

#ifdef CONFIG_RT2X00_LIB_DEBUGFS
220 221
static u32 _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
				     const unsigned int offset)
222
{
223
	return rt2500usb_register_read(rt2x00dev, offset);
224 225
}

226 227 228
static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
				      const unsigned int offset,
				      u32 value)
229
{
230
	rt2500usb_register_write(rt2x00dev, offset, value);
231 232 233 234 235
}

static const struct rt2x00debug rt2500usb_rt2x00debug = {
	.owner	= THIS_MODULE,
	.csr	= {
236 237 238 239
		.read		= _rt2500usb_register_read,
		.write		= _rt2500usb_register_write,
		.flags		= RT2X00DEBUGFS_OFFSET,
		.word_base	= CSR_REG_BASE,
240 241 242 243
		.word_size	= sizeof(u16),
		.word_count	= CSR_REG_SIZE / sizeof(u16),
	},
	.eeprom	= {
244
		.read		= _rt2x00_eeprom_read,
245
		.write		= rt2x00_eeprom_write,
246
		.word_base	= EEPROM_BASE,
247 248 249 250
		.word_size	= sizeof(u16),
		.word_count	= EEPROM_SIZE / sizeof(u16),
	},
	.bbp	= {
251
		.read		= rt2500usb_bbp_read,
252
		.write		= rt2500usb_bbp_write,
253
		.word_base	= BBP_BASE,
254 255 256 257
		.word_size	= sizeof(u8),
		.word_count	= BBP_SIZE / sizeof(u8),
	},
	.rf	= {
258
		.read		= rt2x00_rf_read,
259
		.write		= rt2500usb_rf_write,
260
		.word_base	= RF_BASE,
261 262 263 264 265 266
		.word_size	= sizeof(u32),
		.word_count	= RF_SIZE / sizeof(u32),
	},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */

267 268 269 270
static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
{
	u16 reg;

271
	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
272
	return rt2x00_get_field16(reg, MAC_CSR19_VAL7);
273 274
}

275
#ifdef CONFIG_RT2X00_LIB_LEDS
276
static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
277 278 279 280 281
				     enum led_brightness brightness)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	unsigned int enabled = brightness != LED_OFF;
282
	u16 reg;
283

284
	reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR20);
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
		rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
	else if (led->type == LED_TYPE_ACTIVITY)
		rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);

	rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
}

static int rt2500usb_blink_set(struct led_classdev *led_cdev,
			       unsigned long *delay_on,
			       unsigned long *delay_off)
{
	struct rt2x00_led *led =
	    container_of(led_cdev, struct rt2x00_led, led_dev);
	u16 reg;

302
	reg = rt2500usb_register_read(led->rt2x00dev, MAC_CSR21);
303 304 305
	rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
	rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
	rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
306

307
	return 0;
308
}
309 310 311 312 313 314 315 316 317 318 319

static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
			       struct rt2x00_led *led,
			       enum led_type type)
{
	led->rt2x00dev = rt2x00dev;
	led->type = type;
	led->led_dev.brightness_set = rt2500usb_brightness_set;
	led->led_dev.blink_set = rt2500usb_blink_set;
	led->flags = LED_INITIALIZED;
}
320
#endif /* CONFIG_RT2X00_LIB_LEDS */
321

322 323 324
/*
 * Configuration handlers.
 */
325 326 327 328 329 330 331 332 333 334 335

/*
 * rt2500usb does not differentiate between shared and pairwise
 * keys, so we should use the same function for both key types.
 */
static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_crypto *crypto,
				struct ieee80211_key_conf *key)
{
	u32 mask;
	u16 reg;
336
	enum cipher curr_cipher;
337 338

	if (crypto->cmd == SET_KEY) {
339 340 341 342 343
		/*
		 * Disallow to set WEP key other than with index 0,
		 * it is known that not work at least on some hardware.
		 * SW crypto will be used in that case.
		 */
344 345 346
		if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 ||
		     key->cipher == WLAN_CIPHER_SUITE_WEP104) &&
		    key->keyidx != 0)
347 348
			return -EOPNOTSUPP;

349 350 351 352 353 354 355
		/*
		 * Pairwise key will always be entry 0, but this
		 * could collide with a shared key on the same
		 * position...
		 */
		mask = TXRX_CSR0_KEY_ID.bit_mask;

356
		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
357
		curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
358 359 360 361 362 363 364 365
		reg &= mask;

		if (reg && reg == mask)
			return -ENOSPC;

		reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);

		key->hw_key_idx += reg ? ffz(reg) : 0;
366 367 368 369 370 371 372 373
		/*
		 * Hardware requires that all keys use the same cipher
		 * (e.g. TKIP-only, AES-only, but not TKIP+AES).
		 * If this is not the first key, compare the cipher with the
		 * first one and fall back to SW crypto if not the same.
		 */
		if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
			return -EOPNOTSUPP;
374

375
		rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
376
					      crypto->key, sizeof(crypto->key));
377 378 379

		/*
		 * The driver does not support the IV/EIV generation
I
Ivo van Doorn 已提交
380
		 * in hardware. However it demands the data to be provided
D
Daniel Mack 已提交
381
		 * both separately as well as inside the frame.
I
Ivo van Doorn 已提交
382 383 384
		 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
		 * to ensure rt2x00lib will not strip the data from the
		 * frame after the copy, now we must tell mac80211
385 386 387 388 389 390 391 392 393 394
		 * to generate the IV/EIV data.
		 */
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
		key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
	}

