perf_event.c 125.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38
 */
39
static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
T
Thomas Gleixner 已提交
40

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60 61

/*
62
 * max perf event sample rate
63
 */
64
int sysctl_perf_event_sample_rate __read_mostly = 100000;
65

66
static atomic64_t perf_event_id;
67

T
Thomas Gleixner 已提交
68
/*
69
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
70
 */
71
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
72 73 74 75

/*
 * Architecture provided APIs - weak aliases:
 */
76
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
77
{
78
	return NULL;
T
Thomas Gleixner 已提交
79 80
}

81 82 83
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

84
int __weak
85
hw_perf_group_sched_in(struct perf_event *group_leader,
86
	       struct perf_cpu_context *cpuctx,
87
	       struct perf_event_context *ctx)
88 89 90
{
	return 0;
}
T
Thomas Gleixner 已提交
91

92
void __weak perf_event_print_debug(void)	{ }
93

94
static DEFINE_PER_CPU(int, perf_disable_count);
95 96 97

void perf_disable(void)
{
P
Peter Zijlstra 已提交
98 99
	if (!__get_cpu_var(perf_disable_count)++)
		hw_perf_disable();
100 101 102 103
}

void perf_enable(void)
{
P
Peter Zijlstra 已提交
104
	if (!--__get_cpu_var(perf_disable_count))
105 106 107
		hw_perf_enable();
}

108
static void get_ctx(struct perf_event_context *ctx)
109
{
110
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
111 112
}

113 114
static void free_ctx(struct rcu_head *head)
{
115
	struct perf_event_context *ctx;
116

117
	ctx = container_of(head, struct perf_event_context, rcu_head);
118 119 120
	kfree(ctx);
}

121
static void put_ctx(struct perf_event_context *ctx)
122
{
123 124 125
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
126 127 128
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
129
	}
130 131
}

132
static void unclone_ctx(struct perf_event_context *ctx)
133 134 135 136 137 138 139
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

140
/*
141
 * If we inherit events we want to return the parent event id
142 143
 * to userspace.
 */
144
static u64 primary_event_id(struct perf_event *event)
145
{
146
	u64 id = event->id;
147

148 149
	if (event->parent)
		id = event->parent->id;
150 151 152 153

	return id;
}

154
/*
155
 * Get the perf_event_context for a task and lock it.
156 157 158
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
159
static struct perf_event_context *
160
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
161
{
162
	struct perf_event_context *ctx;
163 164 165

	rcu_read_lock();
 retry:
166
	ctx = rcu_dereference(task->perf_event_ctxp);
167 168 169 170
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
171
		 * perf_event_task_sched_out, though the
172 173 174 175 176 177
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
178
		raw_spin_lock_irqsave(&ctx->lock, *flags);
179
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
180
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
181 182
			goto retry;
		}
183 184

		if (!atomic_inc_not_zero(&ctx->refcount)) {
185
			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
186 187
			ctx = NULL;
		}
188 189 190 191 192 193 194 195 196 197
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
198
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
199
{
200
	struct perf_event_context *ctx;
201 202 203 204 205
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
206
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
207 208 209 210
	}
	return ctx;
}

211
static void perf_unpin_context(struct perf_event_context *ctx)
212 213 214
{
	unsigned long flags;

215
	raw_spin_lock_irqsave(&ctx->lock, flags);
216
	--ctx->pin_count;
217
	raw_spin_unlock_irqrestore(&ctx->lock, flags);
218 219 220
	put_ctx(ctx);
}

221 222
static inline u64 perf_clock(void)
{
223
	return cpu_clock(raw_smp_processor_id());
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

249 250 251 252 253 254
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
255 256 257 258 259 260 261 262 263

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

264 265 266 267 268 269 270 271 272
static struct list_head *
ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
{
	if (event->attr.pinned)
		return &ctx->pinned_groups;
	else
		return &ctx->flexible_groups;
}

273
/*
274
 * Add a event from the lists for its context.
275 276
 * Must be called with ctx->mutex and ctx->lock held.
 */
277
static void
278
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
279
{
280
	struct perf_event *group_leader = event->group_leader;
281 282

	/*
283 284
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
285 286
	 * leader's sibling list:
	 */
287 288 289
	if (group_leader == event) {
		struct list_head *list;

290 291 292
		if (is_software_event(event))
			event->group_flags |= PERF_GROUP_SOFTWARE;

293 294 295
		list = ctx_group_list(event, ctx);
		list_add_tail(&event->group_entry, list);
	} else {
296 297 298 299
		if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
		    !is_software_event(event))
			group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;

300
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
301 302
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
303

304 305 306
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
307
		ctx->nr_stat++;
308 309
}

310
/*
311
 * Remove a event from the lists for its context.
312
 * Must be called with ctx->mutex and ctx->lock held.
313
 */
314
static void
315
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
316
{
317
	struct perf_event *sibling, *tmp;
318

319
	if (list_empty(&event->group_entry))
320
		return;
321 322
	ctx->nr_events--;
	if (event->attr.inherit_stat)
323
		ctx->nr_stat--;
324

325 326
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
327

328 329
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
330

331
	update_event_times(event);
332 333 334 335 336 337 338 339 340 341

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
342

343
	/*
344 345
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
346 347
	 * to the context list directly:
	 */
348
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
349
		struct list_head *list;
350

351 352
		list = ctx_group_list(event, ctx);
		list_move_tail(&sibling->group_entry, list);
353
		sibling->group_leader = sibling;
354 355 356

		/* Inherit group flags from the previous leader */
		sibling->group_flags = event->group_flags;
357 358 359
	}
}

360
static void
361
event_sched_out(struct perf_event *event,
362
		  struct perf_cpu_context *cpuctx,
363
		  struct perf_event_context *ctx)
364
{
365
	if (event->state != PERF_EVENT_STATE_ACTIVE)
366 367
		return;

368 369 370 371
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
372
	}
373 374 375
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
376

377
	if (!is_software_event(event))
378 379
		cpuctx->active_oncpu--;
	ctx->nr_active--;
380
	if (event->attr.exclusive || !cpuctx->active_oncpu)
381 382 383
		cpuctx->exclusive = 0;
}

384
static void
385
group_sched_out(struct perf_event *group_event,
386
		struct perf_cpu_context *cpuctx,
387
		struct perf_event_context *ctx)
388
{
389
	struct perf_event *event;
390

391
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
392 393
		return;

394
	event_sched_out(group_event, cpuctx, ctx);
395 396 397 398

	/*
	 * Schedule out siblings (if any):
	 */
399 400
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
401

402
	if (group_event->attr.exclusive)
403 404 405
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
406
/*
407
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
408
 *
409
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
410 411
 * remove it from the context list.
 */
412
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
413 414
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
415 416
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
417 418 419 420 421 422

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
423
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
424 425
		return;

426
	raw_spin_lock(&ctx->lock);
427 428
	/*
	 * Protect the list operation against NMI by disabling the
429
	 * events on a global level.
430 431
	 */
	perf_disable();
T
Thomas Gleixner 已提交
432

433
	event_sched_out(event, cpuctx, ctx);
434

435
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
436 437 438

	if (!ctx->task) {
		/*
439
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
440 441 442
		 * reservation:
		 */
		cpuctx->max_pertask =
443 444
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
445 446
	}

447
	perf_enable();
448
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
449 450 451 452
}


/*
453
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
454
 *
455
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
456
 *
457
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
458
 * call when the task is on a CPU.
459
 *
460 461
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
462 463
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
464
 * When called from perf_event_exit_task, it's OK because the
465
 * context has been detached from its task.
T
Thomas Gleixner 已提交
466
 */
467
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
468
{
469
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
470 471 472 473
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
474
		 * Per cpu events are removed via an smp call and
475
		 * the removal is always successful.
T
Thomas Gleixner 已提交
476
		 */
477 478 479
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
480 481 482 483
		return;
	}

retry:
484 485
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
486

487
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
488 489 490
	/*
	 * If the context is active we need to retry the smp call.
	 */
491
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
492
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
493 494 495 496 497
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
498
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
499 500
	 * succeed.
	 */
P
Peter Zijlstra 已提交
501
	if (!list_empty(&event->group_entry))
502
		list_del_event(event, ctx);
503
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
504 505
}

506
/*
507
 * Update total_time_enabled and total_time_running for all events in a group.
508
 */
509
static void update_group_times(struct perf_event *leader)
510
{
511
	struct perf_event *event;
512

513 514 515
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
516 517
}

518
/*
519
 * Cross CPU call to disable a performance event
520
 */
521
static void __perf_event_disable(void *info)
522
{
523
	struct perf_event *event = info;
524
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
525
	struct perf_event_context *ctx = event->ctx;
526 527

	/*
528 529
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
530
	 */
531
	if (ctx->task && cpuctx->task_ctx != ctx)
532 533
		return;

534
	raw_spin_lock(&ctx->lock);
535 536

	/*
537
	 * If the event is on, turn it off.
538 539
	 * If it is in error state, leave it in error state.
	 */
540
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
541
		update_context_time(ctx);
542 543 544
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
545
		else
546 547
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
548 549
	}

550
	raw_spin_unlock(&ctx->lock);
551 552 553
}

/*
554
 * Disable a event.
555
 *
556 557
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
558
 * remains valid.  This condition is satisifed when called through
559 560 561 562
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
563
 * is the current context on this CPU and preemption is disabled,
564
 * hence we can't get into perf_event_task_sched_out for this context.
565
 */
566
void perf_event_disable(struct perf_event *event)
567
{
568
	struct perf_event_context *ctx = event->ctx;
569 570 571 572
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
573
		 * Disable the event on the cpu that it's on
574
		 */
575 576
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
577 578 579 580
		return;
	}

 retry:
581
	task_oncpu_function_call(task, __perf_event_disable, event);
582

583
	raw_spin_lock_irq(&ctx->lock);
584
	/*
585
	 * If the event is still active, we need to retry the cross-call.
586
	 */
587
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
588
		raw_spin_unlock_irq(&ctx->lock);
589 590 591 592 593 594 595
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
596 597 598
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
599
	}
600

601
	raw_spin_unlock_irq(&ctx->lock);
602 603
}

604
static int
605
event_sched_in(struct perf_event *event,
606
		 struct perf_cpu_context *cpuctx,
607
		 struct perf_event_context *ctx)
608
{
609
	if (event->state <= PERF_EVENT_STATE_OFF)
610 611
		return 0;

