tlb_uv.c 20.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 *	SGI UltraViolet TLB flush routines.
 *
 *	(c) 2008 Cliff Wickman <cpw@sgi.com>, SGI.
 *
 *	This code is released under the GNU General Public License version 2 or
 *	later.
 */
#include <linux/mc146818rtc.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>

#include <asm/mmu_context.h>
#include <asm/uv/uv_mmrs.h>
15
#include <asm/uv/uv_hub.h>
16
#include <asm/uv/uv_bau.h>
17 18
#include <asm/genapic.h>
#include <asm/idle.h>
19
#include <asm/tsc.h>
20

21 22
#include <mach_apic.h>

23 24 25 26 27 28 29
static struct bau_control	**uv_bau_table_bases __read_mostly;
static int			uv_bau_retry_limit __read_mostly;

/* position of pnode (which is nasid>>1): */
static int			uv_nshift __read_mostly;

static unsigned long		uv_mmask __read_mostly;
30

31 32
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
33 34 35 36 37 38 39 40 41

/*
 * Free a software acknowledge hardware resource by clearing its Pending
 * bit. This will return a reply to the sender.
 * If the message has timed out, a reply has already been sent by the
 * hardware but the resource has not been released. In that case our
 * clear of the Timeout bit (as well) will free the resource. No reply will
 * be sent (the hardware will only do one reply per message).
 */
42
static void uv_reply_to_message(int resource,
43 44
				struct bau_payload_queue_entry *msg,
				struct bau_msg_status *msp)
45
{
46
	unsigned long dw;
47

48
	dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource);
49 50 51 52
	msg->replied_to = 1;
	msg->sw_ack_vector = 0;
	if (msp)
		msp->seen_by.bits = 0;
53
	uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
54 55 56 57 58 59
}

/*
 * Do all the things a cpu should do for a TLB shootdown message.
 * Other cpu's may come here at the same time for this message.
 */
60
static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
61
				   int msg_slot, int sw_ack_slot)
62 63 64
{
	unsigned long this_cpu_mask;
	struct bau_msg_status *msp;
65
	int cpu;
66 67 68 69 70

	msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
	cpu = uv_blade_processor_id();
	msg->number_of_cpus =
	    uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
71
	this_cpu_mask = 1UL << cpu;
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
	if (msp->seen_by.bits & this_cpu_mask)
		return;
	atomic_or_long(&msp->seen_by.bits, this_cpu_mask);

	if (msg->replied_to == 1)
		return;

	if (msg->address == TLB_FLUSH_ALL) {
		local_flush_tlb();
		__get_cpu_var(ptcstats).alltlb++;
	} else {
		__flush_tlb_one(msg->address);
		__get_cpu_var(ptcstats).onetlb++;
	}

	__get_cpu_var(ptcstats).requestee++;

	atomic_inc_short(&msg->acknowledge_count);
	if (msg->number_of_cpus == msg->acknowledge_count)
		uv_reply_to_message(sw_ack_slot, msg, msp);
}

/*
95
 * Examine the payload queue on one distribution node to see
96 97 98 99
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
100
static int uv_examine_destination(struct bau_control *bau_tablesp, int sender)
101 102 103
{
	struct bau_payload_queue_entry *msg;
	struct bau_msg_status *msp;
104 105 106
	int count = 0;
	int i;
	int j;
107

108 109 110 111 112 113 114 115 116
	for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE;
	     msg++, i++) {
		if ((msg->sending_cpu == sender) && (!msg->replied_to)) {
			msp = bau_tablesp->msg_statuses + i;
			printk(KERN_DEBUG
			       "blade %d: address:%#lx %d of %d, not cpu(s): ",
			       i, msg->address, msg->acknowledge_count,
			       msg->number_of_cpus);
			for (j = 0; j < msg->number_of_cpus; j++) {
117
				if (!((1L << j) & msp->seen_by.bits)) {
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
					count++;
					printk("%d ", j);
				}
			}
			printk("\n");
		}
	}
	return count;
}

/*
 * Examine the payload queue on all the distribution nodes to see
 * which messages have not been seen, and which cpu(s) have not seen them.
 *
 * Returns the number of cpu's that have not responded.
 */
static int uv_examine_destinations(struct bau_target_nodemask *distribution)
{
	int sender;
	int i;
	int count = 0;

