tlb_uv.c 22.0 KB
Newer Older
1 2 3 4 5 6 7 8
/*
 *	SGI UltraViolet TLB flush routines.
 *
 *	(c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
 *
 *	This code is released under the GNU General Public License version 2 or
 *	later.
 */
9
#include <linux/seq_file.h>
10 11 12 13
#include <linux/proc_fs.h>
#include <linux/kernel.h>

#include <asm/mmu_context.h>
T
Tejun Heo 已提交
14
#include <asm/uv/uv.h>
15
#include <asm/uv/uv_mmrs.h>
16
#include <asm/uv/uv_hub.h>
17
#include <asm/uv/uv_bau.h>
I
Ingo Molnar 已提交
18
#include <asm/apic.h>
19
#include <asm/idle.h>
20
#include <asm/tsc.h>
21
#include <asm/irq_vectors.h>
22

23 24 25 26 27 28 29
static struct bau_control	**uv_bau_table_bases __read_mostly;
static int			uv_bau_retry_limit __read_mostly;

/* position of pnode (which is nasid>>1): */
static int			uv_nshift __read_mostly;

static unsigned long		uv_mmask __read_mostly;
30

31 32
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
33

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
/*
 * Determine the first node on a blade.
 */
static int __init blade_to_first_node(int blade)
{
	int node, b;

	for_each_online_node(node) {
		b = uv_node_to_blade_id(node);
		if (blade == b)
			return node;
	}
	BUG();
}

/*
 * Determine the apicid of the first cpu on a blade.
 */
static int __init blade_to_first_apicid(int blade)
{
	int cpu;

	for_each_present_cpu(cpu)
		if (blade == uv_cpu_to_blade_id(cpu))
			return per_cpu(x86_cpu_to_apicid, cpu);
	return -1;
}

62 63 64 65 66 67 68 69
/*
 * Free a software acknowledge hardware resource by clearing its Pending
 * bit. This will return a reply to the sender.
 * If the message has timed out, a reply has already been sent by the
 * hardware but the resource has not been released. In that case our
 * clear of the Timeout bit (as well) will free the resource. No reply will
 * be sent (the hardware will only do one reply per message).
 */
70
static void uv_reply_to_message(int resource,
71 72
				struct bau_payload_queue_entry *msg,
				struct bau_msg_status *msp)
73
{
74
	unsigned long dw;
75

76
	dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
77 78 79 80
	msg->replied_to = 1;
	msg->sw_ack_vector = 0;
	if (msp)
		msp->seen_by.bits = 0;
81
	uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
82 83 84 85 86 87
}

/*
 * Do all the things a cpu should do for a TLB shootdown message.
 * Other cpu's may come here at the same time for this message.
 */
88
static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
89
				   int msg_slot, int sw_ack_slot)
90 91 92
{
	unsigned long this_cpu_mask;
	struct bau_msg_status *msp;
93
	int cpu;
94 95 96 97

	msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
	cpu = uv_blade_processor_id();
	msg->number_of_cpus =
98
		uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
99
	this_cpu_mask = 1UL << cpu;
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
	if (msp->seen_by.bits & this_cpu_mask)
		return;
	atomic_or_long(&msp->seen_by.bits, this_cpu_mask);

	if (msg->replied_to == 1)
		return;

	if (msg->address == TLB_FLUSH_ALL) {
		local_flush_tlb();
		__get_cpu_var(ptcstats).alltlb++;
	} else {
		__flush_tlb_one(msg->address);
		__get_cpu_var(ptcstats).onetlb++;
	}

	__get_cpu_var(ptcstats).requestee++;

	atomic_inc_short(&msg->acknowledge_count);
	if (msg->number_of_cpus == msg->acknowledge_count)
		uv_reply_to_message(sw_ack_slot, msg, msp);
}

