i915_guc_submission.c 38.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */
#include <linux/circ_buf.h>
#include "i915_drv.h"
26
#include "intel_uc.h"
27

28 29
#include <trace/events/dma_fence.h>

30
/**
A
Alex Dai 已提交
31
 * DOC: GuC-based command submission
32
 *
33 34 35 36 37 38
 * GuC client:
 * A i915_guc_client refers to a submission path through GuC. Currently, there
 * is only one of these (the execbuf_client) and this one is charged with all
 * submissions to the GuC. This struct is the owner of a doorbell, a process
 * descriptor and a workqueue (all of them inside a single gem object that
 * contains all required pages for these elements).
39
 *
40
 * GuC stage descriptor:
41 42 43
 * During initialization, the driver allocates a static pool of 1024 such
 * descriptors, and shares them with the GuC.
 * Currently, there exists a 1:1 mapping between a i915_guc_client and a
44 45 46 47
 * guc_stage_desc (via the client's stage_id), so effectively only one
 * gets used. This stage descriptor lets the GuC know about the doorbell,
 * workqueue and process descriptor. Theoretically, it also lets the GuC
 * know about our HW contexts (context ID, etc...), but we actually
48
 * employ a kind of submission where the GuC uses the LRCA sent via the work
49
 * item instead (the single guc_stage_desc associated to execbuf client
50 51
 * contains information about the default kernel context only, but this is
 * essentially unused). This is called a "proxy" submission.
52 53 54 55 56 57 58 59
 *
 * The Scratch registers:
 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
 * triggers an interrupt on the GuC via another register write (0xC4C8).
 * Firmware writes a success/fail code back to the action register after
 * processes the request. The kernel driver polls waiting for this update and
 * then proceeds.
60
 * See intel_guc_send()
61 62 63 64 65 66 67 68 69 70 71
 *
 * Doorbells:
 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
 * mapped into process space.
 *
 * Work Items:
 * There are several types of work items that the host may place into a
 * workqueue, each with its own requirements and limitations. Currently only
 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
 * represents in-order queue. The kernel driver packs ring tail pointer and an
 * ELSP context descriptor dword into Work Item.
72
 * See guc_wq_item_append()
73
 *
74 75 76 77 78 79 80
 * ADS:
 * The Additional Data Struct (ADS) has pointers for different buffers used by
 * the GuC. One single gem object contains the ADS struct itself (guc_ads), the
 * scheduling policies (guc_policies), a structure describing a collection of
 * register sets (guc_mmio_reg_state) and some extra pages for the GuC to save
 * its internal state for sleep.
 *
81 82
 */

83 84
static inline bool is_high_priority(struct i915_guc_client* client)
{
85
	return client->priority <= GUC_CLIENT_PRIORITY_HIGH;
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
}

static int __reserve_doorbell(struct i915_guc_client *client)
{
	unsigned long offset;
	unsigned long end;
	u16 id;

	GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);

	/*
	 * The bitmap tracks which doorbell registers are currently in use.
	 * It is split into two halves; the first half is used for normal
	 * priority contexts, the second half for high-priority ones.
	 */
	offset = 0;
	end = GUC_NUM_DOORBELLS/2;
	if (is_high_priority(client)) {
		offset = end;
		end += offset;
	}

108
	id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
109 110 111 112 113 114
	if (id == end)
		return -ENOSPC;

	__set_bit(id, client->guc->doorbell_bitmap);
	client->doorbell_id = id;
	DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
115
			 client->stage_id, yesno(is_high_priority(client)),
116 117 118 119 120 121 122 123 124 125 126 127
			 id);
	return 0;
}

static void __unreserve_doorbell(struct i915_guc_client *client)
{
	GEM_BUG_ON(client->doorbell_id == GUC_DOORBELL_INVALID);

	__clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
	client->doorbell_id = GUC_DOORBELL_INVALID;
}

128 129 130 131
/*
 * Tell the GuC to allocate or deallocate a specific doorbell
 */

132
static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
133
{
134 135
	u32 action[] = {
		INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
136
		stage_id
137
	};
138

139
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
140 141
}

142
static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
143
{
144 145
	u32 action[] = {
		INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
146
		stage_id
147
	};
148

149
	return intel_guc_send(guc, action, ARRAY_SIZE(action));
150 151
}

152
static struct guc_stage_desc *__get_stage_desc(struct i915_guc_client *client)
153
{
154
	struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
155

156
	return &base[client->stage_id];
157 158
}

159 160 161 162 163 164 165
/*
 * Initialise, update, or clear doorbell data shared with the GuC
 *
 * These functions modify shared data and so need access to the mapped
 * client object which contains the page being used for the doorbell
 */

166
static void __update_doorbell_desc(struct i915_guc_client *client, u16 new_id)
167
{
168
	struct guc_stage_desc *desc;
169

170
	/* Update the GuC's idea of the doorbell ID */
171
	desc = __get_stage_desc(client);
172
	desc->db_id = new_id;
173
}
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
static struct guc_doorbell_info *__get_doorbell(struct i915_guc_client *client)
{
	return client->vaddr + client->doorbell_offset;
}

static bool has_doorbell(struct i915_guc_client *client)
{
	if (client->doorbell_id == GUC_DOORBELL_INVALID)
		return false;

	return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
}

static int __create_doorbell(struct i915_guc_client *client)
{
	struct guc_doorbell_info *doorbell;
	int err;

	doorbell = __get_doorbell(client);
194
	doorbell->db_status = GUC_DOORBELL_ENABLED;
195
	doorbell->cookie = client->doorbell_cookie;
196

197
	err = __guc_allocate_doorbell(client->guc, client->stage_id);
198 199 200 201 202
	if (err) {
		doorbell->db_status = GUC_DOORBELL_DISABLED;
		doorbell->cookie = 0;
	}
	return err;
203 204
}