140
	sender = smp_processor_id();
141
	for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) {
142 143
		if (!bau_node_isset(i, distribution))
			continue;
144
		count += uv_examine_destination(uv_bau_table_bases[i], sender);
145 146 147 148
	}
	return count;
}

149 150 151 152 153
/*
 * wait for completion of a broadcast message
 *
 * return COMPLETE, RETRY or GIVEUP
 */
154
static int uv_wait_completion(struct bau_desc *bau_desc,
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
			      unsigned long mmr_offset, int right_shift)
{
	int exams = 0;
	long destination_timeouts = 0;
	long source_timeouts = 0;
	unsigned long descriptor_status;

	while ((descriptor_status = (((unsigned long)
		uv_read_local_mmr(mmr_offset) >>
			right_shift) & UV_ACT_STATUS_MASK)) !=
			DESC_STATUS_IDLE) {
		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
			source_timeouts++;
			if (source_timeouts > SOURCE_TIMEOUT_LIMIT)
				source_timeouts = 0;
			__get_cpu_var(ptcstats).s_retry++;
			return FLUSH_RETRY;
		}
		/*
		 * spin here looking for progress at the destinations
		 */
		if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) {
			destination_timeouts++;
			if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) {
				/*
				 * returns number of cpus not responding
				 */
				if (uv_examine_destinations
				    (&bau_desc->distribution) == 0) {
					__get_cpu_var(ptcstats).d_retry++;
					return FLUSH_RETRY;
				}
				exams++;
				if (exams >= uv_bau_retry_limit) {
					printk(KERN_DEBUG
					       "uv_flush_tlb_others");
					printk("giving up on cpu %d\n",
					       smp_processor_id());
					return FLUSH_GIVEUP;
				}
				/*
				 * delays can hang the simulator
				   udelay(1000);
				 */
				destination_timeouts = 0;
			}
		}
	}
	return FLUSH_COMPLETE;
}

/**
 * uv_flush_send_and_wait
 *
 * Send a broadcast and wait for a broadcast message to complete.
 *
 * The cpumaskp mask contains the cpus the broadcast was sent to.
 *
 * Returns 1 if all remote flushing was done. The mask is zeroed.
 * Returns 0 if some remote flushing remains to be done. The mask is left
 * unchanged.
 */
217 218
int uv_flush_send_and_wait(int cpu, int this_blade, struct bau_desc *bau_desc,
			   cpumask_t *cpumaskp)
219 220 221 222
{
	int completion_status = 0;
	int right_shift;
	int tries = 0;
223 224
	int blade;
	int bit;
225
	unsigned long mmr_offset;
226
	unsigned long index;
227 228 229 230 231 232 233 234 235 236 237 238 239 240
	cycles_t time1;
	cycles_t time2;

	if (cpu < UV_CPUS_PER_ACT_STATUS) {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
		right_shift = cpu * UV_ACT_STATUS_SIZE;
	} else {
		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
		right_shift =
		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
	}
	time1 = get_cycles();
	do {
		tries++;
241 242
		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
			cpu;
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
		completion_status = uv_wait_completion(bau_desc, mmr_offset,
					right_shift);
	} while (completion_status == FLUSH_RETRY);
	time2 = get_cycles();
	__get_cpu_var(ptcstats).sflush += (time2 - time1);
	if (tries > 1)
		__get_cpu_var(ptcstats).retriesok++;

	if (completion_status == FLUSH_GIVEUP) {
		/*
		 * Cause the caller to do an IPI-style TLB shootdown on
		 * the cpu's, all of which are still in the mask.
		 */
		__get_cpu_var(ptcstats).ptc_i++;
		return 0;
	}

	/*
	 * Success, so clear the remote cpu's from the mask so we don't
	 * use the IPI method of shootdown on them.
	 */
	for_each_cpu_mask(bit, *cpumaskp) {
		blade = uv_cpu_to_blade_id(bit);
		if (blade == this_blade)
			continue;
		cpu_clear(bit, *cpumaskp);
	}
	if (!cpus_empty(*cpumaskp))
		return 0;
	return 1;
}

