huge_memory.c 86.1 KB
Newer Older
1 2 3 4 5 6 7
/*
 *  Copyright (C) 2009  Red Hat, Inc.
 *
 *  This work is licensed under the terms of the GNU GPL, version 2. See
 *  the COPYING file in the top-level directory.
 */

8 9
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

10 11
#include <linux/mm.h>
#include <linux/sched.h>
12
#include <linux/sched/coredump.h>
13
#include <linux/sched/numa_balancing.h>
14 15 16 17 18
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/mmu_notifier.h>
#include <linux/rmap.h>
#include <linux/swap.h>
19
#include <linux/shrinker.h>
A
Andrea Arcangeli 已提交
20
#include <linux/mm_inline.h>
21
#include <linux/swapops.h>
M
Matthew Wilcox 已提交
22
#include <linux/dax.h>
A
Andrea Arcangeli 已提交
23
#include <linux/khugepaged.h>
24
#include <linux/freezer.h>
25
#include <linux/pfn_t.h>
A
Andrea Arcangeli 已提交
26
#include <linux/mman.h>
27
#include <linux/memremap.h>
R
Ralf Baechle 已提交
28
#include <linux/pagemap.h>
29
#include <linux/debugfs.h>
30
#include <linux/migrate.h>
31
#include <linux/hashtable.h>
32
#include <linux/userfaultfd_k.h>
33
#include <linux/page_idle.h>
34
#include <linux/shmem_fs.h>
35
#include <linux/oom.h>
36
#include <linux/page_owner.h>
37

38 39 40 41
#include <asm/tlb.h>
#include <asm/pgalloc.h>
#include "internal.h"

A
Andrea Arcangeli 已提交
42
/*
43 44 45 46
 * By default, transparent hugepage support is disabled in order to avoid
 * risking an increased memory footprint for applications that are not
 * guaranteed to benefit from it. When transparent hugepage support is
 * enabled, it is for all mappings, and khugepaged scans all mappings.
47 48
 * Defrag is invoked by khugepaged hugepage allocations and by page faults
 * for all hugepage allocations.
A
Andrea Arcangeli 已提交
49
 */
50
unsigned long transparent_hugepage_flags __read_mostly =
51
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
A
Andrea Arcangeli 已提交
52
	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
53 54 55 56
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
#endif
57
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
58
	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
Y
Yang Shi 已提交
59 60
	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG)|
	(1<<TRANSPARENT_HUGEPAGE_FAST_COW_FLAG);
A
Andrea Arcangeli 已提交
61

62
static struct shrinker deferred_split_shrinker;
63

64
static atomic_t huge_zero_refcount;
65
struct page *huge_zero_page __read_mostly;
66

67 68 69 70 71 72 73 74 75 76
bool transparent_hugepage_enabled(struct vm_area_struct *vma)
{
	if (vma_is_anonymous(vma))
		return __transparent_hugepage_enabled(vma);
	if (vma_is_shmem(vma) && shmem_huge_enabled(vma))
		return __transparent_hugepage_enabled(vma);

	return false;
}

77
static struct page *get_huge_zero_page(void)
78 79 80 81
{
	struct page *zero_page;
retry:
	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
82
		return READ_ONCE(huge_zero_page);
83 84

	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
85
			HPAGE_PMD_ORDER);
86 87
	if (!zero_page) {
		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
88
		return NULL;
89 90
	}
	count_vm_event(THP_ZERO_PAGE_ALLOC);
91
	preempt_disable();
92
	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
93
		preempt_enable();
94
		__free_pages(zero_page, compound_order(zero_page));
95 96 97 98 99 100
		goto retry;
	}

	/* We take additional reference here. It will be put back by shrinker */
	atomic_set(&huge_zero_refcount, 2);
	preempt_enable();
101
	return READ_ONCE(huge_zero_page);
102 103
}

104
static void put_huge_zero_page(void)
105
{
106 107 108 109 110
	/*
	 * Counter should never go to zero here. Only shrinker can put
	 * last reference.
	 */
	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
111 112
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		return READ_ONCE(huge_zero_page);

	if (!get_huge_zero_page())
		return NULL;

	if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();

	return READ_ONCE(huge_zero_page);
}

void mm_put_huge_zero_page(struct mm_struct *mm)
{
	if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
		put_huge_zero_page();
}

133 134
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
					struct shrink_control *sc)
135
{
136 137 138
	/* we can free zero page only if last reference remains */
	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
}
139

140 141 142
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
				       struct shrink_control *sc)
{
143
	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
144 145
		struct page *zero_page = xchg(&huge_zero_page, NULL);
		BUG_ON(zero_page == NULL);
146
		__free_pages(zero_page, compound_order(zero_page));
147
		return HPAGE_PMD_NR;
148 149 150
	}

	return 0;
151 152
}

153
static struct shrinker huge_zero_page_shrinker = {
154 155
	.count_objects = shrink_huge_zero_page_count,
	.scan_objects = shrink_huge_zero_page_scan,
156 157 158
	.seeks = DEFAULT_SEEKS,
};

159 160 161 162
#ifdef CONFIG_SYSFS
static ssize_t enabled_show(struct kobject *kobj,
			    struct kobj_attribute *attr, char *buf)
{
163 164 165 166 167 168
	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "[always] madvise never\n");
	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always [madvise] never\n");
	else
		return sprintf(buf, "always madvise [never]\n");
169
}
170

171 172 173 174
static ssize_t enabled_store(struct kobject *kobj,
			     struct kobj_attribute *attr,
			     const char *buf, size_t count)
{
175
	ssize_t ret = count;
A
Andrea Arcangeli 已提交
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		ret = -EINVAL;
A
Andrea Arcangeli 已提交
191 192

	if (ret > 0) {
193
		int err = start_stop_khugepaged();
A
Andrea Arcangeli 已提交
194 195 196 197
		if (err)
			ret = err;
	}
	return ret;
198 199 200 201
}
static struct kobj_attribute enabled_attr =
	__ATTR(enabled, 0644, enabled_show, enabled_store);

202
ssize_t single_hugepage_flag_show(struct kobject *kobj,
203 204 205
				struct kobj_attribute *attr, char *buf,
				enum transparent_hugepage_flag flag)
{
206 207
	return sprintf(buf, "%d\n",
		       !!test_bit(flag, &transparent_hugepage_flags));
208
}
209

210
ssize_t single_hugepage_flag_store(struct kobject *kobj,
211 212 213 214
				 struct kobj_attribute *attr,
				 const char *buf, size_t count,
				 enum transparent_hugepage_flag flag)
{
215 216 217 218 219 220 221 222 223 224
	unsigned long value;
	int ret;

	ret = kstrtoul(buf, 10, &value);
	if (ret < 0)
		return ret;
	if (value > 1)
		return -EINVAL;

	if (value)
225
		set_bit(flag, &transparent_hugepage_flags);
226
	else
227 228 229 230 231 232 233 234
		clear_bit(flag, &transparent_hugepage_flags);

	return count;
}

static ssize_t defrag_show(struct kobject *kobj,
			   struct kobj_attribute *attr, char *buf)
{
235
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
236
		return sprintf(buf, "[always] defer defer+madvise madvise never\n");
237
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
238 239 240 241 242 243
		return sprintf(buf, "always [defer] defer+madvise madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer [defer+madvise] madvise never\n");
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return sprintf(buf, "always defer defer+madvise [madvise] never\n");
	return sprintf(buf, "always defer defer+madvise madvise [never]\n");
244
}
245

246 247 248 249
static ssize_t defrag_store(struct kobject *kobj,
			    struct kobj_attribute *attr,
			    const char *buf, size_t count)
{
250 251 252 253 254 255 256 257 258 259 260 261
	if (!memcmp("always", buf,
		    min(sizeof("always")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("defer+madvise", buf,
		    min(sizeof("defer+madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
262 263 264 265 266 267
	} else if (!memcmp("defer", buf,
		    min(sizeof("defer")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
	} else if (!memcmp("madvise", buf,
			   min(sizeof("madvise")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else if (!memcmp("never", buf,
			   min(sizeof("never")-1, count))) {
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
	} else
		return -EINVAL;

	return count;
284 285 286 287
}
static struct kobj_attribute defrag_attr =
	__ATTR(defrag, 0644, defrag_show, defrag_store);

288 289 290
static ssize_t use_zero_page_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
291
	return single_hugepage_flag_show(kobj, attr, buf,
292 293 294 295 296
				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static ssize_t use_zero_page_store(struct kobject *kobj,
		struct kobj_attribute *attr, const char *buf, size_t count)
{
297
	return single_hugepage_flag_store(kobj, attr, buf, count,
298 299 300 301
				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
}
static struct kobj_attribute use_zero_page_attr =
	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
302 303 304 305 306 307 308 309 310

static ssize_t hpage_pmd_size_show(struct kobject *kobj,
		struct kobj_attribute *attr, char *buf)
{
	return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
}
static struct kobj_attribute hpage_pmd_size_attr =
	__ATTR_RO(hpage_pmd_size);

311 312 313 314
#ifdef CONFIG_DEBUG_VM
static ssize_t debug_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
315
	return single_hugepage_flag_show(kobj, attr, buf,
316 317 318 319 320 321
				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static ssize_t debug_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
322
	return single_hugepage_flag_store(kobj, attr, buf, count,
323 324 325 326 327 328
				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
}
static struct kobj_attribute debug_cow_attr =
	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
#endif /* CONFIG_DEBUG_VM */

Y
Yang Shi 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
static ssize_t fast_cow_show(struct kobject *kobj,
				struct kobj_attribute *attr, char *buf)
{
	return single_hugepage_flag_show(kobj, attr, buf,
				TRANSPARENT_HUGEPAGE_FAST_COW_FLAG);
}
static ssize_t fast_cow_store(struct kobject *kobj,
			       struct kobj_attribute *attr,
			       const char *buf, size_t count)
{
	return single_hugepage_flag_store(kobj, attr, buf, count,
				 TRANSPARENT_HUGEPAGE_FAST_COW_FLAG);
}
static struct kobj_attribute fast_cow_attr =
	__ATTR(fast_cow, 0644, fast_cow_show, fast_cow_store);

345 346 347
static struct attribute *hugepage_attr[] = {
	&enabled_attr.attr,
	&defrag_attr.attr,
348
	&use_zero_page_attr.attr,
349
	&hpage_pmd_size_attr.attr,
350
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
351 352
	&shmem_enabled_attr.attr,
#endif
353 354 355
#ifdef CONFIG_DEBUG_VM
	&debug_cow_attr.attr,
#endif
Y
Yang Shi 已提交
356
	&fast_cow_attr.attr,
357 358 359
	NULL,
};

360
static const struct attribute_group hugepage_attr_group = {
361
	.attrs = hugepage_attr,
A
Andrea Arcangeli 已提交
362 363
};

S
Shaohua Li 已提交
364
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
365 366 367
{
	int err;

S
Shaohua Li 已提交
368 369
	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
	if (unlikely(!*hugepage_kobj)) {
370
		pr_err("failed to create transparent hugepage kobject\n");
S
Shaohua Li 已提交
371
		return -ENOMEM;
A
Andrea Arcangeli 已提交
372 373
	}

S
Shaohua Li 已提交
374
	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
A
Andrea Arcangeli 已提交
375
	if (err) {
376
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
377
		goto delete_obj;
A
Andrea Arcangeli 已提交
378 379
	}

S
Shaohua Li 已提交
380
	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
A
Andrea Arcangeli 已提交
381
	if (err) {
382
		pr_err("failed to register transparent hugepage group\n");
S
Shaohua Li 已提交
383
		goto remove_hp_group;
A
Andrea Arcangeli 已提交
384
	}
S
Shaohua Li 已提交
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

	return 0;

remove_hp_group:
	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
delete_obj:
	kobject_put(*hugepage_kobj);
	return err;
}

static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
	kobject_put(hugepage_kobj);
}
#else
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
{
	return 0;
}

static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
{
}
#endif /* CONFIG_SYSFS */

static int __init hugepage_init(void)
{
	int err;
	struct kobject *hugepage_kobj;

	if (!has_transparent_hugepage()) {
		transparent_hugepage_flags = 0;
		return -EINVAL;
	}