205
static int __destroy_doorbell(struct i915_guc_client *client)
206
{
207
	struct drm_i915_private *dev_priv = guc_to_i915(client->guc);
208
	struct guc_doorbell_info *doorbell;
209 210 211
	u16 db_id = client->doorbell_id;

	GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);
212

213 214 215 216
	doorbell = __get_doorbell(client);
	doorbell->db_status = GUC_DOORBELL_DISABLED;
	doorbell->cookie = 0;

217 218 219 220 221 222
	/* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
	 * to go to zero after updating db_status before we call the GuC to
	 * release the doorbell */
	if (wait_for_us(!(I915_READ(GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID), 10))
		WARN_ONCE(true, "Doorbell never became invalid after disable\n");

223
	return __guc_deallocate_doorbell(client->guc, client->stage_id);
224 225
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
static int create_doorbell(struct i915_guc_client *client)
{
	int ret;

	ret = __reserve_doorbell(client);
	if (ret)
		return ret;

	__update_doorbell_desc(client, client->doorbell_id);

	ret = __create_doorbell(client);
	if (ret)
		goto err;

	return 0;

err:
	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
	__unreserve_doorbell(client);
	return ret;
}

248
static int destroy_doorbell(struct i915_guc_client *client)
249
{
250
	int err;
251

252 253 254 255
	GEM_BUG_ON(!has_doorbell(client));

	/* XXX: wait for any interrupts */
	/* XXX: wait for workqueue to drain */
256

257 258 259
	err = __destroy_doorbell(client);
	if (err)
		return err;
260

261
	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
262

263 264 265 266
	__unreserve_doorbell(client);

	return 0;
}
267

268
static unsigned long __select_cacheline(struct intel_guc* guc)
269
{
270
	unsigned long offset;
271 272 273 274 275

	/* Doorbell uses a single cache line within a page */
	offset = offset_in_page(guc->db_cacheline);

	/* Moving to next cache line to reduce contention */
276
	guc->db_cacheline += cache_line_size();
277

278 279
	DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
			offset, guc->db_cacheline, cache_line_size());
280 281 282
	return offset;
}

283 284 285 286 287 288
static inline struct guc_process_desc *
__get_process_desc(struct i915_guc_client *client)
{
	return client->vaddr + client->proc_desc_offset;
}

289 290 291
/*
 * Initialise the process descriptor shared with the GuC firmware.
 */
292
static void guc_proc_desc_init(struct intel_guc *guc,
293 294 295 296
			       struct i915_guc_client *client)
{
	struct guc_process_desc *desc;

297
	desc = memset(__get_process_desc(client), 0, sizeof(*desc));
298 299 300 301 302 303 304 305 306 307

	/*
	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
	 * space for kernel clients (map on demand instead? May make debug
	 * easier to have it mapped).
	 */
	desc->wq_base_addr = 0;
	desc->db_base_addr = 0;

308
	desc->stage_id = client->stage_id;
309 310 311 312 313 314
	desc->wq_size_bytes = client->wq_size;
	desc->wq_status = WQ_STATUS_ACTIVE;
	desc->priority = client->priority;
}

/*
315
 * Initialise/clear the stage descriptor shared with the GuC firmware.
316 317 318 319 320
 *
 * This descriptor tells the GuC where (in GGTT space) to find the important
 * data structures relating to this client (doorbell, process descriptor,
 * write queue, etc).
 */
321 322
static void guc_stage_desc_init(struct intel_guc *guc,
				struct i915_guc_client *client)
323
{
324
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
325
	struct intel_engine_cs *engine;
326
	struct i915_gem_context *ctx = client->owner;
327
	struct guc_stage_desc *desc;
328
	unsigned int tmp;
329
	u32 gfx_addr;
330

331
	desc = __get_stage_desc(client);
332
	memset(desc, 0, sizeof(*desc));
333

334 335
	desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE | GUC_STAGE_DESC_ATTR_KERNEL;
	desc->stage_id = client->stage_id;
336 337
	desc->priority = client->priority;
	desc->db_id = client->doorbell_id;
338

339
	for_each_engine_masked(engine, dev_priv, client->engines, tmp) {
340
		struct intel_context *ce = &ctx->engine[engine->id];
341
		uint32_t guc_engine_id = engine->guc_id;
342
		struct guc_execlist_context *lrc = &desc->lrc[guc_engine_id];
343 344 345 346 347 348 349 350

		/* TODO: We have a design issue to be solved here. Only when we
		 * receive the first batch, we know which engine is used by the
		 * user. But here GuC expects the lrc and ring to be pinned. It
		 * is not an issue for default context, which is the only one
		 * for now who owns a GuC client. But for future owner of GuC
		 * client, need to make sure lrc is pinned prior to enter here.
		 */
351
		if (!ce->state)
352 353
			break;	/* XXX: continue? */

354
		/*
355
		 * XXX: When this is a GUC_STAGE_DESC_ATTR_KERNEL client (proxy
356 357 358 359 360
		 * submission or, in other words, not using a direct submission
		 * model) the KMD's LRCA is not used for any work submission.
		 * Instead, the GuC uses the LRCA of the user mode context (see
		 * guc_wq_item_append below).
		 */
361
		lrc->context_desc = lower_32_bits(ce->lrc_desc);
362 363

		/* The state page is after PPHWSP */
364
		lrc->ring_lrca =
365
			guc_ggtt_offset(ce->state) + LRC_STATE_PN * PAGE_SIZE;
366 367 368 369

		/* XXX: In direct submission, the GuC wants the HW context id
		 * here. In proxy submission, it wants the stage id */
		lrc->context_id = (client->stage_id << GUC_ELC_CTXID_OFFSET) |
370
				(guc_engine_id << GUC_ELC_ENGINE_OFFSET);
371