/*
123
 * Examine the payload queue on one distribution node to see
124 125 126 127
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
128
static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
129 130 131
{
	struct bau_payload_queue_entry *msg;
	struct bau_msg_status *msp;
132 133 134
	int count = 0;
	int i;
	int j;
135

136 137 138 139 140 141 142 143 144
	for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
	     msg++, i++) {
		if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
			msp = bau_tablesp->msg_statuses + i;
			printk(KERN_DEBUG
			       "blade %d: address:%#lx %d of %d, not cpu(s): ",
			       i, msg->address, msg->acknowledge_count,
			       msg->number_of_cpus);
			for (j = 0; j < msg->number_of_cpus; j++) {
145
				if (!((1L << j) & msp->seen_by.bits)) {
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
					count++;
					printk("%d ", j);
				}
			}
			printk("\n");
		}
	}
	return count;
}

/*
 * Examine the payload queue on all the distribution nodes to see
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
static int uv_examine_destinations(struct bau_target_nodemask *distribution)
{
	int sender;
	int i;
	int count = 0;

168
	sender = smp_processor_id();
169
	for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
170 171
		if (!bau_node_isset(i, distribution))
			continue;
172
		count += uv_examine_destination(uv_bau_table_bases[i], sender);
173 174 175 176
	}
	return count;
}

177 178 179 180 181
/*
 * wait for completion of a broadcast message
 *
 * return COMPLETE, RETRY or GIVEUP
 */
182
static int uv_wait_completion(struct bau_desc *bau_desc,
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
			      unsigned long mmr_offset, int right_shift)
{
	int exams = 0;
	long destination_timeouts = 0;
	long source_timeouts = 0;
	unsigned long descriptor_status;

	while ((descriptor_status = (((unsigned long)
		uv_read_local_mmr(mmr_offset) >>
			right_shift) & UV_ACT_STATUS_MASK)) !=
			DESC_STATUS_IDLE) {
		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
			source_timeouts++;
			if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
				source_timeouts = 0;
			__get_cpu_var(ptcstats).s_retry++;
			return FLUSH_RETRY;
		}
		/*
		 * spin here looking for progress at the destinations
		 */
		if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
			destination_timeouts++;
			if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
				/*
				 * returns number of cpus not responding
				 */
				if (uv_examine_destinations
				    (&bau_desc->distribution) == 0) {
					__get_cpu_var(ptcstats).d_retry++;
					return FLUSH_RETRY;
				}
				exams++;
				if (exams >= uv_bau_retry_limit) {
					printk(KERN_DEBUG
					       "uv_flush_tlb_others");
					printk("giving up on cpu %d\n",
					       smp_processor_id());
					return FLUSH_GIVEUP;
				}
				/*
				 * delays can hang the simulator
				   udelay(1000);
				 */
				destination_timeouts = 0;
			}
		}
230
		cpu_relax();
231 232 233 234 235 236 237 238 239
	}
	return FLUSH_COMPLETE;
}

/**
 * uv_flush_send_and_wait
 *
 * Send a broadcast and wait for a broadcast message to complete.
 *
T
Tejun Heo 已提交
240
 * The flush_mask contains the cpus the broadcast was sent to.
241
 *
T
Tejun Heo 已提交
242 243 244
 * Returns NULL if all remote flushing was done. The mask is zeroed.
 * Returns @flush_mask if some remote flushing remains to be done. The
 * mask will have some bits still set.
245
 */
246
const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
T
Tejun Heo 已提交
247 248
					     struct bau_desc *bau_desc,
					     struct cpumask *flush_mask)
249 250 251 252
{
	int completion_status = 0;
	int right_shift;
	int tries = 0;
253
	int pnode;
254
	int bit;
255
	unsigned long mmr_offset;
256
	unsigned long index;
257 258 259 260 261 262 263 264 265 266 267 268 269 270
	cycles_t time1;
	cycles_t time2;

