i915_guc_submission.c 36.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */
#include <linux/circ_buf.h>
#include "i915_drv.h"
26
#include "intel_uc.h"
27

28 29
#include <trace/events/dma_fence.h>

30
/**
A
Alex Dai 已提交
31
 * DOC: GuC-based command submission
32
 *
33 34 35 36 37 38
 * GuC client:
 * A i915_guc_client refers to a submission path through GuC. Currently, there
 * is only one of these (the execbuf_client) and this one is charged with all
 * submissions to the GuC. This struct is the owner of a doorbell, a process
 * descriptor and a workqueue (all of them inside a single gem object that
 * contains all required pages for these elements).
39
 *
40
 * GuC stage descriptor:
41 42 43
 * During initialization, the driver allocates a static pool of 1024 such
 * descriptors, and shares them with the GuC.
 * Currently, there exists a 1:1 mapping between a i915_guc_client and a
44 45 46 47
 * guc_stage_desc (via the client's stage_id), so effectively only one
 * gets used. This stage descriptor lets the GuC know about the doorbell,
 * workqueue and process descriptor. Theoretically, it also lets the GuC
 * know about our HW contexts (context ID, etc...), but we actually
48
 * employ a kind of submission where the GuC uses the LRCA sent via the work
49
 * item instead (the single guc_stage_desc associated to execbuf client
50 51
 * contains information about the default kernel context only, but this is
 * essentially unused). This is called a "proxy" submission.
52 53 54 55 56 57 58 59
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
60
 * See intel_guc_send()
61 62 63 64 65 66 67 68 69 70 71
 *
 * Doorbells:
 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
 * mapped into process space.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
72
 * See guc_wq_item_append()
73
 *
74 75 76 77 78 79 80
 * ADS:
 * The Additional Data Struct (ADS) has pointers for different buffers used by
 * the GuC. One single gem object contains the ADS struct itself (guc_ads), the
 * scheduling policies (guc_policies), a structure describing a collection of
 * register sets (guc_mmio_reg_state) and some extra pages for the GuC to save
 * its internal state for sleep.
 *
81 82
 */

83 84
static inline bool is_high_priority(struct i915_guc_client* client)
{
85
	return client->priority <= GUC_CLIENT_PRIORITY_HIGH;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
}

static int __reserve_doorbell(struct i915_guc_client *client)
{
	unsigned long offset;
	unsigned long end;
	u16 id;

	GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);

	/*
	 * The bitmap tracks which doorbell registers are currently in use.
	 * It is split into two halves; the first half is used for normal
	 * priority contexts, the second half for high-priority ones.
	 */
	offset = 0;
	end = GUC_NUM_DOORBELLS/2;
	if (is_high_priority(client)) {
		offset = end;
		end += offset;
	}

108
	id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
109 110 111 112 113 114
	if (id == end)
		return -ENOSPC;

	__set_bit(id, client->guc->doorbell_bitmap);
	client->doorbell_id = id;
	DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
115
			 client->stage_id, yesno(is_high_priority(client)),
116 117 118 119 120 121 122 123 124 125 126 127
			 id);
	return 0;
}

static void __unreserve_doorbell(struct i915_guc_client *client)
{
	GEM_BUG_ON(client->doorbell_id == GUC_DOORBELL_INVALID);

	__clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
	client->doorbell_id = GUC_DOORBELL_INVALID;
}

128 129 130 131
/*
 * Tell the GuC to allocate or deallocate a specific doorbell
 */

132
static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
133
{
134 135
	u32 action[] = {
		INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
136
		stage_id
137
	};
138

139
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
140 141
}

142
static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
143
{
144 145
	u32 action[] = {
		INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
146
		stage_id
147
	};
148

149
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
150 151
}

152
static struct guc_stage_desc *__get_stage_desc(struct i915_guc_client *client)
153
{
154
	struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
155

156
	return &base[client->stage_id];
157 158
}

159 160 161 162 163 164 165
/*
 * Initialise, update, or clear doorbell data shared with the GuC
 *
 * These functions modify shared data and so need access to the mapped
 * client object which contains the page being used for the doorbell
 */

166
static void __update_doorbell_desc(struct i915_guc_client *client, u16 new_id)
167
{
168
	struct guc_stage_desc *desc;
169

170
	/* Update the GuC's idea of the doorbell ID */
171
	desc = __get_stage_desc(client);
172
	desc->db_id = new_id;
173
}
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static struct guc_doorbell_info *__get_doorbell(struct i915_guc_client *client)
{
	return client->vaddr + client->doorbell_offset;
}

static bool has_doorbell(struct i915_guc_client *client)
{
	if (client->doorbell_id == GUC_DOORBELL_INVALID)
		return false;

	return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
}

static int __create_doorbell(struct i915_guc_client *client)
{
	struct guc_doorbell_info *doorbell;
	int err;

	doorbell = __get_doorbell(client);
194
	doorbell->db_status = GUC_DOORBELL_ENABLED;
195
	doorbell->cookie = 0;
196