372
		lrc->ring_begin = guc_ggtt_offset(ce->ring->vma);
373 374
		lrc->ring_end = lrc->ring_begin + ce->ring->size - 1;
		lrc->ring_next_free_location = lrc->ring_begin;
375 376
		lrc->ring_current_tail_pointer_value = 0;

377
		desc->engines_used |= (1 << guc_engine_id);
378 379
	}

380
	DRM_DEBUG_DRIVER("Host engines 0x%x => GuC engines used 0x%x\n",
381 382
			client->engines, desc->engines_used);
	WARN_ON(desc->engines_used == 0);
383

384
	/*
385 386
	 * The doorbell, process descriptor, and workqueue are all parts
	 * of the client object, which the GuC will reference via the GGTT
387
	 */
388
	gfx_addr = guc_ggtt_offset(client->vma);
389
	desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
390
				client->doorbell_offset;
391 392 393 394 395
	desc->db_trigger_cpu = (uintptr_t)__get_doorbell(client);
	desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
	desc->process_desc = gfx_addr + client->proc_desc_offset;
	desc->wq_addr = gfx_addr + client->wq_offset;
	desc->wq_size = client->wq_size;
396

397
	desc->desc_private = (uintptr_t)client;
398 399
}

400 401
static void guc_stage_desc_fini(struct intel_guc *guc,
				struct i915_guc_client *client)
402
{
403
	struct guc_stage_desc *desc;
404

405
	desc = __get_stage_desc(client);
406
	memset(desc, 0, sizeof(*desc));
407 408
}

409
/**
410
 * i915_guc_wq_reserve() - reserve space in the GuC's workqueue
411 412 413 414 415 416 417
 * @request:	request associated with the commands
 *
 * Return:	0 if space is available
 *		-EAGAIN if space is not currently available
 *
 * This function must be called (and must return 0) before a request
 * is submitted to the GuC via i915_guc_submit() below. Once a result
418 419
 * of 0 has been returned, it must be balanced by a corresponding
 * call to submit().
420
 *
421
 * Reservation allows the caller to determine in advance that space
422 423 424
 * will be available for the next submission before committing resources
 * to it, and helps avoid late failures with complicated recovery paths.
 */
425
int i915_guc_wq_reserve(struct drm_i915_gem_request *request)
426
{
427
	const size_t wqi_size = sizeof(struct guc_wq_item);
428
	struct i915_guc_client *client = request->i915->guc.execbuf_client;
429
	struct guc_process_desc *desc = __get_process_desc(client);
430
	u32 freespace;
431
	int ret;
432

433
	spin_lock_irq(&client->wq_lock);
434 435
	freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
	freespace -= client->wq_rsvd;
436
	if (likely(freespace >= wqi_size)) {
437
		client->wq_rsvd += wqi_size;
438 439
		ret = 0;
	} else {
440
		client->no_wq_space++;
441 442
		ret = -EAGAIN;
	}
443
	spin_unlock_irq(&client->wq_lock);
444

445
	return ret;
446 447
}

448 449 450 451 452 453 454 455 456
static void guc_client_update_wq_rsvd(struct i915_guc_client *client, int size)
{
	unsigned long flags;

	spin_lock_irqsave(&client->wq_lock, flags);
	client->wq_rsvd += size;
	spin_unlock_irqrestore(&client->wq_lock, flags);
}

457 458
void i915_guc_wq_unreserve(struct drm_i915_gem_request *request)
{
459
	const int wqi_size = sizeof(struct guc_wq_item);
460
	struct i915_guc_client *client = request->i915->guc.execbuf_client;
461

462
	GEM_BUG_ON(READ_ONCE(client->wq_rsvd) < wqi_size);
463
	guc_client_update_wq_rsvd(client, -wqi_size);
464 465
}

466
/* Construct a Work Item and append it to the GuC's Work Queue */
467
static void guc_wq_item_append(struct i915_guc_client *client,
468
			       struct drm_i915_gem_request *rq)
469
{
470 471 472
	/* wqi_len is in DWords, and does not include the one-word header */
	const size_t wqi_size = sizeof(struct guc_wq_item);
	const u32 wqi_len = wqi_size/sizeof(u32) - 1;
473
	struct intel_engine_cs *engine = rq->engine;
474
	struct guc_process_desc *desc = __get_process_desc(client);
475
	struct guc_wq_item *wqi;
476
	u32 freespace, tail, wq_off;
477

478
	/* Free space is guaranteed, see i915_guc_wq_reserve() above */
479
	freespace = CIRC_SPACE(client->wq_tail, desc->head, client->wq_size);
480 481 482
	GEM_BUG_ON(freespace < wqi_size);

	/* The GuC firmware wants the tail index in QWords, not bytes */
483
	tail = intel_ring_set_tail(rq->ring, rq->tail) >> 3;
484
	GEM_BUG_ON(tail > WQ_RING_TAIL_MAX);
485 486 487 488 489 490 491 492

	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
	 * should not have the case where structure wqi is across page, neither
	 * wrapped to the beginning. This simplifies the implementation below.
	 *
	 * XXX: if not the case, we need save data to a temp wqi and copy it to
	 * workqueue buffer dw by dw.
	 */
493
	BUILD_BUG_ON(wqi_size != 16);
494
	GEM_BUG_ON(client->wq_rsvd < wqi_size);
495

496
	/* postincrement WQ tail for next time */
497
	wq_off = client->wq_tail;
498
	GEM_BUG_ON(wq_off & (wqi_size - 1));
499 500 501
	client->wq_tail += wqi_size;
	client->wq_tail &= client->wq_size - 1;
	client->wq_rsvd -= wqi_size;
502 503

	/* WQ starts from the page after doorbell / process_desc */
504
	wqi = client->vaddr + wq_off + GUC_DB_SIZE;
505