612
	event->state = PERF_EVENT_STATE_ACTIVE;
613
	event->oncpu = smp_processor_id();
614 615 616 617 618
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

619 620 621
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
622 623 624
		return -EAGAIN;
	}

625
	event->tstamp_running += ctx->time - event->tstamp_stopped;
626

627
	if (!is_software_event(event))
628
		cpuctx->active_oncpu++;
629 630
	ctx->nr_active++;

631
	if (event->attr.exclusive)
632 633
		cpuctx->exclusive = 1;

634 635 636
	return 0;
}

637
static int
638
group_sched_in(struct perf_event *group_event,
639
	       struct perf_cpu_context *cpuctx,
640
	       struct perf_event_context *ctx)
641
{
642
	struct perf_event *event, *partial_group;
643 644
	int ret;

645
	if (group_event->state == PERF_EVENT_STATE_OFF)
646 647
		return 0;

648
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx);
649 650 651
	if (ret)
		return ret < 0 ? ret : 0;

652
	if (event_sched_in(group_event, cpuctx, ctx))
653 654 655 656 657
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
658
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
659
		if (event_sched_in(event, cpuctx, ctx)) {
660
			partial_group = event;
661 662 663 664 665 666 667 668 669 670 671
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
672 673
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
674
			break;
675
		event_sched_out(event, cpuctx, ctx);
676
	}
677
	event_sched_out(group_event, cpuctx, ctx);
678 679 680 681

	return -EAGAIN;
}

682
/*
683
 * Work out whether we can put this event group on the CPU now.
684
 */
685
static int group_can_go_on(struct perf_event *event,
686 687 688 689
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
690
	 * Groups consisting entirely of software events can always go on.
691
	 */
692
	if (event->group_flags & PERF_GROUP_SOFTWARE)
693 694 695
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
696
	 * events can go on.
697 698 699 700 701
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
702
	 * events on the CPU, it can't go on.
703
	 */
704
	if (event->attr.exclusive && cpuctx->active_oncpu)
705 706 707 708 709 710 711 712
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

713 714
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
715
{
716 717 718 719
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
720 721
}

T
Thomas Gleixner 已提交
722
/*
723
 * Cross CPU call to install and enable a performance event
724 725
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
726 727 728 729
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
730 731 732
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
733
	int err;
T
Thomas Gleixner 已提交
734 735 736 737 738

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
739
	 * Or possibly this is the right context but it isn't
740
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
741
	 */
742
	if (ctx->task && cpuctx->task_ctx != ctx) {
743
		if (cpuctx->task_ctx || ctx->task != current)
744 745 746
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
747

748
	raw_spin_lock(&ctx->lock);
749
	ctx->is_active = 1;
750
	update_context_time(ctx);
T
Thomas Gleixner 已提交
751 752 753

	/*
	 * Protect the list operation against NMI by disabling the
754
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
755
	 */
756
	perf_disable();
T
Thomas Gleixner 已提交
757

758
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
759

760 761 762
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

763
	/*
764
	 * Don't put the event on if it is disabled or if
765 766
	 * it is in a group and the group isn't on.
	 */
767 768
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
769 770
		goto unlock;

771
	/*
772 773 774
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
775
	 */
776
	if (!group_can_go_on(event, cpuctx, 1))
777 778
		err = -EEXIST;
	else
779
		err = event_sched_in(event, cpuctx, ctx);
780

781 782
	if (err) {
		/*
783
		 * This event couldn't go on.  If it is in a group
784
		 * then we have to pull the whole group off.
785
		 * If the event group is pinned then put it in error state.
786
		 */
787
		if (leader != event)
788
			group_sched_out(leader, cpuctx, ctx);
789
		if (leader->attr.pinned) {
790
			update_group_times(leader);
791
			leader->state = PERF_EVENT_STATE_ERROR;
792
		}
793
	}
T
Thomas Gleixner 已提交
794

795
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
796 797
		cpuctx->max_pertask--;

798
 unlock:
799
	perf_enable();
800

801
	raw_spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
802 803 804
}

/*
805
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
806
 *
807 808
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
809
 *
810
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
811 812
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
813 814
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
815 816
 */
static void
817 818
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
819 820 821 822 823 824
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
825
		 * Per cpu events are installed via an smp call and
826
		 * the install is always successful.
T
Thomas Gleixner 已提交
827 828
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
829
					 event, 1);
T
Thomas Gleixner 已提交
830 831 832 833 834
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
835
				 event);
T
Thomas Gleixner 已提交
836

837
	raw_spin_lock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
838 839 840
	/*
	 * we need to retry the smp call.
	 */
841
	if (ctx->is_active && list_empty(&event->group_entry)) {
842
		raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
843 844 845 846 847
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
848
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
849 850
	 * succeed.
	 */
851 852
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
853
	raw_spin_unlock_irq(&ctx->lock);
T
Thomas Gleixner 已提交
854 855
}

856
/*
857
 * Put a event into inactive state and update time fields.
858 859 860 861 862 863
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
864 865
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
866
{
867
	struct perf_event *sub;
868

869 870 871 872
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
873 874 875 876
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

877
/*
878
 * Cross CPU call to enable a performance event
879
 */
880
static void __perf_event_enable(void *info)
881
{
882
	struct perf_event *event = info;
883
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
884 885
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
886
	int err;
887

888
	/*
889 890
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
891
	 */
892
	if (ctx->task && cpuctx->task_ctx != ctx) {
893
		if (cpuctx->task_ctx || ctx->task != current)
894 895 896
			return;
		cpuctx->task_ctx = ctx;
	}
897

898
	raw_spin_lock(&ctx->lock);
899
	ctx->is_active = 1;
900
	update_context_time(ctx);
901

902
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
903
		goto unlock;
904
	__perf_event_mark_enabled(event, ctx);
905

906 907 908
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		goto unlock;

909
	/*
910
	 * If the event is in a group and isn't the group leader,
911
	 * then don't put it on unless the group is on.
912
	 */
913
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
914
		goto unlock;
915

916
	if (!group_can_go_on(event, cpuctx, 1)) {
917
		err = -EEXIST;
918
	} else {
919
		perf_disable();
920
		if (event == leader)
921
			err = group_sched_in(event, cpuctx, ctx);
922
		else
923
			err = event_sched_in(event, cpuctx, ctx);
924
		perf_enable();
925
	}
926 927 928

	if (err) {
		/*
929
		 * If this event can't go on and it's part of a
930 931
		 * group, then the whole group has to come off.
		 */
932
		if (leader != event)
933
			group_sched_out(leader, cpuctx, ctx);
934
		if (leader->attr.pinned) {
935
			update_group_times(leader);
936
			leader->state = PERF_EVENT_STATE_ERROR;
937
		}
938 939 940
	}

 unlock:
941
	raw_spin_unlock(&ctx->lock);
942 943 944
}

/*
945
 * Enable a event.
946
 *
947 948
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
949
 * remains valid.  This condition is satisfied when called through
950 951
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
952
 */
953
void perf_event_enable(struct perf_event *event)
954
{
955
	struct perf_event_context *ctx = event->ctx;
956 957 958 959
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
960
		 * Enable the event on the cpu that it's on
961
		 */
962 963
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
964 965 966
		return;
	}

967
	raw_spin_lock_irq(&ctx->lock);
968
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
969 970 971
		goto out;

	/*
972 973
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
974 975 976 977
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
978 979
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
980 981

 retry:
982
	raw_spin_unlock_irq(&ctx->lock);
983
	task_oncpu_function_call(task, __perf_event_enable, event);
984

985
	raw_spin_lock_irq(&ctx->lock);
986 987

	/*
988
	 * If the context is active and the event is still off,
989 990
	 * we need to retry the cross-call.
	 */
991
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
992 993 994 995 996 997
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
998 999
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1000

1001
 out:
1002
	raw_spin_unlock_irq(&ctx->lock);
1003 1004
}

1005
static int perf_event_refresh(struct perf_event *event, int refresh)
1006
{
1007
	/*
1008
	 * not supported on inherited events
1009
	 */
1010
	if (event->attr.inherit)
1011 1012
		return -EINVAL;

1013 1014
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1015 1016

	return 0;
1017 1018
}

1019 1020 1021 1022 1023 1024 1025 1026 1027
enum event_type_t {
	EVENT_FLEXIBLE = 0x1,
	EVENT_PINNED = 0x2,
	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
};

static void ctx_sched_out(struct perf_event_context *ctx,
			  struct perf_cpu_context *cpuctx,
			  enum event_type_t event_type)
1028
{
1029
	struct perf_event *event;
1030

1031
	raw_spin_lock(&ctx->lock);
1032
	ctx->is_active = 0;
1033
	if (likely(!ctx->nr_events))
1034
		goto out;
1035
	update_context_time(ctx);
1036

1037
	perf_disable();
1038 1039 1040 1041
	if (!ctx->nr_active)
		goto out_enable;

	if (event_type & EVENT_PINNED)
1042 1043 1044
		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
			group_sched_out(event, cpuctx, ctx);

1045
	if (event_type & EVENT_FLEXIBLE)
1046
		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1047
			group_sched_out(event, cpuctx, ctx);
1048 1049

 out_enable:
1050
	perf_enable();
1051
 out:
1052
	raw_spin_unlock(&ctx->lock);
1053 1054
}

1055 1056 1057
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1058 1059 1060 1061
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1062
 * in them directly with an fd; we can only enable/disable all
1063
 * events via prctl, or enable/disable all events in a family
1064 1065
 * via ioctl, which will have the same effect on both contexts.
 */
1066 1067
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1068 1069
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1070
		&& ctx1->parent_gen == ctx2->parent_gen
1071
		&& !ctx1->pin_count && !ctx2->pin_count;
1072 1073
}

1074 1075
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1076 1077 1078
{
	u64 value;

1079
	if (!event->attr.inherit_stat)
1080 1081 1082
		return;

	/*
1083
	 * Update the event value, we cannot use perf_event_read()
1084 1085
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1086
	 * we know the event must be on the current CPU, therefore we
1087 1088
	 * don't need to use it.
	 */
1089 1090
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1091 1092
		event->pmu->read(event);
		/* fall-through */
1093