422 423 424 425 426 427 428 429 430 431
	/*
	 * hugepages can't be allocated by the buddy allocator
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
	/*
	 * we use page->mapping and page->index in second tail page
	 * as list_head: assuming THP order >= 2
	 */
	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);

S
Shaohua Li 已提交
432 433
	err = hugepage_init_sysfs(&hugepage_kobj);
	if (err)
434
		goto err_sysfs;
A
Andrea Arcangeli 已提交
435

436
	err = khugepaged_init();
A
Andrea Arcangeli 已提交
437
	if (err)
438
		goto err_slab;
A
Andrea Arcangeli 已提交
439

440 441 442
	err = register_shrinker(&huge_zero_page_shrinker);
	if (err)
		goto err_hzp_shrinker;
443 444 445
	err = register_shrinker(&deferred_split_shrinker);
	if (err)
		goto err_split_shrinker;
446

447 448 449 450 451
	/*
	 * By default disable transparent hugepages on smaller systems,
	 * where the extra memory used could hurt more than TLB overhead
	 * is likely to save.  The admin can still enable it through /sys.
	 */
452
	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
453
		transparent_hugepage_flags = 0;
454 455
		return 0;
	}
456

457
	err = start_stop_khugepaged();
458 459
	if (err)
		goto err_khugepaged;
A
Andrea Arcangeli 已提交
460

S
Shaohua Li 已提交
461
	return 0;
462
err_khugepaged:
463 464
	unregister_shrinker(&deferred_split_shrinker);
err_split_shrinker:
465 466
	unregister_shrinker(&huge_zero_page_shrinker);
err_hzp_shrinker:
467
	khugepaged_destroy();
468
err_slab:
S
Shaohua Li 已提交
469
	hugepage_exit_sysfs(hugepage_kobj);
470
err_sysfs:
A
Andrea Arcangeli 已提交
471
	return err;
472
}
473
subsys_initcall(hugepage_init);
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

static int __init setup_transparent_hugepage(char *str)
{
	int ret = 0;
	if (!str)
		goto out;
	if (!strcmp(str, "always")) {
		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
			&transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "madvise")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			&transparent_hugepage_flags);
		ret = 1;
	} else if (!strcmp(str, "never")) {
		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
			  &transparent_hugepage_flags);
		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
			  &transparent_hugepage_flags);
		ret = 1;
	}
out:
	if (!ret)
501
		pr_warn("transparent_hugepage= cannot parse, ignored\n");
502 503 504 505
	return ret;
}
__setup("transparent_hugepage=", setup_transparent_hugepage);

506
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
507
{
508
	if (likely(vma->vm_flags & VM_WRITE))
509 510 511 512
		pmd = pmd_mkwrite(pmd);
	return pmd;
}

513 514
#ifdef CONFIG_MEMCG
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
515
{
516
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
517 518
	int nid = page_to_nid(page);
	struct pglist_data *pgdat = NODE_DATA(nid);
519 520

	if (memcg)
521
		return &memcg->nodeinfo[nid]->deferred_split_queue;
522 523
	else
		return &pgdat->deferred_split_queue;
524
}
525 526 527 528 529 530 531 532
#else
static inline struct deferred_split *get_deferred_split_queue(struct page *page)
{
	struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));

	return &pgdat->deferred_split_queue;
}
#endif
533 534 535 536 537 538 539 540 541 542 543 544

void prep_transhuge_page(struct page *page)
{
	/*
	 * we use page->mapping and page->indexlru in second tail page
	 * as list_head: assuming THP order >= 2
	 */

	INIT_LIST_HEAD(page_deferred_list(page));
	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
		loff_t off, unsigned long flags, unsigned long size)
{
	unsigned long addr;
	loff_t off_end = off + len;
	loff_t off_align = round_up(off, size);
	unsigned long len_pad;

	if (off_end <= off_align || (off_end - off_align) < size)
		return 0;

	len_pad = len + size;
	if (len_pad < len || (off + len_pad) < off)
		return 0;

	addr = current->mm->get_unmapped_area(filp, 0, len_pad,
					      off >> PAGE_SHIFT, flags);
	if (IS_ERR_VALUE(addr))
		return 0;

	addr += (off - addr) & (size - 1);
	return addr;
}

unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	loff_t off = (loff_t)pgoff << PAGE_SHIFT;

	if (addr)
		goto out;
	if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
		goto out;

	addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
	if (addr)
		return addr;

 out:
	return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);

588 589
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
			struct page *page, gfp_t gfp)
590
{
J
Jan Kara 已提交
591
	struct vm_area_struct *vma = vmf->vma;
592
	struct mem_cgroup *memcg;
593
	pgtable_t pgtable;
J
Jan Kara 已提交
594
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
595
	vm_fault_t ret = 0;
596

597
	VM_BUG_ON_PAGE(!PageCompound(page), page);
598

599
	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
600 601 602 603
		put_page(page);
		count_vm_event(THP_FAULT_FALLBACK);
		return VM_FAULT_FALLBACK;
	}
604

K
Kirill A. Shutemov 已提交
605
	pgtable = pte_alloc_one(vma->vm_mm, haddr);
606
	if (unlikely(!pgtable)) {
607 608
		ret = VM_FAULT_OOM;
		goto release;
609
	}
610

611
	clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
612 613 614 615 616
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * clear_huge_page writes become visible before the set_pmd_at()
	 * write.
	 */
617 618
	__SetPageUptodate(page);

J
Jan Kara 已提交
619 620
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_none(*vmf->pmd))) {
621
		goto unlock_release;
622 623
	} else {
		pmd_t entry;
624

625 626 627 628
		ret = check_stable_address_space(vma->vm_mm);
		if (ret)
			goto unlock_release;

629 630
		/* Deliver the page fault to userland */
		if (userfaultfd_missing(vma)) {
631
			vm_fault_t ret2;
632

J
Jan Kara 已提交
633
			spin_unlock(vmf->ptl);
634
			mem_cgroup_cancel_charge(page, memcg, true);
635
			put_page(page);
K
Kirill A. Shutemov 已提交
636
			pte_free(vma->vm_mm, pgtable);
637 638 639
			ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
			VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
			return ret2;
640 641
		}

642
		entry = mk_huge_pmd(page, vma->vm_page_prot);
643
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
644
		page_add_new_anon_rmap(page, vma, haddr, true);
645
		mem_cgroup_commit_charge(page, memcg, false, true);
646
		lru_cache_add_active_or_unevictable(page, vma);
J
Jan Kara 已提交
647 648
		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
K
Kirill A. Shutemov 已提交
649
		add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
650
		mm_inc_nr_ptes(vma->vm_mm);
J
Jan Kara 已提交
651
		spin_unlock(vmf->ptl);
652
		count_vm_event(THP_FAULT_ALLOC);
653 654
	}

655
	return 0;
656 657 658 659 660 661 662 663 664
unlock_release:
	spin_unlock(vmf->ptl);
release:
	if (pgtable)
		pte_free(vma->vm_mm, pgtable);
	mem_cgroup_cancel_charge(page, memcg, true);
	put_page(page);
	return ret;

665 666
}

667
/*
668 669 670 671 672 673 674
 * always: directly stall for all thp allocations
 * defer: wake kswapd and fail if not immediately available
 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 *		  fail if not immediately available
 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 *	    available
 * never: never stall for any thp allocation
675 676 677
 */
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
{
678
	const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
679

680
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
681
		return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
682 683 684 685 686 687 688 689
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     __GFP_KSWAPD_RECLAIM);
	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
		return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
							     0);
690
	return GFP_TRANSHUGE_LIGHT;
691 692
}

693
/* Caller must hold page table lock. */
694
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
695
		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
696
		struct page *zero_page)
697 698
{
	pmd_t entry;
A
Andrew Morton 已提交
699 700
	if (!pmd_none(*pmd))
		return false;
701
	entry = mk_pmd(zero_page, vma->vm_page_prot);
702
	entry = pmd_mkhuge(entry);
703 704
	if (pgtable)
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
705
	set_pmd_at(mm, haddr, pmd, entry);
706
	mm_inc_nr_ptes(mm);
A
Andrew Morton 已提交
707
	return true;
708 709
}

710
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
711
{
J
Jan Kara 已提交
712
	struct vm_area_struct *vma = vmf->vma;
713
	gfp_t gfp;
714
	struct page *page;
J
Jan Kara 已提交
715
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
716

717
	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
718
		return VM_FAULT_FALLBACK;
719 720
	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;
721
	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
722
		return VM_FAULT_OOM;
J
Jan Kara 已提交
723
	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
K
Kirill A. Shutemov 已提交
724
			!mm_forbids_zeropage(vma->vm_mm) &&
725 726 727 728
			transparent_hugepage_use_zero_page()) {
		pgtable_t pgtable;
		struct page *zero_page;
		bool set;
729
		vm_fault_t ret;
K
Kirill A. Shutemov 已提交
730
		pgtable = pte_alloc_one(vma->vm_mm, haddr);
731
		if (unlikely(!pgtable))
A
Andrea Arcangeli 已提交
732
			return VM_FAULT_OOM;
733
		zero_page = mm_get_huge_zero_page(vma->vm_mm);
734
		if (unlikely(!zero_page)) {
K
Kirill A. Shutemov 已提交
735
			pte_free(vma->vm_mm, pgtable);
736
			count_vm_event(THP_FAULT_FALLBACK);
737
			return VM_FAULT_FALLBACK;
A
Andrea Arcangeli 已提交
738
		}
J
Jan Kara 已提交
739
		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
740 741
		ret = 0;
		set = false;
J
Jan Kara 已提交
742
		if (pmd_none(*vmf->pmd)) {
743 744 745 746
			ret = check_stable_address_space(vma->vm_mm);
			if (ret) {
				spin_unlock(vmf->ptl);
			} else if (userfaultfd_missing(vma)) {
J
Jan Kara 已提交
747 748
				spin_unlock(vmf->ptl);
				ret = handle_userfault(vmf, VM_UFFD_MISSING);
749 750
				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
			} else {
K
Kirill A. Shutemov 已提交
751
				set_huge_zero_page(pgtable, vma->vm_mm, vma,
J
Jan Kara 已提交
752 753
						   haddr, vmf->pmd, zero_page);
				spin_unlock(vmf->ptl);
754 755 756
				set = true;
			}
		} else
J
Jan Kara 已提交
757
			spin_unlock(vmf->ptl);
758
		if (!set)
K
Kirill A. Shutemov 已提交
759
			pte_free(vma->vm_mm, pgtable);
760
		return ret;
761
	}
762
	gfp = alloc_hugepage_direct_gfpmask(vma);
763
	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
764 765
	if (unlikely(!page)) {
		count_vm_event(THP_FAULT_FALLBACK);
766
		return VM_FAULT_FALLBACK;
767
	}
768
	prep_transhuge_page(page);
J
Jan Kara 已提交
769
	return __do_huge_pmd_anonymous_page(vmf, page, gfp);
770 771
}

772
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
773 774
		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
		pgtable_t pgtable)
M
Matthew Wilcox 已提交
775 776 777 778 779 780
{
	struct mm_struct *mm = vma->vm_mm;
	pmd_t entry;
	spinlock_t *ptl;

	ptl = pmd_lock(mm, pmd);
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
	if (!pmd_none(*pmd)) {
		if (write) {
			if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
				goto out_unlock;
			}
			entry = pmd_mkyoung(*pmd);
			entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
			if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
				update_mmu_cache_pmd(vma, addr, pmd);
		}

		goto out_unlock;
	}

796 797 798
	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pmd_mkdevmap(entry);
799
	if (write) {
800 801
		entry = pmd_mkyoung(pmd_mkdirty(entry));
		entry = maybe_pmd_mkwrite(entry, vma);
M
Matthew Wilcox 已提交
802
	}
803 804 805

	if (pgtable) {
		pgtable_trans_huge_deposit(mm, pmd, pgtable);
806
		mm_inc_nr_ptes(mm);
807
		pgtable = NULL;
808 809
	}