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
/**
 * uv_flush_tlb_others - globally purge translation cache of a virtual
 * address or all TLB's
 * @cpumaskp: mask of all cpu's in which the address is to be removed
 * @mm: mm_struct containing virtual address range
 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
 *
 * This is the entry point for initiating any UV global TLB shootdown.
 *
 * Purges the translation caches of all specified processors of the given
 * virtual address, or purges all TLB's on specified processors.
 *
 * The caller has derived the cpumaskp from the mm_struct and has subtracted
 * the local cpu from the mask.  This function is called only if there
 * are bits set in the mask. (e.g. flush_tlb_page())
 *
 * The cpumaskp is converted into a nodemask of the nodes containing
 * the cpus.
294 295 296
 *
 * Returns 1 if all remote flushing was done.
 * Returns 0 if some remote flushing remains to be done.
297
 */
298
int uv_flush_tlb_others(cpumask_t *cpumaskp, struct mm_struct *mm,
299
			unsigned long va)
300 301
{
	int i;
302
	int bit;
303 304 305
	int blade;
	int cpu;
	int this_blade;
306
	int locals = 0;
307
	struct bau_desc *bau_desc;
308 309 310 311

	cpu = uv_blade_processor_id();
	this_blade = uv_numa_blade_id();
	bau_desc = __get_cpu_var(bau_control).descriptor_base;
312
	bau_desc += UV_ITEMS_PER_DESCRIPTOR * cpu;
313 314 315 316 317 318

	bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);

	i = 0;
	for_each_cpu_mask(bit, *cpumaskp) {
		blade = uv_cpu_to_blade_id(bit);
319
		BUG_ON(blade > (UV_DISTRIBUTION_SIZE - 1));
320 321
		if (blade == this_blade) {
			locals++;
322
			continue;
323
		}
324 325 326
		bau_node_set(blade, &bau_desc->distribution);
		i++;
	}
327 328 329 330 331 332 333 334 335
	if (i == 0) {
		/*
		 * no off_node flushing; return status for local node
		 */
		if (locals)
			return 0;
		else
			return 1;
	}
336 337 338 339 340 341
	__get_cpu_var(ptcstats).requestor++;
	__get_cpu_var(ptcstats).ntargeted += i;

	bau_desc->payload.address = va;
	bau_desc->payload.sending_cpu = smp_processor_id();

342
	return uv_flush_send_and_wait(cpu, this_blade, bau_desc, cpumaskp);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
}

/*
 * The BAU message interrupt comes here. (registered by set_intr_gate)
 * See entry_64.S
 *
 * We received a broadcast assist message.
 *
 * Interrupts may have been disabled; this interrupt could represent
 * the receipt of several messages.
 *
 * All cores/threads on this node get this interrupt.
 * The last one to see it does the s/w ack.
 * (the resource will not be freed until noninterruptable cpus see this
 *  interrupt; hardware will timeout the s/w ack and reply ERROR)
 */
359
void uv_bau_message_interrupt(struct pt_regs *regs)
360
{
361 362
	struct bau_payload_queue_entry *va_queue_first;
	struct bau_payload_queue_entry *va_queue_last;
363
	struct bau_payload_queue_entry *msg;
364
	struct pt_regs *old_regs = set_irq_regs(regs);
365 366
	cycles_t time1;
	cycles_t time2;
367 368 369 370 371 372 373 374 375 376
	int msg_slot;
	int sw_ack_slot;
	int fw;
	int count = 0;
	unsigned long local_pnode;

	ack_APIC_irq();
	exit_idle();
	irq_enter();

377
	time1 = get_cycles();
378 379 380

	local_pnode = uv_blade_to_pnode(uv_numa_blade_id());

381
	va_queue_first = __get_cpu_var(bau_control).va_queue_first;
382
	va_queue_last = __get_cpu_var(bau_control).va_queue_last;
383

384 385 386 387
	msg = __get_cpu_var(bau_control).bau_msg_head;
	while (msg->sw_ack_vector) {
		count++;
		fw = msg->sw_ack_vector;
388
		msg_slot = msg - va_queue_first;
389 390 391 392 393
		sw_ack_slot = ffs(fw) - 1;

		uv_bau_process_message(msg, msg_slot, sw_ack_slot);

		msg++;
394 395
		if (msg > va_queue_last)
			msg = va_queue_first;
396 397 398 399 400 401 402
		__get_cpu_var(bau_control).bau_msg_head = msg;
	}
	if (!count)
		__get_cpu_var(ptcstats).nomsg++;
	else if (count > 1)
		__get_cpu_var(ptcstats).multmsg++;