1094 1095
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1096 1097 1098 1099 1100 1101 1102
		break;

	default:
		break;
	}

	/*
1103
	 * In order to keep per-task stats reliable we need to flip the event
1104 1105
	 * values when we flip the contexts.
	 */
1106 1107 1108
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1109

1110 1111
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1112

1113
	/*
1114
	 * Since we swizzled the values, update the user visible data too.
1115
	 */
1116 1117
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1118 1119 1120 1121 1122
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1123 1124
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1125
{
1126
	struct perf_event *event, *next_event;
1127 1128 1129 1130

	if (!ctx->nr_stat)
		return;

1131 1132
	update_context_time(ctx);

1133 1134
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1135

1136 1137
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1138

1139 1140
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1141

1142
		__perf_event_sync_stat(event, next_event);
1143

1144 1145
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1146 1147 1148
	}
}

T
Thomas Gleixner 已提交
1149
/*
1150
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1151 1152
 * with interrupts disabled.
 *
1153
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1154
 *
I
Ingo Molnar 已提交
1155
 * This does not protect us against NMI, but disable()
1156 1157 1158
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1159
 */
1160
void perf_event_task_sched_out(struct task_struct *task,
1161
				 struct task_struct *next)
T
Thomas Gleixner 已提交
1162
{
1163
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1164 1165 1166
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1167
	struct pt_regs *regs;
1168
	int do_switch = 1;
T
Thomas Gleixner 已提交
1169

1170
	regs = task_pt_regs(task);
1171
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1172

1173
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1174 1175
		return;

1176 1177
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1178
	next_ctx = next->perf_event_ctxp;
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
1190 1191
		raw_spin_lock(&ctx->lock);
		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1192
		if (context_equiv(ctx, next_ctx)) {
1193 1194
			/*
			 * XXX do we need a memory barrier of sorts
1195
			 * wrt to rcu_dereference() of perf_event_ctxp
1196
			 */
1197 1198
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1199 1200 1201
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1202

1203
			perf_event_sync_stat(ctx, next_ctx);
1204
		}
1205 1206
		raw_spin_unlock(&next_ctx->lock);
		raw_spin_unlock(&ctx->lock);
1207
	}
1208
	rcu_read_unlock();
1209

1210
	if (do_switch) {
1211
		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1212 1213
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1214 1215
}

1216 1217
static void task_ctx_sched_out(struct perf_event_context *ctx,
			       enum event_type_t event_type)
1218 1219 1220
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1221 1222
	if (!cpuctx->task_ctx)
		return;
1223 1224 1225 1226

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1227
	ctx_sched_out(ctx, cpuctx, event_type);
1228 1229 1230
	cpuctx->task_ctx = NULL;
}

1231 1232 1233
/*
 * Called with IRQs disabled
 */
1234
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1235
{
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	task_ctx_sched_out(ctx, EVENT_ALL);
}

/*
 * Called with IRQs disabled
 */
static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
			      enum event_type_t event_type)
{
	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1246 1247
}

1248
static void
1249
ctx_pinned_sched_in(struct perf_event_context *ctx,
1250
		    struct perf_cpu_context *cpuctx)
T
Thomas Gleixner 已提交
1251
{
1252
	struct perf_event *event;
T
Thomas Gleixner 已提交
1253

1254 1255
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF)
1256
			continue;
1257
		if (event->cpu != -1 && event->cpu != smp_processor_id())
1258 1259
			continue;

1260
		if (group_can_go_on(event, cpuctx, 1))
1261
			group_sched_in(event, cpuctx, ctx);
1262 1263 1264 1265 1266

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1267 1268 1269
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1270
		}
1271
	}
1272 1273 1274 1275
}

static void
ctx_flexible_sched_in(struct perf_event_context *ctx,
1276
		      struct perf_cpu_context *cpuctx)
1277 1278 1279
{
	struct perf_event *event;
	int can_add_hw = 1;
1280

1281 1282 1283
	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		/* Ignore events in OFF or ERROR state */
		if (event->state <= PERF_EVENT_STATE_OFF)
1284
			continue;
1285 1286
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1287
		 * of events:
1288
		 */
1289
		if (event->cpu != -1 && event->cpu != smp_processor_id())
T
Thomas Gleixner 已提交
1290 1291
			continue;

1292
		if (group_can_go_on(event, cpuctx, can_add_hw))
1293
			if (group_sched_in(event, cpuctx, ctx))
1294
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1295
	}
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
}

static void
ctx_sched_in(struct perf_event_context *ctx,
	     struct perf_cpu_context *cpuctx,
	     enum event_type_t event_type)
{
	raw_spin_lock(&ctx->lock);
	ctx->is_active = 1;
	if (likely(!ctx->nr_events))
		goto out;

	ctx->timestamp = perf_clock();

	perf_disable();

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
	if (event_type & EVENT_PINNED)
1317
		ctx_pinned_sched_in(ctx, cpuctx);
1318 1319 1320

	/* Then walk through the lower prio flexible groups */
	if (event_type & EVENT_FLEXIBLE)
1321
		ctx_flexible_sched_in(ctx, cpuctx);
1322

1323
	perf_enable();
1324
 out:
1325
	raw_spin_unlock(&ctx->lock);
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335
static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
			     enum event_type_t event_type)
{
	struct perf_event_context *ctx = &cpuctx->ctx;

	ctx_sched_in(ctx, cpuctx, event_type);
}

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
static void task_ctx_sched_in(struct task_struct *task,
			      enum event_type_t event_type)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;

	if (likely(!ctx))
		return;
	if (cpuctx->task_ctx == ctx)
		return;
	ctx_sched_in(ctx, cpuctx, event_type);
	cpuctx->task_ctx = ctx;
}
1349
/*
1350
 * Called from scheduler to add the events of the current task
1351 1352
 * with interrupts disabled.
 *
1353
 * We restore the event value and then enable it.
1354 1355
 *
 * This does not protect us against NMI, but enable()
1356 1357 1358
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1359
 */
1360
void perf_event_task_sched_in(struct task_struct *task)
1361
{
1362 1363
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	struct perf_event_context *ctx = task->perf_event_ctxp;
T
Thomas Gleixner 已提交
1364

1365 1366
	if (likely(!ctx))
		return;
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	if (cpuctx->task_ctx == ctx)
		return;

	/*
	 * We want to keep the following priority order:
	 * cpu pinned (that don't need to move), task pinned,
	 * cpu flexible, task flexible.
	 */
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);

	ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
	ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);

	cpuctx->task_ctx = ctx;
1383 1384
}

1385 1386
#define MAX_INTERRUPTS (~0ULL)

1387
static void perf_log_throttle(struct perf_event *event, int enable);
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
{
	u64 frequency = event->attr.sample_freq;
	u64 sec = NSEC_PER_SEC;
	u64 divisor, dividend;

	int count_fls, nsec_fls, frequency_fls, sec_fls;

	count_fls = fls64(count);
	nsec_fls = fls64(nsec);
	frequency_fls = fls64(frequency);
	sec_fls = 30;

	/*
	 * We got @count in @nsec, with a target of sample_freq HZ
	 * the target period becomes:
	 *
	 *             @count * 10^9
	 * period = -------------------
	 *          @nsec * sample_freq
	 *
	 */

	/*
	 * Reduce accuracy by one bit such that @a and @b converge
	 * to a similar magnitude.
	 */
#define REDUCE_FLS(a, b) 		\
do {					\
	if (a##_fls > b##_fls) {	\
		a >>= 1;		\
		a##_fls--;		\
	} else {			\
		b >>= 1;		\
		b##_fls--;		\
	}				\
} while (0)

	/*
	 * Reduce accuracy until either term fits in a u64, then proceed with
	 * the other, so that finally we can do a u64/u64 division.
	 */
	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
		REDUCE_FLS(nsec, frequency);
		REDUCE_FLS(sec, count);
	}

	if (count_fls + sec_fls > 64) {
		divisor = nsec * frequency;

		while (count_fls + sec_fls > 64) {
			REDUCE_FLS(count, sec);
			divisor >>= 1;
		}

		dividend = count * sec;
	} else {
		dividend = count * sec;

		while (nsec_fls + frequency_fls > 64) {
			REDUCE_FLS(nsec, frequency);
			dividend >>= 1;
		}

		divisor = nsec * frequency;
	}

	return div64_u64(dividend, divisor);
}

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
static void perf_event_stop(struct perf_event *event)
{
	if (!event->pmu->stop)
		return event->pmu->disable(event);

	return event->pmu->stop(event);
}

static int perf_event_start(struct perf_event *event)
{
	if (!event->pmu->start)
		return event->pmu->enable(event);

	return event->pmu->start(event);
}

1475
static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1476
{
1477
	struct hw_perf_event *hwc = &event->hw;
1478 1479 1480
	u64 period, sample_period;
	s64 delta;

1481
	period = perf_calculate_period(event, nsec, count);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
1492 1493 1494

	if (atomic64_read(&hwc->period_left) > 8*sample_period) {
		perf_disable();
1495
		perf_event_stop(event);
1496
		atomic64_set(&hwc->period_left, 0);
1497
		perf_event_start(event);
1498 1499
		perf_enable();
	}
1500 1501
}

1502
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1503
{
1504 1505
	struct perf_event *event;
	struct hw_perf_event *hwc;
1506 1507
	u64 interrupts, now;
	s64 delta;
1508

1509
	raw_spin_lock(&ctx->lock);
1510
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1511
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1512 1513
			continue;

1514 1515 1516
		if (event->cpu != -1 && event->cpu != smp_processor_id())
			continue;

1517
		hwc = &event->hw;
1518 1519 1520

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1521

1522
		/*
1523
		 * unthrottle events on the tick
1524
		 */
1525
		if (interrupts == MAX_INTERRUPTS) {
1526
			perf_log_throttle(event, 1);
1527
			perf_disable();
1528
			event->pmu->unthrottle(event);
1529
			perf_enable();
1530 1531
		}

1532
		if (!event->attr.freq || !event->attr.sample_freq)
1533 1534
			continue;

1535
		perf_disable();
1536 1537 1538 1539
		event->pmu->read(event);
		now = atomic64_read(&event->count);
		delta = now - hwc->freq_count_stamp;
		hwc->freq_count_stamp = now;
1540