810 811
	set_pmd_at(mm, addr, pmd, entry);
	update_mmu_cache_pmd(vma, addr, pmd);
812 813

out_unlock:
M
Matthew Wilcox 已提交
814
	spin_unlock(ptl);
815 816
	if (pgtable)
		pte_free(mm, pgtable);
M
Matthew Wilcox 已提交
817 818
}

819
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
M
Matthew Wilcox 已提交
820
{
821 822
	unsigned long addr = vmf->address & PMD_MASK;
	struct vm_area_struct *vma = vmf->vma;
M
Matthew Wilcox 已提交
823
	pgprot_t pgprot = vma->vm_page_prot;
824
	pgtable_t pgtable = NULL;
825

M
Matthew Wilcox 已提交
826 827 828 829 830
	/*
	 * If we had pmd_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
831 832
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
M
Matthew Wilcox 已提交
833 834 835 836 837 838
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;
839

840 841 842 843 844 845
	if (arch_needs_pgtable_deposit()) {
		pgtable = pte_alloc_one(vma->vm_mm, addr);
		if (!pgtable)
			return VM_FAULT_OOM;
	}

846 847
	track_pfn_insert(vma, &pgprot, pfn);

848
	insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
849
	return VM_FAULT_NOPAGE;
M
Matthew Wilcox 已提交
850
}
851
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
M
Matthew Wilcox 已提交
852

853
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
854
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
855
{
856
	if (likely(vma->vm_flags & VM_WRITE))
857 858 859 860 861 862 863 864 865 866 867 868
		pud = pud_mkwrite(pud);
	return pud;
}

static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
{
	struct mm_struct *mm = vma->vm_mm;
	pud_t entry;
	spinlock_t *ptl;

	ptl = pud_lock(mm, pud);
869 870 871 872 873 874 875 876 877 878 879 880 881 882
	if (!pud_none(*pud)) {
		if (write) {
			if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
				WARN_ON_ONCE(!is_huge_zero_pud(*pud));
				goto out_unlock;
			}
			entry = pud_mkyoung(*pud);
			entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
			if (pudp_set_access_flags(vma, addr, pud, entry, 1))
				update_mmu_cache_pud(vma, addr, pud);
		}
		goto out_unlock;
	}

883 884 885 886
	entry = pud_mkhuge(pfn_t_pud(pfn, prot));
	if (pfn_t_devmap(pfn))
		entry = pud_mkdevmap(entry);
	if (write) {
887 888
		entry = pud_mkyoung(pud_mkdirty(entry));
		entry = maybe_pud_mkwrite(entry, vma);
889 890 891
	}
	set_pud_at(mm, addr, pud, entry);
	update_mmu_cache_pud(vma, addr, pud);
892 893

out_unlock:
894 895 896
	spin_unlock(ptl);
}

897
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
898
{
899 900
	unsigned long addr = vmf->address & PUD_MASK;
	struct vm_area_struct *vma = vmf->vma;
901
	pgprot_t pgprot = vma->vm_page_prot;
902

903 904 905 906 907
	/*
	 * If we had pud_special, we could avoid all these restrictions,
	 * but we need to be consistent with PTEs and architectures that
	 * can't support a 'special' bit.
	 */
908 909
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
			!pfn_t_devmap(pfn));
910 911 912 913 914 915 916 917 918
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));

	if (addr < vma->vm_start || addr >= vma->vm_end)
		return VM_FAULT_SIGBUS;

	track_pfn_insert(vma, &pgprot, pfn);

919
	insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
920 921 922 923 924
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

925
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
926
		pmd_t *pmd, int flags)
927 928 929
{
	pmd_t _pmd;

930 931 932
	_pmd = pmd_mkyoung(*pmd);
	if (flags & FOLL_WRITE)
		_pmd = pmd_mkdirty(_pmd);
933
	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
934
				pmd, _pmd, flags & FOLL_WRITE))
935 936 937 938 939 940 941 942 943 944 945 946 947
		update_mmu_cache_pmd(vma, addr, pmd);
}

struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
		pmd_t *pmd, int flags)
{
	unsigned long pfn = pmd_pfn(*pmd);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pmd_lockptr(mm, pmd));

948 949 950 951 952 953
	/*
	 * When we COW a devmap PMD entry, we split it into PTEs, so we should
	 * not be in this function with `flags & FOLL_COW` set.
	 */
	WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");

954
	if (flags & FOLL_WRITE && !pmd_write(*pmd))
955 956 957 958 959 960 961 962
		return NULL;

	if (pmd_present(*pmd) && pmd_devmap(*pmd))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
963
		touch_pmd(vma, addr, pmd, flags);
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

983 984 985 986
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
		  struct vm_area_struct *vma)
{
987
	spinlock_t *dst_ptl, *src_ptl;
988 989
	struct page *src_page;
	pmd_t pmd;
990
	pgtable_t pgtable = NULL;
991
	int ret = -ENOMEM;
992

993 994 995 996 997 998 999
	/* Skip if can be re-fill on fault */
	if (!vma_is_anonymous(vma))
		return 0;

	pgtable = pte_alloc_one(dst_mm, addr);
	if (unlikely(!pgtable))
		goto out;
1000

1001 1002 1003
	dst_ptl = pmd_lock(dst_mm, dst_pmd);
	src_ptl = pmd_lockptr(src_mm, src_pmd);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1004 1005 1006

	ret = -EAGAIN;
	pmd = *src_pmd;
1007 1008 1009 1010 1011 1012 1013 1014 1015

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (unlikely(is_swap_pmd(pmd))) {
		swp_entry_t entry = pmd_to_swp_entry(pmd);

		VM_BUG_ON(!is_pmd_migration_entry(pmd));
		if (is_write_migration_entry(entry)) {
			make_migration_entry_read(&entry);
			pmd = swp_entry_to_pmd(entry);
1016 1017
			if (pmd_swp_soft_dirty(*src_pmd))
				pmd = pmd_swp_mksoft_dirty(pmd);
1018 1019
			set_pmd_at(src_mm, addr, src_pmd, pmd);
		}
1020
		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1021
		mm_inc_nr_ptes(dst_mm);
1022
		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1023 1024 1025 1026 1027 1028
		set_pmd_at(dst_mm, addr, dst_pmd, pmd);
		ret = 0;
		goto out_unlock;
	}
#endif

1029
	if (unlikely(!pmd_trans_huge(pmd))) {
1030 1031 1032
		pte_free(dst_mm, pgtable);
		goto out_unlock;
	}
1033
	/*
1034
	 * When page table lock is held, the huge zero pmd should not be
1035 1036 1037 1038
	 * under splitting since we don't split the page itself, only pmd to
	 * a page table.
	 */
	if (is_huge_zero_pmd(pmd)) {
1039
		struct page *zero_page;
1040 1041 1042 1043 1044
		/*
		 * get_huge_zero_page() will never allocate a new page here,
		 * since we already have a zero page to copy. It just takes a
		 * reference.
		 */
1045
		zero_page = mm_get_huge_zero_page(dst_mm);
1046
		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1047
				zero_page);
1048 1049 1050
		ret = 0;
		goto out_unlock;
	}
1051

1052 1053 1054 1055 1056
	src_page = pmd_page(pmd);
	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
	get_page(src_page);
	page_dup_rmap(src_page, true);
	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1057
	mm_inc_nr_ptes(dst_mm);
1058
	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1059 1060 1061 1062 1063 1064 1065

	pmdp_set_wrprotect(src_mm, addr, src_pmd);
	pmd = pmd_mkold(pmd_wrprotect(pmd));
	set_pmd_at(dst_mm, addr, dst_pmd, pmd);

	ret = 0;
out_unlock:
1066 1067
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
1068 1069 1070 1071
out:
	return ret;
}

1072 1073
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1074
		pud_t *pud, int flags)
1075 1076 1077
{
	pud_t _pud;

1078 1079 1080
	_pud = pud_mkyoung(*pud);
	if (flags & FOLL_WRITE)
		_pud = pud_mkdirty(_pud);
1081
	if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1082
				pud, _pud, flags & FOLL_WRITE))
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
		update_mmu_cache_pud(vma, addr, pud);
}

struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
		pud_t *pud, int flags)
{
	unsigned long pfn = pud_pfn(*pud);
	struct mm_struct *mm = vma->vm_mm;
	struct dev_pagemap *pgmap;
	struct page *page;

	assert_spin_locked(pud_lockptr(mm, pud));

1096
	if (flags & FOLL_WRITE && !pud_write(*pud))
1097 1098 1099 1100 1101 1102 1103 1104
		return NULL;

	if (pud_present(*pud) && pud_devmap(*pud))
		/* pass */;
	else
		return NULL;

	if (flags & FOLL_TOUCH)
1105
		touch_pud(vma, addr, pud, flags);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	/*
	 * device mapped pages can only be returned if the
	 * caller will manage the page reference count.
	 */
	if (!(flags & FOLL_GET))
		return ERR_PTR(-EEXIST);

	pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
	pgmap = get_dev_pagemap(pfn, NULL);
	if (!pgmap)
		return ERR_PTR(-EFAULT);
	page = pfn_to_page(pfn);
	get_page(page);
	put_dev_pagemap(pgmap);

	return page;
}

int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
		  struct vm_area_struct *vma)
{
	spinlock_t *dst_ptl, *src_ptl;
	pud_t pud;
	int ret;

	dst_ptl = pud_lock(dst_mm, dst_pud);
	src_ptl = pud_lockptr(src_mm, src_pud);
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);

	ret = -EAGAIN;
	pud = *src_pud;
	if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
		goto out_unlock;

	/*
	 * When page table lock is held, the huge zero pud should not be
	 * under splitting since we don't split the page itself, only pud to
	 * a page table.
	 */
	if (is_huge_zero_pud(pud)) {
		/* No huge zero pud yet */
	}

	pudp_set_wrprotect(src_mm, addr, src_pud);
	pud = pud_mkold(pud_wrprotect(pud));
	set_pud_at(dst_mm, addr, dst_pud, pud);

	ret = 0;
out_unlock:
	spin_unlock(src_ptl);
	spin_unlock(dst_ptl);
	return ret;
}

void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
	pud_t entry;
	unsigned long haddr;
	bool write = vmf->flags & FAULT_FLAG_WRITE;

	vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
	if (unlikely(!pud_same(*vmf->pud, orig_pud)))
		goto unlock;

	entry = pud_mkyoung(orig_pud);
	if (write)
		entry = pud_mkdirty(entry);
	haddr = vmf->address & HPAGE_PUD_MASK;
	if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
		update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);

unlock:
	spin_unlock(vmf->ptl);
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

J
Jan Kara 已提交
1184
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1185 1186 1187
{
	pmd_t entry;
	unsigned long haddr;
1188
	bool write = vmf->flags & FAULT_FLAG_WRITE;
1189

J
Jan Kara 已提交
1190 1191
	vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1192 1193 1194
		goto unlock;

	entry = pmd_mkyoung(orig_pmd);
1195 1196
	if (write)
		entry = pmd_mkdirty(entry);
J
Jan Kara 已提交
1197
	haddr = vmf->address & HPAGE_PMD_MASK;
1198
	if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
J
Jan Kara 已提交
1199
		update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1200 1201

unlock:
J
Jan Kara 已提交
1202
	spin_unlock(vmf->ptl);
1203 1204
}

Y
Yang Shi 已提交
1205
static vm_fault_t do_huge_pmd_wp_page_fast(struct vm_fault *vmf, pmd_t orig_pmd)
1206
{
J
Jan Kara 已提交
1207
	struct vm_area_struct *vma = vmf->vma;
1208
	struct page *page;
J
Jan Kara 已提交
1209
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1210

J
Jan Kara 已提交
1211
	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1212
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1213