403 404
	time2 = get_cycles();
	__get_cpu_var(ptcstats).dflush += (time2 - time1);
405 406 407 408 409

	irq_exit();
	set_irq_regs(old_regs);
}

410
static void uv_enable_timeouts(void)
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
{
	int i;
	int blade;
	int last_blade;
	int pnode;
	int cur_cpu = 0;
	unsigned long apicid;

	last_blade = -1;
	for_each_online_node(i) {
		blade = uv_node_to_blade_id(i);
		if (blade == last_blade)
			continue;
		last_blade = blade;
		apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
		pnode = uv_blade_to_pnode(blade);
		cur_cpu += uv_blade_nr_possible_cpus(i);
	}
}

431
static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
432 433 434 435 436 437
{
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

438
static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
439 440 441 442 443 444 445
{
	(*offset)++;
	if (*offset < num_possible_cpus())
		return offset;
	return NULL;
}

446
static void uv_ptc_seq_stop(struct seq_file *file, void *data)
447 448 449 450 451 452 453
{
}

/*
 * Display the statistics thru /proc
 * data points to the cpu number
 */
454
static int uv_ptc_seq_show(struct seq_file *file, void *data)
455 456 457 458 459 460 461 462 463 464
{
	struct ptc_stats *stat;
	int cpu;

	cpu = *(loff_t *)data;

	if (!cpu) {
		seq_printf(file,
		"# cpu requestor requestee one all sretry dretry ptc_i ");
		seq_printf(file,
465
		"sw_ack sflush dflush sok dnomsg dmult starget\n");
466 467 468 469 470 471 472 473 474 475 476
	}
	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
		stat = &per_cpu(ptcstats, cpu);
		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ",
			   cpu, stat->requestor,
			   stat->requestee, stat->onetlb, stat->alltlb,
			   stat->s_retry, stat->d_retry, stat->ptc_i);
		seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
			   uv_read_global_mmr64(uv_blade_to_pnode
					(uv_cpu_to_blade_id(cpu)),
					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
477
			   stat->sflush, stat->dflush,
478 479 480 481 482 483 484 485 486 487 488
			   stat->retriesok, stat->nomsg,
			   stat->multmsg, stat->ntargeted);
	}

	return 0;
}

/*
 *  0: display meaning of the statistics
 * >0: retry limit
 */
489
static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
490
				 size_t count, loff_t *data)
491 492 493 494
{
	long newmode;
	char optstr[64];

495 496
	if (count > 64)
		return -EINVAL;
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
	if (copy_from_user(optstr, user, count))
		return -EFAULT;
	optstr[count - 1] = '\0';
	if (strict_strtoul(optstr, 10, &newmode) < 0) {
		printk(KERN_DEBUG "%s is invalid\n", optstr);
		return -EINVAL;
	}

	if (newmode == 0) {
		printk(KERN_DEBUG "# cpu:      cpu number\n");
		printk(KERN_DEBUG
		"requestor:  times this cpu was the flush requestor\n");
		printk(KERN_DEBUG
		"requestee:  times this cpu was requested to flush its TLBs\n");
		printk(KERN_DEBUG
		"one:        times requested to flush a single address\n");
		printk(KERN_DEBUG
		"all:        times requested to flush all TLB's\n");
		printk(KERN_DEBUG
		"sretry:     number of retries of source-side timeouts\n");
		printk(KERN_DEBUG
		"dretry:     number of retries of destination-side timeouts\n");
		printk(KERN_DEBUG
		"ptc_i:      times UV fell through to IPI-style flushes\n");
		printk(KERN_DEBUG
		"sw_ack:     image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
		printk(KERN_DEBUG
524
		"sflush_us:  cycles spent in uv_flush_tlb_others()\n");
525
		printk(KERN_DEBUG
526
		"dflush_us:  cycles spent in handling flush requests\n");
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		printk(KERN_DEBUG "sok:        successes on retry\n");
		printk(KERN_DEBUG "dnomsg:     interrupts with no message\n");
		printk(KERN_DEBUG
		"dmult:      interrupts with multiple messages\n");
		printk(KERN_DEBUG "starget:    nodes targeted\n");
	} else {
		uv_bau_retry_limit = newmode;
		printk(KERN_DEBUG "timeout retry limit:%d\n",
		       uv_bau_retry_limit);
	}

	return count;
}

static const struct seq_operations uv_ptc_seq_ops = {
542 543 544 545
	.start		= uv_ptc_seq_start,
	.next		= uv_ptc_seq_next,
	.stop		= uv_ptc_seq_stop,
	.show		= uv_ptc_seq_show
546 547
};