1541 1542
		if (delta > 0)
			perf_adjust_period(event, TICK_NSEC, delta);
1543
		perf_enable();
1544
	}
1545
	raw_spin_unlock(&ctx->lock);
1546 1547
}

1548
/*
1549
 * Round-robin a context's events:
1550
 */
1551
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1552
{
1553
	raw_spin_lock(&ctx->lock);
1554 1555 1556 1557

	/* Rotate the first entry last of non-pinned groups */
	list_rotate_left(&ctx->flexible_groups);

1558
	raw_spin_unlock(&ctx->lock);
1559 1560
}

1561
void perf_event_task_tick(struct task_struct *curr)
1562
{
1563
	struct perf_cpu_context *cpuctx;
1564
	struct perf_event_context *ctx;
1565
	int rotate = 0;
1566

1567
	if (!atomic_read(&nr_events))
1568 1569
		return;

1570
	cpuctx = &__get_cpu_var(perf_cpu_context);
1571 1572 1573
	if (cpuctx->ctx.nr_events &&
	    cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
		rotate = 1;
1574

1575 1576 1577
	ctx = curr->perf_event_ctxp;
	if (ctx && ctx->nr_events && ctx->nr_events != ctx->nr_active)
		rotate = 1;
1578

1579
	perf_ctx_adjust_freq(&cpuctx->ctx);
1580
	if (ctx)
1581
		perf_ctx_adjust_freq(ctx);
1582

1583 1584 1585 1586
	if (!rotate)
		return;

	perf_disable();
1587
	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1588
	if (ctx)
1589
		task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
T
Thomas Gleixner 已提交
1590

1591
	rotate_ctx(&cpuctx->ctx);
1592 1593
	if (ctx)
		rotate_ctx(ctx);
1594

1595
	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1596
	if (ctx)
1597
		task_ctx_sched_in(curr, EVENT_FLEXIBLE);
1598
	perf_enable();
T
Thomas Gleixner 已提交
1599 1600
}

1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static int event_enable_on_exec(struct perf_event *event,
				struct perf_event_context *ctx)
{
	if (!event->attr.enable_on_exec)
		return 0;

	event->attr.enable_on_exec = 0;
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
		return 0;

	__perf_event_mark_enabled(event, ctx);

	return 1;
}

1616
/*
1617
 * Enable all of a task's events that have been marked enable-on-exec.
1618 1619
 * This expects task == current.
 */
1620
static void perf_event_enable_on_exec(struct task_struct *task)
1621
{
1622 1623
	struct perf_event_context *ctx;
	struct perf_event *event;
1624 1625
	unsigned long flags;
	int enabled = 0;
1626
	int ret;
1627 1628

	local_irq_save(flags);
1629 1630
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1631 1632
		goto out;

1633
	__perf_event_task_sched_out(ctx);
1634

1635
	raw_spin_lock(&ctx->lock);
1636

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
	}

	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
		ret = event_enable_on_exec(event, ctx);
		if (ret)
			enabled = 1;
1647 1648 1649
	}

	/*
1650
	 * Unclone this context if we enabled any event.
1651
	 */
1652 1653
	if (enabled)
		unclone_ctx(ctx);
1654

1655
	raw_spin_unlock(&ctx->lock);
1656

1657
	perf_event_task_sched_in(task);
1658 1659 1660 1661
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1662
/*
1663
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1664
 */
1665
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1666
{
1667
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1668 1669
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1670

1671 1672 1673 1674
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1675 1676
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1677 1678 1679 1680
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1681
	raw_spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1682
	update_context_time(ctx);
1683
	update_event_times(event);
1684
	raw_spin_unlock(&ctx->lock);
P
Peter Zijlstra 已提交
1685

P
Peter Zijlstra 已提交
1686
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1687 1688
}

1689
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1690 1691
{
	/*
1692 1693
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1694
	 */
1695 1696 1697 1698
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1699 1700 1701
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

1702
		raw_spin_lock_irqsave(&ctx->lock, flags);
P
Peter Zijlstra 已提交
1703
		update_context_time(ctx);
1704
		update_event_times(event);
1705
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1706 1707
	}

1708
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1709 1710
}

1711
/*
1712
 * Initialize the perf_event context in a task_struct:
1713 1714
 */
static void
1715
__perf_event_init_context(struct perf_event_context *ctx,
1716 1717
			    struct task_struct *task)
{
1718
	raw_spin_lock_init(&ctx->lock);
1719
	mutex_init(&ctx->mutex);
1720 1721
	INIT_LIST_HEAD(&ctx->pinned_groups);
	INIT_LIST_HEAD(&ctx->flexible_groups);
1722 1723 1724 1725 1726
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1727
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1728
{
1729
	struct perf_event_context *ctx;
1730
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1731
	struct task_struct *task;
1732
	unsigned long flags;
1733
	int err;
T
Thomas Gleixner 已提交
1734

1735
	if (pid == -1 && cpu != -1) {
1736
		/* Must be root to operate on a CPU event: */
1737
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1738 1739
			return ERR_PTR(-EACCES);

1740
		if (cpu < 0 || cpu >= nr_cpumask_bits)
T
Thomas Gleixner 已提交
1741 1742 1743
			return ERR_PTR(-EINVAL);

		/*
1744
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1745 1746 1747
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
1748
		if (!cpu_online(cpu))
T
Thomas Gleixner 已提交
1749 1750 1751 1752
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1753
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1770
	/*
1771
	 * Can't attach events to a dying task.
1772 1773 1774 1775 1776
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1777
	/* Reuse ptrace permission checks for now. */
1778 1779 1780 1781 1782
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1783
	ctx = perf_lock_task_context(task, &flags);
1784
	if (ctx) {
1785
		unclone_ctx(ctx);
1786
		raw_spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1787 1788
	}

1789
	if (!ctx) {
1790
		ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1791 1792 1793
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1794
		__perf_event_init_context(ctx, task);
1795
		get_ctx(ctx);
1796
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1797 1798 1799 1800 1801
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1802
			goto retry;
1803
		}
1804
		get_task_struct(task);
1805 1806
	}

1807
	put_task_struct(task);
T
Thomas Gleixner 已提交
1808
	return ctx;
1809 1810 1811 1812

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1813 1814
}

L
Li Zefan 已提交
1815 1816
static void perf_event_free_filter(struct perf_event *event);

1817
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1818
{
1819
	struct perf_event *event;
P
Peter Zijlstra 已提交
1820

1821 1822 1823
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1824
	perf_event_free_filter(event);
1825
	kfree(event);
P
Peter Zijlstra 已提交
1826 1827
}

1828
static void perf_pending_sync(struct perf_event *event);
1829

1830
static void free_event(struct perf_event *event)
1831
{
1832
	perf_pending_sync(event);
1833

1834 1835 1836 1837 1838 1839 1840 1841
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1842
	}
1843

1844 1845 1846
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1847 1848
	}

1849 1850
	if (event->destroy)
		event->destroy(event);
1851

1852 1853
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1854 1855
}

1856
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1857
{
1858
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1859

1860
	WARN_ON_ONCE(ctx->parent_ctx);
1861
	mutex_lock(&ctx->mutex);
1862
	perf_event_remove_from_context(event);
1863
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1864

1865 1866 1867 1868
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1869

1870
	free_event(event);
T
Thomas Gleixner 已提交
1871 1872 1873

	return 0;
}
1874
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1875

1876 1877 1878 1879
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1880
{
1881
	struct perf_event *event = file->private_data;
1882

1883
	file->private_data = NULL;
1884

1885
	return perf_event_release_kernel(event);
1886 1887
}

1888
static int perf_event_read_size(struct perf_event *event)
1889 1890 1891 1892 1893
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1894
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1895 1896
		size += sizeof(u64);

1897
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1898 1899
		size += sizeof(u64);

1900
	if (event->attr.read_format & PERF_FORMAT_ID)
1901 1902
		entry += sizeof(u64);

1903 1904
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1905 1906 1907 1908 1909 1910 1911 1912
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1913
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1914
{
1915
	struct perf_event *child;
1916 1917
	u64 total = 0;

1918 1919 1920
	*enabled = 0;
	*running = 0;

1921
	mutex_lock(&event->child_mutex);
1922
	total += perf_event_read(event);
1923 1924 1925 1926 1927 1928
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1929
		total += perf_event_read(child);
1930 1931 1932
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1933
	mutex_unlock(&event->child_mutex);
1934 1935 1936

	return total;
}
1937
EXPORT_SYMBOL_GPL(perf_event_read_value);
1938

1939
static int perf_event_read_group(struct perf_event *event,
1940 1941
				   u64 read_format, char __user *buf)
{
1942
	struct perf_event *leader = event->group_leader, *sub;
1943 1944
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1945
	u64 values[5];
1946
	u64 count, enabled, running;
1947

1948
	mutex_lock(&ctx->mutex);
1949
	count = perf_event_read_value(leader, &enabled, &running);
1950 1951

	values[n++] = 1 + leader->nr_siblings;
1952 1953 1954 1955
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1956 1957 1958
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1959 1960 1961 1962

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1963
		goto unlock;
1964

1965
	ret = size;
1966

1967
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1968
		n = 0;
1969

1970
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1971 1972 1973 1974 1975
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1976
		if (copy_to_user(buf + ret, values, size)) {
1977 1978 1979
			ret = -EFAULT;
			goto unlock;
		}
1980 1981

		ret += size;
1982
	}
1983 1984
unlock:
	mutex_unlock(&ctx->mutex);
1985

1986
	return ret;
1987 1988
}

1989
static int perf_event_read_one(struct perf_event *event,
1990 1991
				 u64 read_format, char __user *buf)
{
1992
	u64 enabled, running;
1993 1994 1995
	u64 values[4];
	int n = 0;

1996 1997 1998 1999 2000
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
2001
	if (read_format & PERF_FORMAT_ID)
2002
		values[n++] = primary_event_id(event);
2003 2004 2005 2006 2007 2008 2009

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
2010
/*
2011
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
2012 2013
 */
static ssize_t
2014
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
2015
{
2016
	u64 read_format = event->attr.read_format;
2017
	int ret;
T
Thomas Gleixner 已提交
2018

2019
	/*
2020
	 * Return end-of-file for a read on a event that is in
2021 2022 2023
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
2024
	if (event->state == PERF_EVENT_STATE_ERROR)
2025 2026
		return 0;