506
	/* Now fill in the 4-word work queue item */
507
	wqi->header = WQ_TYPE_INORDER |
508
			(wqi_len << WQ_LEN_SHIFT) |
509
			(engine->guc_id << WQ_TARGET_SHIFT) |
510 511 512
			WQ_NO_WCFLUSH_WAIT;

	/* The GuC wants only the low-order word of the context descriptor */
513
	wqi->context_desc = (u32)intel_lr_context_descriptor(rq->ctx, engine);
514

515
	wqi->submit_element_info = tail << WQ_RING_TAIL_SHIFT;
516
	wqi->fence_id = rq->global_seqno;
517 518
}

519 520
static void guc_reset_wq(struct i915_guc_client *client)
{
521
	struct guc_process_desc *desc = __get_process_desc(client);
522 523 524 525 526 527 528

	desc->head = 0;
	desc->tail = 0;

	client->wq_tail = 0;
}

529
static int guc_ring_doorbell(struct i915_guc_client *client)
530
{
531
	struct guc_process_desc *desc = __get_process_desc(client);
532 533 534 535 536
	union guc_doorbell_qw db_cmp, db_exc, db_ret;
	union guc_doorbell_qw *db;
	int attempt = 2, ret = -EAGAIN;

	/* Update the tail so it is visible to GuC */
537
	desc->tail = client->wq_tail;
538 539 540

	/* current cookie */
	db_cmp.db_status = GUC_DOORBELL_ENABLED;
541
	db_cmp.cookie = client->doorbell_cookie;
542 543 544

	/* cookie to be updated */
	db_exc.db_status = GUC_DOORBELL_ENABLED;
545
	db_exc.cookie = client->doorbell_cookie + 1;
546 547 548 549
	if (db_exc.cookie == 0)
		db_exc.cookie = 1;

	/* pointer of current doorbell cacheline */
550
	db = (union guc_doorbell_qw *)__get_doorbell(client);
551 552 553 554 555 556 557 558 559

	while (attempt--) {
		/* lets ring the doorbell */
		db_ret.value_qw = atomic64_cmpxchg((atomic64_t *)db,
			db_cmp.value_qw, db_exc.value_qw);

		/* if the exchange was successfully executed */
		if (db_ret.value_qw == db_cmp.value_qw) {
			/* db was successfully rung */
560
			client->doorbell_cookie = db_exc.cookie;
561 562 563 564 565 566 567 568
			ret = 0;
			break;
		}

		/* XXX: doorbell was lost and need to acquire it again */
		if (db_ret.db_status == GUC_DOORBELL_DISABLED)
			break;

569 570
		DRM_WARN("Cookie mismatch. Expected %d, found %d\n",
			 db_cmp.cookie, db_ret.cookie);
571 572 573 574 575 576 577 578 579 580 581

		/* update the cookie to newly read cookie from GuC */
		db_cmp.cookie = db_ret.cookie;
		db_exc.cookie = db_ret.cookie + 1;
		if (db_exc.cookie == 0)
			db_exc.cookie = 1;
	}

	return ret;
}

582
/**
583
 * __i915_guc_submit() - Submit commands through GuC
A
Alex Dai 已提交
584
 * @rq:		request associated with the commands
585
 *
586 587 588
 * The caller must have already called i915_guc_wq_reserve() above with
 * a result of 0 (success), guaranteeing that there is space in the work
 * queue for the new request, so enqueuing the item cannot fail.
589 590
 *
 * Bad Things Will Happen if the caller violates this protocol e.g. calls
591 592
 * submit() when _reserve() says there's no space, or calls _submit()
 * a different number of times from (successful) calls to _reserve().
593 594 595
 *
 * The only error here arises if the doorbell hardware isn't functioning
 * as expected, which really shouln't happen.
596
 */
597
static void __i915_guc_submit(struct drm_i915_gem_request *rq)
598
{
599
	struct drm_i915_private *dev_priv = rq->i915;
600 601
	struct intel_engine_cs *engine = rq->engine;
	unsigned int engine_id = engine->id;
602 603
	struct intel_guc *guc = &rq->i915->guc;
	struct i915_guc_client *client = guc->execbuf_client;
604
	unsigned long flags;
605
	int b_ret;
606

607 608 609 610
	/* WA to flush out the pending GMADR writes to ring buffer. */
	if (i915_vma_is_map_and_fenceable(rq->ring->vma))
		POSTING_READ_FW(GUC_STATUS);

611
	spin_lock_irqsave(&client->wq_lock, flags);
612 613

	guc_wq_item_append(client, rq);
614
	b_ret = guc_ring_doorbell(client);
615

616
	client->submissions[engine_id] += 1;
617

618
	spin_unlock_irqrestore(&client->wq_lock, flags);
619 620
}

621 622
static void i915_guc_submit(struct drm_i915_gem_request *rq)
{
623
	__i915_gem_request_submit(rq);
624 625 626
	__i915_guc_submit(rq);
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static void nested_enable_signaling(struct drm_i915_gem_request *rq)
{
	/* If we use dma_fence_enable_sw_signaling() directly, lockdep
	 * detects an ordering issue between the fence lockclass and the
	 * global_timeline. This circular dependency can only occur via 2
	 * different fences (but same fence lockclass), so we use the nesting
	 * annotation here to prevent the warn, equivalent to the nesting
	 * inside i915_gem_request_submit() for when we also enable the
	 * signaler.
	 */

	if (test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
			     &rq->fence.flags))
		return;

	GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
	trace_dma_fence_enable_signal(&rq->fence);

	spin_lock_nested(&rq->lock, SINGLE_DEPTH_NESTING);
646
	intel_engine_enable_signaling(rq, true);
647 648 649
	spin_unlock(&rq->lock);
}

650 651 652 653 654 655 656 657 658 659 660 661
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, i915_gem_request_get(rq));
	nested_enable_signaling(rq);
}