1214
	if (is_huge_zero_pmd(orig_pmd))
1215 1216
		goto fallback;

J
Jan Kara 已提交
1217
	spin_lock(vmf->ptl);
1218 1219 1220 1221 1222

	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		return 0;
	}
1223 1224

	page = pmd_page(orig_pmd);
1225
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1226 1227

	/* Lock page for reuse_swap_page() */
1228 1229 1230 1231 1232 1233
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1234
			spin_unlock(vmf->ptl);
1235 1236
			unlock_page(page);
			put_page(page);
1237
			return 0;
1238 1239 1240
		}
		put_page(page);
	}
1241 1242 1243 1244 1245

	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
1246
	if (reuse_swap_page(page, NULL)) {
1247 1248
		pmd_t entry;
		entry = pmd_mkyoung(orig_pmd);
1249
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1250
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
J
Jan Kara 已提交
1251
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1252
		unlock_page(page);
J
Jan Kara 已提交
1253
		spin_unlock(vmf->ptl);
1254
		return VM_FAULT_WRITE;
1255
	}
1256 1257

	unlock_page(page);
J
Jan Kara 已提交
1258
	spin_unlock(vmf->ptl);
1259 1260 1261
fallback:
	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
	return VM_FAULT_FALLBACK;
1262 1263
}

Y
Yang Shi 已提交
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
			pmd_t orig_pmd, struct page *page)
{
	struct vm_area_struct *vma = vmf->vma;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
	struct mem_cgroup *memcg;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;
	vm_fault_t ret = 0;
	struct page **pages;
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */

	pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
			      GFP_KERNEL);
	if (unlikely(!pages)) {
		ret |= VM_FAULT_OOM;
		goto out;
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
					       vmf->address, page_to_nid(page));
		if (unlikely(!pages[i] ||
			     mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
				     GFP_KERNEL, &memcg, false))) {
			if (pages[i])
				put_page(pages[i]);
			while (--i >= 0) {
				memcg = (void *)page_private(pages[i]);
				set_page_private(pages[i], 0);
				mem_cgroup_cancel_charge(pages[i], memcg,
						false);
				put_page(pages[i]);
			}
			kfree(pages);
			ret |= VM_FAULT_OOM;
			goto out;
		}
		set_page_private(pages[i], (unsigned long)memcg);
	}

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		copy_user_highpage(pages[i], page + i,
				   haddr + PAGE_SIZE * i, vma);
		__SetPageUptodate(pages[i]);
		cond_resched();
	}

	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);

	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
		goto out_free_pages;
	VM_BUG_ON_PAGE(!PageHead(page), page);

	/*
	 * Leave pmd empty until pte is filled note we must notify here as
	 * concurrent CPU thread might write to new page before the call to
	 * mmu_notifier_invalidate_range_end() happens which can lead to a
	 * device seeing memory write in different order than CPU.
	 *
	 * See Documentation/vm/mmu_notifier.rst
	 */
	pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);

	pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
	pmd_populate(vma->vm_mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t entry;

		entry = mk_pte(pages[i], vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
		page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
		mem_cgroup_commit_charge(pages[i], memcg, false, false);
		lru_cache_add_active_or_unevictable(pages[i], vma);
		vmf->pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*vmf->pte));
		set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
		pte_unmap(vmf->pte);
	}
	kfree(pages);

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
	page_remove_rmap(page, true);
	spin_unlock(vmf->ptl);

	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
						mmun_end);

	ret |= VM_FAULT_WRITE;
	put_page(page);

out:
	return ret;

out_free_pages:
	spin_unlock(vmf->ptl);
	mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		memcg = (void *)page_private(pages[i]);
		set_page_private(pages[i], 0);
		mem_cgroup_cancel_charge(pages[i], memcg, false);
		put_page(pages[i]);
	}
	kfree(pages);
	goto out;
}

static vm_fault_t do_huge_pmd_wp_page_slow(struct vm_fault *vmf, pmd_t orig_pmd)
{
	struct vm_area_struct *vma = vmf->vma;
	struct page *page = NULL, *new_page;
	struct mem_cgroup *memcg;
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	gfp_t huge_gfp;			/* for allocation and charge */
	vm_fault_t ret = 0;

	vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
	VM_BUG_ON_VMA(!vma->anon_vma, vma);
	if (is_huge_zero_pmd(orig_pmd))
		goto alloc;
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
		goto out_unlock;

	page = pmd_page(orig_pmd);
	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
	/*
	 * We can only reuse the page if nobody else maps the huge page or it's
	 * part.
	 */
	if (!trylock_page(page)) {
		get_page(page);
		spin_unlock(vmf->ptl);
		lock_page(page);
		spin_lock(vmf->ptl);
		if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
			unlock_page(page);
			put_page(page);
			goto out_unlock;
		}
		put_page(page);
	}
	if (reuse_swap_page(page, NULL)) {
		pmd_t entry;

		entry = pmd_mkyoung(orig_pmd);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
		if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
			update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
		ret |= VM_FAULT_WRITE;
		unlock_page(page);
		goto out_unlock;
	}
	unlock_page(page);
	get_page(page);
	spin_unlock(vmf->ptl);
alloc:
	if (__transparent_hugepage_enabled(vma) &&
	    !transparent_hugepage_debug_cow()) {
		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
	} else
		new_page = NULL;

	if (likely(new_page)) {
		prep_transhuge_page(new_page);
	} else {
		if (!page) {
			split_huge_pmd(vma, vmf->pmd, vmf->address);
			ret |= VM_FAULT_FALLBACK;
		} else {
			ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
			if (ret & VM_FAULT_OOM) {
				split_huge_pmd(vma, vmf->pmd, vmf->address);
				ret |= VM_FAULT_FALLBACK;
			}
			put_page(page);
		}
		count_vm_event(THP_FAULT_FALLBACK);
		goto out;
	}

	if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
					huge_gfp, &memcg, true))) {
		put_page(new_page);
		split_huge_pmd(vma, vmf->pmd, vmf->address);
		if (page)
			put_page(page);
		ret |= VM_FAULT_FALLBACK;
		count_vm_event(THP_FAULT_FALLBACK);
		goto out;
	}

	count_vm_event(THP_FAULT_ALLOC);

	if (!page)
		clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
	else
		copy_user_huge_page(new_page, page, vmf->address,
				    vma, HPAGE_PMD_NR);
	__SetPageUptodate(new_page);

	mmun_start = haddr;
	mmun_end   = haddr + HPAGE_PMD_SIZE;
	mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);

	spin_lock(vmf->ptl);
	if (page)
		put_page(page);
	if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
		spin_unlock(vmf->ptl);
		mem_cgroup_cancel_charge(new_page, memcg, true);
		put_page(new_page);
		goto out_mn;
	} else {
		pmd_t entry;

		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
		pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
		page_add_new_anon_rmap(new_page, vma, haddr, true);
		mem_cgroup_commit_charge(new_page, memcg, false, true);
		lru_cache_add_active_or_unevictable(new_page, vma);
		set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
		update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
		if (!page) {
			add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
		} else {
			VM_BUG_ON_PAGE(!PageHead(page), page);
			page_remove_rmap(page, true);
			put_page(page);
		}
		ret |= VM_FAULT_WRITE;
	}
	spin_unlock(vmf->ptl);
out_mn:
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pmdp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
					       mmun_end);
out:
	return ret;
out_unlock:
	spin_unlock(vmf->ptl);
	return ret;
}

vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
{
	if (transparent_hugepage_fast_cow())
		return do_huge_pmd_wp_page_fast(vmf, orig_pmd);

	return do_huge_pmd_wp_page_slow(vmf, orig_pmd);
}

1536 1537 1538 1539 1540 1541
/*
 * FOLL_FORCE can write to even unwritable pmd's, but only
 * after we've gone through a COW cycle and they are dirty.
 */
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
{
1542
	return pmd_write(pmd) ||
1543 1544 1545
	       ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
}

1546
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1547 1548 1549 1550
				   unsigned long addr,
				   pmd_t *pmd,
				   unsigned int flags)
{
1551
	struct mm_struct *mm = vma->vm_mm;
1552 1553
	struct page *page = NULL;

1554
	assert_spin_locked(pmd_lockptr(mm, pmd));
1555

1556
	if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1557 1558
		goto out;

1559 1560 1561 1562
	/* Avoid dumping huge zero page */
	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
		return ERR_PTR(-EFAULT);

1563
	/* Full NUMA hinting faults to serialise migration in fault paths */
1564
	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1565 1566
		goto out;

1567
	page = pmd_page(*pmd);
1568
	VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1569
	if (flags & FOLL_TOUCH)
1570
		touch_pmd(vma, addr, pmd, flags);
E
Eric B Munson 已提交
1571
	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1572 1573 1574 1575
		/*
		 * We don't mlock() pte-mapped THPs. This way we can avoid
		 * leaking mlocked pages into non-VM_LOCKED VMAs.
		 *
1576 1577
		 * For anon THP:
		 *
1578 1579 1580 1581 1582 1583 1584
		 * In most cases the pmd is the only mapping of the page as we
		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
		 * writable private mappings in populate_vma_page_range().
		 *
		 * The only scenario when we have the page shared here is if we
		 * mlocking read-only mapping shared over fork(). We skip
		 * mlocking such pages.
1585 1586 1587 1588 1589 1590
		 *
		 * For file THP:
		 *
		 * We can expect PageDoubleMap() to be stable under page lock:
		 * for file pages we set it in page_add_file_rmap(), which
		 * requires page to be locked.
1591
		 */
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602

		if (PageAnon(page) && compound_mapcount(page) != 1)
			goto skip_mlock;
		if (PageDoubleMap(page) || !page->mapping)
			goto skip_mlock;
		if (!trylock_page(page))
			goto skip_mlock;
		lru_add_drain();
		if (page->mapping && !PageDoubleMap(page))
			mlock_vma_page(page);
		unlock_page(page);
1603
	}
1604
skip_mlock:
1605
	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1606
	VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1607
	if (flags & FOLL_GET)
1608
		get_page(page);
1609 1610 1611 1612 1613

out:
	return page;
}

1614
/* NUMA hinting page fault entry point for trans huge pmds */
1615
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1616
{
J
Jan Kara 已提交
1617
	struct vm_area_struct *vma = vmf->vma;
1618
	struct anon_vma *anon_vma = NULL;
1619
	struct page *page;
J
Jan Kara 已提交
1620
	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1621
	int page_nid = -1, this_nid = numa_node_id();
1622
	int target_nid, last_cpupid = -1;
1623 1624
	bool page_locked;
	bool migrated = false;
1625
	bool was_writable;
1626
	int flags = 0;
1627

J
Jan Kara 已提交
1628 1629
	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
	if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1630 1631
		goto out_unlock;

1632 1633 1634 1635 1636
	/*
	 * If there are potential migrations, wait for completion and retry
	 * without disrupting NUMA hinting information. Do not relock and
	 * check_same as the page may no longer be mapped.
	 */
J
Jan Kara 已提交
1637 1638
	if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
		page = pmd_page(*vmf->pmd);
1639 1640
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1641
		spin_unlock(vmf->ptl);
1642
		wait_on_page_locked(page);
1643
		put_page(page);
1644 1645 1646
		goto out;
	}

1647
	page = pmd_page(pmd);
1648
	BUG_ON(is_huge_zero_page(page));
1649
	page_nid = page_to_nid(page);
1650
	last_cpupid = page_cpupid_last(page);
1651
	count_vm_numa_event(NUMA_HINT_FAULTS);
1652
	if (page_nid == this_nid) {
1653
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1654 1655
		flags |= TNF_FAULT_LOCAL;
	}
1656

1657
	/* See similar comment in do_numa_page for explanation */
1658
	if (!pmd_savedwrite(pmd))
1659 1660
		flags |= TNF_NO_GROUP;