2027
	if (count < perf_event_read_size(event))
2028 2029
		return -ENOSPC;

2030
	WARN_ON_ONCE(event->ctx->parent_ctx);
2031
	if (read_format & PERF_FORMAT_GROUP)
2032
		ret = perf_event_read_group(event, read_format, buf);
2033
	else
2034
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
2035

2036
	return ret;
T
Thomas Gleixner 已提交
2037 2038 2039 2040 2041
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
2042
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
2043

2044
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
2045 2046 2047 2048
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
2049
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
2050
	struct perf_mmap_data *data;
2051
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
2052 2053

	rcu_read_lock();
2054
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
2055
	if (data)
2056
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
2057
	rcu_read_unlock();
T
Thomas Gleixner 已提交
2058

2059
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
2060 2061 2062 2063

	return events;
}

2064
static void perf_event_reset(struct perf_event *event)
2065
{
2066 2067 2068
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
2069 2070
}

2071
/*
2072 2073 2074 2075
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
2076
 */
2077 2078
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2079
{
2080
	struct perf_event *child;
P
Peter Zijlstra 已提交
2081

2082 2083 2084 2085
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
2086
		func(child);
2087
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
2088 2089
}

2090 2091
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
2092
{
2093 2094
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
2095

2096 2097
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
2098
	event = event->group_leader;
2099

2100 2101 2102 2103
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
2104
	mutex_unlock(&ctx->mutex);
2105 2106
}

2107
static int perf_event_period(struct perf_event *event, u64 __user *arg)
2108
{
2109
	struct perf_event_context *ctx = event->ctx;
2110 2111 2112 2113
	unsigned long size;
	int ret = 0;
	u64 value;

2114
	if (!event->attr.sample_period)
2115 2116 2117 2118 2119 2120 2121 2122 2123
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

2124
	raw_spin_lock_irq(&ctx->lock);
2125 2126
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
2127 2128 2129 2130
			ret = -EINVAL;
			goto unlock;
		}

2131
		event->attr.sample_freq = value;
2132
	} else {
2133 2134
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2135 2136
	}
unlock:
2137
	raw_spin_unlock_irq(&ctx->lock);
2138 2139 2140 2141

	return ret;
}

L
Li Zefan 已提交
2142 2143
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2144

2145 2146
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2147 2148
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2149
	u32 flags = arg;
2150 2151

	switch (cmd) {
2152 2153
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2154
		break;
2155 2156
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2157
		break;
2158 2159
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2160
		break;
P
Peter Zijlstra 已提交
2161

2162 2163
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2164

2165 2166
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2167

2168 2169
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2170

L
Li Zefan 已提交
2171 2172 2173
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2174
	default:
P
Peter Zijlstra 已提交
2175
		return -ENOTTY;
2176
	}
P
Peter Zijlstra 已提交
2177 2178

	if (flags & PERF_IOC_FLAG_GROUP)
2179
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2180
	else
2181
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2182 2183

	return 0;
2184 2185
}

2186
int perf_event_task_enable(void)
2187
{
2188
	struct perf_event *event;
2189

2190 2191 2192 2193
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2194 2195 2196 2197

	return 0;
}

2198
int perf_event_task_disable(void)
2199
{
2200
	struct perf_event *event;
2201

2202 2203 2204 2205
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2206 2207 2208 2209

	return 0;
}

2210 2211
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2212 2213
#endif

2214
static int perf_event_index(struct perf_event *event)
2215
{
2216
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2217 2218
		return 0;

2219
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2220 2221
}

2222 2223 2224 2225 2226
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2227
void perf_event_update_userpage(struct perf_event *event)
2228
{
2229
	struct perf_event_mmap_page *userpg;
2230
	struct perf_mmap_data *data;
2231 2232

	rcu_read_lock();
2233
	data = rcu_dereference(event->data);
2234 2235 2236 2237
	if (!data)
		goto unlock;

	userpg = data->user_page;
2238

2239 2240 2241 2242 2243
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2244
	++userpg->lock;
2245
	barrier();
2246 2247 2248 2249
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2250

2251 2252
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2253

2254 2255
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2256

2257
	barrier();
2258
	++userpg->lock;
2259
	preempt_enable();
2260
unlock:
2261
	rcu_read_unlock();
2262 2263
}

2264
static unsigned long perf_data_size(struct perf_mmap_data *data)
2265
{
2266 2267
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2268

2269
#ifndef CONFIG_PERF_USE_VMALLOC
2270

2271 2272 2273
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2274

2275 2276 2277 2278 2279
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2280

2281 2282
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2283

2284
	return virt_to_page(data->data_pages[pgoff - 1]);
2285 2286
}

2287 2288
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2289 2290 2291 2292 2293
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2294
	WARN_ON(atomic_read(&event->mmap_count));
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2313
	data->data_order = 0;
2314 2315
	data->nr_pages = nr_pages;

2316
	return data;
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2328
	return NULL;
2329 2330
}

2331 2332
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2333
	struct page *page = virt_to_page((void *)addr);
2334 2335 2336 2337 2338

	page->mapping = NULL;
	__free_page(page);
}

2339
static void perf_mmap_data_free(struct perf_mmap_data *data)
2340 2341 2342
{
	int i;

2343
	perf_mmap_free_page((unsigned long)data->user_page);
2344
	for (i = 0; i < data->nr_pages; i++)
2345
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2346
	kfree(data);
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2387
	kfree(data);
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2403

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2481
		data->watermark = max_size / 2;
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2493 2494
}

2495
static void perf_mmap_data_release(struct perf_event *event)
2496
{
2497
	struct perf_mmap_data *data = event->data;
2498

2499
	WARN_ON(atomic_read(&event->mmap_count));
2500

2501
	rcu_assign_pointer(event->data, NULL);
2502
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2503 2504 2505 2506
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2507
	struct perf_event *event = vma->vm_file->private_data;
2508

2509
	atomic_inc(&event->mmap_count);
2510 2511 2512 2513
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2514
	struct perf_event *event = vma->vm_file->private_data;
2515

2516 2517
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2518
		unsigned long size = perf_data_size(event->data);
2519 2520
		struct user_struct *user = current_user();

2521
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2522
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2523
		perf_mmap_data_release(event);
2524
		mutex_unlock(&event->mmap_mutex);
2525
	}
2526 2527
}

2528
static const struct vm_operations_struct perf_mmap_vmops = {
2529 2530 2531 2532
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2533 2534 2535 2536
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2537
	struct perf_event *event = file->private_data;
2538
	unsigned long user_locked, user_lock_limit;
2539
	struct user_struct *user = current_user();
2540
	unsigned long locked, lock_limit;
2541
	struct perf_mmap_data *data;
2542 2543
	unsigned long vma_size;
	unsigned long nr_pages;
2544
	long user_extra, extra;
2545
	int ret = 0;
2546

2547
	if (!(vma->vm_flags & VM_SHARED))
2548
		return -EINVAL;
2549 2550 2551 2552

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2553 2554 2555 2556 2557
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2558 2559
		return -EINVAL;

2560
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2561 2562
		return -EINVAL;

2563 2564
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2565

2566 2567 2568
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2569 2570 2571 2572
		ret = -EINVAL;
		goto unlock;
	}

2573 2574
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2575 2576 2577 2578
			ret = -EINVAL;
		goto unlock;
	}

2579
	user_extra = nr_pages + 1;
2580
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2581 2582 2583 2584 2585 2586

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2587
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2588

2589 2590 2591
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2592

2593
	lock_limit = rlimit(RLIMIT_MEMLOCK);
2594
	lock_limit >>= PAGE_SHIFT;
2595
	locked = vma->vm_mm->locked_vm + extra;
2596

2597 2598
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2599 2600 2601
		ret = -EPERM;
		goto unlock;
	}
2602

2603
	WARN_ON(event->data);
2604 2605 2606 2607

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2608 2609
		goto unlock;

2610 2611 2612
	ret = 0;
	perf_mmap_data_init(event, data);

2613
	atomic_set(&event->mmap_count, 1);
2614
	atomic_long_add(user_extra, &user->locked_vm);
2615
	vma->vm_mm->locked_vm += extra;
2616
	event->data->nr_locked = extra;
2617
	if (vma->vm_flags & VM_WRITE)
2618
		event->data->writable = 1;
2619

2620
unlock:
2621
	mutex_unlock(&event->mmap_mutex);
2622 2623 2624

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2625 2626

	return ret;
2627 2628
}

P
Peter Zijlstra 已提交
2629 2630 2631
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2632
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2633 2634 2635
	int retval;

	mutex_lock(&inode->i_mutex);
2636
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2637 2638 2639 2640 2641 2642 2643 2644
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2645 2646 2647 2648
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2649 2650
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2651
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2652
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2653 2654
};

2655
/*
2656
 * Perf event wakeup
2657 2658 2659 2660 2661
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2662
void perf_event_wakeup(struct perf_event *event)
2663
{
2664
	wake_up_all(&event->waitq);
2665

2666 2667 2668
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2669
	}
2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2681
static void perf_pending_event(struct perf_pending_entry *entry)
2682
{
2683 2684
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2685

2686 2687 2688
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2689 2690
	}

2691 2692 2693
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2694 2695 2696
	}
}

2697
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2698

2699
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2700 2701 2702
	PENDING_TAIL,
};

2703 2704
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2705
{
2706
	struct perf_pending_entry **head;
2707

2708
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2709 2710
		return;

2711 2712 2713
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2714 2715

	do {
2716 2717
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2718

2719
	set_perf_event_pending();
2720

2721
	put_cpu_var(perf_pending_head);
2722 2723 2724 2725
}

static int __perf_pending_run(void)
{
2726
	struct perf_pending_entry *list;
2727 2728
	int nr = 0;

2729
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2730
	while (list != PENDING_TAIL) {
2731 2732
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2733 2734 2735

		list = list->next;

2736 2737
		func = entry->func;
		entry->next = NULL;
2738 2739 2740 2741 2742 2743 2744
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2745
		func(entry);
2746 2747 2748 2749 2750 2751
		nr++;
	}

	return nr;
}

2752
static inline int perf_not_pending(struct perf_event *event)
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2767
	return event->pending.next == NULL;
2768 2769
}