662 663 664
static bool i915_guc_dequeue(struct intel_engine_cs *engine)
{
	struct execlist_port *port = engine->execlist_port;
665
	struct drm_i915_gem_request *last = port_request(port);
666 667 668
	struct rb_node *rb;
	bool submit = false;

669
	spin_lock_irq(&engine->timeline->lock);
670
	rb = engine->execlist_first;
671
	GEM_BUG_ON(rb_first(&engine->execlist_queue) != rb);
672
	while (rb) {
673 674 675 676 677 678 679 680 681 682 683
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			if (last && rq->ctx != last->ctx) {
				if (port != engine->execlist_port) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

684 685
				if (submit)
					port_assign(port, last);
686 687 688 689 690 691 692 693 694 695
				port++;
			}

			INIT_LIST_HEAD(&rq->priotree.link);
			rq->priotree.priority = INT_MAX;

			i915_guc_submit(rq);
			trace_i915_gem_request_in(rq, port_index(port, engine));
			last = rq;
			submit = true;
696 697 698
		}

		rb = rb_next(rb);
699 700 701
		rb_erase(&p->node, &engine->execlist_queue);
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
702
			kmem_cache_free(engine->i915->priorities, p);
703
	}
704 705 706
done:
	engine->execlist_first = rb;
	if (submit)
707
		port_assign(port, last);
708
	spin_unlock_irq(&engine->timeline->lock);
709 710 711 712 713 714 715 716 717 718 719 720

	return submit;
}

static void i915_guc_irq_handler(unsigned long data)
{
	struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
	struct execlist_port *port = engine->execlist_port;
	struct drm_i915_gem_request *rq;
	bool submit;

	do {
721
		rq = port_request(&port[0]);
722 723 724
		while (rq && i915_gem_request_completed(rq)) {
			trace_i915_gem_request_out(rq);
			i915_gem_request_put(rq);
725 726 727 728 729

			port[0] = port[1];
			memset(&port[1], 0, sizeof(port[1]));

			rq = port_request(&port[0]);
730 731 732
		}

		submit = false;
733
		if (!port_count(&port[1]))
734 735 736 737
			submit = i915_guc_dequeue(engine);
	} while (submit);
}

738 739 740 741 742 743
/*
 * Everything below here is concerned with setup & teardown, and is
 * therefore not part of the somewhat time-critical batch-submission
 * path of i915_guc_submit() above.
 */

744
/**
745
 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
746 747
 * @guc:	the guc
 * @size:	size of area to allocate (both virtual space and memory)
748
 *
749 750 751 752 753
 * This is a wrapper to create an object for use with the GuC. In order to
 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
 * both some backing storage and a range inside the Global GTT. We must pin
 * it in the GGTT somewhere other than than [0, GUC_WOPCM_TOP) because that
 * range is reserved inside GuC.
754
 *
755
 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
756
 */
757
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
758
{
759
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
760
	struct drm_i915_gem_object *obj;
761 762
	struct i915_vma *vma;
	int ret;
763

764
	obj = i915_gem_object_create(dev_priv, size);
765
	if (IS_ERR(obj))
766
		return ERR_CAST(obj);
767

768
	vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
769 770
	if (IS_ERR(vma))
		goto err;
771

772 773 774 775 776
	ret = i915_vma_pin(vma, 0, PAGE_SIZE,
			   PIN_GLOBAL | PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
	if (ret) {
		vma = ERR_PTR(ret);
		goto err;
777 778
	}

779 780 781 782 783
	return vma;

err:
	i915_gem_object_put(obj);
	return vma;
784 785
}

786
/* Check that a doorbell register is in the expected state */
787
static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
788 789
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
790 791 792 793 794 795 796
	u32 drbregl;
	bool valid;

	GEM_BUG_ON(db_id >= GUC_DOORBELL_INVALID);

	drbregl = I915_READ(GEN8_DRBREGL(db_id));
	valid = drbregl & GEN8_DRB_VALID;
797

798
	if (test_bit(db_id, guc->doorbell_bitmap) == valid)
799 800
		return true;

801 802
	DRM_DEBUG_DRIVER("Doorbell %d has unexpected state (0x%x): valid=%s\n",
			 db_id, drbregl, yesno(valid));
803 804 805 806

	return false;
}

807 808 809 810 811 812 813 814 815
/*
 * If the GuC thinks that the doorbell is unassigned (e.g. because we reset and
 * reloaded the GuC FW) we can use this function to tell the GuC to reassign the
 * doorbell to the rightful owner.
 */
static int __reset_doorbell(struct i915_guc_client* client, u16 db_id)
{
	int err;

816 817
	__update_doorbell_desc(client, db_id);
	err = __create_doorbell(client);
818 819 820 821 822 823
	if (!err)
		err = __destroy_doorbell(client);

	return err;
}

824
/*
825 826 827 828 829
 * Set up & tear down each unused doorbell in turn, to ensure that all doorbell
 * HW is (re)initialised. For that end, we might have to borrow the first
 * client. Also, tell GuC about all the doorbells in use by all clients.
 * We do this because the KMD, the GuC and the doorbell HW can easily go out of
 * sync (e.g. we can reset the GuC, but not the doorbel HW).
830
 */
831
static int guc_init_doorbell_hw(struct intel_guc *guc)
832 833
{
	struct i915_guc_client *client = guc->execbuf_client;
834 835 836
	bool recreate_first_client = false;
	u16 db_id;
	int ret;
837

838 839 840
	/* For unused doorbells, make sure they are disabled */
	for_each_clear_bit(db_id, guc->doorbell_bitmap, GUC_NUM_DOORBELLS) {
		if (doorbell_ok(guc, db_id))
841 842
			continue;