	if (cpu < UV_CPUS_PER_ACT_STATUS) {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
		right_shift = cpu * UV_ACT_STATUS_SIZE;
	} else {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
		right_shift =
		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
	}
	time1 = get_cycles();
	do {
		tries++;
271 272
		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
			cpu;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
		completion_status = uv_wait_completion(bau_desc, mmr_offset,
					right_shift);
	} while (completion_status == FLUSH_RETRY);
	time2 = get_cycles();
	__get_cpu_var(ptcstats).sflush += (time2 - time1);
	if (tries > 1)
		__get_cpu_var(ptcstats).retriesok++;

	if (completion_status == FLUSH_GIVEUP) {
		/*
		 * Cause the caller to do an IPI-style TLB shootdown on
		 * the cpu's, all of which are still in the mask.
		 */
		__get_cpu_var(ptcstats).ptc_i++;
288
		return flush_mask;
289 290 291 292 293 294
	}

	/*
	 * Success, so clear the remote cpu's from the mask so we don't
	 * use the IPI method of shootdown on them.
	 */
T
Tejun Heo 已提交
295
	for_each_cpu(bit, flush_mask) {
296 297
		pnode = uv_cpu_to_pnode(bit);
		if (pnode == this_pnode)
298
			continue;
T
Tejun Heo 已提交
299
		cpumask_clear_cpu(bit, flush_mask);
300
	}
T
Tejun Heo 已提交
301 302 303
	if (!cpumask_empty(flush_mask))
		return flush_mask;
	return NULL;
304 305
}

306 307 308
/**
 * uv_flush_tlb_others - globally purge translation cache of a virtual
 * address or all TLB's
T
Tejun Heo 已提交
309
 * @cpumask: mask of all cpu's in which the address is to be removed
310 311
 * @mm: mm_struct containing virtual address range
 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
T
Tejun Heo 已提交
312
 * @cpu: the current cpu
313 314 315 316 317 318
 *
 * This is the entry point for initiating any UV global TLB shootdown.
 *
 * Purges the translation caches of all specified processors of the given
 * virtual address, or purges all TLB's on specified processors.
 *
T
Tejun Heo 已提交
319 320
 * The caller has derived the cpumask from the mm_struct.  This function
 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
321
 *
T
Tejun Heo 已提交
322
 * The cpumask is converted into a nodemask of the nodes containing
323
 * the cpus.
324
 *
T
Tejun Heo 已提交
325 326 327 328 329
 * Note that this function should be called with preemption disabled.
 *
 * Returns NULL if all remote flushing was done.
 * Returns pointer to cpumask if some remote flushing remains to be
 * done.  The returned pointer is valid till preemption is re-enabled.
330
 */
T
Tejun Heo 已提交
331 332 333
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
					  struct mm_struct *mm,
					  unsigned long va, unsigned int cpu)
334
{
T
Tejun Heo 已提交
335 336
	static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
	struct cpumask *flush_mask = &__get_cpu_var(flush_tlb_mask);
337
	int i;
338
	int bit;
339
	int pnode;
T
Tejun Heo 已提交
340
	int uv_cpu;
341
	int this_pnode;
342
	int locals = 0;
343
	struct bau_desc *bau_desc;
T
Tejun Heo 已提交
344 345 346 347

	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));

	uv_cpu = uv_blade_processor_id();
348
	this_pnode = uv_hub_info->pnode;
349
	bau_desc = __get_cpu_var(bau_control).descriptor_base;
T
Tejun Heo 已提交
350
	bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
351 352 353 354

	bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);

	i = 0;
T
Tejun Heo 已提交
355
	for_each_cpu(bit, flush_mask) {
356 357 358
		pnode = uv_cpu_to_pnode(bit);
		BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
		if (pnode == this_pnode) {
359
			locals++;
360
			continue;
361
		}
362
		bau_node_set(pnode, &bau_desc->distribution);
363 364
		i++;
	}
365 366 367 368 369
	if (i == 0) {
		/*
		 * no off_node flushing; return status for local node
		 */
		if (locals)
T
Tejun Heo 已提交
370
			return flush_mask;
371
		else
T
Tejun Heo 已提交
372
			return NULL;
373
	}
374 375 376 377
	__get_cpu_var(ptcstats).requestor++;
	__get_cpu_var(ptcstats).ntargeted += i;

	bau_desc->payload.address = va;
T
Tejun Heo 已提交
378
	bau_desc->payload.sending_cpu = cpu;
379