2770
static void perf_pending_sync(struct perf_event *event)
2771
{
2772
	wait_event(event->waitq, perf_not_pending(event));
2773 2774
}

2775
void perf_event_do_pending(void)
2776 2777 2778 2779
{
	__perf_pending_run();
}

2780 2781 2782 2783
/*
 * Callchain support -- arch specific
 */

2784
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2785 2786 2787 2788
{
	return NULL;
}

2789 2790 2791 2792 2793
__weak
void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip, int skip)
{
}

2794 2795 2796
/*
 * Output
 */
2797 2798
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2799 2800 2801 2802 2803 2804
{
	unsigned long mask;

	if (!data->writable)
		return true;

2805
	mask = perf_data_size(data) - 1;
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2816
static void perf_output_wakeup(struct perf_output_handle *handle)
2817
{
2818 2819
	atomic_set(&handle->data->poll, POLL_IN);

2820
	if (handle->nmi) {
2821 2822 2823
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2824
	} else
2825
		perf_event_wakeup(handle->event);
2826 2827
}

2828 2829 2830
/*
 * Curious locking construct.
 *
2831 2832
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2833 2834 2835 2836 2837 2838
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2839
 * event_id completes.
2840 2841 2842 2843
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2844
	int cur, cpu = get_cpu();
2845 2846 2847

	handle->locked = 0;

2848 2849 2850 2851 2852 2853 2854 2855
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2856 2857

		cpu_relax();
2858
	}
2859 2860 2861 2862 2863
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2864 2865
	unsigned long head;
	int cpu;
2866

2867
	data->done_head = data->head;
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2878
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2879 2880 2881
		data->user_page->data_head = head;

	/*
2882
	 * NMI can happen here, which means we can miss a done_head update.
2883 2884
	 */

2885
	cpu = atomic_xchg(&data->lock, -1);
2886 2887 2888 2889 2890
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2891
	if (unlikely(atomic_long_read(&data->done_head))) {
2892 2893 2894
		/*
		 * Since we had it locked, we can lock it again.
		 */
2895
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2896 2897 2898 2899 2900
			cpu_relax();

		goto again;
	}

2901
	if (atomic_xchg(&data->wakeup, 0))
2902 2903
		perf_output_wakeup(handle);
out:
2904
	put_cpu();
2905 2906
}

2907 2908
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2909 2910
{
	unsigned int pages_mask;
2911
	unsigned long offset;
2912 2913 2914 2915 2916 2917 2918 2919
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2920 2921
		unsigned long page_offset;
		unsigned long page_size;
2922 2923 2924
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2925 2926 2927
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2945
int perf_output_begin(struct perf_output_handle *handle,
2946
		      struct perf_event *event, unsigned int size,
2947
		      int nmi, int sample)
2948
{
2949
	struct perf_event *output_event;
2950
	struct perf_mmap_data *data;
2951
	unsigned long tail, offset, head;
2952 2953 2954 2955 2956 2957
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2958

2959
	rcu_read_lock();
2960
	/*
2961
	 * For inherited events we send all the output towards the parent.
2962
	 */
2963 2964
	if (event->parent)
		event = event->parent;
2965

2966 2967 2968
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2969

2970
	data = rcu_dereference(event->data);
2971 2972 2973
	if (!data)
		goto out;

2974
	handle->data	= data;
2975
	handle->event	= event;
2976 2977
	handle->nmi	= nmi;
	handle->sample	= sample;
2978

2979
	if (!data->nr_pages)
2980
		goto fail;
2981

2982 2983 2984 2985
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2986 2987
	perf_output_lock(handle);

2988
	do {
2989 2990 2991 2992 2993 2994 2995
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2996
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2997
		head += size;
2998
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2999
			goto fail;
3000
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
3001

3002
	handle->offset	= offset;
3003
	handle->head	= head;
3004

3005
	if (head - tail > data->watermark)
3006
		atomic_set(&data->wakeup, 1);
3007

3008
	if (have_lost) {
3009
		lost_event.header.type = PERF_RECORD_LOST;
3010 3011
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
3012
		lost_event.id          = event->id;
3013 3014 3015 3016 3017
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

3018
	return 0;
3019

3020
fail:
3021 3022
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
3023 3024
out:
	rcu_read_unlock();
3025

3026 3027
	return -ENOSPC;
}
3028

3029
void perf_output_end(struct perf_output_handle *handle)
3030
{
3031
	struct perf_event *event = handle->event;
3032 3033
	struct perf_mmap_data *data = handle->data;

3034
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
3035

3036
	if (handle->sample && wakeup_events) {
3037
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
3038
		if (events >= wakeup_events) {
3039
			atomic_sub(wakeup_events, &data->events);
3040
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
3041
		}
3042 3043 3044
	}

	perf_output_unlock(handle);
3045
	rcu_read_unlock();
3046 3047
}

3048
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
3049 3050
{
	/*
3051
	 * only top level events have the pid namespace they were created in
3052
	 */
3053 3054
	if (event->parent)
		event = event->parent;
3055

3056
	return task_tgid_nr_ns(p, event->ns);
3057 3058
}

3059
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
3060 3061
{
	/*
3062
	 * only top level events have the pid namespace they were created in
3063
	 */
3064 3065
	if (event->parent)
		event = event->parent;
3066

3067
	return task_pid_nr_ns(p, event->ns);
3068 3069
}

3070
static void perf_output_read_one(struct perf_output_handle *handle,
3071
				 struct perf_event *event)
3072
{
3073
	u64 read_format = event->attr.read_format;
3074 3075 3076
	u64 values[4];
	int n = 0;

3077
	values[n++] = atomic64_read(&event->count);
3078
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3079 3080
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
3081 3082
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3083 3084
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
3085 3086
	}
	if (read_format & PERF_FORMAT_ID)
3087
		values[n++] = primary_event_id(event);
3088 3089 3090 3091 3092

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
3093
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3094 3095
 */
static void perf_output_read_group(struct perf_output_handle *handle,
3096
			    struct perf_event *event)
3097
{
3098 3099
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

3111
	if (leader != event)
3112 3113 3114 3115
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
3116
		values[n++] = primary_event_id(leader);
3117 3118 3119

	perf_output_copy(handle, values, n * sizeof(u64));

3120
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3121 3122
		n = 0;

3123
		if (sub != event)
3124 3125 3126 3127
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
3128
			values[n++] = primary_event_id(sub);
3129 3130 3131 3132 3133 3134

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
3135
			     struct perf_event *event)
3136
{
3137 3138
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3139
	else
3140
		perf_output_read_one(handle, event);
3141 3142
}

3143 3144 3145
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3146
			struct perf_event *event)
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3177
		perf_output_read(handle, event);
3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3215
			 struct perf_event *event,
3216
			 struct pt_regs *regs)
3217
{
3218
	u64 sample_type = event->attr.sample_type;
3219

3220
	data->type = sample_type;
3221

3222
	header->type = PERF_RECORD_SAMPLE;
3223 3224 3225 3226
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3227

3228
	if (sample_type & PERF_SAMPLE_IP) {
3229 3230 3231
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3232
	}
3233

3234
	if (sample_type & PERF_SAMPLE_TID) {
3235
		/* namespace issues */
3236 3237
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3238

3239
		header->size += sizeof(data->tid_entry);
3240 3241
	}

3242
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3243
		data->time = perf_clock();
3244

3245
		header->size += sizeof(data->time);
3246 3247
	}

3248
	if (sample_type & PERF_SAMPLE_ADDR)
3249
		header->size += sizeof(data->addr);
3250

3251
	if (sample_type & PERF_SAMPLE_ID) {
3252
		data->id = primary_event_id(event);
3253

3254 3255 3256 3257
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3258
		data->stream_id = event->id;
3259 3260 3261

		header->size += sizeof(data->stream_id);
	}
3262

3263
	if (sample_type & PERF_SAMPLE_CPU) {
3264 3265
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3266

3267
		header->size += sizeof(data->cpu_entry);
3268 3269
	}

3270
	if (sample_type & PERF_SAMPLE_PERIOD)
3271
		header->size += sizeof(data->period);
3272

3273
	if (sample_type & PERF_SAMPLE_READ)
3274
		header->size += perf_event_read_size(event);
3275

3276
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3277
		int size = 1;
3278

3279 3280 3281 3282 3283 3284
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3285 3286
	}

3287
	if (sample_type & PERF_SAMPLE_RAW) {
3288 3289 3290 3291 3292 3293 3294 3295
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3296
		header->size += size;
3297
	}
3298
}
3299

3300
static void perf_event_output(struct perf_event *event, int nmi,
3301 3302 3303 3304 3305
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3306

3307
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3308

3309
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3310
		return;
3311

3312
	perf_output_sample(&handle, &header, data, event);
3313

3314
	perf_output_end(&handle);
3315 3316
}

3317
/*
3318
 * read event_id
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3329
perf_event_read_event(struct perf_event *event,
3330 3331 3332
			struct task_struct *task)
{
	struct perf_output_handle handle;
3333
	struct perf_read_event read_event = {
3334
		.header = {
3335
			.type = PERF_RECORD_READ,
3336
			.misc = 0,
3337
			.size = sizeof(read_event) + perf_event_read_size(event),
3338
		},
3339 3340
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3341
	};
3342
	int ret;
3343

3344
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3345 3346 3347
	if (ret)
		return;

3348
	perf_output_put(&handle, read_event);
3349
	perf_output_read(&handle, event);
3350

3351 3352 3353
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3354
/*
P
Peter Zijlstra 已提交
3355 3356 3357
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3358 3359
 */

P
Peter Zijlstra 已提交
3360
struct perf_task_event {
3361
	struct task_struct		*task;
3362
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3363 3364 3365 3366 3367 3368

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3369 3370
		u32				tid;
		u32				ptid;
3371
		u64				time;
3372
	} event_id;
P
Peter Zijlstra 已提交
3373 3374
};

3375
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3376
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3377 3378
{
	struct perf_output_handle handle;
3379
	int size;
P
Peter Zijlstra 已提交
3380
	struct task_struct *task = task_event->task;
3381 3382
	int ret;

3383 3384
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3385 3386 3387 3388

	if (ret)
		return;