197
	err = __guc_allocate_doorbell(client->guc, client->stage_id);
198
	if (err)
199
		doorbell->db_status = GUC_DOORBELL_DISABLED;
200

201
	return err;
202 203
}

204
static int __destroy_doorbell(struct i915_guc_client *client)
205
{
206
	struct drm_i915_private *dev_priv = guc_to_i915(client->guc);
207
	struct guc_doorbell_info *doorbell;
208 209 210
	u16 db_id = client->doorbell_id;

	GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
211

212 213 214 215
	doorbell = __get_doorbell(client);
	doorbell->db_status = GUC_DOORBELL_DISABLED;
	doorbell->cookie = 0;

216 217 218 219 220 221
	/* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
	 * to go to zero after updating db_status before we call the GuC to
	 * release the doorbell */
	if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10))
		WARN_ONCE(true, "Doorbell never became invalid after disable\n");

222
	return __guc_deallocate_doorbell(client->guc, client->stage_id);
223 224
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
static int create_doorbell(struct i915_guc_client *client)
{
	int ret;

	ret = __reserve_doorbell(client);
	if (ret)
		return ret;

	__update_doorbell_desc(client, client->doorbell_id);

	ret = __create_doorbell(client);
	if (ret)
		goto err;

	return 0;

err:
	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
	__unreserve_doorbell(client);
	return ret;
}

247
static int destroy_doorbell(struct i915_guc_client *client)
248
{
249
	int err;
250

251 252 253 254
	GEM_BUG_ON(!has_doorbell(client));

	/* XXX: wait for any interrupts */
	/* XXX: wait for workqueue to drain */
255

256 257 258
	err = __destroy_doorbell(client);
	if (err)
		return err;
259

260
	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
261

262 263 264 265
	__unreserve_doorbell(client);

	return 0;
}
266

267
static unsigned long __select_cacheline(struct intel_guc* guc)
268
{
269
	unsigned long offset;
270 271 272 273 274

	/* Doorbell uses a single cache line within a page */
	offset = offset_in_page(guc->db_cacheline);

	/* Moving to next cache line to reduce contention */
275
	guc->db_cacheline += cache_line_size();
276

277 278
	DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
			offset, guc->db_cacheline, cache_line_size());
279 280 281
	return offset;
}

282 283 284 285 286 287
static inline struct guc_process_desc *
__get_process_desc(struct i915_guc_client *client)
{
	return client->vaddr + client->proc_desc_offset;
}

288 289 290
/*
 * Initialise the process descriptor shared with the GuC firmware.
 */
291
static void guc_proc_desc_init(struct intel_guc *guc,
292 293 294 295
			       struct i915_guc_client *client)
{
	struct guc_process_desc *desc;

296
	desc = memset(__get_process_desc(client), 0, sizeof(*desc));
297 298 299 300 301 302 303 304 305 306

	/*
	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
	 * space for kernel clients (map on demand instead? May make debug
	 * easier to have it mapped).
	 */
	desc->wq_base_addr = 0;
	desc->db_base_addr = 0;

307
	desc->stage_id = client->stage_id;
308 309 310 311 312 313
	desc->wq_size_bytes = client->wq_size;
	desc->wq_status = WQ_STATUS_ACTIVE;
	desc->priority = client->priority;
}

/*
314
 * Initialise/clear the stage descriptor shared with the GuC firmware.
315 316 317 318 319
 *
 * This descriptor tells the GuC where (in GGTT space) to find the important
 * data structures relating to this client (doorbell, process descriptor,
 * write queue, etc).
 */
320 321
static void guc_stage_desc_init(struct intel_guc *guc,
				struct i915_guc_client *client)
322
{
323
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
324
	struct intel_engine_cs *engine;
325
	struct i915_gem_context *ctx = client->owner;
326
	struct guc_stage_desc *desc;
327
	unsigned int tmp;
328
	u32 gfx_addr;
329

330
	desc = __get_stage_desc(client);
331
	memset(desc, 0, sizeof(*desc));
332

333 334
	desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE | GUC_STAGE_DESC_ATTR_KERNEL;
	desc->stage_id = client->stage_id;
335 336
	desc->priority = client->priority;
	desc->db_id = client->doorbell_id;
337

338
	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
339
		struct intel_context *ce = &ctx->engine[engine->id];
340
		uint32_t guc_engine_id = engine->guc_id;
341
		struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
342 343 344 345 346 347 348 349

		/* TODO: We have a design issue to be solved here. Only when we
		 * receive the first batch, we know which engine is used by the
		 * user. But here GuC expects the lrc and ring to be pinned. It
		 * is not an issue for default context, which is the only one
		 * for now who owns a GuC client. But for future owner of GuC
		 * client, need to make sure lrc is pinned prior to enter here.
		 */
350
		if (!ce->state)
351 352
			break;	/* XXX: continue? */