1661 1662 1663 1664
	/*
	 * Acquire the page lock to serialise THP migrations but avoid dropping
	 * page_table_lock if at all possible
	 */
1665 1666 1667 1668
	page_locked = trylock_page(page);
	target_nid = mpol_misplaced(page, vma, haddr);
	if (target_nid == -1) {
		/* If the page was locked, there are no parallel migrations */
1669
		if (page_locked)
1670
			goto clear_pmdnuma;
1671
	}
1672

1673
	/* Migration could have started since the pmd_trans_migrating check */
1674
	if (!page_locked) {
1675 1676 1677
		page_nid = -1;
		if (!get_page_unless_zero(page))
			goto out_unlock;
J
Jan Kara 已提交
1678
		spin_unlock(vmf->ptl);
1679
		wait_on_page_locked(page);
1680
		put_page(page);
1681 1682 1683
		goto out;
	}

1684 1685 1686 1687
	/*
	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
	 * to serialises splits
	 */
1688
	get_page(page);
J
Jan Kara 已提交
1689
	spin_unlock(vmf->ptl);
1690
	anon_vma = page_lock_anon_vma_read(page);
1691

P
Peter Zijlstra 已提交
1692
	/* Confirm the PMD did not change while page_table_lock was released */
J
Jan Kara 已提交
1693 1694
	spin_lock(vmf->ptl);
	if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1695 1696
		unlock_page(page);
		put_page(page);
1697
		page_nid = -1;
1698
		goto out_unlock;
1699
	}
1700

1701 1702 1703 1704 1705 1706 1707
	/* Bail if we fail to protect against THP splits for any reason */
	if (unlikely(!anon_vma)) {
		put_page(page);
		page_nid = -1;
		goto clear_pmdnuma;
	}

1708 1709 1710 1711 1712 1713
	/*
	 * Since we took the NUMA fault, we must have observed the !accessible
	 * bit. Make sure all other CPUs agree with that, to avoid them
	 * modifying the page we're about to migrate.
	 *
	 * Must be done under PTL such that we'll observe the relevant
1714 1715 1716 1717
	 * inc_tlb_flush_pending().
	 *
	 * We are not sure a pending tlb flush here is for a huge page
	 * mapping or not. Hence use the tlb range variant
1718 1719
	 */
	if (mm_tlb_flush_pending(vma->vm_mm))
1720
		flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1721

1722 1723
	/*
	 * Migrate the THP to the requested node, returns with page unlocked
1724
	 * and access rights restored.
1725
	 */
J
Jan Kara 已提交
1726
	spin_unlock(vmf->ptl);
1727

K
Kirill A. Shutemov 已提交
1728
	migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
J
Jan Kara 已提交
1729
				vmf->pmd, pmd, vmf->address, page, target_nid);
1730 1731
	if (migrated) {
		flags |= TNF_MIGRATED;
1732
		page_nid = target_nid;
1733 1734
	} else
		flags |= TNF_MIGRATE_FAIL;
1735

1736
	goto out;
1737
clear_pmdnuma:
1738
	BUG_ON(!PageLocked(page));
1739
	was_writable = pmd_savedwrite(pmd);
1740
	pmd = pmd_modify(pmd, vma->vm_page_prot);
1741
	pmd = pmd_mkyoung(pmd);
1742 1743
	if (was_writable)
		pmd = pmd_mkwrite(pmd);
J
Jan Kara 已提交
1744 1745
	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
	update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1746
	unlock_page(page);
1747
out_unlock:
J
Jan Kara 已提交
1748
	spin_unlock(vmf->ptl);
1749 1750 1751 1752 1753

out:
	if (anon_vma)
		page_unlock_anon_vma_read(anon_vma);

1754
	if (page_nid != -1)
J
Jan Kara 已提交
1755
		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1756
				flags);
1757

1758 1759 1760
	return 0;
}

1761 1762 1763 1764 1765
/*
 * Return true if we do MADV_FREE successfully on entire pmd page.
 * Otherwise, return false.
 */
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1766 1767 1768 1769 1770 1771
		pmd_t *pmd, unsigned long addr, unsigned long next)
{
	spinlock_t *ptl;
	pmd_t orig_pmd;
	struct page *page;
	struct mm_struct *mm = tlb->mm;
1772
	bool ret = false;
1773

1774 1775
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1776 1777
	ptl = pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1778
		goto out_unlocked;
1779 1780

	orig_pmd = *pmd;
1781
	if (is_huge_zero_pmd(orig_pmd))
1782 1783
		goto out;

1784 1785 1786 1787 1788 1789
	if (unlikely(!pmd_present(orig_pmd))) {
		VM_BUG_ON(thp_migration_supported() &&
				  !is_pmd_migration_entry(orig_pmd));
		goto out;
	}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
	page = pmd_page(orig_pmd);
	/*
	 * If other processes are mapping this page, we couldn't discard
	 * the page unless they all do MADV_FREE so let's skip the page.
	 */
	if (page_mapcount(page) != 1)
		goto out;

	if (!trylock_page(page))
		goto out;

	/*
	 * If user want to discard part-pages of THP, split it so MADV_FREE
	 * will deactivate only them.
	 */
	if (next - addr != HPAGE_PMD_SIZE) {
		get_page(page);
		spin_unlock(ptl);
1808
		split_huge_page(page);
1809
		unlock_page(page);
1810
		put_page(page);
1811 1812 1813 1814 1815 1816 1817 1818
		goto out_unlocked;
	}

	if (PageDirty(page))
		ClearPageDirty(page);
	unlock_page(page);

	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1819
		pmdp_invalidate(vma, addr, pmd);
1820 1821 1822 1823 1824 1825
		orig_pmd = pmd_mkold(orig_pmd);
		orig_pmd = pmd_mkclean(orig_pmd);

		set_pmd_at(mm, addr, pmd, orig_pmd);
		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	}
S
Shaohua Li 已提交
1826 1827

	mark_page_lazyfree(page);
1828
	ret = true;
1829 1830 1831 1832 1833 1834
out:
	spin_unlock(ptl);
out_unlocked:
	return ret;
}

1835 1836 1837 1838 1839 1840
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
{
	pgtable_t pgtable;

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pte_free(mm, pgtable);
1841
	mm_dec_nr_ptes(mm);
1842 1843
}

1844
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
S
Shaohua Li 已提交
1845
		 pmd_t *pmd, unsigned long addr)
1846
{
1847
	pmd_t orig_pmd;
1848
	spinlock_t *ptl;
1849

1850 1851
	tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);

1852 1853
	ptl = __pmd_trans_huge_lock(pmd, vma);
	if (!ptl)
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pmdp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pmdp related
	 * operations.
	 */
	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
			tlb->fullmm);
	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
	if (vma_is_dax(vma)) {
1865 1866
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(tlb->mm, pmd);
1867 1868
		spin_unlock(ptl);
		if (is_huge_zero_pmd(orig_pmd))
1869
			tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1870
	} else if (is_huge_zero_pmd(orig_pmd)) {
1871
		zap_deposited_table(tlb->mm, pmd);
1872
		spin_unlock(ptl);
1873
		tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1874
	} else {
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
		struct page *page = NULL;
		int flush_needed = 1;

		if (pmd_present(orig_pmd)) {
			page = pmd_page(orig_pmd);
			page_remove_rmap(page, true);
			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
			VM_BUG_ON_PAGE(!PageHead(page), page);
		} else if (thp_migration_supported()) {
			swp_entry_t entry;

			VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
			entry = pmd_to_swp_entry(orig_pmd);
			page = pfn_to_page(swp_offset(entry));
			flush_needed = 0;
		} else
			WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");

1893
		if (PageAnon(page)) {
1894
			zap_deposited_table(tlb->mm, pmd);
1895 1896
			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
		} else {
1897 1898
			if (arch_needs_pgtable_deposit())
				zap_deposited_table(tlb->mm, pmd);
1899
			add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1900
		}
1901

1902
		spin_unlock(ptl);
1903 1904
		if (flush_needed)
			tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1905
	}
1906
	return 1;
1907 1908
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
#ifndef pmd_move_must_withdraw
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
					 spinlock_t *old_pmd_ptl,
					 struct vm_area_struct *vma)
{
	/*
	 * With split pmd lock we also need to move preallocated
	 * PTE page table if new_pmd is on different PMD page table.
	 *
	 * We also don't deposit and withdraw tables for file pages.
	 */
	return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
}
#endif

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
{
#ifdef CONFIG_MEM_SOFT_DIRTY
	if (unlikely(is_pmd_migration_entry(pmd)))
		pmd = pmd_swp_mksoft_dirty(pmd);
	else if (pmd_present(pmd))
		pmd = pmd_mksoft_dirty(pmd);
#endif
	return pmd;
}

1935
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1936
		  unsigned long new_addr, unsigned long old_end,
1937
		  pmd_t *old_pmd, pmd_t *new_pmd)
1938
{
1939
	spinlock_t *old_ptl, *new_ptl;
1940 1941
	pmd_t pmd;
	struct mm_struct *mm = vma->vm_mm;
1942
	bool force_flush = false;
1943 1944 1945

	if ((old_addr & ~HPAGE_PMD_MASK) ||
	    (new_addr & ~HPAGE_PMD_MASK) ||
1946
	    old_end - old_addr < HPAGE_PMD_SIZE)
1947
		return false;
1948 1949 1950 1951 1952 1953 1954

	/*
	 * The destination pmd shouldn't be established, free_pgtables()
	 * should have release it.
	 */
	if (WARN_ON(!pmd_none(*new_pmd))) {
		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1955
		return false;
1956 1957
	}

1958 1959 1960 1961
	/*
	 * We don't have to worry about the ordering of src and dst
	 * ptlocks because exclusive mmap_sem prevents deadlock.
	 */
1962 1963
	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
	if (old_ptl) {
1964 1965 1966
		new_ptl = pmd_lockptr(mm, new_pmd);
		if (new_ptl != old_ptl)
			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1967
		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1968
		if (pmd_present(pmd))
1969
			force_flush = true;
1970
		VM_BUG_ON(!pmd_none(*new_pmd));
1971

1972
		if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1973
			pgtable_t pgtable;
1974 1975 1976
			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
		}
1977 1978
		pmd = move_soft_dirty_pmd(pmd);
		set_pmd_at(mm, new_addr, new_pmd, pmd);
1979 1980
		if (force_flush)
			flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1981 1982
		if (new_ptl != old_ptl)
			spin_unlock(new_ptl);
1983
		spin_unlock(old_ptl);
1984
		return true;
1985
	}
1986
	return false;
1987 1988
}

1989 1990 1991 1992 1993 1994
/*
 * Returns
 *  - 0 if PMD could not be locked
 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
 */
1995
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1996
		unsigned long addr, pgprot_t newprot, int prot_numa)
1997 1998
{
	struct mm_struct *mm = vma->vm_mm;
1999
	spinlock_t *ptl;
2000 2001 2002
	pmd_t entry;
	bool preserve_write;
	int ret;
2003

2004
	ptl = __pmd_trans_huge_lock(pmd, vma);
2005 2006
	if (!ptl)
		return 0;
2007

2008 2009
	preserve_write = prot_numa && pmd_write(*pmd);
	ret = 1;
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
	if (is_swap_pmd(*pmd)) {
		swp_entry_t entry = pmd_to_swp_entry(*pmd);

		VM_BUG_ON(!is_pmd_migration_entry(*pmd));
		if (is_write_migration_entry(entry)) {
			pmd_t newpmd;
			/*
			 * A protection check is difficult so
			 * just be safe and disable write
			 */
			make_migration_entry_read(&entry);
			newpmd = swp_entry_to_pmd(entry);
2024 2025
			if (pmd_swp_soft_dirty(*pmd))
				newpmd = pmd_swp_mksoft_dirty(newpmd);
2026 2027 2028 2029 2030 2031
			set_pmd_at(mm, addr, pmd, newpmd);
		}
		goto unlock;
	}
#endif

