i915_guc_submission.c 38.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */
#include <linux/circ_buf.h>
#include "i915_drv.h"
26
#include "intel_uc.h"
27

28 29
#include <trace/events/dma_fence.h>

30
/**
A
Alex Dai 已提交
31
 * DOC: GuC-based command submission
32
 *
33 34 35 36 37 38
 * GuC client:
 * A i915_guc_client refers to a submission path through GuC. Currently, there
 * is only one of these (the execbuf_client) and this one is charged with all
 * submissions to the GuC. This struct is the owner of a doorbell, a process
 * descriptor and a workqueue (all of them inside a single gem object that
 * contains all required pages for these elements).
39
 *
40
 * GuC stage descriptor:
41 42 43
 * During initialization, the driver allocates a static pool of 1024 such
 * descriptors, and shares them with the GuC.
 * Currently, there exists a 1:1 mapping between a i915_guc_client and a
44 45 46 47
 * guc_stage_desc (via the client's stage_id), so effectively only one
 * gets used. This stage descriptor lets the GuC know about the doorbell,
 * workqueue and process descriptor. Theoretically, it also lets the GuC
 * know about our HW contexts (context ID, etc...), but we actually
48
 * employ a kind of submission where the GuC uses the LRCA sent via the work
49
 * item instead (the single guc_stage_desc associated to execbuf client
50 51
 * contains information about the default kernel context only, but this is
 * essentially unused). This is called a "proxy" submission.
52 53 54 55 56 57 58 59
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
60
 * See intel_guc_send()
61 62 63 64 65 66 67 68 69 70 71
 *
 * Doorbells:
 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
 * mapped into process space.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
72
 * See guc_wq_item_append()
73
 *
74 75 76 77 78 79 80
 * ADS:
 * The Additional Data Struct (ADS) has pointers for different buffers used by
 * the GuC. One single gem object contains the ADS struct itself (guc_ads), the
 * scheduling policies (guc_policies), a structure describing a collection of
 * register sets (guc_mmio_reg_state) and some extra pages for the GuC to save
 * its internal state for sleep.
 *
81 82
 */

83 84
static inline bool is_high_priority(struct i915_guc_client* client)
{
85
	return client->priority <= GUC_CLIENT_PRIORITY_HIGH;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
}

static int __reserve_doorbell(struct i915_guc_client *client)
{
	unsigned long offset;
	unsigned long end;
	u16 id;

	GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);

	/*
	 * The bitmap tracks which doorbell registers are currently in use.
	 * It is split into two halves; the first half is used for normal
	 * priority contexts, the second half for high-priority ones.
	 */
	offset = 0;
	end = GUC_NUM_DOORBELLS/2;
	if (is_high_priority(client)) {
		offset = end;
		end += offset;
	}

	id = find_next_zero_bit(client->guc->doorbell_bitmap, offset, end);
	if (id == end)
		return -ENOSPC;

	__set_bit(id, client->guc->doorbell_bitmap);
	client->doorbell_id = id;
	DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
115
			 client->stage_id, yesno(is_high_priority(client)),
116 117 118 119 120 121 122 123 124 125 126 127
			 id);
	return 0;
}

static void __unreserve_doorbell(struct i915_guc_client *client)
{
	GEM_BUG_ON(client->doorbell_id == GUC_DOORBELL_INVALID);

	__clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
	client->doorbell_id = GUC_DOORBELL_INVALID;
}

128 129 130 131
/*
 * Tell the GuC to allocate or deallocate a specific doorbell
 */

132
static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
133
{
134 135
	u32 action[] = {
		INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
136
		stage_id
137
	};
138

139
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
140 141
}

142
static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
143
{
144 145
	u32 action[] = {
		INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
146
		stage_id
147
	};
148

149
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
150 151
}

152
static struct guc_stage_desc *__get_stage_desc(struct i915_guc_client *client)
153
{
154
	struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
155

156
	return &base[client->stage_id];
157 158
}

159 160 161 162 163 164 165
/*
 * Initialise, update, or clear doorbell data shared with the GuC
 *
 * These functions modify shared data and so need access to the mapped
 * client object which contains the page being used for the doorbell
 */

166
static void __update_doorbell_desc(struct i915_guc_client *client, u16 new_id)
167
{
168
	struct guc_stage_desc *desc;
169

170
	/* Update the GuC's idea of the doorbell ID */
171
	desc = __get_stage_desc(client);
172
	desc->db_id = new_id;
173
}
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static struct guc_doorbell_info *__get_doorbell(struct i915_guc_client *client)
{
	return client->vaddr + client->doorbell_offset;
}

static bool has_doorbell(struct i915_guc_client *client)
{
	if (client->doorbell_id == GUC_DOORBELL_INVALID)
		return false;

	return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
}

static int __create_doorbell(struct i915_guc_client *client)
{
	struct guc_doorbell_info *doorbell;
	int err;

	doorbell = __get_doorbell(client);
194
	doorbell->db_status = GUC_DOORBELL_ENABLED;
195
	doorbell->cookie = client->doorbell_cookie;
196

197
	err = __guc_allocate_doorbell(client->guc, client->stage_id);
198 199 200 201 202
	if (err) {
		doorbell->db_status = GUC_DOORBELL_DISABLED;
		doorbell->cookie = 0;
	}
	return err;
203 204
}