843 844 845 846 847 848 849 850
		if (has_doorbell(client)) {
			/* Borrow execbuf_client (we will recreate it later) */
			destroy_doorbell(client);
			recreate_first_client = true;
		}

		ret = __reset_doorbell(client, db_id);
		WARN(ret, "Doorbell %u reset failed, err %d\n", db_id, ret);
851 852
	}

853 854 855 856 857 858
	if (recreate_first_client) {
		ret = __reserve_doorbell(client);
		if (unlikely(ret)) {
			DRM_ERROR("Couldn't re-reserve first client db: %d\n", ret);
			return ret;
		}
859

860 861
		__update_doorbell_desc(client, client->doorbell_id);
	}
862

863 864 865 866 867 868 869
	/* Now for every client (and not only execbuf_client) make sure their
	 * doorbells are known by the GuC */
	//for (client = client_list; client != NULL; client = client->next)
	{
		ret = __create_doorbell(client);
		if (ret) {
			DRM_ERROR("Couldn't recreate client %u doorbell: %d\n",
870
				client->stage_id, ret);
871 872 873
			return ret;
		}
	}
874

875 876 877
	/* Read back & verify all (used & unused) doorbell registers */
	for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
		WARN_ON(!doorbell_ok(guc, db_id));
878 879

	return 0;
880 881
}

882 883
/**
 * guc_client_alloc() - Allocate an i915_guc_client
884
 * @dev_priv:	driver private data structure
885
 * @engines:	The set of engines to enable for this client
886 887 888 889
 * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
 * 		The kernel client to replace ExecList submission is created with
 * 		NORMAL priority. Priority of a client for scheduler can be HIGH,
 * 		while a preemption context can use CRITICAL.
A
Alex Dai 已提交
890 891
 * @ctx:	the context that owns the client (we use the default render
 * 		context)
892
 *
893
 * Return:	An i915_guc_client object if success, else NULL.
894
 */
895 896
static struct i915_guc_client *
guc_client_alloc(struct drm_i915_private *dev_priv,
897
		 uint32_t engines,
898 899
		 uint32_t priority,
		 struct i915_gem_context *ctx)
900 901 902
{
	struct i915_guc_client *client;
	struct intel_guc *guc = &dev_priv->guc;
903
	struct i915_vma *vma;
904
	void *vaddr;
905
	int ret;
906 907 908

	client = kzalloc(sizeof(*client), GFP_KERNEL);
	if (!client)
909
		return ERR_PTR(-ENOMEM);
910 911

	client->guc = guc;
912
	client->owner = ctx;
913 914
	client->engines = engines;
	client->priority = priority;
915 916 917 918
	client->doorbell_id = GUC_DOORBELL_INVALID;
	client->wq_offset = GUC_DB_SIZE;
	client->wq_size = GUC_WQ_SIZE;
	spin_lock_init(&client->wq_lock);
919

920
	ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
921 922 923 924
				GFP_KERNEL);
	if (ret < 0)
		goto err_client;

925
	client->stage_id = ret;
926 927

	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
928
	vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
929 930 931 932
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err_id;
	}
933

934
	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
935
	client->vma = vma;
936 937

	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
938 939 940 941
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_vma;
	}
942
	client->vaddr = vaddr;
943

944
	client->doorbell_offset = __select_cacheline(guc);
945 946 947 948 949 950 951 952 953 954 955

	/*
	 * Since the doorbell only requires a single cacheline, we can save
	 * space by putting the application process descriptor in the same
	 * page. Use the half of the page that doesn't include the doorbell.
	 */
	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
		client->proc_desc_offset = 0;
	else
		client->proc_desc_offset = (GUC_DB_SIZE / 2);

956
	guc_proc_desc_init(guc, client);
957
	guc_stage_desc_init(guc, client);
958

959 960 961
	ret = create_doorbell(client);
	if (ret)
		goto err_vaddr;
962

963 964
	DRM_DEBUG_DRIVER("new priority %u client %p for engine(s) 0x%x: stage_id %u\n",
			 priority, client, client->engines, client->stage_id);
965 966
	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
			 client->doorbell_id, client->doorbell_offset);
967 968

	return client;
969 970 971

err_vaddr:
	i915_gem_object_unpin_map(client->vma->obj);
972 973 974
err_vma:
	i915_vma_unpin_and_release(&client->vma);
err_id:
975
	ida_simple_remove(&guc->stage_ids, client->stage_id);
976 977 978
err_client:
	kfree(client);
	return ERR_PTR(ret);
979 980
}

981 982 983 984 985 986 987 988 989 990 991
static void guc_client_free(struct i915_guc_client *client)
{
	/*
	 * XXX: wait for any outstanding submissions before freeing memory.
	 * Be sure to drop any locks
	 */

	/* FIXME: in many cases, by the time we get here the GuC has been
	 * reset, so we cannot destroy the doorbell properly. Ignore the
	 * error message for now */
	destroy_doorbell(client);
992
	guc_stage_desc_fini(client->guc, client);
993 994
	i915_gem_object_unpin_map(client->vma->obj);
	i915_vma_unpin_and_release(&client->vma);
995
	ida_simple_remove(&client->guc->stage_ids, client->stage_id);
996 997 998
	kfree(client);
}

999
static void guc_policies_init(struct guc_policies *policies)
1000 1001 1002 1003 1004 1005 1006
{
	struct guc_policy *policy;
	u32 p, i;

	policies->dpc_promote_time = 500000;
	policies->max_num_work_items = POLICY_MAX_NUM_WI;