353
		/*
354
		 * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
355 356 357 358 359
		 * submission or, in other words, not using a direct submission
		 * model) the KMD's LRCA is not used for any work submission.
		 * Instead, the GuC uses the LRCA of the user mode context (see
		 * guc_wq_item_append below).
		 */
360
		lrc->context_desc = lower_32_bits(ce->lrc_desc);
361 362

		/* The state page is after PPHWSP */
363
		lrc->ring_lrca =
364
			guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
365 366 367 368

		/* XXX: In direct submission, the GuC wants the HW context id
		 * here. In proxy submission, it wants the stage id */
		lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
369
				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
370

371
		lrc->ring_begin = guc_ggtt_offset(ce->ring->vma);
372 373
		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
		lrc->ring_next_free_location = lrc->ring_begin;
374 375
		lrc->ring_current_tail_pointer_value = 0;

376
		desc->engines_used |= (1 << guc_engine_id);
377 378
	}

379
	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
380 381
			client->engines, desc->engines_used);
	WARN_ON(desc->engines_used == 0);
382

383
	/*
384 385
	 * The doorbell, process descriptor, and workqueue are all parts
	 * of the client object, which the GuC will reference via the GGTT
386
	 */
387
	gfx_addr = guc_ggtt_offset(client->vma);
388
	desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
389
				client->doorbell_offset;
390 391 392 393 394
	desc->db_trigger_cpu = (uintptr_t)__get_doorbell(client);
	desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
	desc->process_desc = gfx_addr + client->proc_desc_offset;
	desc->wq_addr = gfx_addr + client->wq_offset;
	desc->wq_size = client->wq_size;
395

396
	desc->desc_private = (uintptr_t)client;
397 398
}

399 400
static void guc_stage_desc_fini(struct intel_guc *guc,
				struct i915_guc_client *client)
401
{
402
	struct guc_stage_desc *desc;
403

404
	desc = __get_stage_desc(client);
405
	memset(desc, 0, sizeof(*desc));
406 407
}

408
/* Construct a Work Item and append it to the GuC's Work Queue */
409
static void guc_wq_item_append(struct i915_guc_client *client,
410
			       struct drm_i915_gem_request *rq)
411
{
412 413
	/* wqi_len is in DWords, and does not include the one-word header */
	const size_t wqi_size = sizeof(struct guc_wq_item);
414
	const u32 wqi_len = wqi_size / sizeof(u32) - 1;
415
	struct intel_engine_cs *engine = rq->engine;
416
	struct i915_gem_context *ctx = rq->ctx;
417
	struct guc_process_desc *desc = __get_process_desc(client);
418
	struct guc_wq_item *wqi;
419
	u32 freespace, tail, wq_off;
420

421
	/* Free space is guaranteed */
422
	freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
423 424
	GEM_BUG_ON(freespace < wqi_size);

425
	tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
426
	GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
427 428 429 430 431 432 433 434

	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
	 * should not have the case where structure wqi is across page, neither
	 * wrapped to the beginning. This simplifies the implementation below.
	 *
	 * XXX: if not the case, we need save data to a temp wqi and copy it to
	 * workqueue buffer dw by dw.
	 */
435
	BUILD_BUG_ON(wqi_size != 16);
436

437
	/* postincrement WQ tail for next time */
438
	wq_off = client->wq_tail;
439
	GEM_BUG_ON(wq_off & (wqi_size - 1));
440 441
	client->wq_tail += wqi_size;
	client->wq_tail &= client->wq_size - 1;
442 443

	/* WQ starts from the page after doorbell / process_desc */
444
	wqi = client->vaddr + wq_off + GUC_DB_SIZE;
445

446
	/* Now fill in the 4-word work queue item */
447
	wqi->header = WQ_TYPE_INORDER |
448 449 450
		      (wqi_len << WQ_LEN_SHIFT) |
		      (engine->guc_id << WQ_TARGET_SHIFT) |
		      WQ_NO_WCFLUSH_WAIT;
451

452
	wqi->context_desc = lower_32_bits(intel_lr_context_descriptor(ctx, engine));
453

454
	wqi->submit_element_info = tail << WQ_RING_TAIL_SHIFT;
455
	wqi->fence_id = rq->global_seqno;
456 457
}

458 459
static void guc_reset_wq(struct i915_guc_client *client)
{
460
	struct guc_process_desc *desc = __get_process_desc(client);
461 462 463 464 465 466 467

	desc->head = 0;
	desc->tail = 0;

	client->wq_tail = 0;
}

468
static void guc_ring_doorbell(struct i915_guc_client *client)
469
{
470
	struct guc_process_desc *desc = __get_process_desc(client);
471 472
	struct guc_doorbell_info *db;
	u32 cookie;
473 474

	/* Update the tail so it is visible to GuC */
475
	desc->tail = client->wq_tail;
476 477

	/* pointer of current doorbell cacheline */
478
	db = __get_doorbell(client);
479