380
	return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
}

/*
 * The BAU message interrupt comes here. (registered by set_intr_gate)
 * See entry_64.S
 *
 * We received a broadcast assist message.
 *
 * Interrupts may have been disabled; this interrupt could represent
 * the receipt of several messages.
 *
 * All cores/threads on this node get this interrupt.
 * The last one to see it does the s/w ack.
 * (the resource will not be freed until noninterruptable cpus see this
 *  interrupt; hardware will timeout the s/w ack and reply ERROR)
 */
397
void uv_bau_message_interrupt(struct pt_regs *regs)
398
{
399 400
	struct bau_payload_queue_entry *va_queue_first;
	struct bau_payload_queue_entry *va_queue_last;
401
	struct bau_payload_queue_entry *msg;
402
	struct pt_regs *old_regs = set_irq_regs(regs);
403 404
	cycles_t time1;
	cycles_t time2;
405 406 407 408 409 410 411 412 413 414
	int msg_slot;
	int sw_ack_slot;
	int fw;
	int count = 0;
	unsigned long local_pnode;

	ack_APIC_irq();
	exit_idle();
	irq_enter();

415
	time1 = get_cycles();
416 417 418

	local_pnode = uv_blade_to_pnode(uv_numa_blade_id());

419
	va_queue_first = __get_cpu_var(bau_control).va_queue_first;
420
	va_queue_last = __get_cpu_var(bau_control).va_queue_last;
421

422 423 424 425
	msg = __get_cpu_var(bau_control).bau_msg_head;
	while (msg->sw_ack_vector) {
		count++;
		fw = msg->sw_ack_vector;
426
		msg_slot = msg - va_queue_first;
427 428 429 430 431
		sw_ack_slot = ffs(fw) - 1;

		uv_bau_process_message(msg, msg_slot, sw_ack_slot);

		msg++;
432 433
		if (msg > va_queue_last)
			msg = va_queue_first;
434 435 436 437 438 439 440
		__get_cpu_var(bau_control).bau_msg_head = msg;
	}
	if (!count)
		__get_cpu_var(ptcstats).nomsg++;
	else if (count > 1)
		__get_cpu_var(ptcstats).multmsg++;

441 442
	time2 = get_cycles();
	__get_cpu_var(ptcstats).dflush += (time2 - time1);
443 444 445 446 447

	irq_exit();
	set_irq_regs(old_regs);
}

C
Cliff Wickman 已提交
448 449 450 451 452 453 454 455
/*
 * uv_enable_timeouts
 *
 * Each target blade (i.e. blades that have cpu's) needs to have
 * shootdown message timeouts enabled.  The timeout does not cause
 * an interrupt, but causes an error message to be returned to
 * the sender.
 */
456
static void uv_enable_timeouts(void)
457 458
{
	int blade;
C
Cliff Wickman 已提交
459
	int nblades;
460
	int pnode;
C
Cliff Wickman 已提交
461 462 463
	unsigned long mmr_image;

	nblades = uv_num_possible_blades();
464

C
Cliff Wickman 已提交
465 466
	for (blade = 0; blade < nblades; blade++) {
		if (!uv_blade_nr_possible_cpus(blade))
467
			continue;
C
Cliff Wickman 已提交
468