3389 3390
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3391

3392 3393
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3394

3395
	perf_output_put(&handle, task_event->event_id);
3396

P
Peter Zijlstra 已提交
3397 3398 3399
	perf_output_end(&handle);
}

3400
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3401
{
P
Peter Zijlstra 已提交
3402
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3403 3404
		return 0;

3405 3406 3407
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3408
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3409 3410 3411 3412 3413
		return 1;

	return 0;
}

3414
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3415
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3416
{
3417
	struct perf_event *event;
P
Peter Zijlstra 已提交
3418

3419 3420 3421
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3422 3423 3424
	}
}

3425
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3426 3427
{
	struct perf_cpu_context *cpuctx;
3428
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3429

3430
	rcu_read_lock();
P
Peter Zijlstra 已提交
3431
	cpuctx = &get_cpu_var(perf_cpu_context);
3432
	perf_event_task_ctx(&cpuctx->ctx, task_event);
3433
	if (!ctx)
P
Peter Zijlstra 已提交
3434
		ctx = rcu_dereference(current->perf_event_ctxp);
P
Peter Zijlstra 已提交
3435
	if (ctx)
3436
		perf_event_task_ctx(ctx, task_event);
3437
	put_cpu_var(perf_cpu_context);
P
Peter Zijlstra 已提交
3438 3439 3440
	rcu_read_unlock();
}

3441 3442
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3443
			      int new)
P
Peter Zijlstra 已提交
3444
{
P
Peter Zijlstra 已提交
3445
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3446

3447 3448 3449
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3450 3451
		return;

P
Peter Zijlstra 已提交
3452
	task_event = (struct perf_task_event){
3453 3454
		.task	  = task,
		.task_ctx = task_ctx,
3455
		.event_id    = {
P
Peter Zijlstra 已提交
3456
			.header = {
3457
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3458
				.misc = 0,
3459
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3460
			},
3461 3462
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3463 3464
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3465
			.time = perf_clock(),
P
Peter Zijlstra 已提交
3466 3467 3468
		},
	};

3469
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3470 3471
}

3472
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3473
{
3474
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3475 3476
}

3477 3478 3479 3480 3481
/*
 * comm tracking
 */

struct perf_comm_event {
3482 3483
	struct task_struct	*task;
	char			*comm;
3484 3485 3486 3487 3488 3489 3490
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3491
	} event_id;
3492 3493
};

3494
static void perf_event_comm_output(struct perf_event *event,
3495 3496 3497
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3498 3499
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3500 3501 3502 3503

	if (ret)
		return;

3504 3505
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3506

3507
	perf_output_put(&handle, comm_event->event_id);
3508 3509 3510 3511 3512
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3513
static int perf_event_comm_match(struct perf_event *event)
3514
{
P
Peter Zijlstra 已提交
3515
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3516 3517
		return 0;

3518 3519 3520
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3521
	if (event->attr.comm)
3522 3523 3524 3525 3526
		return 1;

	return 0;
}

3527
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3528 3529
				  struct perf_comm_event *comm_event)
{
3530
	struct perf_event *event;
3531

3532 3533 3534
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3535 3536 3537
	}
}

3538
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3539 3540
{
	struct perf_cpu_context *cpuctx;
3541
	struct perf_event_context *ctx;
3542
	unsigned int size;
3543
	char comm[TASK_COMM_LEN];
3544

3545
	memset(comm, 0, sizeof(comm));
3546
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3547
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3548 3549 3550 3551

	comm_event->comm = comm;
	comm_event->comm_size = size;

3552
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3553

3554
	rcu_read_lock();
3555
	cpuctx = &get_cpu_var(perf_cpu_context);
3556 3557
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3558
	if (ctx)
3559
		perf_event_comm_ctx(ctx, comm_event);
3560
	put_cpu_var(perf_cpu_context);
3561
	rcu_read_unlock();
3562 3563
}

3564
void perf_event_comm(struct task_struct *task)
3565
{
3566 3567
	struct perf_comm_event comm_event;

3568 3569
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3570

3571
	if (!atomic_read(&nr_comm_events))
3572
		return;
3573

3574
	comm_event = (struct perf_comm_event){
3575
		.task	= task,
3576 3577
		/* .comm      */
		/* .comm_size */
3578
		.event_id  = {
3579
			.header = {
3580
				.type = PERF_RECORD_COMM,
3581 3582 3583 3584 3585
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3586 3587 3588
		},
	};

3589
	perf_event_comm_event(&comm_event);
3590 3591
}

3592 3593 3594 3595 3596
/*
 * mmap tracking
 */

struct perf_mmap_event {
3597 3598 3599 3600
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3601 3602 3603 3604 3605 3606 3607 3608 3609

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3610
	} event_id;
3611 3612
};

3613
static void perf_event_mmap_output(struct perf_event *event,
3614 3615 3616
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3617 3618
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3619 3620 3621 3622

	if (ret)
		return;

3623 3624
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3625

3626
	perf_output_put(&handle, mmap_event->event_id);
3627 3628
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3629
	perf_output_end(&handle);
3630 3631
}

3632
static int perf_event_mmap_match(struct perf_event *event,
3633 3634
				   struct perf_mmap_event *mmap_event)
{
P
Peter Zijlstra 已提交
3635
	if (event->state < PERF_EVENT_STATE_INACTIVE)
3636 3637
		return 0;

3638 3639 3640
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

3641
	if (event->attr.mmap)
3642 3643 3644 3645 3646
		return 1;

	return 0;
}

3647
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3648 3649
				  struct perf_mmap_event *mmap_event)
{
3650
	struct perf_event *event;
3651

3652 3653 3654
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3655 3656 3657
	}
}

3658
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3659 3660
{
	struct perf_cpu_context *cpuctx;
3661
	struct perf_event_context *ctx;
3662 3663
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3664 3665 3666
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3667
	const char *name;
3668

3669 3670
	memset(tmp, 0, sizeof(tmp));

3671
	if (file) {
3672 3673 3674 3675 3676 3677
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3678 3679 3680 3681
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3682
		name = d_path(&file->f_path, buf, PATH_MAX);
3683 3684 3685 3686 3687
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3688 3689 3690
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3691
			goto got_name;
3692
		}
3693 3694 3695 3696 3697 3698

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3699 3700 3701 3702 3703
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3704
	size = ALIGN(strlen(name)+1, sizeof(u64));
3705 3706 3707 3708

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3709
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3710

3711
	rcu_read_lock();
3712
	cpuctx = &get_cpu_var(perf_cpu_context);
3713 3714
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
	ctx = rcu_dereference(current->perf_event_ctxp);
3715
	if (ctx)
3716
		perf_event_mmap_ctx(ctx, mmap_event);
3717
	put_cpu_var(perf_cpu_context);
3718 3719
	rcu_read_unlock();

3720 3721 3722
	kfree(buf);
}

3723
void __perf_event_mmap(struct vm_area_struct *vma)
3724
{
3725 3726
	struct perf_mmap_event mmap_event;

3727
	if (!atomic_read(&nr_mmap_events))
3728 3729 3730
		return;

	mmap_event = (struct perf_mmap_event){
3731
		.vma	= vma,
3732 3733
		/* .file_name */
		/* .file_size */
3734
		.event_id  = {
3735
			.header = {
3736
				.type = PERF_RECORD_MMAP,
3737 3738 3739 3740 3741
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3742 3743
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
3744
			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
3745 3746 3747
		},
	};

3748
	perf_event_mmap_event(&mmap_event);
3749 3750
}

3751 3752 3753 3754
/*
 * IRQ throttle logging
 */

3755
static void perf_log_throttle(struct perf_event *event, int enable)
3756 3757 3758 3759 3760 3761 3762
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3763
		u64				id;
3764
		u64				stream_id;
3765 3766
	} throttle_event = {
		.header = {
3767
			.type = PERF_RECORD_THROTTLE,
3768 3769 3770
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3771
		.time		= perf_clock(),
3772 3773
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3774 3775
	};

3776
	if (enable)
3777
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3778

3779
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3780 3781 3782 3783 3784 3785 3786
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3787
/*
3788
 * Generic event overflow handling, sampling.
3789 3790
 */

3791
static int __perf_event_overflow(struct perf_event *event, int nmi,
3792 3793
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3794
{
3795 3796
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3797 3798
	int ret = 0;

3799
	throttle = (throttle && event->pmu->unthrottle != NULL);
3800

3801
	if (!throttle) {
3802
		hwc->interrupts++;
3803
	} else {
3804 3805
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3806
			if (HZ * hwc->interrupts >
3807
					(u64)sysctl_perf_event_sample_rate) {
3808
				hwc->interrupts = MAX_INTERRUPTS;
3809
				perf_log_throttle(event, 0);
3810 3811 3812 3813
				ret = 1;
			}
		} else {
			/*
3814
			 * Keep re-disabling events even though on the previous
3815
			 * pass we disabled it - just in case we raced with a
3816
			 * sched-in and the event got enabled again:
3817
			 */
3818 3819 3820
			ret = 1;
		}
	}
3821

3822
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3823
		u64 now = perf_clock();
3824
		s64 delta = now - hwc->freq_time_stamp;
3825

3826
		hwc->freq_time_stamp = now;
3827

3828 3829
		if (delta > 0 && delta < 2*TICK_NSEC)
			perf_adjust_period(event, delta, hwc->last_period);
3830 3831
	}

3832 3833
	/*
	 * XXX event_limit might not quite work as expected on inherited
3834
	 * events
3835 3836
	 */

3837 3838
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3839
		ret = 1;
3840
		event->pending_kill = POLL_HUP;
3841
		if (nmi) {
3842 3843 3844
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3845
		} else
3846
			perf_event_disable(event);
3847 3848
	}

3849 3850 3851 3852 3853
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3854
	return ret;
3855 3856
}

3857
int perf_event_overflow(struct perf_event *event, int nmi,
3858 3859
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3860
{
3861
	return __perf_event_overflow(event, nmi, 1, data, regs);
3862 3863
}

3864
/*
3865
 * Generic software event infrastructure
3866 3867
 */

3868
/*
3869 3870
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3871 3872 3873 3874
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3875
static u64 perf_swevent_set_period(struct perf_event *event)
3876
{
3877
	struct hw_perf_event *hwc = &event->hw;
3878 3879 3880 3881 3882
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3883 3884

again:
3885 3886 3887
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3888

3889 3890 3891 3892 3893
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3894