480 481 482
	/* we're not expecting the doorbell cookie to change behind our back */
	cookie = READ_ONCE(db->cookie);
	WARN_ON_ONCE(xchg(&db->cookie, cookie + 1) != cookie);
483

484 485
	/* XXX: doorbell was lost and need to acquire it again */
	GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
486 487
}

488
/**
489 490
 * i915_guc_submit() - Submit commands through GuC
 * @engine: engine associated with the commands
491 492 493
 *
 * The only error here arises if the doorbell hardware isn't functioning
 * as expected, which really shouln't happen.
494
 */
495
static void i915_guc_submit(struct intel_engine_cs *engine)
496
{
497 498
	struct drm_i915_private *dev_priv = engine->i915;
	struct intel_guc *guc = &dev_priv->guc;
499
	struct i915_guc_client *client = guc->execbuf_client;
500 501 502
	struct execlist_port *port = engine->execlist_port;
	unsigned int engine_id = engine->id;
	unsigned int n;
503

504 505 506
	for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++) {
		struct drm_i915_gem_request *rq;
		unsigned int count;
507

508 509 510
		rq = port_unpack(&port[n], &count);
		if (rq && count == 0) {
			port_set(&port[n], port_pack(rq, ++count));
511

512 513
			if (i915_vma_is_map_and_fenceable(rq->ring->vma))
				POSTING_READ_FW(GUC_STATUS);
514

515
			spin_lock(&client->wq_lock);
516

517
			guc_wq_item_append(client, rq);
518
			guc_ring_doorbell(client);
519

520 521 522 523 524
			client->submissions[engine_id] += 1;

			spin_unlock(&client->wq_lock);
		}
	}
525 526
}

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
static void nested_enable_signaling(struct drm_i915_gem_request *rq)
{
	/* If we use dma_fence_enable_sw_signaling() directly, lockdep
	 * detects an ordering issue between the fence lockclass and the
	 * global_timeline. This circular dependency can only occur via 2
	 * different fences (but same fence lockclass), so we use the nesting
	 * annotation here to prevent the warn, equivalent to the nesting
	 * inside i915_gem_request_submit() for when we also enable the
	 * signaler.
	 */

	if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
			     &rq->fence.flags))
		return;

	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
	trace_dma_fence_enable_signal(&rq->fence);

	spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING);
546
	intel_engine_enable_signaling(rq, true);
547 548 549
	spin_unlock(&rq->lock);
}

550 551 552 553 554 555 556 557
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

558
	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
559 560 561
	nested_enable_signaling(rq);
}

562
static void i915_guc_dequeue(struct intel_engine_cs *engine)
563 564
{
	struct execlist_port *port = engine->execlist_port;
565
	struct drm_i915_gem_request *last = NULL;
566
	bool submit = false;
567 568 569 570
	struct rb_node *rb;

	if (port_isset(port))
		port++;
571

572
	spin_lock_irq(&engine->timeline->lock);
573
	rb = engine->execlist_first;
574
	GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
575
	while (rb) {
576 577 578 579 580 581 582 583 584 585 586
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			if (last && rq->ctx != last->ctx) {
				if (port != engine->execlist_port) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

587 588
				if (submit)
					port_assign(port, last);
589 590 591 592 593 594
				port++;
			}

			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;

595
			__i915_gem_request_submit(rq);
596 597 598
			trace_i915_gem_request_in(rq, port_index(port, engine));
			last = rq;
			submit = true;
599 600 601
		}

		rb = rb_next(rb);
602 603 604
		rb_erase(&p->node, &engine->execlist_queue);
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
605
			kmem_cache_free(engine->i915->priorities, p);
606
	}
607 608
done:
	engine->execlist_first = rb;
609
	if (submit) {
610
		port_assign(port, last);
611 612
		i915_guc_submit(engine);
	}
613
	spin_unlock_irq(&engine->timeline->lock);
614 615 616 617 618 619 620 621
}

static void i915_guc_irq_handler(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct execlist_port *port = engine->execlist_port;
	struct drm_i915_gem_request *rq;

622 623 624 625
	rq = port_request(&port[0]);
	while (rq && i915_gem_request_completed(rq)) {
		trace_i915_gem_request_out(rq);
		i915_gem_request_put(rq);
626

627 628
		port[0] = port[1];
		memset(&port[1], 0, sizeof(port[1]));
629

630 631
		rq = port_request(&port[0]);
	}
632

633 634
	if (!port_isset(&port[1]))
		i915_guc_dequeue(engine);
635 636
}

637 638 639 640 641 642
/*
 * Everything below here is concerned with setup & teardown, and is
 * therefore not part of the somewhat time-critical batch-submission
 * path of i915_guc_submit() above.
 */

643
/**
644
 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
645 646
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
647
 *
648 649 650 651 652
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
 * range is reserved inside GuC.
653
 *
654
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
655
 */
656
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
657
{
658
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
659
	struct drm_i915_gem_object *obj;
660 661
	struct i915_vma *vma;
	int ret;
662