548
static int uv_ptc_proc_open(struct inode *inode, struct file *file)
549 550 551 552 553
{
	return seq_open(file, &uv_ptc_seq_ops);
}

static const struct file_operations proc_uv_ptc_operations = {
554 555 556 557 558
	.open		= uv_ptc_proc_open,
	.read		= seq_read,
	.write		= uv_ptc_proc_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
559 560
};

561
static int __init uv_ptc_init(void)
562
{
563
	struct proc_dir_entry *proc_uv_ptc;
564 565 566 567

	if (!is_uv_system())
		return 0;

568
	if (!proc_mkdir("sgi_uv", NULL))
569 570 571 572 573 574
		return -EINVAL;

	proc_uv_ptc = create_proc_entry(UV_PTC_BASENAME, 0444, NULL);
	if (!proc_uv_ptc) {
		printk(KERN_ERR "unable to create %s proc entry\n",
		       UV_PTC_BASENAME);
575
		remove_proc_entry("sgi_uv", NULL);
576 577 578 579 580 581
		return -EINVAL;
	}
	proc_uv_ptc->proc_fops = &proc_uv_ptc_operations;
	return 0;
}

582 583 584 585
/*
 * begin the initialization of the per-blade control structures
 */
static struct bau_control * __init uv_table_bases_init(int blade, int node)
586
{
587 588 589
	int i;
	int *ip;
	struct bau_msg_status *msp;
590
	struct bau_control *bau_tabp;
591

592
	bau_tabp =
593
	    kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node);
594
	BUG_ON(!bau_tabp);
595

596
	bau_tabp->msg_statuses =
597
	    kmalloc_node(sizeof(struct bau_msg_status) *
598 599
			 DEST_Q_SIZE, GFP_KERNEL, node);
	BUG_ON(!bau_tabp->msg_statuses);
600

601
	for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++)
602 603
		bau_cpubits_clear(&msp->seen_by, (int)
				  uv_blade_nr_possible_cpus(blade));
604

605 606 607
	bau_tabp->watching =
	    kmalloc_node(sizeof(int) * DEST_NUM_RESOURCES, GFP_KERNEL, node);
	BUG_ON(!bau_tabp->watching);
608 609

	for (i = 0, ip = bau_tabp->watching; i < DEST_Q_SIZE; i++, ip++)
610
		*ip = 0;
611

612
	uv_bau_table_bases[blade] = bau_tabp;
613

614
	return bau_tabp;
615 616
}

617 618 619
/*
 * finish the initialization of the per-blade control structures
 */
620 621 622 623
static void __init
uv_table_bases_finish(int blade, int node, int cur_cpu,
		      struct bau_control *bau_tablesp,
		      struct bau_desc *adp)
624 625
{
	struct bau_control *bcp;
626
	int i;
627

628
	for (i = cur_cpu; i < cur_cpu + uv_blade_nr_possible_cpus(blade); i++) {
629
		bcp = (struct bau_control *)&per_cpu(bau_control, i);
630 631 632 633 634 635 636

		bcp->bau_msg_head	= bau_tablesp->va_queue_first;
		bcp->va_queue_first	= bau_tablesp->va_queue_first;
		bcp->va_queue_last	= bau_tablesp->va_queue_last;
		bcp->watching		= bau_tablesp->watching;
		bcp->msg_statuses	= bau_tablesp->msg_statuses;
		bcp->descriptor_base	= adp;
637 638
	}
}
639 640

/*
641
 * initialize the sending side's sending buffers
642
 */
643
static struct bau_desc * __init
644
uv_activation_descriptor_init(int node, int pnode)
645 646 647 648
{
	int i;
	unsigned long pa;
	unsigned long m;
649
	unsigned long n;
650
	unsigned long mmr_image;
651 652
	struct bau_desc *adp;
	struct bau_desc *ad2;
653

654
	adp = (struct bau_desc *)
655
	    kmalloc_node(16384, GFP_KERNEL, node);
656
	BUG_ON(!adp);
657