	/*
	 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
	 * a particular key is valid.
	 */
395
	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
396 397 398 399 400 401 402 403 404 405 406 407 408 409
	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);

	mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
	if (crypto->cmd == SET_KEY)
		mask |= 1 << key->hw_key_idx;
	else if (crypto->cmd == DISABLE_KEY)
		mask &= ~(1 << key->hw_key_idx);
	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);

	return 0;
}

I
Ivo van Doorn 已提交
410 411 412 413 414 415 416 417 418 419 420
static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
				    const unsigned int filter_flags)
{
	u16 reg;

	/*
	 * Start configuration steps.
	 * Note that the version error will always be dropped
	 * and broadcast frames will always be accepted since
	 * there is no filter for it at this time.
	 */
421
	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
I
Ivo van Doorn 已提交
422 423 424 425 426 427
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
			   !(filter_flags & FIF_FCSFAIL));
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
			   !(filter_flags & FIF_PLCPFAIL));
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
			   !(filter_flags & FIF_CONTROL));
E
Eli Cooper 已提交
428 429
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
I
Ivo van Doorn 已提交
430
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
E
Eli Cooper 已提交
431
			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
432
			   !rt2x00dev->intf_ap_count);
I
Ivo van Doorn 已提交
433 434 435 436 437 438 439
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
			   !(filter_flags & FIF_ALLMULTI));
	rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
}

440 441 442 443
static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
				  struct rt2x00_intf *intf,
				  struct rt2x00intf_conf *conf,
				  const unsigned int flags)
444
{
445
	unsigned int bcn_preload;
446 447
	u16 reg;

448 449 450 451
	if (flags & CONFIG_UPDATE_TYPE) {
		/*
		 * Enable beacon config
		 */
452
		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
453
		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR20);
454 455
		rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
		rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
456
				   2 * (conf->type != NL80211_IFTYPE_STATION));
457
		rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
458

459 460 461
		/*
		 * Enable synchronisation.
		 */
462
		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
463 464 465
		rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);

466
		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
467 468 469
		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
	}
470

471 472 473 474 475 476 477
	if (flags & CONFIG_UPDATE_MAC)
		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
					      (3 * sizeof(__le16)));

	if (flags & CONFIG_UPDATE_BSSID)
		rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
					      (3 * sizeof(__le16)));
478 479
}

I
Ivo van Doorn 已提交
480
static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
481 482
				 struct rt2x00lib_erp *erp,
				 u32 changed)
483 484 485
{
	u16 reg;

486
	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
487
		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR10);
488 489 490 491
		rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
				   !!erp->short_preamble);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
	}
492

493 494 495
	if (changed & BSS_CHANGED_BASIC_RATES)
		rt2500usb_register_write(rt2x00dev, TXRX_CSR11,
					 erp->basic_rates);
496

497
	if (changed & BSS_CHANGED_BEACON_INT) {
498
		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR18);
499 500 501 502
		rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
				   erp->beacon_int * 4);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
	}
503

504 505 506 507 508
	if (changed & BSS_CHANGED_ERP_SLOT) {
		rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
		rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
		rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
	}
509 510
}

511 512
static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
				 struct antenna_setup *ant)
513 514 515 516 517 518
{
	u8 r2;
	u8 r14;
	u16 csr5;
	u16 csr6;

519 520 521 522 523 524 525
	/*
	 * We should never come here because rt2x00lib is supposed
	 * to catch this and send us the correct antenna explicitely.
	 */
	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
	       ant->tx == ANTENNA_SW_DIVERSITY);

526 527
	r2 = rt2500usb_bbp_read(rt2x00dev, 2);
	r14 = rt2500usb_bbp_read(rt2x00dev, 14);
528 529
	csr5 = rt2500usb_register_read(rt2x00dev, PHY_CSR5);
	csr6 = rt2500usb_register_read(rt2x00dev, PHY_CSR6);
530 531 532 533

	/*
	 * Configure the TX antenna.
	 */
534
	switch (ant->tx) {
535 536 537 538 539 540 541 542 543 544 545
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
		break;
	case ANTENNA_B:
546
	default:
547 548 549 550 551 552 553 554 555
		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
		rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
		break;
	}

	/*
	 * Configure the RX antenna.
	 */
556
	switch (ant->rx) {
557 558 559 560 561 562 563
	case ANTENNA_HW_DIVERSITY:
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
		break;
	case ANTENNA_A:
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
		break;
	case ANTENNA_B:
564
	default:
565 566 567 568 569 570 571
		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
		break;
	}

	/*
	 * RT2525E and RT5222 need to flip TX I/Q
	 */
572
	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
573 574 575 576 577 578 579
		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);

		/*
		 * RT2525E does not need RX I/Q Flip.
		 */
580
		if (rt2x00_rf(rt2x00dev, RF2525E))
581 582 583 584 585 586 587 588 589 590 591 592
			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
	} else {
		rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
		rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
	}

	rt2500usb_bbp_write(rt2x00dev, 2, r2);
	rt2500usb_bbp_write(rt2x00dev, 14, r14);
	rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
	rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
}

593 594 595 596 597 598 599 600 601 602 603
static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
				     struct rf_channel *rf, const int txpower)
{
	/*
	 * Set TXpower.
	 */
	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));

	/*
	 * For RT2525E we should first set the channel to half band higher.
	 */
604
	if (rt2x00_rf(rt2x00dev, RF2525E)) {
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
		static const u32 vals[] = {
			0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
			0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
			0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
			0x00000902, 0x00000906
		};

		rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
		if (rf->rf4)
			rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
	}

	rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
	rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
	rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
	if (rf->rf4)
		rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
}

static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
				     const int txpower)
{
	u32 rf3;