663
	obj = i915_gem_object_create(dev_priv, size);
664
	if (IS_ERR(obj))
665
		return ERR_CAST(obj);
666

667
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
668 669
	if (IS_ERR(vma))
		goto err;
670

671 672 673 674 675
	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
			   PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
676 677
	}

678 679 680 681 682
	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
683 684
}

685
/* Check that a doorbell register is in the expected state */
686
static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
687 688
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
689 690 691 692 693 694 695
	u32 drbregl;
	bool valid;

	GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);

	drbregl = I915_READ(GEN8_DRBREGL(db_id));
	valid = drbregl & GEN8_DRB_VALID;
696

697
	if (test_bit(db_id, guc->doorbell_bitmap) == valid)
698 699
		return true;

700 701
	DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n",
			 db_id, drbregl, yesno(valid));
702 703 704 705

	return false;
}

706 707 708 709 710 711 712 713 714
/*
 * If the GuC thinks that the doorbell is unassigned (e.g. because we reset and
 * reloaded the GuC FW) we can use this function to tell the GuC to reassign the
 * doorbell to the rightful owner.
 */
static int __reset_doorbell(struct i915_guc_client* client, u16 db_id)
{
	int err;

715 716
	__update_doorbell_desc(client, db_id);
	err = __create_doorbell(client);
717 718 719 720 721 722
	if (!err)
		err = __destroy_doorbell(client);

	return err;
}

723
/*
724 725 726 727 728
 * Set up & tear down each unused doorbell in turn, to ensure that all doorbell
 * HW is (re)initialised. For that end, we might have to borrow the first
 * client. Also, tell GuC about all the doorbells in use by all clients.
 * We do this because the KMD, the GuC and the doorbell HW can easily go out of
 * sync (e.g. we can reset the GuC, but not the doorbel HW).
729
 */
730
static int guc_init_doorbell_hw(struct intel_guc *guc)
731 732
{
	struct i915_guc_client *client = guc->execbuf_client;
733 734 735
	bool recreate_first_client = false;
	u16 db_id;
	int ret;
736

737 738 739
	/* For unused doorbells, make sure they are disabled */
	for_each_clear_bit(db_id, guc->doorbell_bitmap, GUC_NUM_DOORBELLS) {
		if (doorbell_ok(guc, db_id))
740 741
			continue;

742 743 744 745 746 747 748 749
		if (has_doorbell(client)) {
			/* Borrow execbuf_client (we will recreate it later) */
			destroy_doorbell(client);
			recreate_first_client = true;
		}

		ret = __reset_doorbell(client, db_id);
		WARN(ret, "Doorbell %u reset failed, err %d\n", db_id, ret);
750 751
	}

752 753 754 755 756 757
	if (recreate_first_client) {
		ret = __reserve_doorbell(client);
		if (unlikely(ret)) {
			DRM_ERROR("Couldn't re-reserve first client db: %d\n", ret);
			return ret;
		}
758

759 760
		__update_doorbell_desc(client, client->doorbell_id);
	}
761

762 763 764 765 766 767 768
	/* Now for every client (and not only execbuf_client) make sure their
	 * doorbells are known by the GuC */
	//for (client = client_list; client != NULL; client = client->next)
	{
		ret = __create_doorbell(client);
		if (ret) {
			DRM_ERROR("Couldn't recreate client %u doorbell: %d\n",
769
				client->stage_id, ret);
770 771 772
			return ret;
		}
	}
773

774 775 776
	/* Read back & verify all (used & unused) doorbell registers */
	for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
		WARN_ON(!doorbell_ok(guc, db_id));
777 778

	return 0;
779 780
}

781 782
/**
 * guc_client_alloc() - Allocate an i915_guc_client
783
 * @dev_priv:	driver private data structure
784
 * @engines:	The set of engines to enable for this client
785 786 787 788
 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
 * 		The kernel client to replace ExecList submission is created with
 * 		NORMAL priority. Priority of a client for scheduler can be HIGH,
 * 		while a preemption context can use CRITICAL.
A
Alex Dai 已提交
789 790
 * @ctx:	the context that owns the client (we use the default render
 * 		context)
791
 *
792
 * Return:	An i915_guc_client object if success, else NULL.
793
 */
794 795
static struct i915_guc_client *
guc_client_alloc(struct drm_i915_private *dev_priv,
796
		 uint32_t engines,
797 798
		 uint32_t priority,
		 struct i915_gem_context *ctx)
799 800 801
{
	struct i915_guc_client *client;
	struct intel_guc *guc = &dev_priv->guc;
802
	struct i915_vma *vma;
803
	void *vaddr;
804
	int ret;
805 806 807

	client = kzalloc(sizeof(*client), GFP_KERNEL);
	if (!client)
808
		return ERR_PTR(-ENOMEM);
809 810

	client->guc = guc;
811
	client->owner = ctx;
812 813
	client->engines = engines;
	client->priority = priority;
814 815 816 817
	client->doorbell_id = GUC_DOORBELL_INVALID;
	client->wq_offset = GUC_DB_SIZE;
	client->wq_size = GUC_WQ_SIZE;
	spin_lock_init(&client->wq_lock);
818