205
static int __destroy_doorbell(struct i915_guc_client *client)
206
{
207
	struct drm_i915_private *dev_priv = guc_to_i915(client->guc);
208
	struct guc_doorbell_info *doorbell;
209 210 211
	u16 db_id = client->doorbell_id;

	GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
212

213 214 215 216
	doorbell = __get_doorbell(client);
	doorbell->db_status = GUC_DOORBELL_DISABLED;
	doorbell->cookie = 0;

217 218 219 220 221 222
	/* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
	 * to go to zero after updating db_status before we call the GuC to
	 * release the doorbell */
	if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10))
		WARN_ONCE(true, "Doorbell never became invalid after disable\n");

223
	return __guc_deallocate_doorbell(client->guc, client->stage_id);
224 225
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
static int create_doorbell(struct i915_guc_client *client)
{
	int ret;

	ret = __reserve_doorbell(client);
	if (ret)
		return ret;

	__update_doorbell_desc(client, client->doorbell_id);

	ret = __create_doorbell(client);
	if (ret)
		goto err;

	return 0;

err:
	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
	__unreserve_doorbell(client);
	return ret;
}

248
static int destroy_doorbell(struct i915_guc_client *client)
249
{
250
	int err;
251

252 253 254 255
	GEM_BUG_ON(!has_doorbell(client));

	/* XXX: wait for any interrupts */
	/* XXX: wait for workqueue to drain */
256

257 258 259
	err = __destroy_doorbell(client);
	if (err)
		return err;
260

261
	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
262

263 264 265 266
	__unreserve_doorbell(client);

	return 0;
}
267

268
static unsigned long __select_cacheline(struct intel_guc* guc)
269
{
270
	unsigned long offset;
271 272 273 274 275

	/* Doorbell uses a single cache line within a page */
	offset = offset_in_page(guc->db_cacheline);

	/* Moving to next cache line to reduce contention */
276
	guc->db_cacheline += cache_line_size();
277

278 279
	DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
			offset, guc->db_cacheline, cache_line_size());
280 281 282
	return offset;
}

283 284 285 286 287 288
static inline struct guc_process_desc *
__get_process_desc(struct i915_guc_client *client)
{
	return client->vaddr + client->proc_desc_offset;
}

289 290 291
/*
 * Initialise the process descriptor shared with the GuC firmware.
 */
292
static void guc_proc_desc_init(struct intel_guc *guc,
293 294 295 296
			       struct i915_guc_client *client)
{
	struct guc_process_desc *desc;

297
	desc = memset(__get_process_desc(client), 0, sizeof(*desc));
298 299 300 301 302 303 304 305 306 307

	/*
	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
	 * space for kernel clients (map on demand instead? May make debug
	 * easier to have it mapped).
	 */
	desc->wq_base_addr = 0;
	desc->db_base_addr = 0;

308
	desc->stage_id = client->stage_id;
309 310 311 312 313 314
	desc->wq_size_bytes = client->wq_size;
	desc->wq_status = WQ_STATUS_ACTIVE;
	desc->priority = client->priority;
}

/*
315
 * Initialise/clear the stage descriptor shared with the GuC firmware.
316 317 318 319 320
 *
 * This descriptor tells the GuC where (in GGTT space) to find the important
 * data structures relating to this client (doorbell, process descriptor,
 * write queue, etc).
 */
321 322
static void guc_stage_desc_init(struct intel_guc *guc,
				struct i915_guc_client *client)
323
{
324
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
325
	struct intel_engine_cs *engine;
326
	struct i915_gem_context *ctx = client->owner;
327
	struct guc_stage_desc *desc;
328
	unsigned int tmp;
329
	u32 gfx_addr;
330

331
	desc = __get_stage_desc(client);
332
	memset(desc, 0, sizeof(*desc));
333

334 335
	desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE | GUC_STAGE_DESC_ATTR_KERNEL;
	desc->stage_id = client->stage_id;
336 337
	desc->priority = client->priority;
	desc->db_id = client->doorbell_id;
338

339
	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
340
		struct intel_context *ce = &ctx->engine[engine->id];
341
		uint32_t guc_engine_id = engine->guc_id;
342
		struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
343 344 345 346 347 348 349 350

		/* TODO: We have a design issue to be solved here. Only when we
		 * receive the first batch, we know which engine is used by the
		 * user. But here GuC expects the lrc and ring to be pinned. It
		 * is not an issue for default context, which is the only one
		 * for now who owns a GuC client. But for future owner of GuC
		 * client, need to make sure lrc is pinned prior to enter here.
		 */
351
		if (!ce->state)
352 353
			break;	/* XXX: continue? */

354
		/*
355
		 * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
356 357 358 359 360
		 * submission or, in other words, not using a direct submission
		 * model) the KMD's LRCA is not used for any work submission.
		 * Instead, the GuC uses the LRCA of the user mode context (see
		 * guc_wq_item_append below).
		 */
361
		lrc->context_desc = lower_32_bits(ce->lrc_desc);
362 363

		/* The state page is after PPHWSP */
364
		lrc->ring_lrca =
365
			guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
366 367 368 369

		/* XXX: In direct submission, the GuC wants the HW context id
		 * here. In proxy submission, it wants the stage id */
		lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
370
				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
371