629
	rf3 = rt2x00_rf_read(rt2x00dev, 3);
630 631 632 633
	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
	rt2500usb_rf_write(rt2x00dev, 3, rf3);
}

I
Ivo van Doorn 已提交
634 635 636 637 638 639 640 641 642
static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
				struct rt2x00lib_conf *libconf)
{
	enum dev_state state =
	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
		STATE_SLEEP : STATE_AWAKE;
	u16 reg;

	if (state == STATE_SLEEP) {
643
		reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
I
Ivo van Doorn 已提交
644
		rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
645
				   rt2x00dev->beacon_int - 20);
I
Ivo van Doorn 已提交
646 647 648 649 650 651 652 653 654
		rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
				   libconf->conf->listen_interval - 1);

		/* We must first disable autowake before it can be enabled */
		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);

		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
655
	} else {
656
		reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
657 658
		rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
		rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
I
Ivo van Doorn 已提交
659 660 661 662 663
	}

	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
}

664
static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
665 666
			     struct rt2x00lib_conf *libconf,
			     const unsigned int flags)
667
{
668
	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
669 670
		rt2500usb_config_channel(rt2x00dev, &libconf->rf,
					 libconf->conf->power_level);
671 672
	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
673 674
		rt2500usb_config_txpower(rt2x00dev,
					 libconf->conf->power_level);
I
Ivo van Doorn 已提交
675 676
	if (flags & IEEE80211_CONF_CHANGE_PS)
		rt2500usb_config_ps(rt2x00dev, libconf);
677 678 679 680 681
}

/*
 * Link tuning
 */
682 683
static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
				 struct link_qual *qual)
684 685 686 687 688 689
{
	u16 reg;

	/*
	 * Update FCS error count from register.
	 */
690
	reg = rt2500usb_register_read(rt2x00dev, STA_CSR0);
691
	qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
692 693 694 695

	/*
	 * Update False CCA count from register.
	 */
696
	reg = rt2500usb_register_read(rt2x00dev, STA_CSR3);
697
	qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
698 699
}

700 701
static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
				  struct link_qual *qual)
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
{
	u16 eeprom;
	u16 value;

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
	rt2500usb_bbp_write(rt2x00dev, 24, value);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
	rt2500usb_bbp_write(rt2x00dev, 25, value);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
	rt2500usb_bbp_write(rt2x00dev, 61, value);

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
	value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
	rt2500usb_bbp_write(rt2x00dev, 17, value);

722
	qual->vgc_level = value;
723 724
}

725 726 727 728 729 730 731 732 733 734
/*
 * Queue handlers.
 */
static void rt2500usb_start_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u16 reg;

	switch (queue->qid) {
	case QID_RX:
735
		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
736 737 738 739
		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 0);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
		break;
	case QID_BEACON:
740
		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
		break;
	default:
		break;
	}
}

static void rt2500usb_stop_queue(struct data_queue *queue)
{
	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
	u16 reg;

	switch (queue->qid) {
	case QID_RX:
758
		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
759 760 761 762
		rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
		break;
	case QID_BEACON:
763
		reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
764 765 766 767 768 769 770 771 772 773
		rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
		rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
		rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
		rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
		break;
	default:
		break;
	}
}

774 775 776 777 778 779 780 781 782 783 784 785
/*
 * Initialization functions.
 */
static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
{
	u16 reg;

	rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
				    USB_MODE_TEST, REGISTER_TIMEOUT);
	rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
				    0x00f0, REGISTER_TIMEOUT);

786
	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR2);
787 788 789 790 791 792
	rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);

	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);

793
	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
794 795 796 797 798
	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);

799
	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
800 801 802 803 804
	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);

805
	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR5);
806 807 808 809 810 811
	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
	rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);

812
	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR6);
813 814 815 816 817 818
	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
	rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);

819
	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR7);
820 821 822 823 824 825
	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
	rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);

826
	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR8);
827 828 829 830 831 832
	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
	rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);

833
	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
834 835 836 837 838 839
	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);

840 841 842 843 844 845
	rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
	rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);

	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
		return -EBUSY;

846
	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR1);
847 848 849 850 851
	rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
	rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
	rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
	rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);

852
	if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
853
		reg = rt2500usb_register_read(rt2x00dev, PHY_CSR2);
854
		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
855
	} else {
856 857 858
		reg = 0;
		rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
		rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
859 860 861 862 863 864 865 866
	}
	rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);

	rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
	rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
	rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
	rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);

867
	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR8);
868 869 870 871
	rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
			   rt2x00dev->rx->data_size);
	rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);

872
	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR0);
873
	rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
874
	rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
875
	rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
876 877
	rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);

878
	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR18);
879 880 881
	rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
	rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);

882
	reg = rt2500usb_register_read(rt2x00dev, PHY_CSR4);
883 884 885
	rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
	rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);

886
	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR1);
887 888 889 890 891 892
	rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);

	return 0;
}

893
static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
894 895 896 897
{
	unsigned int i;
	u8 value;

898
	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
899
		value = rt2500usb_bbp_read(rt2x00dev, 0);
900
		if ((value != 0xff) && (value != 0x00))
901
			return 0;
902 903 904
		udelay(REGISTER_BUSY_DELAY);
	}