1007
	for (p = 0; p < GUC_CLIENT_PRIORITY_NUM; p++) {
1008
		for (i = GUC_RENDER_ENGINE; i < GUC_MAX_ENGINES_NUM; i++) {
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
			policy = &policies->policy[p][i];

			policy->execution_quantum = 1000000;
			policy->preemption_time = 500000;
			policy->fault_time = 250000;
			policy->policy_flags = 0;
		}
	}

	policies->is_valid = 1;
}

1021
static int guc_ads_create(struct intel_guc *guc)
1022 1023
{
	struct drm_i915_private *dev_priv = guc_to_i915(guc);
1024
	struct i915_vma *vma;
1025 1026
	struct page *page;
	/* The ads obj includes the struct itself and buffers passed to GuC */
1027 1028 1029 1030 1031 1032 1033 1034 1035
	struct {
		struct guc_ads ads;
		struct guc_policies policies;
		struct guc_mmio_reg_state reg_state;
		u8 reg_state_buffer[GUC_S3_SAVE_SPACE_PAGES * PAGE_SIZE];
	} __packed *blob;
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 base;
1036

1037
	GEM_BUG_ON(guc->ads_vma);
1038

1039 1040 1041 1042 1043
	vma = intel_guc_allocate_vma(guc, PAGE_ALIGN(sizeof(*blob)));
	if (IS_ERR(vma))
		return PTR_ERR(vma);

	guc->ads_vma = vma;
1044

1045
	page = i915_vma_first_page(vma);
1046
	blob = kmap(page);
1047

1048
	/* GuC scheduling policies */
1049
	guc_policies_init(&blob->policies);
1050

1051
	/* MMIO reg state */
1052
	for_each_engine(engine, dev_priv, id) {
1053
		blob->reg_state.white_list[engine->guc_id].mmio_start =
1054
			engine->mmio_base + GUC_MMIO_WHITE_LIST_START;
1055 1056

		/* Nothing to be saved or restored for now. */
1057
		blob->reg_state.white_list[engine->guc_id].count = 0;
1058 1059
	}

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
	/*
	 * The GuC requires a "Golden Context" when it reinitialises
	 * engines after a reset. Here we use the Render ring default
	 * context, which must already exist and be pinned in the GGTT,
	 * so its address won't change after we've told the GuC where
	 * to find it.
	 */
	blob->ads.golden_context_lrca =
		dev_priv->engine[RCS]->status_page.ggtt_offset;

	for_each_engine(engine, dev_priv, id)
1071
		blob->ads.eng_state_size[engine->guc_id] = engine->context_size;
1072

1073 1074 1075 1076
	base = guc_ggtt_offset(vma);
	blob->ads.scheduler_policies = base + ptr_offset(blob, policies);
	blob->ads.reg_state_buffer = base + ptr_offset(blob, reg_state_buffer);
	blob->ads.reg_state_addr = base + ptr_offset(blob, reg_state);
1077

1078
	kunmap(page);
1079 1080 1081 1082

	return 0;
}

1083
static void guc_ads_destroy(struct intel_guc *guc)
1084 1085
{
	i915_vma_unpin_and_release(&guc->ads_vma);
1086 1087
}

1088
/*
1089 1090
 * Set up the memory resources to be shared with the GuC (via the GGTT)
 * at firmware loading time.
1091
 */
1092
int i915_guc_submission_init(struct drm_i915_private *dev_priv)
1093 1094
{
	struct intel_guc *guc = &dev_priv->guc;
1095
	struct i915_vma *vma;
1096
	void *vaddr;
1097
	int ret;
1098

1099
	if (guc->stage_desc_pool)
1100
		return 0;
1101

1102 1103 1104
	vma = intel_guc_allocate_vma(guc,
				PAGE_ALIGN(sizeof(struct guc_stage_desc) *
					GUC_MAX_STAGE_DESCRIPTORS));
1105 1106
	if (IS_ERR(vma))
		return PTR_ERR(vma);
1107

1108
	guc->stage_desc_pool = vma;
1109

1110
	vaddr = i915_gem_object_pin_map(guc->stage_desc_pool->obj, I915_MAP_WB);
1111 1112 1113 1114
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		goto err_vma;
	}
1115

1116
	guc->stage_desc_pool_vaddr = vaddr;
1117

1118 1119 1120 1121
	ret = intel_guc_log_create(guc);
	if (ret < 0)
		goto err_vaddr;

1122
	ret = guc_ads_create(guc);
1123 1124 1125
	if (ret < 0)
		goto err_log;

1126
	ida_init(&guc->stage_ids);
1127

1128
	return 0;
1129

1130 1131 1132
err_log:
	intel_guc_log_destroy(guc);
err_vaddr:
1133
	i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
1134
err_vma:
1135
	i915_vma_unpin_and_release(&guc->stage_desc_pool);
1136 1137 1138 1139 1140 1141 1142
	return ret;
}

void i915_guc_submission_fini(struct drm_i915_private *dev_priv)
{
	struct intel_guc *guc = &dev_priv->guc;

1143
	ida_destroy(&guc->stage_ids);
1144
	guc_ads_destroy(guc);
1145
	intel_guc_log_destroy(guc);
1146 1147
	i915_gem_object_unpin_map(guc->stage_desc_pool->obj);
	i915_vma_unpin_and_release(&guc->stage_desc_pool);
1148 1149
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
static void guc_interrupts_capture(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/* tell all command streamers to forward interrupts (but not vblank) to GuC */
	irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MODE_GEN7(engine), irqs);

	/* route USER_INTERRUPT to Host, all others are sent to GuC. */
	irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
	       GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
	/* These three registers have the same bit definitions */
	I915_WRITE(GUC_BCS_RCS_IER, ~irqs);
	I915_WRITE(GUC_VCS2_VCS1_IER, ~irqs);
	I915_WRITE(GUC_WD_VECS_IER, ~irqs);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