819
	ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
820 821 822 823
				GFP_KERNEL);
	if (ret < 0)
		goto err_client;

824
	client->stage_id = ret;
825 826

	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
827
	vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
828 829 830 831
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_id;
	}
832

833
	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
834
	client->vma = vma;
835 836

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
837 838 839 840
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_vma;
	}
841
	client->vaddr = vaddr;
842

843
	client->doorbell_offset = __select_cacheline(guc);
844 845 846 847 848 849 850 851 852 853 854

	/*
	 * Since the doorbell only requires a single cacheline, we can save
	 * space by putting the application process descriptor in the same
	 * page. Use the half of the page that doesn't include the doorbell.
	 */
	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
		client->proc_desc_offset = 0;
	else
		client->proc_desc_offset = (GUC_DB_SIZE / 2);

855
	guc_proc_desc_init(guc, client);
856
	guc_stage_desc_init(guc, client);
857

858 859 860
	ret = create_doorbell(client);
	if (ret)
		goto err_vaddr;
861

862 863
	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
			 priority, client, client->engines, client->stage_id);
864 865
	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
			 client->doorbell_id, client->doorbell_offset);
866 867

	return client;
868 869 870

err_vaddr:
	i915_gem_object_unpin_map(client->vma->obj);
871 872 873
err_vma:
	i915_vma_unpin_and_release(&client->vma);
err_id:
874
	ida_simple_remove(&guc->stage_ids, client->stage_id);
875 876 877
err_client:
	kfree(client);
	return ERR_PTR(ret);
878 879
}

880 881 882 883 884 885 886 887 888 889 890
static void guc_client_free(struct i915_guc_client *client)
{
	/*
	 * XXX: wait for any outstanding submissions before freeing memory.
	 * Be sure to drop any locks
	 */

	/* FIXME: in many cases, by the time we get here the GuC has been
	 * reset, so we cannot destroy the doorbell properly. Ignore the
	 * error message for now */
	destroy_doorbell(client);
891
	guc_stage_desc_fini(client->guc, client);
892 893
	i915_gem_object_unpin_map(client->vma->obj);
	i915_vma_unpin_and_release(&client->vma);
894
	ida_simple_remove(&client->guc->stage_ids, client->stage_id);
895 896 897
	kfree(client);
}

898 899 900 901 902 903 904 905
static void guc_policy_init(struct guc_policy *policy)
{
	policy->execution_quantum = POLICY_DEFAULT_EXECUTION_QUANTUM_US;
	policy->preemption_time = POLICY_DEFAULT_PREEMPTION_TIME_US;
	policy->fault_time = POLICY_DEFAULT_FAULT_TIME_US;
	policy->policy_flags = 0;
}

906
static void guc_policies_init(struct guc_policies *policies)
907 908 909 910
{
	struct guc_policy *policy;
	u32 p, i;

911
	policies->dpc_promote_time = POLICY_DEFAULT_DPC_PROMOTE_TIME_US;
912 913
	policies->max_num_work_items = POLICY_MAX_NUM_WI;

914
	for (p = 0; p < GUC_CLIENT_PRIORITY_NUM; p++) {
915
		for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
916 917
			policy = &policies->policy[p][i];

918
			guc_policy_init(policy);
919 920 921 922 923 924
		}
	}

	policies->is_valid = 1;
}

925 926 927 928 929 930
/*
 * The first 80 dwords of the register state context, containing the
 * execlists and ppgtt registers.
 */
#define LR_HW_CONTEXT_SIZE	(80 * sizeof(u32))

931
static int guc_ads_create(struct intel_guc *guc)
932 933
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
934
	struct i915_vma *vma;
935 936
	struct page *page;
	/* The ads obj includes the struct itself and buffers passed to GuC */
937 938 939 940 941 942 943 944
	struct {
		struct guc_ads ads;
		struct guc_policies policies;
		struct guc_mmio_reg_state reg_state;
		u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE];
	} __packed *blob;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
945 946
	const u32 skipped_offset = LRC_HEADER_PAGES * PAGE_SIZE;
	const u32 skipped_size = LRC_PPHWSP_SZ * PAGE_SIZE + LR_HW_CONTEXT_SIZE;
947
	u32 base;
948

949
	GEM_BUG_ON(guc->ads_vma);
950

951 952 953 954 955
	vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob)));
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	guc->ads_vma = vma;
956

957
	page = i915_vma_first_page(vma);
958
	blob = kmap(page);
959

960
	/* GuC scheduling policies */
961
	guc_policies_init(&blob->policies);
962

963
	/* MMIO reg state */
964
	for_each_engine(engine, dev_priv, id) {
965
		blob->reg_state.white_list[engine->guc_id].mmio_start =
966
			engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
967 968