372
		lrc->ring_begin = guc_ggtt_offset(ce->ring->vma);
373 374
		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
		lrc->ring_next_free_location = lrc->ring_begin;
375 376
		lrc->ring_current_tail_pointer_value = 0;

377
		desc->engines_used |= (1 << guc_engine_id);
378 379
	}

380
	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
381 382
			client->engines, desc->engines_used);
	WARN_ON(desc->engines_used == 0);
383

384
	/*
385 386
	 * The doorbell, process descriptor, and workqueue are all parts
	 * of the client object, which the GuC will reference via the GGTT
387
	 */
388
	gfx_addr = guc_ggtt_offset(client->vma);
389
	desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
390
				client->doorbell_offset;
391 392 393 394 395
	desc->db_trigger_cpu = (uintptr_t)__get_doorbell(client);
	desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
	desc->process_desc = gfx_addr + client->proc_desc_offset;
	desc->wq_addr = gfx_addr + client->wq_offset;
	desc->wq_size = client->wq_size;
396

397
	desc->desc_private = (uintptr_t)client;
398 399
}

400 401
static void guc_stage_desc_fini(struct intel_guc *guc,
				struct i915_guc_client *client)
402
{
403
	struct guc_stage_desc *desc;
404

405
	desc = __get_stage_desc(client);
406
	memset(desc, 0, sizeof(*desc));
407 408
}

409
/**
410
 * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
411 412 413 414 415 416 417
 * @request:	request associated with the commands
 *
 * Return:	0 if space is available
 *		-EAGAIN if space is not currently available
 *
 * This function must be called (and must return 0) before a request
 * is submitted to the GuC via i915_guc_submit() below. Once a result
418 419
 * of 0 has been returned, it must be balanced by a corresponding
 * call to submit().
420
 *
421
 * Reservation allows the caller to determine in advance that space
422 423 424
 * will be available for the next submission before committing resources
 * to it, and helps avoid late failures with complicated recovery paths.
 */
425
int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
426
{
427
	const size_t wqi_size = sizeof(struct guc_wq_item);
428
	struct i915_guc_client *client = request->i915->guc.execbuf_client;
429
	struct guc_process_desc *desc = __get_process_desc(client);
430
	u32 freespace;
431
	int ret;
432

433
	spin_lock_irq(&client->wq_lock);
434 435
	freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
	freespace -= client->wq_rsvd;
436
	if (likely(freespace >= wqi_size)) {
437
		client->wq_rsvd += wqi_size;
438 439
		ret = 0;
	} else {
440
		client->no_wq_space++;
441 442
		ret = -EAGAIN;
	}
443
	spin_unlock_irq(&client->wq_lock);
444

445
	return ret;
446 447
}

448 449 450 451 452 453 454 455 456
static void guc_client_update_wq_rsvd(struct i915_guc_client *client, int size)
{
	unsigned long flags;

	spin_lock_irqsave(&client->wq_lock, flags);
	client->wq_rsvd += size;
	spin_unlock_irqrestore(&client->wq_lock, flags);
}

457 458
void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
{
459
	const int wqi_size = sizeof(struct guc_wq_item);
460
	struct i915_guc_client *client = request->i915->guc.execbuf_client;
461

462
	GEM_BUG_ON(READ_ONCE(client->wq_rsvd) < wqi_size);
463
	guc_client_update_wq_rsvd(client, -wqi_size);
464 465
}

466
/* Construct a Work Item and append it to the GuC's Work Queue */
467
static void guc_wq_item_append(struct i915_guc_client *client,
468
			       struct drm_i915_gem_request *rq)
469
{
470 471 472
	/* wqi_len is in DWords, and does not include the one-word header */
	const size_t wqi_size = sizeof(struct guc_wq_item);
	const u32 wqi_len = wqi_size/sizeof(u32) - 1;
473
	struct intel_engine_cs *engine = rq->engine;
474
	struct guc_process_desc *desc = __get_process_desc(client);
475
	struct guc_wq_item *wqi;
476
	u32 freespace, tail, wq_off;
477

478
	/* Free space is guaranteed, see i915_guc_wq_reserve() above */
479
	freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
480 481 482
	GEM_BUG_ON(freespace < wqi_size);

	/* The GuC firmware wants the tail index in QWords, not bytes */
483
	tail = intel_ring_set_tail(rq->ring, rq->tail) >> 3;
484
	GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
485 486 487 488 489 490 491 492

	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
	 * should not have the case where structure wqi is across page, neither
	 * wrapped to the beginning. This simplifies the implementation below.
	 *
	 * XXX: if not the case, we need save data to a temp wqi and copy it to
	 * workqueue buffer dw by dw.
	 */
493
	BUILD_BUG_ON(wqi_size != 16);
494
	GEM_BUG_ON(client->wq_rsvd < wqi_size);
495

496
	/* postincrement WQ tail for next time */
497
	wq_off = client->wq_tail;
498
	GEM_BUG_ON(wq_off & (wqi_size - 1));
499 500 501
	client->wq_tail += wqi_size;
	client->wq_tail &= client->wq_size - 1;
	client->wq_rsvd -= wqi_size;
502 503