2032 2033 2034 2035 2036 2037 2038
	/*
	 * Avoid trapping faults against the zero page. The read-only
	 * data is likely to be read-cached on the local CPU and
	 * local/remote hits to the zero page are not interesting.
	 */
	if (prot_numa && is_huge_zero_pmd(*pmd))
		goto unlock;
2039

2040 2041 2042
	if (prot_numa && pmd_protnone(*pmd))
		goto unlock;

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
	/*
	 * In case prot_numa, we are under down_read(mmap_sem). It's critical
	 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
	 * which is also under down_read(mmap_sem):
	 *
	 *	CPU0:				CPU1:
	 *				change_huge_pmd(prot_numa=1)
	 *				 pmdp_huge_get_and_clear_notify()
	 * madvise_dontneed()
	 *  zap_pmd_range()
	 *   pmd_trans_huge(*pmd) == 0 (without ptl)
	 *   // skip the pmd
	 *				 set_pmd_at();
	 *				 // pmd is re-established
	 *
	 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
	 * which may break userspace.
	 *
	 * pmdp_invalidate() is required to make sure we don't miss
	 * dirty/young flags set by hardware.
	 */
2064
	entry = pmdp_invalidate(vma, addr, pmd);
2065

2066 2067 2068 2069 2070 2071 2072 2073
	entry = pmd_modify(entry, newprot);
	if (preserve_write)
		entry = pmd_mk_savedwrite(entry);
	ret = HPAGE_PMD_NR;
	set_pmd_at(mm, addr, pmd, entry);
	BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
unlock:
	spin_unlock(ptl);
2074 2075 2076 2077
	return ret;
}

/*
2078
 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2079
 *
2080 2081
 * Note that if it returns page table lock pointer, this routine returns without
 * unlocking page table lock. So callers must unlock it.
2082
 */
2083
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2084
{
2085 2086
	spinlock_t *ptl;
	ptl = pmd_lock(vma->vm_mm, pmd);
2087 2088
	if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
			pmd_devmap(*pmd)))
2089 2090 2091
		return ptl;
	spin_unlock(ptl);
	return NULL;
2092 2093
}

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
/*
 * Returns true if a given pud maps a thp, false otherwise.
 *
 * Note that if it returns true, this routine returns without unlocking page
 * table lock. So callers must unlock it.
 */
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
{
	spinlock_t *ptl;

	ptl = pud_lock(vma->vm_mm, pud);
	if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
		return ptl;
	spin_unlock(ptl);
	return NULL;
}

#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
		 pud_t *pud, unsigned long addr)
{
	pud_t orig_pud;
	spinlock_t *ptl;

	ptl = __pud_trans_huge_lock(pud, vma);
	if (!ptl)
		return 0;
	/*
	 * For architectures like ppc64 we look at deposited pgtable
	 * when calling pudp_huge_get_and_clear. So do the
	 * pgtable_trans_huge_withdraw after finishing pudp related
	 * operations.
	 */
	orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
			tlb->fullmm);
	tlb_remove_pud_tlb_entry(tlb, pud, addr);
	if (vma_is_dax(vma)) {
		spin_unlock(ptl);
		/* No zero page support yet */
	} else {
		/* No support for anonymous PUD pages yet */
		BUG();
	}
	return 1;
}

static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
		unsigned long haddr)
{
	VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
	VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));

2148
	count_vm_event(THP_SPLIT_PUD);
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167

	pudp_huge_clear_flush_notify(vma, haddr, pud);
}

void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
		unsigned long address)
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PUD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
	ptl = pud_lock(mm, pud);
	if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
		goto out;
	__split_huge_pud_locked(vma, pud, haddr);

out:
	spin_unlock(ptl);
2168 2169 2170 2171 2172 2173
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback as
	 * the above pudp_huge_clear_flush_notify() did already call it.
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PUD_SIZE);
2174 2175 2176
}
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */

2177 2178 2179 2180 2181 2182 2183 2184
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
		unsigned long haddr, pmd_t *pmd)
{
	struct mm_struct *mm = vma->vm_mm;
	pgtable_t pgtable;
	pmd_t _pmd;
	int i;

2185 2186 2187 2188 2189 2190
	/*
	 * Leave pmd empty until pte is filled note that it is fine to delay
	 * notification until mmu_notifier_invalidate_range_end() as we are
	 * replacing a zero pmd write protected page with a zero pte write
	 * protected page.
	 *
2191
	 * See Documentation/vm/mmu_notifier.rst
2192 2193
	 */
	pmdp_huge_clear_flush(vma, haddr, pmd);
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211

	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
		pte_t *pte, entry;
		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
		entry = pte_mkspecial(entry);
		pte = pte_offset_map(&_pmd, haddr);
		VM_BUG_ON(!pte_none(*pte));
		set_pte_at(mm, haddr, pte, entry);
		pte_unmap(pte);
	}
	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
}

static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2212
		unsigned long haddr, bool freeze)
2213 2214 2215 2216
{
	struct mm_struct *mm = vma->vm_mm;
	struct page *page;
	pgtable_t pgtable;
2217
	pmd_t old_pmd, _pmd;
2218
	bool young, write, soft_dirty, pmd_migration = false;
2219
	unsigned long addr;
2220 2221 2222 2223 2224
	int i;

	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2225 2226
	VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
				&& !pmd_devmap(*pmd));
2227 2228 2229

	count_vm_event(THP_SPLIT_PMD);

2230 2231
	if (!vma_is_anonymous(vma)) {
		_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2232 2233 2234 2235 2236 2237
		/*
		 * We are going to unmap this huge page. So
		 * just go ahead and zap it
		 */
		if (arch_needs_pgtable_deposit())
			zap_deposited_table(mm, pmd);
2238 2239 2240
		if (vma_is_dax(vma))
			return;
		page = pmd_page(_pmd);
2241 2242
		if (!PageDirty(page) && pmd_dirty(_pmd))
			set_page_dirty(page);
2243 2244 2245 2246
		if (!PageReferenced(page) && pmd_young(_pmd))
			SetPageReferenced(page);
		page_remove_rmap(page, true);
		put_page(page);
2247
		add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2248 2249
		return;
	} else if (is_huge_zero_pmd(*pmd)) {
2250 2251 2252 2253 2254 2255 2256 2257 2258
		/*
		 * FIXME: Do we want to invalidate secondary mmu by calling
		 * mmu_notifier_invalidate_range() see comments below inside
		 * __split_huge_pmd() ?
		 *
		 * We are going from a zero huge page write protected to zero
		 * small page also write protected so it does not seems useful
		 * to invalidate secondary mmu at this time.
		 */
2259 2260 2261
		return __split_huge_zero_page_pmd(vma, haddr, pmd);
	}

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
	/*
	 * Up to this point the pmd is present and huge and userland has the
	 * whole access to the hugepage during the split (which happens in
	 * place). If we overwrite the pmd with the not-huge version pointing
	 * to the pte here (which of course we could if all CPUs were bug
	 * free), userland could trigger a small page size TLB miss on the
	 * small sized TLB while the hugepage TLB entry is still established in
	 * the huge TLB. Some CPU doesn't like that.
	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
	 * 383 on page 93. Intel should be safe but is also warns that it's
	 * only safe if the permission and cache attributes of the two entries
	 * loaded in the two TLB is identical (which should be the case here).
	 * But it is generally safer to never allow small and huge TLB entries
	 * for the same virtual address to be loaded simultaneously. So instead
	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
	 * current pmd notpresent (atomically because here the pmd_trans_huge
	 * must remain set at all times on the pmd until the split is complete
	 * for this pmd), then we flush the SMP TLB and finally we write the
	 * non-huge version of the pmd entry with pmd_populate.
	 */
	old_pmd = pmdp_invalidate(vma, haddr, pmd);

	pmd_migration = is_pmd_migration_entry(old_pmd);
2285
	if (unlikely(pmd_migration)) {
2286 2287
		swp_entry_t entry;

2288
		entry = pmd_to_swp_entry(old_pmd);
2289
		page = pfn_to_page(swp_offset(entry));
2290 2291 2292 2293
		write = is_write_migration_entry(entry);
		young = false;
		soft_dirty = pmd_swp_soft_dirty(old_pmd);
	} else {
2294
		page = pmd_page(old_pmd);
2295 2296 2297 2298 2299 2300
		if (pmd_dirty(old_pmd))
			SetPageDirty(page);
		write = pmd_write(old_pmd);
		young = pmd_young(old_pmd);
		soft_dirty = pmd_soft_dirty(old_pmd);
	}
2301
	VM_BUG_ON_PAGE(!page_count(page), page);
2302
	page_ref_add(page, HPAGE_PMD_NR - 1);
2303

2304 2305 2306 2307
	/*
	 * Withdraw the table only after we mark the pmd entry invalid.
	 * This's critical for some architectures (Power).
	 */
2308 2309 2310
	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
	pmd_populate(mm, &_pmd, pgtable);

2311
	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2312 2313 2314 2315 2316 2317
		pte_t entry, *pte;
		/*
		 * Note that NUMA hinting access restrictions are not
		 * transferred to avoid any possibility of altering
		 * permissions across VMAs.
		 */
2318
		if (freeze || pmd_migration) {
2319 2320 2321
			swp_entry_t swp_entry;
			swp_entry = make_migration_entry(page + i, write);
			entry = swp_entry_to_pte(swp_entry);
2322 2323
			if (soft_dirty)
				entry = pte_swp_mksoft_dirty(entry);
2324
		} else {
2325
			entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2326
			entry = maybe_mkwrite(entry, vma);
2327 2328 2329 2330
			if (!write)
				entry = pte_wrprotect(entry);
			if (!young)
				entry = pte_mkold(entry);
2331 2332
			if (soft_dirty)
				entry = pte_mksoft_dirty(entry);
2333
		}
2334
		pte = pte_offset_map(&_pmd, addr);
2335
		BUG_ON(!pte_none(*pte));
2336
		set_pte_at(mm, addr, pte, entry);
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
		atomic_inc(&page[i]._mapcount);
		pte_unmap(pte);
	}

	/*
	 * Set PG_double_map before dropping compound_mapcount to avoid
	 * false-negative page_mapped().
	 */
	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			atomic_inc(&page[i]._mapcount);
	}

	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
		/* Last compound_mapcount is gone. */
2352
		__dec_node_page_state(page, NR_ANON_THPS);
2353 2354 2355 2356 2357 2358 2359 2360 2361
		if (TestClearPageDoubleMap(page)) {
			/* No need in mapcount reference anymore */
			for (i = 0; i < HPAGE_PMD_NR; i++)
				atomic_dec(&page[i]._mapcount);
		}
	}

	smp_wmb(); /* make pte visible before pmd */
	pmd_populate(mm, pmd, pgtable);
2362 2363

	if (freeze) {
2364
		for (i = 0; i < HPAGE_PMD_NR; i++) {
2365 2366 2367 2368
			page_remove_rmap(page + i, false);
			put_page(page + i);
		}
	}
2369 2370 2371
}

void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2372
		unsigned long address, bool freeze, struct page *page)
2373 2374 2375 2376 2377 2378 2379
{
	spinlock_t *ptl;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long haddr = address & HPAGE_PMD_MASK;

	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
	ptl = pmd_lock(mm, pmd);
2380 2381 2382 2383 2384 2385 2386 2387 2388

	/*
	 * If caller asks to setup a migration entries, we need a page to check
	 * pmd against. Otherwise we can end up replacing wrong page.
	 */
	VM_BUG_ON(freeze && !page);
	if (page && page != pmd_page(*pmd))
	        goto out;

2389
	if (pmd_trans_huge(*pmd)) {
2390
		page = pmd_page(*pmd);
2391
		if (PageMlocked(page))
2392
			clear_page_mlock(page);
2393
	} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2394
		goto out;
2395
	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2396
out:
2397
	spin_unlock(ptl);
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	/*
	 * No need to double call mmu_notifier->invalidate_range() callback.
	 * They are 3 cases to consider inside __split_huge_pmd_locked():
	 *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
	 *  2) __split_huge_zero_page_pmd() read only zero page and any write
	 *    fault will trigger a flush_notify before pointing to a new page
	 *    (it is fine if the secondary mmu keeps pointing to the old zero
	 *    page in the meantime)
	 *  3) Split a huge pmd into pte pointing to the same page. No need
	 *     to invalidate secondary tlb entry they are all still valid.
	 *     any further changes to individual pte will notify. So no need
	 *     to call mmu_notifier->invalidate_range()
	 */
	mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
					       HPAGE_PMD_SIZE);
2413 2414
}