905
	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
906
	return -EACCES;
907 908 909 910 911 912 913 914 915 916 917
}

static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
{
	unsigned int i;
	u16 eeprom;
	u8 value;
	u8 reg_id;

	if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
		return -EACCES;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

	rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
	rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
	rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
	rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
	rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
	rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
	rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
	rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
	rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
	rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
	rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
	rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
	rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
	rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
	rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
	rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
	rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
	rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
	rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
	rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
	rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
	rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
	rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
	rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
	rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
	rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
	rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
	rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
	rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
	rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
	rt2500usb_bbp_write(rt2x00dev, 75, 0xff);

	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);

		if (eeprom != 0xffff && eeprom != 0x0000) {
			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
			rt2500usb_bbp_write(rt2x00dev, reg_id, value);
		}
	}

	return 0;
}

/*
 * Device state switch handlers.
 */
static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
{
	/*
	 * Initialize all registers.
	 */
972 973
	if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
		     rt2500usb_init_bbp(rt2x00dev)))
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
		return -EIO;

	return 0;
}

static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
{
	rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
	rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);

	/*
	 * Disable synchronisation.
	 */
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);

	rt2x00usb_disable_radio(rt2x00dev);
}

static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
			       enum dev_state state)
{
	u16 reg;
	u16 reg2;
	unsigned int i;
	char put_to_sleep;
	char bbp_state;
	char rf_state;

	put_to_sleep = (state != STATE_AWAKE);

	reg = 0;
	rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
	rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
	rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
	rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
	rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);

	/*
	 * Device is not guaranteed to be in the requested state yet.
	 * We must wait until the register indicates that the
	 * device has entered the correct state.
	 */
1017
	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1018
		reg2 = rt2500usb_register_read(rt2x00dev, MAC_CSR17);
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
		rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
		if (bbp_state == state && rf_state == state)
			return 0;
		rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
		msleep(30);
	}

	return -EBUSY;
}

static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
				      enum dev_state state)
{
	int retval = 0;

	switch (state) {
	case STATE_RADIO_ON:
		retval = rt2500usb_enable_radio(rt2x00dev);
		break;
	case STATE_RADIO_OFF:
		rt2500usb_disable_radio(rt2x00dev);
		break;
1042 1043 1044
	case STATE_RADIO_IRQ_ON:
	case STATE_RADIO_IRQ_OFF:
		/* No support, but no error either */
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		break;
	case STATE_DEEP_SLEEP:
	case STATE_SLEEP:
	case STATE_STANDBY:
	case STATE_AWAKE:
		retval = rt2500usb_set_state(rt2x00dev, state);
		break;
	default:
		retval = -ENOTSUPP;
		break;
	}

1057
	if (unlikely(retval))
1058 1059
		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
			   state, retval);
1060

1061 1062 1063 1064 1065 1066
	return retval;
}

/*
 * TX descriptor initialization
 */
1067
static void rt2500usb_write_tx_desc(struct queue_entry *entry,
1068
				    struct txentry_desc *txdesc)
1069
{
1070 1071
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	__le32 *txd = (__le32 *) entry->skb->data;
1072 1073 1074 1075 1076
	u32 word;

	/*
	 * Start writing the descriptor words.
	 */
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	rt2x00_desc_read(txd, 0, &word);
	rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_ACK,
			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
	rt2x00_set_field32(&word, TXD_W0_OFDM,
			   (txdesc->rate_mode == RATE_MODE_OFDM));
	rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
			   test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1089
	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1090 1091 1092 1093 1094
	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
	rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
	rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
	rt2x00_desc_write(txd, 0, word);

1095
	rt2x00_desc_read(txd, 1, &word);
1096
	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
H
Helmut Schaa 已提交
1097 1098 1099
	rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs);
	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1100 1101 1102
	rt2x00_desc_write(txd, 1, word);

	rt2x00_desc_read(txd, 2, &word);
1103 1104 1105 1106 1107 1108
	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
			   txdesc->u.plcp.length_low);
	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
			   txdesc->u.plcp.length_high);
1109 1110
	rt2x00_desc_write(txd, 2, word);

1111 1112 1113 1114 1115
	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
	}

1116 1117 1118
	/*
	 * Register descriptor details in skb frame descriptor.
	 */
1119
	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1120 1121
	skbdesc->desc = txd;
	skbdesc->desc_len = TXD_DESC_SIZE;
1122 1123
}

1124 1125 1126 1127 1128
/*
 * TX data initialization
 */
static void rt2500usb_beacondone(struct urb *urb);

1129 1130
static void rt2500usb_write_beacon(struct queue_entry *entry,
				   struct txentry_desc *txdesc)
1131 1132 1133 1134
{
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
	struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1135
	int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1136
	int length;
1137
	u16 reg, reg0;
1138 1139 1140 1141 1142

	/*
	 * Disable beaconing while we are reloading the beacon data,
	 * otherwise we might be sending out invalid data.
	 */
1143
	reg = rt2500usb_register_read(rt2x00dev, TXRX_CSR19);
1144 1145 1146
	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);

1147 1148 1149 1150 1151 1152
	/*
	 * Add space for the descriptor in front of the skb.
	 */
	skb_push(entry->skb, TXD_DESC_SIZE);
	memset(entry->skb->data, 0, TXD_DESC_SIZE);

1153 1154 1155
	/*
	 * Write the TX descriptor for the beacon.
	 */
1156
	rt2500usb_write_tx_desc(entry, txdesc);
1157 1158 1159 1160

	/*
	 * Dump beacon to userspace through debugfs.
	 */
1161
	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1162

1163 1164 1165 1166 1167
	/*
	 * USB devices cannot blindly pass the skb->len as the
	 * length of the data to usb_fill_bulk_urb. Pass the skb
	 * to the driver to determine what the length should be.
	 */
1168
	length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

	usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
			  entry->skb->data, length, rt2500usb_beacondone,
			  entry);