		/* Nothing to be saved or restored for now. */
969
		blob->reg_state.white_list[engine->guc_id].count = 0;
970 971
	}

972 973 974 975 976
	/*
	 * The GuC requires a "Golden Context" when it reinitialises
	 * engines after a reset. Here we use the Render ring default
	 * context, which must already exist and be pinned in the GGTT,
	 * so its address won't change after we've told the GuC where
977 978
	 * to find it. Note that we have to skip our header (1 page),
	 * because our GuC shared data is there.
979 980
	 */
	blob->ads.golden_context_lrca =
981
		guc_ggtt_offset(dev_priv->kernel_context->engine[RCS].state) + skipped_offset;
982

983 984 985 986 987 988
	/*
	 * The GuC expects us to exclude the portion of the context image that
	 * it skips from the size it is to read. It starts reading from after
	 * the execlist context (so skipping the first page [PPHWSP] and 80
	 * dwords). Weird guc is weird.
	 */
989
	for_each_engine(engine, dev_priv, id)
990
		blob->ads.eng_state_size[engine->guc_id] = engine->context_size - skipped_size;
991

992 993 994 995
	base = guc_ggtt_offset(vma);
	blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
	blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer);
	blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state);
996

997
	kunmap(page);
998 999 1000 1001

	return 0;
}

1002
static void guc_ads_destroy(struct intel_guc *guc)
1003 1004
{
	i915_vma_unpin_and_release(&guc->ads_vma);
1005 1006
}

1007
/*
1008 1009
 * Set up the memory resources to be shared with the GuC (via the GGTT)
 * at firmware loading time.
1010
 */
1011
int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1012 1013
{
	struct intel_guc *guc = &dev_priv->guc;
1014
	struct i915_vma *vma;
1015
	void *vaddr;
1016
	int ret;
1017

1018
	if (guc->stage_desc_pool)
1019
		return 0;
1020

1021 1022 1023
	vma = intel_guc_allocate_vma(guc,
				PAGE_ALIGN(sizeof(struct guc_stage_desc) *
					GUC_MAX_STAGE_DESCRIPTORS));
1024 1025
	if (IS_ERR(vma))
		return PTR_ERR(vma);
1026

1027
	guc->stage_desc_pool = vma;
1028

1029
	vaddr = i915_gem_object_pin_map(guc->stage_desc_pool->obj, I915_MAP_WB);
1030 1031 1032 1033
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_vma;
	}
1034

1035
	guc->stage_desc_pool_vaddr = vaddr;
1036

1037 1038 1039 1040
	ret = intel_guc_log_create(guc);
	if (ret < 0)
		goto err_vaddr;

1041
	ret = guc_ads_create(guc);
1042 1043 1044
	if (ret < 0)
		goto err_log;

1045
	ida_init(&guc->stage_ids);
1046

1047
	return 0;
1048

1049 1050 1051
err_log:
	intel_guc_log_destroy(guc);
err_vaddr:
1052
	i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
1053
err_vma:
1054
	i915_vma_unpin_and_release(&guc->stage_desc_pool);
1055 1056 1057 1058 1059 1060 1061
	return ret;
}

void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
{
	struct intel_guc *guc = &dev_priv->guc;

1062
	ida_destroy(&guc->stage_ids);
1063
	guc_ads_destroy(guc);
1064
	intel_guc_log_destroy(guc);
1065 1066
	i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
	i915_vma_unpin_and_release(&guc->stage_desc_pool);
1067 1068
}

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/* tell all command streamers to forward interrupts (but not vblank) to GuC */
	irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MODE_GEN7(engine), irqs);

	/* route USER_INTERRUPT to Host, all others are sent to GuC. */
	irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
	       GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
	/* These three registers have the same bit definitions */
	I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
	I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
	I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	/*
	 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
	 * (unmasked) PM interrupts to the GuC. All other bits of this
	 * register *disable* generation of a specific interrupt.
	 *
	 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
	 * writing to the PM interrupt mask register, i.e. interrupts
	 * that must not be disabled.
	 *
	 * If the GuC is handling these interrupts, then we must not let
	 * the PM code disable ANY interrupt that the GuC is expecting.
	 * So for each ENABLED (0) bit in this register, we must SET the
	 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
	 * GuC needs ARAT expired interrupt unmasked hence it is set in
	 * pm_intrmsk_mbz.
	 *
	 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
	 * result in the register bit being left SET!
	 */
	dev_priv->rps.pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1108
	dev_priv->rps.pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1109 1110
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
static void guc_interrupts_release(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/*
	 * tell all command streamers NOT to forward interrupts or vblank
	 * to GuC.
	 */
	irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
	irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MODE_GEN7(engine), irqs);

	/* route all GT interrupts to the host */
	I915_WRITE(GUC_BCS_RCS_IER, 0);
	I915_WRITE(GUC_VCS2_VCS1_IER, 0);
	I915_WRITE(GUC_WD_VECS_IER, 0);

	dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
	dev_priv->rps.pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
}