469
		pnode = uv_blade_to_pnode(blade);
C
Cliff Wickman 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		mmr_image =
		    uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
		/*
		 * Set the timeout period and then lock it in, in three
		 * steps; captures and locks in the period.
		 *
		 * To program the period, the SOFT_ACK_MODE must be off.
		 */
		mmr_image &= ~((unsigned long)1 <<
			       UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
		uv_write_global_mmr64
		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
		/*
		 * Set the 4-bit period.
		 */
		mmr_image &= ~((unsigned long)0xf <<
			UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
		mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
			     UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
		uv_write_global_mmr64
		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
		/*
		 * Subsequent reversals of the timebase bit (3) cause an
		 * immediate timeout of one or all INTD resources as
		 * indicated in bits 2:0 (7 causes all of them to timeout).
		 */
		mmr_image |= ((unsigned long)1 <<
			      UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
		uv_write_global_mmr64
		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
500 501 502
	}
}

503
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
504 505 506 507 508 509
{
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

510
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
511 512 513 514 515 516 517
{
	(*offset)++;
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

518
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
519 520 521 522 523 524 525
{
}

/*
 * Display the statistics thru /proc
 * data points to the cpu number
 */
526
static int uv_ptc_seq_show(struct seq_file *file, void *data)
527 528 529 530 531 532 533 534 535 536
{
	struct ptc_stats *stat;
	int cpu;

	cpu = *(loff_t *)data;

	if (!cpu) {
		seq_printf(file,
		"# cpu requestor requestee one all sretry dretry ptc_i ");
		seq_printf(file,
537
		"sw_ack sflush dflush sok dnomsg dmult starget\n");
538 539 540 541 542 543 544 545
	}
	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
		stat = &per_cpu(ptcstats, cpu);
		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
			   cpu, stat->requestor,
			   stat->requestee, stat->onetlb, stat->alltlb,
			   stat->s_retry, stat->d_retry, stat->ptc_i);
		seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
546
			   uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
547
					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
548
			   stat->sflush, stat->dflush,
549 550 551 552 553 554 555 556 557 558 559
			   stat->retriesok, stat->nomsg,
			   stat->multmsg, stat->ntargeted);
	}

	return 0;
}

/*
 *  0: display meaning of the statistics
 * >0: retry limit
 */
560
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
561
				 size_t count, loff_t *data)
562 563 564 565
{
	long newmode;
	char optstr[64];

566
	if (count == 0 || count > sizeof(optstr))
567
		return -EINVAL;
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
	if (copy_from_user(optstr, user, count))
		return -EFAULT;
	optstr[count - 1] = '\0';
	if (strict_strtoul(optstr, 10, &newmode) < 0) {
		printk(KERN_DEBUG "%s is invalid\n", optstr);
		return -EINVAL;
	}

	if (newmode == 0) {
		printk(KERN_DEBUG "# cpu:      cpu number\n");
		printk(KERN_DEBUG
		"requestor:  times this cpu was the flush requestor\n");
		printk(KERN_DEBUG
		"requestee:  times this cpu was requested to flush its TLBs\n");
		printk(KERN_DEBUG
		"one:        times requested to flush a single address\n");
		printk(KERN_DEBUG
		"all:        times requested to flush all TLB's\n");
		printk(KERN_DEBUG
		"sretry:     number of retries of source-side timeouts\n");
		printk(KERN_DEBUG
		"dretry:     number of retries of destination-side timeouts\n");
		printk(KERN_DEBUG
		"ptc_i:      times UV fell through to IPI-style flushes\n");
		printk(KERN_DEBUG
		"sw_ack:     image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
		printk(KERN_DEBUG
595
		"sflush_us:  cycles spent in uv_flush_tlb_others()\n");
596
		printk(KERN_DEBUG
597
		"dflush_us:  cycles spent in handling flush requests\n");
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
		printk(KERN_DEBUG "sok:        successes on retry\n");
		printk(KERN_DEBUG "dnomsg:     interrupts with no message\n");
		printk(KERN_DEBUG
		"dmult:      interrupts with multiple messages\n");
		printk(KERN_DEBUG "starget:    nodes targeted\n");
	} else {
		uv_bau_retry_limit = newmode;
		printk(KERN_DEBUG "timeout retry limit:%d\n",
		       uv_bau_retry_limit);
	}