658 659 660
	pa = __pa((unsigned long)adp);
	n = pa >> uv_nshift;
	m = pa & uv_mmask;
661

662
	mmr_image = uv_read_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE);
663
	if (mmr_image) {
664 665 666
		uv_write_global_mmr64(pnode, (unsigned long)
				      UVH_LB_BAU_SB_DESCRIPTOR_BASE,
				      (n << UV_DESC_BASE_PNODE_SHIFT | m));
667 668
	}

669
	for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
670
		memset(ad2, 0, sizeof(struct bau_desc));
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		ad2->header.sw_ack_flag = 1;
		ad2->header.base_dest_nodeid =
		    uv_blade_to_pnode(uv_cpu_to_blade_id(0));
		ad2->header.command = UV_NET_ENDPOINT_INTD;
		ad2->header.int_both = 1;
		/*
		 * all others need to be set to zero:
		 *   fairness chaining multilevel count replied_to
		 */
	}
	return adp;
}

/*
 * initialize the destination side's receiving buffers
 */
687 688
static struct bau_payload_queue_entry * __init
uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
689
{
690
	struct bau_payload_queue_entry *pqp;
691
	char *cp;
692

693 694 695 696
	pqp = (struct bau_payload_queue_entry *) kmalloc_node(
		(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),
		GFP_KERNEL, node);
	BUG_ON(!pqp);
697

698 699 700 701 702 703 704 705 706 707
	cp = (char *)pqp + 31;
	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
	bau_tablesp->va_queue_first = pqp;
	uv_write_global_mmr64(pnode,
			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
			      ((unsigned long)pnode <<
			       UV_PAYLOADQ_PNODE_SHIFT) |
			      uv_physnodeaddr(pqp));
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
			      uv_physnodeaddr(pqp));
708
	bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
709 710 711
	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
			      (unsigned long)
			      uv_physnodeaddr(bau_tablesp->va_queue_last));
712
	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
713

714 715
	return pqp;
}
716

717 718 719 720 721 722 723 724
/*
 * Initialization of each UV blade's structures
 */
static int __init uv_init_blade(int blade, int node, int cur_cpu)
{
	int pnode;
	unsigned long pa;
	unsigned long apicid;
725
	struct bau_desc *adp;
726 727
	struct bau_payload_queue_entry *pqp;
	struct bau_control *bau_tablesp;
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742
	bau_tablesp = uv_table_bases_init(blade, node);
	pnode = uv_blade_to_pnode(blade);
	adp = uv_activation_descriptor_init(node, pnode);
	pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
	uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp);
	/*
	 * the below initialization can't be in firmware because the
	 * messaging IRQ will be determined by the OS
	 */
	apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
	pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
	if ((pa & 0xff) != UV_BAU_MESSAGE) {
		uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
				      ((apicid << 32) | UV_BAU_MESSAGE));
743
	}
744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
	return 0;
}

/*
 * Initialization of BAU-related structures
 */
static int __init uv_bau_init(void)
{
	int blade;
	int node;
	int nblades;
	int last_blade;
	int cur_cpu = 0;

	if (!is_uv_system())
		return 0;
760

761
	uv_bau_retry_limit = 1;
762
	uv_nshift = uv_hub_info->n_val;
763
	uv_mmask = (1UL << uv_hub_info->n_val) - 1;
764 765
	nblades = 0;
	last_blade = -1;
766 767
	for_each_online_node(node) {
		blade = uv_node_to_blade_id(node);
768 769 770 771 772 773 774
		if (blade == last_blade)
			continue;
		last_blade = blade;
		nblades++;
	}
	uv_bau_table_bases = (struct bau_control **)
	    kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
775
	BUG_ON(!uv_bau_table_bases);
776

777
	last_blade = -1;
778 779
	for_each_online_node(node) {
		blade = uv_node_to_blade_id(node);
780 781 782
		if (blade == last_blade)
			continue;
		last_blade = blade;
783 784
		uv_init_blade(blade, node, cur_cpu);
		cur_cpu += uv_blade_nr_possible_cpus(blade);
785 786 787
	}
	set_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
	uv_enable_timeouts();
788

789 790 791
	return 0;
}
__initcall(uv_bau_init);
792
__initcall(uv_ptc_init);