2415 2416
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
		bool freeze, struct page *page)
2417
{
2418
	pgd_t *pgd;
2419
	p4d_t *p4d;
2420
	pud_t *pud;
2421 2422
	pmd_t *pmd;

2423
	pgd = pgd_offset(vma->vm_mm, address);
2424 2425 2426
	if (!pgd_present(*pgd))
		return;

2427 2428 2429 2430 2431
	p4d = p4d_offset(pgd, address);
	if (!p4d_present(*p4d))
		return;

	pud = pud_offset(p4d, address);
2432 2433 2434 2435
	if (!pud_present(*pud))
		return;

	pmd = pmd_offset(pud, address);
2436

2437
	__split_huge_pmd(vma, pmd, address, freeze, page);
2438 2439
}

2440
void vma_adjust_trans_huge(struct vm_area_struct *vma,
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
			     unsigned long start,
			     unsigned long end,
			     long adjust_next)
{
	/*
	 * If the new start address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (start & ~HPAGE_PMD_MASK &&
	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2453
		split_huge_pmd_address(vma, start, false, NULL);
2454 2455 2456 2457 2458 2459 2460 2461 2462

	/*
	 * If the new end address isn't hpage aligned and it could
	 * previously contain an hugepage: check if we need to split
	 * an huge pmd.
	 */
	if (end & ~HPAGE_PMD_MASK &&
	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2463
		split_huge_pmd_address(vma, end, false, NULL);
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

	/*
	 * If we're also updating the vma->vm_next->vm_start, if the new
	 * vm_next->vm_start isn't page aligned and it could previously
	 * contain an hugepage: check if we need to split an huge pmd.
	 */
	if (adjust_next > 0) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long nstart = next->vm_start;
		nstart += adjust_next << PAGE_SHIFT;
		if (nstart & ~HPAGE_PMD_MASK &&
		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2477
			split_huge_pmd_address(next, nstart, false, NULL);
2478 2479
	}
}
2480

2481
static void unmap_page(struct page *page)
2482
{
2483
	enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2484
		TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
M
Minchan Kim 已提交
2485
	bool unmap_success;
2486 2487 2488

	VM_BUG_ON_PAGE(!PageHead(page), page);

2489
	if (PageAnon(page))
2490
		ttu_flags |= TTU_SPLIT_FREEZE;
2491

M
Minchan Kim 已提交
2492 2493
	unmap_success = try_to_unmap(page, ttu_flags);
	VM_BUG_ON_PAGE(!unmap_success, page);
2494 2495
}

2496
static void remap_page(struct page *page)
2497
{
2498
	int i;
2499 2500 2501 2502 2503 2504
	if (PageTransHuge(page)) {
		remove_migration_ptes(page, page, true);
	} else {
		for (i = 0; i < HPAGE_PMD_NR; i++)
			remove_migration_ptes(page + i, page + i, true);
	}
2505 2506
}

2507
static void __split_huge_page_tail(struct page *head, int tail,
2508 2509 2510 2511
		struct lruvec *lruvec, struct list_head *list)
{
	struct page *page_tail = head + tail;

2512
	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2513 2514

	/*
2515 2516 2517 2518
	 * Clone page flags before unfreezing refcount.
	 *
	 * After successful get_page_unless_zero() might follow flags change,
	 * for exmaple lock_page() which set PG_waiters.
2519 2520 2521 2522 2523
	 */
	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	page_tail->flags |= (head->flags &
			((1L << PG_referenced) |
			 (1L << PG_swapbacked) |
2524
			 (1L << PG_swapcache) |
2525 2526 2527
			 (1L << PG_mlocked) |
			 (1L << PG_uptodate) |
			 (1L << PG_active) |
2528
			 (1L << PG_workingset) |
2529
			 (1L << PG_locked) |
2530 2531
			 (1L << PG_unevictable) |
			 (1L << PG_dirty)));
2532

2533 2534 2535 2536 2537 2538
	/* ->mapping in first tail page is compound_mapcount */
	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
			page_tail);
	page_tail->mapping = head->mapping;
	page_tail->index = head->index + tail;

2539
	/* Page flags must be visible before we make the page non-compound. */
2540 2541
	smp_wmb();

2542 2543 2544 2545 2546 2547
	/*
	 * Clear PageTail before unfreezing page refcount.
	 *
	 * After successful get_page_unless_zero() might follow put_page()
	 * which needs correct compound_head().
	 */
2548 2549
	clear_compound_head(page_tail);

2550 2551 2552 2553
	/* Finally unfreeze refcount. Additional reference from page cache. */
	page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
					  PageSwapCache(head)));

2554 2555 2556 2557 2558 2559
	if (page_is_young(head))
		set_page_young(page_tail);
	if (page_is_idle(head))
		set_page_idle(page_tail);

	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
M
Michal Hocko 已提交
2560 2561 2562 2563 2564 2565

	/*
	 * always add to the tail because some iterators expect new
	 * pages to show after the currently processed elements - e.g.
	 * migrate_pages
	 */
2566 2567 2568
	lru_add_page_tail(head, page_tail, lruvec, list);
}

2569
static void __split_huge_page(struct page *page, struct list_head *list,
2570
		pgoff_t end, unsigned long flags)
2571 2572 2573 2574
{
	struct page *head = compound_head(page);
	struct zone *zone = page_zone(head);
	struct lruvec *lruvec;
2575
	int i;
2576

M
Mel Gorman 已提交
2577
	lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2578 2579 2580 2581

	/* complete memcg works before add pages to LRU */
	mem_cgroup_split_huge_fixup(head);

2582
	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2583
		__split_huge_page_tail(head, i, lruvec, list);
2584 2585
		/* Some pages can be beyond i_size: drop them from page cache */
		if (head[i].index >= end) {
2586
			ClearPageDirty(head + i);
2587
			__delete_from_page_cache(head + i, NULL);
2588 2589
			if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
				shmem_uncharge(head->mapping->host, 1);
2590 2591 2592
			put_page(head + i);
		}
	}
2593 2594

	ClearPageCompound(head);
2595 2596 2597

	split_page_owner(head, HPAGE_PMD_ORDER);

2598 2599
	/* See comment in __split_huge_page_tail() */
	if (PageAnon(head)) {
2600 2601 2602 2603 2604
		/* Additional pin to radix tree of swap cache */
		if (PageSwapCache(head))
			page_ref_add(head, 2);
		else
			page_ref_inc(head);
2605 2606 2607
	} else {
		/* Additional pin to radix tree */
		page_ref_add(head, 2);
M
Matthew Wilcox 已提交
2608
		xa_unlock(&head->mapping->i_pages);
2609 2610
	}

2611
	spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2612

2613
	remap_page(head);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631

	for (i = 0; i < HPAGE_PMD_NR; i++) {
		struct page *subpage = head + i;
		if (subpage == page)
			continue;
		unlock_page(subpage);

		/*
		 * Subpages may be freed if there wasn't any mapping
		 * like if add_to_swap() is running on a lru page that
		 * had its mapping zapped. And freeing these pages
		 * requires taking the lru_lock so we do the put_page
		 * of the tail pages after the split is complete.
		 */
		put_page(subpage);
	}
}

2632 2633
int total_mapcount(struct page *page)
{
K
Kirill A. Shutemov 已提交
2634
	int i, compound, ret;
2635 2636 2637 2638 2639 2640

	VM_BUG_ON_PAGE(PageTail(page), page);

	if (likely(!PageCompound(page)))
		return atomic_read(&page->_mapcount) + 1;

K
Kirill A. Shutemov 已提交
2641
	compound = compound_mapcount(page);
2642
	if (PageHuge(page))
K
Kirill A. Shutemov 已提交
2643 2644
		return compound;
	ret = compound;
2645 2646
	for (i = 0; i < HPAGE_PMD_NR; i++)
		ret += atomic_read(&page[i]._mapcount) + 1;
K
Kirill A. Shutemov 已提交
2647 2648 2649
	/* File pages has compound_mapcount included in _mapcount */
	if (!PageAnon(page))
		return ret - compound * HPAGE_PMD_NR;
2650 2651 2652 2653 2654
	if (PageDoubleMap(page))
		ret -= HPAGE_PMD_NR;
	return ret;
}

2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
/*
 * This calculates accurately how many mappings a transparent hugepage
 * has (unlike page_mapcount() which isn't fully accurate). This full
 * accuracy is primarily needed to know if copy-on-write faults can
 * reuse the page and change the mapping to read-write instead of
 * copying them. At the same time this returns the total_mapcount too.
 *
 * The function returns the highest mapcount any one of the subpages
 * has. If the return value is one, even if different processes are
 * mapping different subpages of the transparent hugepage, they can
 * all reuse it, because each process is reusing a different subpage.
 *
 * The total_mapcount is instead counting all virtual mappings of the
 * subpages. If the total_mapcount is equal to "one", it tells the
 * caller all mappings belong to the same "mm" and in turn the
 * anon_vma of the transparent hugepage can become the vma->anon_vma
 * local one as no other process may be mapping any of the subpages.
 *
 * It would be more accurate to replace page_mapcount() with
 * page_trans_huge_mapcount(), however we only use
 * page_trans_huge_mapcount() in the copy-on-write faults where we
 * need full accuracy to avoid breaking page pinning, because
 * page_trans_huge_mapcount() is slower than page_mapcount().
 */
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
{
	int i, ret, _total_mapcount, mapcount;

	/* hugetlbfs shouldn't call it */
	VM_BUG_ON_PAGE(PageHuge(page), page);

	if (likely(!PageTransCompound(page))) {
		mapcount = atomic_read(&page->_mapcount) + 1;
		if (total_mapcount)
			*total_mapcount = mapcount;
		return mapcount;
	}

	page = compound_head(page);

	_total_mapcount = ret = 0;
	for (i = 0; i < HPAGE_PMD_NR; i++) {
		mapcount = atomic_read(&page[i]._mapcount) + 1;
		ret = max(ret, mapcount);
		_total_mapcount += mapcount;
	}
	if (PageDoubleMap(page)) {
		ret -= 1;
		_total_mapcount -= HPAGE_PMD_NR;
	}
	mapcount = compound_mapcount(page);
	ret += mapcount;
	_total_mapcount += mapcount;
	if (total_mapcount)
		*total_mapcount = _total_mapcount;
	return ret;
}

2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
/* Racy check whether the huge page can be split */
bool can_split_huge_page(struct page *page, int *pextra_pins)
{
	int extra_pins;

	/* Additional pins from radix tree */
	if (PageAnon(page))
		extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
	else
		extra_pins = HPAGE_PMD_NR;
	if (pextra_pins)
		*pextra_pins = extra_pins;
	return total_mapcount(page) == page_count(page) - extra_pins - 1;
}

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
/*
 * This function splits huge page into normal pages. @page can point to any
 * subpage of huge page to split. Split doesn't change the position of @page.
 *
 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
 * The huge page must be locked.
 *
 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
 *
 * Both head page and tail pages will inherit mapping, flags, and so on from
 * the hugepage.
 *
 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
 * they are not mapped.
 *
 * Returns 0 if the hugepage is split successfully.
 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
 * us.
 */
int split_huge_page_to_list(struct page *page, struct list_head *list)
{
	struct page *head = compound_head(page);
2750
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2751 2752 2753
	struct anon_vma *anon_vma = NULL;
	struct address_space *mapping = NULL;
	int count, mapcount, extra_pins, ret;
2754
	bool mlocked;
2755
	unsigned long flags;
2756
	pgoff_t end;
2757 2758 2759 2760 2761