	return count;
}

static const struct seq_operations uv_ptc_seq_ops = {
613 614 615 616
	.start		= uv_ptc_seq_start,
	.next		= uv_ptc_seq_next,
	.stop		= uv_ptc_seq_stop,
	.show		= uv_ptc_seq_show
617 618
};

619
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
620 621 622 623 624
{
	return seq_open(file, &uv_ptc_seq_ops);
}

static const struct file_operations proc_uv_ptc_operations = {
625 626 627 628 629
	.open		= uv_ptc_proc_open,
	.read		= seq_read,
	.write		= uv_ptc_proc_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
630 631
};

632
static int __init uv_ptc_init(void)
633
{
634
	struct proc_dir_entry *proc_uv_ptc;
635 636 637 638 639 640 641 642 643 644 645 646 647 648

	if (!is_uv_system())
		return 0;

	proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
	if (!proc_uv_ptc) {
		printk(KERN_ERR "unable to create %s proc entry\n",
		       UV_PTC_BASENAME);
		return -EINVAL;
	}
	proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
	return 0;
}

649 650 651 652
/*
 * begin the initialization of the per-blade control structures
 */
static struct bau_control * __init uv_table_bases_init(int blade, int node)
653
{
654 655
	int i;
	struct bau_msg_status *msp;
656
	struct bau_control *bau_tabp;
657

658
	bau_tabp =
659
	    kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
660
	BUG_ON(!bau_tabp);
661

662
	bau_tabp->msg_statuses =
663
	    kmalloc_node(sizeof(struct bau_msg_status) *
664 665
			 DEST_Q_SIZE, GFP_KERNEL, node);
	BUG_ON(!bau_tabp->msg_statuses);
666

667
	for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
668 669
		bau_cpubits_clear(&msp->seen_by, (int)
				  uv_blade_nr_possible_cpus(blade));
670

671
	uv_bau_table_bases[blade] = bau_tabp;
672

673
	return bau_tabp;
674 675
}

676 677 678
/*
 * finish the initialization of the per-blade control structures
 */
679
static void __init
680
uv_table_bases_finish(int blade,
681 682
		      struct bau_control *bau_tablesp,
		      struct bau_desc *adp)
683 684
{
	struct bau_control *bcp;
685
	int cpu;
686

687 688 689
	for_each_present_cpu(cpu) {
		if (blade != uv_cpu_to_blade_id(cpu))
			continue;
690

691
		bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
692 693 694 695 696
		bcp->bau_msg_head	= bau_tablesp->va_queue_first;
		bcp->va_queue_first	= bau_tablesp->va_queue_first;
		bcp->va_queue_last	= bau_tablesp->va_queue_last;
		bcp->msg_statuses	= bau_tablesp->msg_statuses;
		bcp->descriptor_base	= adp;
697 698
	}
}
699 700

/*
701
 * initialize the sending side's sending buffers
702
 */
703
static struct bau_desc * __init
704
uv_activation_descriptor_init(int node, int pnode)
705 706 707 708
{
	int i;
	unsigned long pa;
	unsigned long m;
709
	unsigned long n;
710
	unsigned long mmr_image;
711 712
	struct bau_desc *adp;
	struct bau_desc *ad2;
713

714
	adp = (struct bau_desc *)kmalloc_node(16384, GFP_KERNEL, node);
715
	BUG_ON(!adp);
716

717 718 719
	pa = __pa((unsigned long)adp);
	n = pa >> uv_nshift;
	m = pa & uv_mmask;
720