	/*
	 * Second we need to create the guardian byte.
	 * We only need a single byte, so lets recycle
	 * the 'flags' field we are not using for beacons.
	 */
	bcn_priv->guardian_data = 0;
	usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
			  &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
			  entry);

	/*
	 * Send out the guardian byte.
	 */
	usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

	/*
	 * Enable beaconing again.
	 */
	rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
	rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
	reg0 = reg;
	rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
	/*
	 * Beacon generation will fail initially.
	 * To prevent this we need to change the TXRX_CSR19
	 * register several times (reg0 is the same as reg
	 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
	 * and 1 in reg).
	 */
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
	rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1208 1209
}

1210
static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1211 1212 1213 1214 1215 1216 1217
{
	int length;

	/*
	 * The length _must_ be a multiple of 2,
	 * but it must _not_ be a multiple of the USB packet size.
	 */
1218 1219
	length = roundup(entry->skb->len, 2);
	length += (2 * !(length % entry->queue->usb_maxpacket));
1220 1221 1222 1223

	return length;
}

1224 1225 1226
/*
 * RX control handlers
 */
I
Ivo van Doorn 已提交
1227 1228
static void rt2500usb_fill_rxdone(struct queue_entry *entry,
				  struct rxdone_entry_desc *rxdesc)
1229
{
1230
	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1231
	struct queue_entry_priv_usb *entry_priv = entry->priv_data;
I
Ivo van Doorn 已提交
1232 1233 1234
	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
	__le32 *rxd =
	    (__le32 *)(entry->skb->data +
1235 1236
		       (entry_priv->urb->actual_length -
			entry->queue->desc_size));
1237 1238 1239
	u32 word0;
	u32 word1;

1240
	/*
1241 1242
	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
	 * frame data in rt2x00usb.
1243
	 */
1244
	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1245
	rxd = (__le32 *)skbdesc->desc;
1246 1247

	/*
1248
	 * It is now safe to read the descriptor on all architectures.
1249
	 */
1250 1251 1252
	rt2x00_desc_read(rxd, 0, &word0);
	rt2x00_desc_read(rxd, 1, &word1);

1253
	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
I
Ivo van Doorn 已提交
1254
		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1255
	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
I
Ivo van Doorn 已提交
1256
		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1257

1258 1259 1260
	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
	if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
		rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1261 1262 1263 1264

	if (rxdesc->cipher != CIPHER_NONE) {
		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1265 1266
		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;

1267 1268
		/* ICV is located at the end of frame */

I
Ivo van Doorn 已提交
1269
		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1270 1271 1272 1273 1274 1275
		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
			rxdesc->flags |= RX_FLAG_DECRYPTED;
		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
	}

1276 1277
	/*
	 * Obtain the status about this packet.
I
Ivo van Doorn 已提交
1278 1279 1280
	 * When frame was received with an OFDM bitrate,
	 * the signal is the PLCP value. If it was received with
	 * a CCK bitrate the signal is the rate in 100kbit/s.
1281
	 */
I
Ivo van Doorn 已提交
1282
	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1283 1284
	rxdesc->rssi =
	    rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
I
Ivo van Doorn 已提交
1285
	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1286 1287 1288

	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
I
Ivo van Doorn 已提交
1289 1290
	else
		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1291 1292
	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
		rxdesc->dev_flags |= RXDONE_MY_BSS;
1293

1294 1295 1296 1297
	/*
	 * Adjust the skb memory window to the frame boundaries.
	 */
	skb_trim(entry->skb, rxdesc->size);
1298 1299 1300 1301 1302 1303 1304
}

/*
 * Interrupt functions.
 */
static void rt2500usb_beacondone(struct urb *urb)
{
I
Ivo van Doorn 已提交
1305
	struct queue_entry *entry = (struct queue_entry *)urb->context;
1306
	struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1307

1308
	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1309 1310 1311 1312 1313 1314 1315 1316
		return;

	/*
	 * Check if this was the guardian beacon,
	 * if that was the case we need to send the real beacon now.
	 * Otherwise we should free the sk_buffer, the device
	 * should be doing the rest of the work now.
	 */
1317 1318 1319
	if (bcn_priv->guardian_urb == urb) {
		usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
	} else if (bcn_priv->urb == urb) {
I
Ivo van Doorn 已提交
1320 1321
		dev_kfree_skb(entry->skb);
		entry->skb = NULL;
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	}
}

/*
 * Device probe functions.
 */
static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u16 word;
	u8 *mac;
1332
	u8 bbp;
1333 1334 1335 1336 1337 1338 1339

	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);

	/*
	 * Start validation of the data that has been read.
	 */
	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1340
	rt2x00lib_set_mac_address(rt2x00dev, mac);
1341 1342 1343 1344

	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
I
Ivo van Doorn 已提交
1345 1346 1347 1348 1349 1350
		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
				   ANTENNA_SW_DIVERSITY);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
				   ANTENNA_SW_DIVERSITY);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
				   LED_MODE_DEFAULT);
1351 1352 1353 1354
		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1355
		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1356 1357 1358 1359 1360 1361 1362 1363
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1364
		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1365 1366 1367 1368 1369 1370 1371
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
				   DEFAULT_RSSI_OFFSET);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1372 1373
		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
				  word);
1374 1375 1376 1377 1378 1379
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1380
		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word);
1381 1382
	}