	/* WQ starts from the page after doorbell / process_desc */
504
	wqi = client->vaddr + wq_off + GUC_DB_SIZE;
505

506
	/* Now fill in the 4-word work queue item */
507
	wqi->header = WQ_TYPE_INORDER |
508
			(wqi_len << WQ_LEN_SHIFT) |
509
			(engine->guc_id << WQ_TARGET_SHIFT) |
510 511 512
			WQ_NO_WCFLUSH_WAIT;

	/* The GuC wants only the low-order word of the context descriptor */
513
	wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
514

515
	wqi->submit_element_info = tail << WQ_RING_TAIL_SHIFT;
516
	wqi->fence_id = rq->global_seqno;
517 518
}

519 520
static void guc_reset_wq(struct i915_guc_client *client)
{
521
	struct guc_process_desc *desc = __get_process_desc(client);
522 523 524 525 526 527 528

	desc->head = 0;
	desc->tail = 0;

	client->wq_tail = 0;
}

529
static int guc_ring_doorbell(struct i915_guc_client *client)
530
{
531
	struct guc_process_desc *desc = __get_process_desc(client);
532 533 534 535 536
	union guc_doorbell_qw db_cmp, db_exc, db_ret;
	union guc_doorbell_qw *db;
	int attempt = 2, ret = -EAGAIN;

	/* Update the tail so it is visible to GuC */
537
	desc->tail = client->wq_tail;
538 539 540

	/* current cookie */
	db_cmp.db_status = GUC_DOORBELL_ENABLED;
541
	db_cmp.cookie = client->doorbell_cookie;
542 543 544

	/* cookie to be updated */
	db_exc.db_status = GUC_DOORBELL_ENABLED;
545
	db_exc.cookie = client->doorbell_cookie + 1;
546 547 548 549
	if (db_exc.cookie == 0)
		db_exc.cookie = 1;

	/* pointer of current doorbell cacheline */
550
	db = (union guc_doorbell_qw *)__get_doorbell(client);
551 552 553 554 555 556 557 558 559

	while (attempt--) {
		/* lets ring the doorbell */
		db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
			db_cmp.value_qw, db_exc.value_qw);

		/* if the exchange was successfully executed */
		if (db_ret.value_qw == db_cmp.value_qw) {
			/* db was successfully rung */
560
			client->doorbell_cookie = db_exc.cookie;
561 562 563 564 565 566 567 568
			ret = 0;
			break;
		}

		/* XXX: doorbell was lost and need to acquire it again */
		if (db_ret.db_status == GUC_DOORBELL_DISABLED)
			break;

569 570
		DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
			 db_cmp.cookie, db_ret.cookie);
571 572 573 574 575 576 577 578 579 580 581

		/* update the cookie to newly read cookie from GuC */
		db_cmp.cookie = db_ret.cookie;
		db_exc.cookie = db_ret.cookie + 1;
		if (db_exc.cookie == 0)
			db_exc.cookie = 1;
	}

	return ret;
}

582
/**
583
 * __i915_guc_submit() - Submit commands through GuC
A
Alex Dai 已提交
584
 * @rq:		request associated with the commands
585
 *
586 587 588
 * The caller must have already called i915_guc_wq_reserve() above with
 * a result of 0 (success), guaranteeing that there is space in the work
 * queue for the new request, so enqueuing the item cannot fail.
589 590
 *
 * Bad Things Will Happen if the caller violates this protocol e.g. calls
591 592
 * submit() when _reserve() says there's no space, or calls _submit()
 * a different number of times from (successful) calls to _reserve().
593 594 595
 *
 * The only error here arises if the doorbell hardware isn't functioning
 * as expected, which really shouln't happen.
596
 */
597
static void __i915_guc_submit(struct drm_i915_gem_request *rq)
598
{
599
	struct drm_i915_private *dev_priv = rq->i915;
600 601
	struct intel_engine_cs *engine = rq->engine;
	unsigned int engine_id = engine->id;
602 603
	struct intel_guc *guc = &rq->i915->guc;
	struct i915_guc_client *client = guc->execbuf_client;
604
	unsigned long flags;
605
	int b_ret;
606

607 608 609 610
	/* WA to flush out the pending GMADR writes to ring buffer. */
	if (i915_vma_is_map_and_fenceable(rq->ring->vma))
		POSTING_READ_FW(GUC_STATUS);

611
	spin_lock_irqsave(&client->wq_lock, flags);
612 613

	guc_wq_item_append(client, rq);
614
	b_ret = guc_ring_doorbell(client);
615

616
	client->submissions[engine_id] += 1;
617 618
	client->retcode = b_ret;
	if (b_ret)
619
		client->b_fail += 1;
620

621
	guc->submissions[engine_id] += 1;
622
	guc->last_seqno[engine_id] = rq->global_seqno;
623

624
	spin_unlock_irqrestore(&client->wq_lock, flags);
625 626
}

627 628
static void i915_guc_submit(struct drm_i915_gem_request *rq)
{
629
	__i915_gem_request_submit(rq);
630 631 632
	__i915_guc_submit(rq);
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
static void nested_enable_signaling(struct drm_i915_gem_request *rq)
{
	/* If we use dma_fence_enable_sw_signaling() directly, lockdep
	 * detects an ordering issue between the fence lockclass and the
	 * global_timeline. This circular dependency can only occur via 2
	 * different fences (but same fence lockclass), so we use the nesting
	 * annotation here to prevent the warn, equivalent to the nesting
	 * inside i915_gem_request_submit() for when we also enable the
	 * signaler.
	 */

	if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
			     &rq->fence.flags))
		return;