	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
	VM_BUG_ON_PAGE(!PageLocked(page), page);
	VM_BUG_ON_PAGE(!PageCompound(page), page);

2762 2763 2764
	if (PageWriteback(page))
		return -EBUSY;

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	if (PageAnon(head)) {
		/*
		 * The caller does not necessarily hold an mmap_sem that would
		 * prevent the anon_vma disappearing so we first we take a
		 * reference to it and then lock the anon_vma for write. This
		 * is similar to page_lock_anon_vma_read except the write lock
		 * is taken to serialise against parallel split or collapse
		 * operations.
		 */
		anon_vma = page_get_anon_vma(head);
		if (!anon_vma) {
			ret = -EBUSY;
			goto out;
		}
2779
		end = -1;
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
		mapping = NULL;
		anon_vma_lock_write(anon_vma);
	} else {
		mapping = head->mapping;

		/* Truncated ? */
		if (!mapping) {
			ret = -EBUSY;
			goto out;
		}

		anon_vma = NULL;
		i_mmap_lock_read(mapping);
2793 2794 2795 2796 2797 2798 2799 2800 2801

		/*
		 *__split_huge_page() may need to trim off pages beyond EOF:
		 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
		 * which cannot be nested inside the page tree lock. So note
		 * end now: i_size itself may be changed at any moment, but
		 * head page lock is good enough to serialize the trimming.
		 */
		end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2802 2803 2804
	}

	/*
2805
	 * Racy check if we can split the page, before unmap_page() will
2806 2807
	 * split PMDs
	 */
2808
	if (!can_split_huge_page(head, &extra_pins)) {
2809 2810 2811 2812
		ret = -EBUSY;
		goto out_unlock;
	}

2813
	mlocked = PageMlocked(page);
2814
	unmap_page(head);
2815 2816
	VM_BUG_ON_PAGE(compound_mapcount(head), head);

2817 2818 2819 2820
	/* Make sure the page is not on per-CPU pagevec as it takes pin */
	if (mlocked)
		lru_add_drain();

2821
	/* prevent PageLRU to go away from under us, and freeze lru stats */
2822
	spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2823 2824 2825 2826

	if (mapping) {
		void **pslot;

M
Matthew Wilcox 已提交
2827 2828
		xa_lock(&mapping->i_pages);
		pslot = radix_tree_lookup_slot(&mapping->i_pages,
2829 2830 2831 2832 2833 2834
				page_index(head));
		/*
		 * Check if the head page is present in radix tree.
		 * We assume all tail are present too, if head is there.
		 */
		if (radix_tree_deref_slot_protected(pslot,
M
Matthew Wilcox 已提交
2835
					&mapping->i_pages.xa_lock) != head)
2836 2837 2838
			goto fail;
	}

2839
	/* Prevent deferred_split_scan() touching ->_refcount */
2840
	spin_lock(&ds_queue->split_queue_lock);
2841 2842
	count = page_count(head);
	mapcount = total_mapcount(head);
2843
	if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2844
		if (!list_empty(page_deferred_list(head))) {
2845
			ds_queue->split_queue_len--;
2846 2847
			list_del(page_deferred_list(head));
		}
2848
		if (mapping)
2849
			__dec_node_page_state(page, NR_SHMEM_THPS);
2850
		spin_unlock(&ds_queue->split_queue_lock);
2851
		__split_huge_page(page, list, end, flags);
2852 2853 2854 2855 2856 2857
		if (PageSwapCache(head)) {
			swp_entry_t entry = { .val = page_private(head) };

			ret = split_swap_cluster(entry);
		} else
			ret = 0;
2858
	} else {
2859 2860 2861 2862 2863 2864 2865 2866
		if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
			pr_alert("total_mapcount: %u, page_count(): %u\n",
					mapcount, count);
			if (PageTail(page))
				dump_page(head, NULL);
			dump_page(page, "total_mapcount(head) > 0");
			BUG();
		}
2867
		spin_unlock(&ds_queue->split_queue_lock);
2868
fail:		if (mapping)
M
Matthew Wilcox 已提交
2869
			xa_unlock(&mapping->i_pages);
2870
		spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2871
		remap_page(head);
2872 2873 2874 2875
		ret = -EBUSY;
	}

out_unlock:
2876 2877 2878 2879 2880 2881
	if (anon_vma) {
		anon_vma_unlock_write(anon_vma);
		put_anon_vma(anon_vma);
	}
	if (mapping)
		i_mmap_unlock_read(mapping);
2882 2883 2884 2885
out:
	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
	return ret;
}
2886 2887 2888

void free_transhuge_page(struct page *page)
{
2889
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
2890 2891
	unsigned long flags;

2892
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2893
	if (!list_empty(page_deferred_list(page))) {
2894
		ds_queue->split_queue_len--;
2895 2896
		list_del(page_deferred_list(page));
	}
2897
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2898 2899 2900 2901 2902
	free_compound_page(page);
}

void deferred_split_huge_page(struct page *page)
{
2903 2904 2905 2906
	struct deferred_split *ds_queue = get_deferred_split_queue(page);
#ifdef CONFIG_MEMCG
	struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
#endif
2907 2908 2909 2910
	unsigned long flags;

	VM_BUG_ON_PAGE(!PageTransHuge(page), page);

2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
	/*
	 * The try_to_unmap() in page reclaim path might reach here too,
	 * this may cause a race condition to corrupt deferred split queue.
	 * And, if page reclaim is already handling the same page, it is
	 * unnecessary to handle it again in shrinker.
	 *
	 * Check PageSwapCache to determine if the page is being
	 * handled by page reclaim since THP swap would add the page into
	 * swap cache before calling try_to_unmap().
	 */
	if (PageSwapCache(page))
		return;

2924
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2925
	if (list_empty(page_deferred_list(page))) {
2926
		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2927 2928
		list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
		ds_queue->split_queue_len++;
2929 2930 2931 2932 2933
#ifdef CONFIG_MEMCG
		if (memcg)
			memcg_set_shrinker_bit(memcg, page_to_nid(page),
					       deferred_split_shrinker.id);
#endif
2934
	}
2935
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2936 2937 2938 2939 2940
}

static unsigned long deferred_split_count(struct shrinker *shrink,
		struct shrink_control *sc)
{
2941 2942
	int nid = sc->nid;
	struct pglist_data *pgdata = NODE_DATA(nid);
2943
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2944 2945 2946

#ifdef CONFIG_MEMCG
	if (sc->memcg)
2947
		ds_queue = &sc->memcg->nodeinfo[nid]->deferred_split_queue;
2948
#endif
2949
	return READ_ONCE(ds_queue->split_queue_len);
2950 2951 2952 2953 2954
}

static unsigned long deferred_split_scan(struct shrinker *shrink,
		struct shrink_control *sc)
{
2955 2956
	int nid = sc->nid;
	struct pglist_data *pgdata = NODE_DATA(nid);
2957
	struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2958 2959 2960 2961 2962
	unsigned long flags;
	LIST_HEAD(list), *pos, *next;
	struct page *page;
	int split = 0;

2963 2964
#ifdef CONFIG_MEMCG
	if (sc->memcg)
2965
		ds_queue = &sc->memcg->nodeinfo[nid]->deferred_split_queue;
2966 2967
#endif

2968
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2969
	/* Take pin on all head pages to avoid freeing them under us */
2970
	list_for_each_safe(pos, next, &ds_queue->split_queue) {
2971 2972
		page = list_entry((void *)pos, struct page, mapping);
		page = compound_head(page);
2973 2974 2975 2976
		if (get_page_unless_zero(page)) {
			list_move(page_deferred_list(page), &list);
		} else {
			/* We lost race with put_compound_page() */
2977
			list_del_init(page_deferred_list(page));
2978
			ds_queue->split_queue_len--;
2979
		}
2980 2981
		if (!--sc->nr_to_scan)
			break;
2982
	}
2983
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2984 2985 2986

	list_for_each_safe(pos, next, &list) {
		page = list_entry((void *)pos, struct page, mapping);
2987 2988
		if (!trylock_page(page))
			goto next;
2989 2990 2991 2992
		/* split_huge_page() removes page from list on success */
		if (!split_huge_page(page))
			split++;
		unlock_page(page);
2993
next:
2994 2995 2996
		put_page(page);
	}

2997 2998 2999
	spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
	list_splice_tail(&list, &ds_queue->split_queue);
	spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
3000

3001 3002 3003 3004
	/*
	 * Stop shrinker if we didn't split any page, but the queue is empty.
	 * This can happen if pages were freed under us.
	 */
3005
	if (!split && list_empty(&ds_queue->split_queue))
3006 3007
		return SHRINK_STOP;
	return split;
3008 3009 3010 3011 3012 3013
}

static struct shrinker deferred_split_shrinker = {
	.count_objects = deferred_split_count,
	.scan_objects = deferred_split_scan,
	.seeks = DEFAULT_SEEKS,
3014 3015
	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
		 SHRINKER_NONSLAB,
3016
};
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041

#ifdef CONFIG_DEBUG_FS
static int split_huge_pages_set(void *data, u64 val)
{
	struct zone *zone;
	struct page *page;
	unsigned long pfn, max_zone_pfn;
	unsigned long total = 0, split = 0;

	if (val != 1)
		return -EINVAL;

	for_each_populated_zone(zone) {
		max_zone_pfn = zone_end_pfn(zone);
		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
			if (!pfn_valid(pfn))
				continue;

			page = pfn_to_page(pfn);
			if (!get_page_unless_zero(page))
				continue;

			if (zone != page_zone(page))
				goto next;

3042
			if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
				goto next;

			total++;
			lock_page(page);
			if (!split_huge_page(page))
				split++;
			unlock_page(page);
next:
			put_page(page);
		}
	}

3055
	pr_info("%lu of %lu THP split\n", split, total);
3056 3057 3058 3059 3060 3061 3062 3063 3064 3065

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
		"%llu\n");

static int __init split_huge_pages_debugfs(void)
{
	void *ret;

3066
	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3067 3068 3069 3070 3071 3072 3073
			&split_huge_pages_fops);
	if (!ret)
		pr_warn("Failed to create split_huge_pages in debugfs");
	return 0;
}
late_initcall(split_huge_pages_debugfs);
#endif
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083

#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
		struct page *page)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	pmd_t pmdval;
	swp_entry_t entry;
3084
	pmd_t pmdswp;
3085 3086 3087 3088 3089 3090 3091 3092 3093 3094

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
	pmdval = *pvmw->pmd;
	pmdp_invalidate(vma, address, pvmw->pmd);
	if (pmd_dirty(pmdval))
		set_page_dirty(page);
	entry = make_migration_entry(page, pmd_write(pmdval));
3095 3096 3097 3098
	pmdswp = swp_entry_to_pmd(entry);
	if (pmd_soft_dirty(pmdval))
		pmdswp = pmd_swp_mksoft_dirty(pmdswp);
	set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
	page_remove_rmap(page, true);
	put_page(page);
}

void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
{
	struct vm_area_struct *vma = pvmw->vma;
	struct mm_struct *mm = vma->vm_mm;
	unsigned long address = pvmw->address;
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	pmd_t pmde;
	swp_entry_t entry;

	if (!(pvmw->pmd && !pvmw->pte))
		return;

	entry = pmd_to_swp_entry(*pvmw->pmd);
	get_page(new);
	pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3118 3119
	if (pmd_swp_soft_dirty(*pvmw->pmd))
		pmde = pmd_mksoft_dirty(pmde);
3120
	if (is_write_migration_entry(entry))
3121
		pmde = maybe_pmd_mkwrite(pmde, vma);
3122 3123

	flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3124 3125 3126 3127
	if (PageAnon(new))
		page_add_anon_rmap(new, vma, mmun_start, true);
	else
		page_add_file_rmap(new, true);
3128
	set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3129
	if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3130 3131 3132 3133
		mlock_vma_page(new);
	update_mmu_cache_pmd(vma, address, pvmw->pmd);
}
#endif