1383 1384 1385 1386
	/*
	 * Switch lower vgc bound to current BBP R17 value,
	 * lower the value a bit for better quality.
	 */
1387
	bbp = rt2500usb_bbp_read(rt2x00dev, 17);
1388 1389
	bbp -= 6;

1390 1391 1392
	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1393
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1394
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1395
		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1396 1397 1398
	} else {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1399 1400 1401 1402 1403 1404 1405
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1406
		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1407 1408 1409 1410 1411 1412 1413
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1414
		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1415 1416 1417 1418 1419 1420 1421
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1422
		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1423 1424 1425 1426 1427 1428 1429
	}

	rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
	if (word == 0xffff) {
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
		rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
		rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1430
		rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	}

	return 0;
}

static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
	u16 reg;
	u16 value;
	u16 eeprom;

	/*
	 * Read EEPROM word for configuration.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);

	/*
	 * Identify RF chipset.
	 */
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1451
	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR0);
1452 1453
	rt2x00_set_chip(rt2x00dev, RT2570, value, reg);

1454
	if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1455
		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1456 1457 1458
		return -ENODEV;
	}

1459 1460 1461 1462 1463 1464
	if (!rt2x00_rf(rt2x00dev, RF2522) &&
	    !rt2x00_rf(rt2x00dev, RF2523) &&
	    !rt2x00_rf(rt2x00dev, RF2524) &&
	    !rt2x00_rf(rt2x00dev, RF2525) &&
	    !rt2x00_rf(rt2x00dev, RF2525E) &&
	    !rt2x00_rf(rt2x00dev, RF5222)) {
1465
		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1466 1467 1468 1469 1470 1471
		return -ENODEV;
	}

	/*
	 * Identify default antenna configuration.
	 */
1472
	rt2x00dev->default_ant.tx =
1473
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1474
	rt2x00dev->default_ant.rx =
1475 1476
	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
	/*
	 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
	 * I am not 100% sure about this, but the legacy drivers do not
	 * indicate antenna swapping in software is required when
	 * diversity is enabled.
	 */
	if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
	if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
		rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;

1488 1489 1490
	/*
	 * Store led mode, for correct led behaviour.
	 */
1491
#ifdef CONFIG_RT2X00_LIB_LEDS
1492 1493
	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);

1494
	rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1495 1496 1497
	if (value == LED_MODE_TXRX_ACTIVITY ||
	    value == LED_MODE_DEFAULT ||
	    value == LED_MODE_ASUS)
1498 1499
		rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
				   LED_TYPE_ACTIVITY);
1500
#endif /* CONFIG_RT2X00_LIB_LEDS */
1501

1502 1503 1504 1505
	/*
	 * Detect if this device has an hardware controlled radio.
	 */
	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
I
Ivo van Doorn 已提交
1506
		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
	/*
	 * Read the RSSI <-> dBm offset information.
	 */
	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
	rt2x00dev->rssi_offset =
	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);

	return 0;
}

/*
 * RF value list for RF2522
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2522[] = {
	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
};

/*
 * RF value list for RF2523
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2523[] = {
	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
};

/*
 * RF value list for RF2524
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2524[] = {
	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
};

/*
 * RF value list for RF2525
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2525[] = {
	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
};

/*
 * RF value list for RF2525e
 * Supports: 2.4 GHz
 */
static const struct rf_channel rf_vals_bg_2525e[] = {
	{ 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
	{ 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
	{ 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
	{ 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
	{ 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
	{ 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
	{ 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
	{ 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
	{ 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
	{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
	{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
	{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
	{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
	{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
};

/*
 * RF value list for RF5222
 * Supports: 2.4 GHz & 5.2 GHz
 */
static const struct rf_channel rf_vals_5222[] = {
	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },

	/* 802.11 UNI / HyperLan 2 */
	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },

	/* 802.11 HyperLan 2 */
	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },

	/* 802.11 UNII */
	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
};

1673
static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1674 1675
{
	struct hw_mode_spec *spec = &rt2x00dev->spec;
1676 1677
	struct channel_info *info;
	char *tx_power;
1678 1679 1680 1681
	unsigned int i;

	/*
	 * Initialize all hw fields.
1682 1683 1684 1685 1686 1687
	 *
	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
	 * capable of sending the buffered frames out after the DTIM
	 * transmission using rt2x00lib_beacondone. This will send out
	 * multicast and broadcast traffic immediately instead of buffering it
	 * infinitly and thus dropping it after some time.
1688
	 */
1689 1690 1691 1692
	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
	ieee80211_hw_set(rt2x00dev->hw, RX_INCLUDES_FCS);
	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1693

1694 1695 1696 1697 1698
	/*
	 * Disable powersaving as default.
	 */
	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;

1699
	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1700 1701 1702 1703 1704 1705 1706
	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
				rt2x00_eeprom_addr(rt2x00dev,
						   EEPROM_MAC_ADDR_0));

	/*
	 * Initialize hw_mode information.
	 */
1707 1708
	spec->supported_bands = SUPPORT_BAND_2GHZ;
	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1709

1710
	if (rt2x00_rf(rt2x00dev, RF2522)) {
1711 1712
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
		spec->channels = rf_vals_bg_2522;
1713
	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1714 1715
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
		spec->channels = rf_vals_bg_2523;
1716
	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1717 1718
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
		spec->channels = rf_vals_bg_2524;
1719
	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1720 1721
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
		spec->channels = rf_vals_bg_2525;
1722
	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1723 1724
		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
		spec->channels = rf_vals_bg_2525e;
1725
	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1726
		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1727 1728 1729
		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
		spec->channels = rf_vals_5222;
	}
1730 1731 1732 1733