	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
	trace_dma_fence_enable_signal(&rq->fence);

	spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING);
	intel_engine_enable_signaling(rq);
	spin_unlock(&rq->lock);
}

static bool i915_guc_dequeue(struct intel_engine_cs *engine)
{
	struct execlist_port *port = engine->execlist_port;
	struct drm_i915_gem_request *last = port[0].request;
	struct rb_node *rb;
	bool submit = false;

663
	spin_lock_irq(&engine->timeline->lock);
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	rb = engine->execlist_first;
	while (rb) {
		struct drm_i915_gem_request *rq =
			rb_entry(rb, typeof(*rq), priotree.node);

		if (last && rq->ctx != last->ctx) {
			if (port != engine->execlist_port)
				break;

			i915_gem_request_assign(&port->request, last);
			nested_enable_signaling(last);
			port++;
		}

		rb = rb_next(rb);
		rb_erase(&rq->priotree.node, &engine->execlist_queue);
		RB_CLEAR_NODE(&rq->priotree.node);
		rq->priotree.priority = INT_MAX;

		i915_guc_submit(rq);
684
		trace_i915_gem_request_in(rq, port - engine->execlist_port);
685 686 687 688 689 690 691 692
		last = rq;
		submit = true;
	}
	if (submit) {
		i915_gem_request_assign(&port->request, last);
		nested_enable_signaling(last);
		engine->execlist_first = rb;
	}
693
	spin_unlock_irq(&engine->timeline->lock);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

	return submit;
}

static void i915_guc_irq_handler(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct execlist_port *port = engine->execlist_port;
	struct drm_i915_gem_request *rq;
	bool submit;

	do {
		rq = port[0].request;
		while (rq && i915_gem_request_completed(rq)) {
			trace_i915_gem_request_out(rq);
			i915_gem_request_put(rq);
			port[0].request = port[1].request;
			port[1].request = NULL;
			rq = port[0].request;
		}

		submit = false;
		if (!port[1].request)
			submit = i915_guc_dequeue(engine);
	} while (submit);
}

721 722 723 724 725 726
/*
 * Everything below here is concerned with setup & teardown, and is
 * therefore not part of the somewhat time-critical batch-submission
 * path of i915_guc_submit() above.
 */

727
/**
728
 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
729 730
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
731
 *
732 733 734 735 736
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
 * range is reserved inside GuC.
737
 *
738
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
739
 */
740
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
741
{
742
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
743
	struct drm_i915_gem_object *obj;
744 745
	struct i915_vma *vma;
	int ret;
746

747
	obj = i915_gem_object_create(dev_priv, size);
748
	if (IS_ERR(obj))
749
		return ERR_CAST(obj);
750

751
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
752 753
	if (IS_ERR(vma))
		goto err;
754

755 756 757 758 759
	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
			   PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
760 761
	}

762 763 764 765 766
	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
767 768
}

769
/* Check that a doorbell register is in the expected state */
770
static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
771 772
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
773 774 775 776 777 778 779
	u32 drbregl;
	bool valid;

	GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);

	drbregl = I915_READ(GEN8_DRBREGL(db_id));
	valid = drbregl & GEN8_DRB_VALID;
780

781
	if (test_bit(db_id, guc->doorbell_bitmap) == valid)
782 783
		return true;

784 785
	DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n",
			 db_id, drbregl, yesno(valid));
786 787 788 789

	return false;
}

790 791 792 793 794 795 796 797 798
/*
 * If the GuC thinks that the doorbell is unassigned (e.g. because we reset and
 * reloaded the GuC FW) we can use this function to tell the GuC to reassign the
 * doorbell to the rightful owner.
 */
static int __reset_doorbell(struct i915_guc_client* client, u16 db_id)
{
	int err;

799 800
	__update_doorbell_desc(client, db_id);
	err = __create_doorbell(client);
801 802 803 804 805 806
	if (!err)
		err = __destroy_doorbell(client);

	return err;
}

807
/*
808 809 810 811 812
 * Set up & tear down each unused doorbell in turn, to ensure that all doorbell
 * HW is (re)initialised. For that end, we might have to borrow the first
 * client. Also, tell GuC about all the doorbells in use by all clients.
 * We do this because the KMD, the GuC and the doorbell HW can easily go out of
 * sync (e.g. we can reset the GuC, but not the doorbel HW).
813
 */
814
static int guc_init_doorbell_hw(struct intel_guc *guc)
815 816
{
	struct i915_guc_client *client = guc->execbuf_client;
817 818 819
	bool recreate_first_client = false;
	u16 db_id;
	int ret;
820

821 822 823
	/* For unused doorbells, make sure they are disabled */
	for_each_clear_bit(db_id, guc->doorbell_bitmap, GUC_NUM_DOORBELLS) {
		if (doorbell_ok(guc, db_id))
824 825
			continue;