1135
int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1136 1137
{
	struct intel_guc *guc = &dev_priv->guc;
1138
	struct i915_guc_client *client = guc->execbuf_client;
1139
	struct intel_engine_cs *engine;
1140
	enum intel_engine_id id;
1141
	int err;
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
	/*
	 * We're using GuC work items for submitting work through GuC. Since
	 * we're coalescing multiple requests from a single context into a
	 * single work item prior to assigning it to execlist_port, we can
	 * never have more work items than the total number of ports (for all
	 * engines). The GuC firmware is controlling the HEAD of work queue,
	 * and it is guaranteed that it will remove the work item from the
	 * queue before our request is completed.
	 */
	BUILD_BUG_ON(ARRAY_SIZE(engine->execlist_port) *
		     sizeof(struct guc_wq_item) *
		     I915_NUM_ENGINES > GUC_WQ_SIZE);

1156 1157 1158
	if (!client) {
		client = guc_client_alloc(dev_priv,
					  INTEL_INFO(dev_priv)->ring_mask,
1159
					  GUC_CLIENT_PRIORITY_KMD_NORMAL,
1160 1161 1162 1163 1164 1165 1166 1167
					  dev_priv->kernel_context);
		if (IS_ERR(client)) {
			DRM_ERROR("Failed to create GuC client for execbuf!\n");
			return PTR_ERR(client);
		}

		guc->execbuf_client = client;
	}
1168

1169 1170
	err = intel_guc_sample_forcewake(guc);
	if (err)
1171
		goto err_execbuf_client;
1172 1173

	guc_reset_wq(client);
1174

1175 1176
	err = guc_init_doorbell_hw(guc);
	if (err)
1177
		goto err_execbuf_client;
A
Alex Dai 已提交
1178

1179
	/* Take over from manual control of ELSP (execlists) */
1180 1181 1182
	guc_interrupts_capture(dev_priv);

	for_each_engine(engine, dev_priv, id) {
1183 1184 1185 1186 1187 1188 1189
		/* The tasklet was initialised by execlists, and may be in
		 * a state of flux (across a reset) and so we just want to
		 * take over the callback without changing any other state
		 * in the tasklet.
		 */
		engine->irq_tasklet.func = i915_guc_irq_handler;
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1190
		tasklet_schedule(&engine->irq_tasklet);
1191 1192
	}

1193
	return 0;
1194 1195 1196 1197 1198

err_execbuf_client:
	guc_client_free(guc->execbuf_client);
	guc->execbuf_client = NULL;
	return err;
1199 1200
}

1201
void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1202 1203 1204
{
	struct intel_guc *guc = &dev_priv->guc;

1205 1206
	guc_interrupts_release(dev_priv);

1207
	/* Revert back to manual ELSP submission */
1208
	intel_engines_reset_default_submission(dev_priv);
1209 1210 1211

	guc_client_free(guc->execbuf_client);
	guc->execbuf_client = NULL;
1212 1213
}

1214 1215
/**
 * intel_guc_suspend() - notify GuC entering suspend state
1216
 * @dev_priv:	i915 device private
1217
 */
1218
int intel_guc_suspend(struct drm_i915_private *dev_priv)
1219 1220
{
	struct intel_guc *guc = &dev_priv->guc;
1221
	struct i915_gem_context *ctx;
1222 1223
	u32 data[3];

1224
	if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1225 1226
		return 0;

1227 1228
	gen9_disable_guc_interrupts(dev_priv);

1229
	ctx = dev_priv->kernel_context;
1230

1231
	data[0] = INTEL_GUC_ACTION_ENTER_S_STATE;
1232 1233 1234
	/* any value greater than GUC_POWER_D0 */
	data[1] = GUC_POWER_D1;
	/* first page is shared data with GuC */
1235
	data[2] = guc_ggtt_offset(ctx->engine[RCS].state) + LRC_GUCSHR_PN * PAGE_SIZE;
1236

1237
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1238 1239 1240 1241
}

/**
 * intel_guc_resume() - notify GuC resuming from suspend state
1242
 * @dev_priv:	i915 device private
1243
 */
1244
int intel_guc_resume(struct drm_i915_private *dev_priv)
1245 1246
{
	struct intel_guc *guc = &dev_priv->guc;
1247
	struct i915_gem_context *ctx;
1248 1249
	u32 data[3];

1250
	if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1251 1252
		return 0;

1253 1254 1255
	if (i915.guc_log_level >= 0)
		gen9_enable_guc_interrupts(dev_priv);

1256
	ctx = dev_priv->kernel_context;
1257

1258
	data[0] = INTEL_GUC_ACTION_EXIT_S_STATE;
1259 1260
	data[1] = GUC_POWER_D0;
	/* first page is shared data with GuC */
1261
	data[2] = guc_ggtt_offset(ctx->engine[RCS].state) + LRC_GUCSHR_PN * PAGE_SIZE;
1262

1263
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1264
}