	/*
	 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
	 * (unmasked) PM interrupts to the GuC. All other bits of this
	 * register *disable* generation of a specific interrupt.
	 *
	 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
	 * writing to the PM interrupt mask register, i.e. interrupts
	 * that must not be disabled.
	 *
	 * If the GuC is handling these interrupts, then we must not let
	 * the PM code disable ANY interrupt that the GuC is expecting.
	 * So for each ENABLED (0) bit in this register, we must SET the
	 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
	 * GuC needs ARAT expired interrupt unmasked hence it is set in
	 * pm_intrmsk_mbz.
	 *
	 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
	 * result in the register bit being left SET!
	 */
	dev_priv->rps.pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1189
	dev_priv->rps.pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1190 1191
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
static void guc_interrupts_release(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int irqs;

	/*
	 * tell all command streamers NOT to forward interrupts or vblank
	 * to GuC.
	 */
	irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
	irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
	for_each_engine(engine, dev_priv, id)
		I915_WRITE(RING_MODE_GEN7(engine), irqs);

	/* route all GT interrupts to the host */
	I915_WRITE(GUC_BCS_RCS_IER, 0);
	I915_WRITE(GUC_VCS2_VCS1_IER, 0);
	I915_WRITE(GUC_WD_VECS_IER, 0);

	dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
	dev_priv->rps.pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
}

1216
int i915_guc_submission_enable(struct drm_i915_private *dev_priv)
1217 1218
{
	struct intel_guc *guc = &dev_priv->guc;
1219
	struct i915_guc_client *client = guc->execbuf_client;
1220
	struct intel_engine_cs *engine;
1221
	enum intel_engine_id id;
1222
	int err;
1223

1224 1225 1226
	if (!client) {
		client = guc_client_alloc(dev_priv,
					  INTEL_INFO(dev_priv)->ring_mask,
1227
					  GUC_CLIENT_PRIORITY_KMD_NORMAL,
1228 1229 1230 1231 1232 1233 1234 1235
					  dev_priv->kernel_context);
		if (IS_ERR(client)) {
			DRM_ERROR("Failed to create GuC client for execbuf!\n");
			return PTR_ERR(client);
		}

		guc->execbuf_client = client;
	}
1236

1237 1238
	err = intel_guc_sample_forcewake(guc);
	if (err)
1239
		goto err_execbuf_client;
1240 1241

	guc_reset_wq(client);
1242

1243 1244
	err = guc_init_doorbell_hw(guc);
	if (err)
1245
		goto err_execbuf_client;
A
Alex Dai 已提交
1246

1247
	/* Take over from manual control of ELSP (execlists) */
1248 1249 1250 1251 1252
	guc_interrupts_capture(dev_priv);

	for_each_engine(engine, dev_priv, id) {
		const int wqi_size = sizeof(struct guc_wq_item);
		struct drm_i915_gem_request *rq;
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262
		/* The tasklet was initialised by execlists, and may be in
		 * a state of flux (across a reset) and so we just want to
		 * take over the callback without changing any other state
		 * in the tasklet.
		 */
		engine->irq_tasklet.func = i915_guc_irq_handler;
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

		/* Replay the current set of previously submitted requests */
1263
		spin_lock_irq(&engine->timeline->lock);
1264
		list_for_each_entry(rq, &engine->timeline->requests, link) {
1265
			guc_client_update_wq_rsvd(client, wqi_size);
1266
			__i915_guc_submit(rq);
1267
		}
1268
		spin_unlock_irq(&engine->timeline->lock);
1269 1270
	}

1271
	return 0;
1272 1273 1274 1275 1276

err_execbuf_client:
	guc_client_free(guc->execbuf_client);
	guc->execbuf_client = NULL;
	return err;
1277 1278
}

1279
void i915_guc_submission_disable(struct drm_i915_private *dev_priv)
1280 1281 1282
{
	struct intel_guc *guc = &dev_priv->guc;

1283 1284
	guc_interrupts_release(dev_priv);

1285
	/* Revert back to manual ELSP submission */
1286
	intel_engines_reset_default_submission(dev_priv);
1287 1288 1289

	guc_client_free(guc->execbuf_client);
	guc->execbuf_client = NULL;
1290 1291
}

1292 1293
/**
 * intel_guc_suspend() - notify GuC entering suspend state
1294
 * @dev_priv:	i915 device private
1295
 */
1296
int intel_guc_suspend(struct drm_i915_private *dev_priv)
1297 1298
{
	struct intel_guc *guc = &dev_priv->guc;
1299
	struct i915_gem_context *ctx;
1300 1301
	u32 data[3];

1302
	if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1303 1304
		return 0;

1305 1306
	gen9_disable_guc_interrupts(dev_priv);

1307
	ctx = dev_priv->kernel_context;
1308

1309
	data[0] = INTEL_GUC_ACTION_ENTER_S_STATE;
1310 1311 1312
	/* any value greater than GUC_POWER_D0 */
	data[1] = GUC_POWER_D1;
	/* first page is shared data with GuC */
1313
	data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1314

1315
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1316 1317 1318 1319
}

/**
 * intel_guc_resume() - notify GuC resuming from suspend state
1320
 * @dev_priv:	i915 device private
1321
 */
1322
int intel_guc_resume(struct drm_i915_private *dev_priv)
1323 1324
{
	struct intel_guc *guc = &dev_priv->guc;
1325
	struct i915_gem_context *ctx;
1326 1327
	u32 data[3];

1328
	if (guc->fw.load_status != INTEL_UC_FIRMWARE_SUCCESS)
1329 1330
		return 0;

1331 1332 1333
	if (i915.guc_log_level >= 0)
		gen9_enable_guc_interrupts(dev_priv);

1334
	ctx = dev_priv->kernel_context;
1335

1336
	data[0] = INTEL_GUC_ACTION_EXIT_S_STATE;
1337 1338
	data[1] = GUC_POWER_D0;
	/* first page is shared data with GuC */
1339
	data[2] = guc_ggtt_offset(ctx->engine[RCS].state);
1340

1341
	return intel_guc_send(guc, data, ARRAY_SIZE(data));
1342
}