826 827 828 829 830 831 832 833
		if (has_doorbell(client)) {
			/* Borrow execbuf_client (we will recreate it later) */
			destroy_doorbell(client);
			recreate_first_client = true;
		}

		ret = __reset_doorbell(client, db_id);
		WARN(ret, "Doorbell %u reset failed, err %d\n", db_id, ret);
834 835
	}

836 837 838 839 840 841
	if (recreate_first_client) {
		ret = __reserve_doorbell(client);
		if (unlikely(ret)) {
			DRM_ERROR("Couldn't re-reserve first client db: %d\n", ret);
			return ret;
		}
842

843 844
		__update_doorbell_desc(client, client->doorbell_id);
	}
845

846 847 848 849 850 851 852
	/* Now for every client (and not only execbuf_client) make sure their
	 * doorbells are known by the GuC */
	//for (client = client_list; client != NULL; client = client->next)
	{
		ret = __create_doorbell(client);
		if (ret) {
			DRM_ERROR("Couldn't recreate client %u doorbell: %d\n",
853
				client->stage_id, ret);
854 855 856
			return ret;
		}
	}
857

858 859 860
	/* Read back & verify all (used & unused) doorbell registers */
	for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
		WARN_ON(!doorbell_ok(guc, db_id));
861 862

	return 0;
863 864
}

865 866
/**
 * guc_client_alloc() - Allocate an i915_guc_client
867
 * @dev_priv:	driver private data structure
868
 * @engines:	The set of engines to enable for this client
869 870 871 872
 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
 * 		The kernel client to replace ExecList submission is created with
 * 		NORMAL priority. Priority of a client for scheduler can be HIGH,
 * 		while a preemption context can use CRITICAL.
A
Alex Dai 已提交
873 874
 * @ctx:	the context that owns the client (we use the default render
 * 		context)
875
 *
876
 * Return:	An i915_guc_client object if success, else NULL.
877
 */
878 879
static struct i915_guc_client *
guc_client_alloc(struct drm_i915_private *dev_priv,
880
		 uint32_t engines,
881 882
		 uint32_t priority,
		 struct i915_gem_context *ctx)
883 884 885
{
	struct i915_guc_client *client;
	struct intel_guc *guc = &dev_priv->guc;
886
	struct i915_vma *vma;
887
	void *vaddr;
888
	int ret;
889 890 891

	client = kzalloc(sizeof(*client), GFP_KERNEL);
	if (!client)
892
		return ERR_PTR(-ENOMEM);
893 894

	client->guc = guc;
895
	client->owner = ctx;
896 897
	client->engines = engines;
	client->priority = priority;
898 899 900 901
	client->doorbell_id = GUC_DOORBELL_INVALID;
	client->wq_offset = GUC_DB_SIZE;
	client->wq_size = GUC_WQ_SIZE;
	spin_lock_init(&client->wq_lock);
902

903
	ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
904 905 906 907
				GFP_KERNEL);
	if (ret < 0)
		goto err_client;

908
	client->stage_id = ret;
909 910

	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
911
	vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
912 913 914 915
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_id;
	}
916

917
	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
918
	client->vma = vma;
919 920

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
921 922 923 924
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_vma;
	}
925
	client->vaddr = vaddr;
926

927
	client->doorbell_offset = __select_cacheline(guc);
928 929 930 931 932 933 934 935 936 937 938

	/*
	 * Since the doorbell only requires a single cacheline, we can save
	 * space by putting the application process descriptor in the same
	 * page. Use the half of the page that doesn't include the doorbell.
	 */
	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
		client->proc_desc_offset = 0;
	else
		client->proc_desc_offset = (GUC_DB_SIZE / 2);

939
	guc_proc_desc_init(guc, client);
940
	guc_stage_desc_init(guc, client);
941

942 943 944
	ret = create_doorbell(client);
	if (ret)
		goto err_vaddr;
945

946 947
	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
			 priority, client, client->engines, client->stage_id);
948 949
	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
			 client->doorbell_id, client->doorbell_offset);
950 951

	return client;
952 953 954

err_vaddr:
	i915_gem_object_unpin_map(client->vma->obj);
955 956 957
err_vma:
	i915_vma_unpin_and_release(&client->vma);
err_id:
958
	ida_simple_remove(&guc->stage_ids, client->stage_id);
959 960 961
err_client:
	kfree(client);
	return ERR_PTR(ret);
962 963
}

964 965 966 967 968 969 970 971 972 973 974
static void guc_client_free(struct i915_guc_client *client)
{
	/*
	 * XXX: wait for any outstanding submissions before freeing memory.
	 * Be sure to drop any locks
	 */

	/* FIXME: in many cases, by the time we get here the GuC has been
	 * reset, so we cannot destroy the doorbell properly. Ignore the
	 * error message for now */
	destroy_doorbell(client);
975
	guc_stage_desc_fini(client->guc, client);
976 977
	i915_gem_object_unpin_map(client->vma->obj);
	i915_vma_unpin_and_release(&client->vma);
978
	ida_simple_remove(&client->guc->stage_ids, client->stage_id);
979 980 981
	kfree(client);
}

982
static void guc_policies_init(struct guc_policies *policies)
983 984 985 986 987 988 989
{
	struct guc_policy *policy;
	u32 p, i;

	policies->dpc_promote_time = 500000;
	policies->max_num_work_items = POLICY_MAX_NUM_WI;