	/*
	 * Create channel information array
	 */
1734
	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1735 1736 1737 1738 1739 1740
	if (!info)
		return -ENOMEM;

	spec->channels_info = info;

	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1741 1742 1743 1744
	for (i = 0; i < 14; i++) {
		info[i].max_power = MAX_TXPOWER;
		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
	}
1745 1746

	if (spec->num_channels > 14) {
1747 1748 1749 1750
		for (i = 14; i < spec->num_channels; i++) {
			info[i].max_power = MAX_TXPOWER;
			info[i].default_power1 = DEFAULT_TXPOWER;
		}
1751 1752 1753
	}

	return 0;
1754 1755 1756 1757 1758
}

static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
{
	int retval;
1759
	u16 reg;
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

	/*
	 * Allocate eeprom data.
	 */
	retval = rt2500usb_validate_eeprom(rt2x00dev);
	if (retval)
		return retval;

	retval = rt2500usb_init_eeprom(rt2x00dev);
	if (retval)
		return retval;

1772 1773 1774 1775
	/*
	 * Enable rfkill polling by setting GPIO direction of the
	 * rfkill switch GPIO pin correctly.
	 */
1776
	reg = rt2500usb_register_read(rt2x00dev, MAC_CSR19);
1777
	rt2x00_set_field16(&reg, MAC_CSR19_DIR0, 0);
1778 1779
	rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg);

1780 1781 1782
	/*
	 * Initialize hw specifications.
	 */
1783 1784 1785
	retval = rt2500usb_probe_hw_mode(rt2x00dev);
	if (retval)
		return retval;
1786 1787

	/*
I
Ivo van Doorn 已提交
1788
	 * This device requires the atim queue
1789
	 */
I
Ivo van Doorn 已提交
1790 1791
	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
	__set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags);
1792
	if (!modparam_nohwcrypt) {
I
Ivo van Doorn 已提交
1793 1794
		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
		__set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags);
1795
	}
I
Ivo van Doorn 已提交
1796
	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1797
	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	/*
	 * Set the rssi offset.
	 */
	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;

	return 0;
}

static const struct ieee80211_ops rt2500usb_mac80211_ops = {
	.tx			= rt2x00mac_tx,
1809 1810
	.start			= rt2x00mac_start,
	.stop			= rt2x00mac_stop,
1811 1812 1813
	.add_interface		= rt2x00mac_add_interface,
	.remove_interface	= rt2x00mac_remove_interface,
	.config			= rt2x00mac_config,
I
Ivo van Doorn 已提交
1814
	.configure_filter	= rt2x00mac_configure_filter,
1815
	.set_tim		= rt2x00mac_set_tim,
1816
	.set_key		= rt2x00mac_set_key,
1817 1818
	.sw_scan_start		= rt2x00mac_sw_scan_start,
	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
1819
	.get_stats		= rt2x00mac_get_stats,
1820
	.bss_info_changed	= rt2x00mac_bss_info_changed,
1821
	.conf_tx		= rt2x00mac_conf_tx,
1822
	.rfkill_poll		= rt2x00mac_rfkill_poll,
I
Ivo van Doorn 已提交
1823
	.flush			= rt2x00mac_flush,
1824 1825
	.set_antenna		= rt2x00mac_set_antenna,
	.get_antenna		= rt2x00mac_get_antenna,
1826
	.get_ringparam		= rt2x00mac_get_ringparam,
1827
	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
1828 1829 1830 1831 1832 1833
};

static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
	.probe_hw		= rt2500usb_probe_hw,
	.initialize		= rt2x00usb_initialize,
	.uninitialize		= rt2x00usb_uninitialize,
1834
	.clear_entry		= rt2x00usb_clear_entry,
1835
	.set_device_state	= rt2500usb_set_device_state,
1836
	.rfkill_poll		= rt2500usb_rfkill_poll,
1837 1838
	.link_stats		= rt2500usb_link_stats,
	.reset_tuner		= rt2500usb_reset_tuner,
1839
	.watchdog		= rt2x00usb_watchdog,
1840 1841 1842
	.start_queue		= rt2500usb_start_queue,
	.kick_queue		= rt2x00usb_kick_queue,
	.stop_queue		= rt2500usb_stop_queue,
I
Ivo van Doorn 已提交
1843
	.flush_queue		= rt2x00usb_flush_queue,
1844
	.write_tx_desc		= rt2500usb_write_tx_desc,
1845
	.write_beacon		= rt2500usb_write_beacon,
1846
	.get_tx_data_len	= rt2500usb_get_tx_data_len,
1847
	.fill_rxdone		= rt2500usb_fill_rxdone,
1848 1849
	.config_shared_key	= rt2500usb_config_key,
	.config_pairwise_key	= rt2500usb_config_key,
I
Ivo van Doorn 已提交
1850
	.config_filter		= rt2500usb_config_filter,
1851
	.config_intf		= rt2500usb_config_intf,
1852
	.config_erp		= rt2500usb_config_erp,
1853
	.config_ant		= rt2500usb_config_ant,
1854 1855 1856
	.config			= rt2500usb_config,
};

1857 1858 1859 1860 1861 1862 1863 1864 1865
static void rt2500usb_queue_init(struct data_queue *queue)
{
	switch (queue->qid) {
	case QID_RX:
		queue->limit = 32;
		queue->data_size = DATA_FRAME_SIZE;
		queue->desc_size = RXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_usb);
		break;
I
Ivo van Doorn 已提交
1866