721
	mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
722
	if (mmr_image) {
723 724 725
		uv_write_global_mmr64(pnode, (unsigned long)
				      UVH_LB_BAU_SB_DESCRIPTOR_BASE,
				      (n << UV_DESC_BASE_PNODE_SHIFT | m));
726 727
	}

728
	for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
729
		memset(ad2, 0, sizeof(struct bau_desc));
730
		ad2->header.sw_ack_flag = 1;
731
		ad2->header.base_dest_nodeid = uv_cpu_to_pnode(0);
732 733 734 735 736 737 738 739 740 741 742 743 744
		ad2->header.command = UV_NET_ENDPOINT_INTD;
		ad2->header.int_both = 1;
		/*
		 * all others need to be set to zero:
		 *   fairness chaining multilevel count replied_to
		 */
	}
	return adp;
}

/*
 * initialize the destination side's receiving buffers
 */
745 746
static struct bau_payload_queue_entry * __init
uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
747
{
748
	struct bau_payload_queue_entry *pqp;
749
	char *cp;
750

751 752 753 754
	pqp = (struct bau_payload_queue_entry *) kmalloc_node(
		(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
		GFP_KERNEL, node);
	BUG_ON(!pqp);
755

756 757 758 759 760 761 762 763 764 765
	cp = (char *)pqp + 31;
	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
	bau_tablesp->va_queue_first = pqp;
	uv_write_global_mmr64(pnode,
			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
			      ((unsigned long)pnode <<
			       UV_PAYLOADQ_PNODE_SHIFT) |
			      uv_physnodeaddr(pqp));
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
			      uv_physnodeaddr(pqp));
766
	bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
767 768 769
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
			      (unsigned long)
			      uv_physnodeaddr(bau_tablesp->va_queue_last));
770
	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
771

772 773
	return pqp;
}
774

775 776 777
/*
 * Initialization of each UV blade's structures
 */
778
static int __init uv_init_blade(int blade)
779
{
780
	int node;
781 782 783
	int pnode;
	unsigned long pa;
	unsigned long apicid;
784
	struct bau_desc *adp;
785 786
	struct bau_payload_queue_entry *pqp;
	struct bau_control *bau_tablesp;
787

788
	node = blade_to_first_node(blade);
789 790 791 792
	bau_tablesp = uv_table_bases_init(blade, node);
	pnode = uv_blade_to_pnode(blade);
	adp = uv_activation_descriptor_init(node, pnode);
	pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
793
	uv_table_bases_finish(blade, bau_tablesp, adp);
794 795 796 797
	/*
	 * the below initialization can't be in firmware because the
	 * messaging IRQ will be determined by the OS
	 */
798
	apicid = blade_to_first_apicid(blade);
799 800 801 802
	pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
	if ((pa & 0xff) != UV_BAU_MESSAGE) {
		uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
				      ((apicid << 32) | UV_BAU_MESSAGE));
803
	}
804 805 806 807 808 809 810 811 812 813
	return 0;
}

/*
 * Initialization of BAU-related structures
 */
static int __init uv_bau_init(void)
{
	int blade;
	int nblades;
814
	int cur_cpu;
815 816 817

	if (!is_uv_system())
		return 0;
818

819
	uv_bau_retry_limit = 1;
820
	uv_nshift = uv_hub_info->n_val;
821
	uv_mmask = (1UL << uv_hub_info->n_val) - 1;
822 823
	nblades = uv_num_possible_blades();

824 825
	uv_bau_table_bases = (struct bau_control **)
	    kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
826
	BUG_ON(!uv_bau_table_bases);
827

828 829 830 831
	for (blade = 0; blade < nblades; blade++)
		if (uv_blade_nr_possible_cpus(blade))
			uv_init_blade(blade);

832
	alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
833
	uv_enable_timeouts();
834

835 836 837
	return 0;
}
__initcall(uv_bau_init);
838
__initcall(uv_ptc_init);