990
	for (p = 0; p < GUC_CLIENT_PRIORITY_NUM; p++) {
991
		for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
992 993 994 995 996 997 998 999 1000 1001 1002 1003
			policy = &policies->policy[p][i];

			policy->execution_quantum = 1000000;
			policy->preemption_time = 500000;
			policy->fault_time = 250000;
			policy->policy_flags = 0;
		}
	}

	policies->is_valid = 1;
}

1004
static int guc_ads_create(struct intel_guc *guc)
1005 1006
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1007
	struct i915_vma *vma;
1008 1009
	struct page *page;
	/* The ads obj includes the struct itself and buffers passed to GuC */
1010 1011 1012 1013 1014 1015 1016 1017 1018
	struct {
		struct guc_ads ads;
		struct guc_policies policies;
		struct guc_mmio_reg_state reg_state;
		u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE];
	} __packed *blob;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 base;
1019

1020
	GEM_BUG_ON(guc->ads_vma);
1021

1022 1023 1024 1025 1026
	vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob)));
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	guc->ads_vma = vma;
1027

1028
	page = i915_vma_first_page(vma);
1029
	blob = kmap(page);
1030

1031
	/* GuC scheduling policies */
1032
	guc_policies_init(&blob->policies);
1033

1034
	/* MMIO reg state */
1035
	for_each_engine(engine, dev_priv, id) {
1036
		blob->reg_state.white_list[engine->guc_id].mmio_start =
1037
			engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1038 1039

		/* Nothing to be saved or restored for now. */
1040
		blob->reg_state.white_list[engine->guc_id].count = 0;
1041 1042
	}

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	/*
	 * The GuC requires a "Golden Context" when it reinitialises
	 * engines after a reset. Here we use the Render ring default
	 * context, which must already exist and be pinned in the GGTT,
	 * so its address won't change after we've told the GuC where
	 * to find it.
	 */
	blob->ads.golden_context_lrca =
		dev_priv->engine[RCS]->status_page.ggtt_offset;

	for_each_engine(engine, dev_priv, id)
		blob->ads.eng_state_size[engine->guc_id] =
			intel_lr_context_size(engine);
1056

1057 1058 1059 1060
	base = guc_ggtt_offset(vma);
	blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
	blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer);
	blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state);
1061

1062
	kunmap(page);
1063 1064 1065 1066

	return 0;
}

1067
static void guc_ads_destroy(struct intel_guc *guc)
1068 1069
{
	i915_vma_unpin_and_release(&guc->ads_vma);
1070 1071
}

1072
/*
1073 1074
 * Set up the memory resources to be shared with the GuC (via the GGTT)
 * at firmware loading time.
1075
 */
1076
int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1077 1078
{
	struct intel_guc *guc = &dev_priv->guc;
1079
	struct i915_vma *vma;
1080
	void *vaddr;
1081
	int ret;
1082

1083
	if (guc->stage_desc_pool)
1084
		return 0;
1085

1086 1087 1088
	vma = intel_guc_allocate_vma(guc,
				PAGE_ALIGN(sizeof(struct guc_stage_desc) *
					GUC_MAX_STAGE_DESCRIPTORS));
1089 1090
	if (IS_ERR(vma))
		return PTR_ERR(vma);
1091

1092
	guc->stage_desc_pool = vma;
1093

1094
	vaddr = i915_gem_object_pin_map(guc->stage_desc_pool->obj, I915_MAP_WB);
1095 1096 1097 1098
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_vma;
	}
1099

1100
	guc->stage_desc_pool_vaddr = vaddr;
1101

1102 1103 1104 1105
	ret = intel_guc_log_create(guc);
	if (ret < 0)
		goto err_vaddr;

1106
	ret = guc_ads_create(guc);
1107 1108 1109
	if (ret < 0)
		goto err_log;

1110
	ida_init(&guc->stage_ids);
1111

1112
	return 0;
1113

1114 1115 1116
err_log:
	intel_guc_log_destroy(guc);
err_vaddr:
1117
	i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
1118
err_vma:
1119
	i915_vma_unpin_and_release(&guc->stage_desc_pool);
1120 1121 1122 1123 1124 1125 1126
	return ret;
}

void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
{
	struct intel_guc *guc = &dev_priv->guc;

1127
	ida_destroy(&guc->stage_ids);
1128
	guc_ads_destroy(guc);
1129
	intel_guc_log_destroy(guc);
1130 1131
	i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
	i915_vma_unpin_and_release(&guc->stage_desc_pool);
1132 1133
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/* tell all command streamers to forward interrupts (but not vblank) to GuC */
	irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MODE_GEN7(engine), irqs);

	/* route USER_INTERRUPT to Host, all others are sent to GuC. */
	irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
	       GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
	/* These three registers have the same bit definitions */
	I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
	I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
	I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

	/*
	 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
	 * (unmasked) PM interrupts to the GuC. All other bits of this
	 * register *disable* generation of a specific interrupt.
	 *
	 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
	 * writing to the PM interrupt mask register, i.e. interrupts
	 * that must not be disabled.
	 *
	 * If the GuC is handling these interrupts, then we must not let
	 * the PM code disable ANY interrupt that the GuC is expecting.
	 * So for each ENABLED (0) bit in this register, we must SET the
	 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
	 * GuC needs ARAT expired interrupt unmasked hence it is set in
	 * pm_intrmsk_mbz.
	 *
	 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
	 * result in the register bit being left SET!
	 */
	dev_priv->rps.pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1173
	dev_priv->rps.pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1174 1175
}