1867 1868 1869 1870 1871 1872 1873 1874 1875
	case QID_AC_VO:
	case QID_AC_VI:
	case QID_AC_BE:
	case QID_AC_BK:
		queue->limit = 32;
		queue->data_size = DATA_FRAME_SIZE;
		queue->desc_size = TXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_usb);
		break;
I
Ivo van Doorn 已提交
1876

1877 1878 1879 1880 1881 1882
	case QID_BEACON:
		queue->limit = 1;
		queue->data_size = MGMT_FRAME_SIZE;
		queue->desc_size = TXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn);
		break;
I
Ivo van Doorn 已提交
1883

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
	case QID_ATIM:
		queue->limit = 8;
		queue->data_size = DATA_FRAME_SIZE;
		queue->desc_size = TXD_DESC_SIZE;
		queue->priv_size = sizeof(struct queue_entry_priv_usb);
		break;

	default:
		BUG();
		break;
	}
}
I
Ivo van Doorn 已提交
1896

1897
static const struct rt2x00_ops rt2500usb_ops = {
G
Gertjan van Wingerde 已提交
1898 1899 1900 1901 1902
	.name			= KBUILD_MODNAME,
	.max_ap_intf		= 1,
	.eeprom_size		= EEPROM_SIZE,
	.rf_size		= RF_SIZE,
	.tx_queues		= NUM_TX_QUEUES,
1903
	.queue_init		= rt2500usb_queue_init,
G
Gertjan van Wingerde 已提交
1904 1905
	.lib			= &rt2500usb_rt2x00_ops,
	.hw			= &rt2500usb_mac80211_ops,
1906
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
G
Gertjan van Wingerde 已提交
1907
	.debugfs		= &rt2500usb_rt2x00debug,
1908 1909 1910 1911 1912 1913 1914 1915
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};

/*
 * rt2500usb module information.
 */
static struct usb_device_id rt2500usb_device_table[] = {
	/* ASUS */
1916 1917
	{ USB_DEVICE(0x0b05, 0x1706) },
	{ USB_DEVICE(0x0b05, 0x1707) },
1918
	/* Belkin */
1919
	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050A ver. 2.x */
1920
	{ USB_DEVICE(0x050d, 0x7051) },
1921
	/* Cisco Systems */
1922 1923 1924
	{ USB_DEVICE(0x13b1, 0x000d) },
	{ USB_DEVICE(0x13b1, 0x0011) },
	{ USB_DEVICE(0x13b1, 0x001a) },
1925
	/* Conceptronic */
1926
	{ USB_DEVICE(0x14b2, 0x3c02) },
1927
	/* D-LINK */
1928
	{ USB_DEVICE(0x2001, 0x3c00) },
1929
	/* Gigabyte */
1930 1931
	{ USB_DEVICE(0x1044, 0x8001) },
	{ USB_DEVICE(0x1044, 0x8007) },
1932
	/* Hercules */
1933
	{ USB_DEVICE(0x06f8, 0xe000) },
1934
	/* Melco */
1935 1936 1937 1938 1939
	{ USB_DEVICE(0x0411, 0x005e) },
	{ USB_DEVICE(0x0411, 0x0066) },
	{ USB_DEVICE(0x0411, 0x0067) },
	{ USB_DEVICE(0x0411, 0x008b) },
	{ USB_DEVICE(0x0411, 0x0097) },
1940
	/* MSI */
1941 1942 1943
	{ USB_DEVICE(0x0db0, 0x6861) },
	{ USB_DEVICE(0x0db0, 0x6865) },
	{ USB_DEVICE(0x0db0, 0x6869) },
1944
	/* Ralink */
1945 1946 1947
	{ USB_DEVICE(0x148f, 0x1706) },
	{ USB_DEVICE(0x148f, 0x2570) },
	{ USB_DEVICE(0x148f, 0x9020) },
1948
	/* Sagem */
1949
	{ USB_DEVICE(0x079b, 0x004b) },
1950
	/* Siemens */
1951
	{ USB_DEVICE(0x0681, 0x3c06) },
1952
	/* SMC */
1953
	{ USB_DEVICE(0x0707, 0xee13) },
1954
	/* Spairon */
1955
	{ USB_DEVICE(0x114b, 0x0110) },
1956
	/* SURECOM */
1957
	{ USB_DEVICE(0x0769, 0x11f3) },
1958
	/* Trust */
1959
	{ USB_DEVICE(0x0eb0, 0x9020) },
1960
	/* VTech */
1961
	{ USB_DEVICE(0x0f88, 0x3012) },
1962
	/* Zinwell */
1963
	{ USB_DEVICE(0x5a57, 0x0260) },
1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
	{ 0, }
};

MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
MODULE_LICENSE("GPL");

1974 1975 1976 1977 1978 1979
static int rt2500usb_probe(struct usb_interface *usb_intf,
			   const struct usb_device_id *id)
{
	return rt2x00usb_probe(usb_intf, &rt2500usb_ops);
}

1980
static struct usb_driver rt2500usb_driver = {
1981
	.name		= KBUILD_MODNAME,
1982
	.id_table	= rt2500usb_device_table,
1983
	.probe		= rt2500usb_probe,
1984 1985 1986
	.disconnect	= rt2x00usb_disconnect,
	.suspend	= rt2x00usb_suspend,
	.resume		= rt2x00usb_resume,
S
Stanislaw Gruszka 已提交
1987
	.reset_resume	= rt2x00usb_resume,
1988
	.disable_hub_initiated_lpm = 1,
1989 1990
};

1991
module_usb_driver(rt2500usb_driver);