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
static void guc_interrupts_release(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/*
	 * tell all command streamers NOT to forward interrupts or vblank
	 * to GuC.
	 */
	irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
	irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MODE_GEN7(engine), irqs);

	/* route all GT interrupts to the host */
	I915_WRITE(GUC_BCS_RCS_IER, 0);
	I915_WRITE(GUC_VCS2_VCS1_IER, 0);
	I915_WRITE(GUC_WD_VECS_IER, 0);

	dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
	dev_priv->rps.pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
}

1200
int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1201 1202
{
	struct intel_guc *guc = &dev_priv->guc;
1203
	struct i915_guc_client *client = guc->execbuf_client;
1204
	struct intel_engine_cs *engine;
1205
	enum intel_engine_id id;
1206
	int err;
1207

1208 1209 1210
	if (!client) {
		client = guc_client_alloc(dev_priv,
					  INTEL_INFO(dev_priv)->ring_mask,
1211
					  GUC_CLIENT_PRIORITY_KMD_NORMAL,
1212 1213 1214 1215 1216 1217 1218 1219
					  dev_priv->kernel_context);
		if (IS_ERR(client)) {
			DRM_ERROR("Failed to create GuC client for execbuf!\n");
			return PTR_ERR(client);
		}

		guc->execbuf_client = client;
	}
1220

1221 1222
	err = intel_guc_sample_forcewake(guc);
	if (err)
1223
		goto err_execbuf_client;
1224 1225

	guc_reset_wq(client);
1226

1227 1228
	err = guc_init_doorbell_hw(guc);
	if (err)
1229
		goto err_execbuf_client;
A
Alex Dai 已提交
1230

1231
	/* Take over from manual control of ELSP (execlists) */
1232 1233 1234 1235 1236
	guc_interrupts_capture(dev_priv);

	for_each_engine(engine, dev_priv, id) {
		const int wqi_size = sizeof(struct guc_wq_item);
		struct drm_i915_gem_request *rq;
1237

1238 1239 1240 1241 1242 1243 1244 1245 1246
		/* The tasklet was initialised by execlists, and may be in
		 * a state of flux (across a reset) and so we just want to
		 * take over the callback without changing any other state
		 * in the tasklet.
		 */
		engine->irq_tasklet.func = i915_guc_irq_handler;
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

		/* Replay the current set of previously submitted requests */
1247
		spin_lock_irq(&engine->timeline->lock);
1248
		list_for_each_entry(rq, &engine->timeline->requests, link) {
1249
			guc_client_update_wq_rsvd(client, wqi_size);
1250
			__i915_guc_submit(rq);
1251
		}
1252
		spin_unlock_irq(&engine->timeline->lock);
1253 1254
	}

1255
	return 0;
1256 1257 1258 1259 1260

err_execbuf_client:
	guc_client_free(guc->execbuf_client);
	guc->execbuf_client = NULL;
	return err;
1261 1262
}

1263
void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1264 1265 1266
{
	struct intel_guc *guc = &dev_priv->guc;

1267 1268
	guc_interrupts_release(dev_priv);

1269
	/* Revert back to manual ELSP submission */
1270
	intel_engines_reset_default_submission(dev_priv);
1271 1272 1273

	guc_client_free(guc->execbuf_client);
	guc->execbuf_client = NULL;
1274 1275
}

1276 1277
/**
 * intel_guc_suspend() - notify GuC entering suspend state
1278
 * @dev_priv:	i915 device private
1279
 */
1280
int intel_guc_suspend(struct drm_i915_private *dev_priv)
1281 1282
{
	struct intel_guc *guc = &dev_priv->guc;
1283
	struct i915_gem_context *ctx;
1284 1285
	u32 data[3];

1286
	if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1287 1288
		return 0;

1289 1290
	gen9_disable_guc_interrupts(dev_priv);

1291
	ctx = dev_priv->kernel_context;
1292

1293
	data[0] = INTEL_GUC_ACTION_ENTER_S_STATE;
1294 1295 1296
	/* any value greater than GUC_POWER_D0 */
	data[1] = GUC_POWER_D1;
	/* first page is shared data with GuC */
1297
	data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1298

1299
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1300 1301 1302 1303
}

/**
 * intel_guc_resume() - notify GuC resuming from suspend state
1304
 * @dev_priv:	i915 device private
1305
 */
1306
int intel_guc_resume(struct drm_i915_private *dev_priv)
1307 1308
{
	struct intel_guc *guc = &dev_priv->guc;
1309
	struct i915_gem_context *ctx;
1310 1311
	u32 data[3];

1312
	if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1313 1314
		return 0;

1315 1316 1317
	if (i915.guc_log_level >= 0)
		gen9_enable_guc_interrupts(dev_priv);

1318
	ctx = dev_priv->kernel_context;
1319

1320
	data[0] = INTEL_GUC_ACTION_EXIT_S_STATE;
1321 1322
	data[1] = GUC_POWER_D0;
	/* first page is shared data with GuC */
1323
	data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1324

1325
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1326
}