3895
	return nr;
3896 3897
}

3898
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3899 3900
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3901
{
3902
	struct hw_perf_event *hwc = &event->hw;
3903
	int throttle = 0;
3904

3905
	data->period = event->hw.last_period;
3906 3907
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3908

3909 3910
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3911

3912
	for (; overflow; overflow--) {
3913
		if (__perf_event_overflow(event, nmi, throttle,
3914
					    data, regs)) {
3915 3916 3917 3918 3919 3920
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3921
		throttle = 1;
3922
	}
3923 3924
}

3925
static void perf_swevent_unthrottle(struct perf_event *event)
3926 3927
{
	/*
3928
	 * Nothing to do, we already reset hwc->interrupts.
3929
	 */
3930
}
3931

3932
static void perf_swevent_add(struct perf_event *event, u64 nr,
3933 3934
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3935
{
3936
	struct hw_perf_event *hwc = &event->hw;
3937

3938
	atomic64_add(nr, &event->count);
3939

3940 3941 3942
	if (!regs)
		return;

3943 3944
	if (!hwc->sample_period)
		return;
3945

3946 3947 3948 3949
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3950
		return;
3951

3952
	perf_swevent_overflow(event, 0, nmi, data, regs);
3953 3954
}

3955
static int perf_swevent_is_counting(struct perf_event *event)
3956
{
3957
	/*
3958
	 * The event is active, we're good!
3959
	 */
3960
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3961 3962
		return 1;

3963
	/*
3964
	 * The event is off/error, not counting.
3965
	 */
3966
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3967 3968 3969
		return 0;

	/*
3970
	 * The event is inactive, if the context is active
3971 3972
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3973
	 */
3974
	if (event->ctx->is_active)
3975 3976 3977 3978 3979 3980 3981 3982
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3983 3984
}

L
Li Zefan 已提交
3985 3986 3987
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

4002
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
4003
				enum perf_type_id type,
L
Li Zefan 已提交
4004 4005 4006
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
4007
{
4008 4009 4010
	if (event->cpu != -1 && event->cpu != smp_processor_id())
		return 0;

4011
	if (!perf_swevent_is_counting(event))
4012 4013
		return 0;

4014
	if (event->attr.type != type)
4015
		return 0;
4016

4017
	if (event->attr.config != event_id)
4018 4019
		return 0;

4020 4021
	if (perf_exclude_event(event, regs))
		return 0;
4022

L
Li Zefan 已提交
4023 4024 4025 4026
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

4027 4028 4029
	return 1;
}

4030
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
4031
				     enum perf_type_id type,
4032
				     u32 event_id, u64 nr, int nmi,
4033 4034
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
4035
{
4036
	struct perf_event *event;
4037

4038
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
4039
		if (perf_swevent_match(event, type, event_id, data, regs))
4040
			perf_swevent_add(event, nr, nmi, data, regs);
4041 4042 4043
	}
}

4044
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
4045
{
4046 4047
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
4048

P
Peter Zijlstra 已提交
4049
	if (in_nmi())
4050
		rctx = 3;
4051
	else if (in_irq())
4052
		rctx = 2;
4053
	else if (in_softirq())
4054
		rctx = 1;
4055
	else
4056
		rctx = 0;
P
Peter Zijlstra 已提交
4057

4058 4059
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
4060
		return -1;
4061
	}
P
Peter Zijlstra 已提交
4062

4063 4064
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
4065

4066
	return rctx;
P
Peter Zijlstra 已提交
4067
}
I
Ingo Molnar 已提交
4068
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
4069

4070
void perf_swevent_put_recursion_context(int rctx)
4071
{
4072 4073
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
4074
	cpuctx->recursion[rctx]--;
4075
	put_cpu_var(perf_cpu_context);
4076
}
I
Ingo Molnar 已提交
4077
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
4078

4079 4080 4081 4082
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
4083
{
4084
	struct perf_cpu_context *cpuctx;
4085
	struct perf_event_context *ctx;
4086

4087
	cpuctx = &__get_cpu_var(perf_cpu_context);
4088
	rcu_read_lock();
4089
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4090
				 nr, nmi, data, regs);
4091 4092 4093 4094
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
4095
	ctx = rcu_dereference(current->perf_event_ctxp);
4096
	if (ctx)
4097
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4098
	rcu_read_unlock();
4099
}
4100

4101
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4102
			    struct pt_regs *regs, u64 addr)
4103
{
4104
	struct perf_sample_data data;
4105 4106 4107 4108 4109
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
4110

4111
	perf_sample_data_init(&data, addr);
4112

4113
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4114 4115

	perf_swevent_put_recursion_context(rctx);
4116 4117
}

4118
static void perf_swevent_read(struct perf_event *event)
4119 4120 4121
{
}

4122
static int perf_swevent_enable(struct perf_event *event)
4123
{
4124
	struct hw_perf_event *hwc = &event->hw;
4125 4126 4127

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
4128
		perf_swevent_set_period(event);
4129
	}
4130 4131 4132
	return 0;
}

4133
static void perf_swevent_disable(struct perf_event *event)
4134 4135 4136
{
}

4137
static const struct pmu perf_ops_generic = {
4138 4139 4140 4141
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
4142 4143
};

4144
/*
4145
 * hrtimer based swevent callback
4146 4147
 */

4148
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4149 4150 4151
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4152
	struct pt_regs *regs;
4153
	struct perf_event *event;
4154 4155
	u64 period;

4156
	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4157
	event->pmu->read(event);
4158

4159
	perf_sample_data_init(&data, 0);
4160
	data.period = event->hw.last_period;
4161
	regs = get_irq_regs();
4162 4163 4164 4165
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4166 4167
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4168
		regs = task_pt_regs(current);
4169

4170
	if (regs) {
4171 4172 4173
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4174 4175
	}

4176
	period = max_t(u64, 10000, event->hw.sample_period);
4177 4178 4179 4180 4181
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4218
/*
4219
 * Software event: cpu wall time clock
4220 4221
 */

4222
static void cpu_clock_perf_event_update(struct perf_event *event)
4223 4224 4225 4226 4227 4228
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4229
	prev = atomic64_xchg(&event->hw.prev_count, now);
4230
	atomic64_add(now - prev, &event->count);
4231 4232
}

4233
static int cpu_clock_perf_event_enable(struct perf_event *event)
4234
{
4235
	struct hw_perf_event *hwc = &event->hw;
4236 4237 4238
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4239
	perf_swevent_start_hrtimer(event);
4240 4241 4242 4243

	return 0;
}

4244
static void cpu_clock_perf_event_disable(struct perf_event *event)
4245
{
4246
	perf_swevent_cancel_hrtimer(event);
4247
	cpu_clock_perf_event_update(event);
4248 4249
}

4250
static void cpu_clock_perf_event_read(struct perf_event *event)
4251
{
4252
	cpu_clock_perf_event_update(event);
4253 4254
}

4255
static const struct pmu perf_ops_cpu_clock = {
4256 4257 4258
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4259 4260
};

4261
/*
4262
 * Software event: task time clock
4263 4264
 */

4265
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4266
{
4267
	u64 prev;
I
Ingo Molnar 已提交
4268 4269
	s64 delta;

4270
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4271
	delta = now - prev;
4272
	atomic64_add(delta, &event->count);
4273 4274
}

4275
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4276
{
4277
	struct hw_perf_event *hwc = &event->hw;
4278 4279
	u64 now;

4280
	now = event->ctx->time;
4281

4282
	atomic64_set(&hwc->prev_count, now);
4283 4284

	perf_swevent_start_hrtimer(event);
4285 4286

	return 0;
I
Ingo Molnar 已提交
4287 4288
}

4289
static void task_clock_perf_event_disable(struct perf_event *event)
4290
{
4291
	perf_swevent_cancel_hrtimer(event);
4292
	task_clock_perf_event_update(event, event->ctx->time);
4293

4294
}
I
Ingo Molnar 已提交
4295

4296
static void task_clock_perf_event_read(struct perf_event *event)
4297
{
4298 4299 4300
	u64 time;

	if (!in_nmi()) {
4301 4302
		update_context_time(event->ctx);
		time = event->ctx->time;
4303 4304
	} else {
		u64 now = perf_clock();
4305 4306
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4307 4308
	}

4309
	task_clock_perf_event_update(event, time);
4310 4311
}

4312
static const struct pmu perf_ops_task_clock = {
4313 4314 4315
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4316 4317
};

4318
#ifdef CONFIG_EVENT_TRACING
L
Li Zefan 已提交
4319

4320
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4321
			  int entry_size)
4322
{
4323 4324
	struct pt_regs *regs = get_irq_regs();
	struct perf_sample_data data;
4325
	struct perf_raw_record raw = {
4326
		.size = entry_size,
4327
		.data = record,
4328 4329
	};

4330 4331
	perf_sample_data_init(&data, addr);
	data.raw = &raw;
4332 4333 4334

	if (!regs)
		regs = task_pt_regs(current);
4335

4336
	/* Trace events already protected against recursion */
4337
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4338
				&data, regs);
4339
}
4340
EXPORT_SYMBOL_GPL(perf_tp_event);
4341

L
Li Zefan 已提交
4342 4343 4344 4345 4346 4347 4348 4349 4350
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4351

4352
static void tp_perf_event_destroy(struct perf_event *event)
4353
{
4354
	ftrace_profile_disable(event->attr.config);
4355 4356
}

4357
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4358
{
4359 4360 4361 4362
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4363
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4364
			perf_paranoid_tracepoint_raw() &&
4365 4366 4367
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4368
	if (ftrace_profile_enable(event->attr.config))
4369 4370
		return NULL;

4371
	event->destroy = tp_perf_event_destroy;
4372 4373 4374

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4399
#else
L
Li Zefan 已提交
4400 4401 4402 4403 4404 4405 4406

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4407
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4408 4409 4410
{
	return NULL;
}
L
Li Zefan 已提交
4411 4412 4413 4414 4415 4416 4417 4418 4419 4420

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

4421
#endif /* CONFIG_EVENT_TRACING */
4422

4423 4424 4425 4426 4427 4428 4429 4430 4431
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4432 4433

	err = register_perf_hw_breakpoint(bp);
4434 4435 4436 4437 4438 4439 4440 4441
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4442
void perf_bp_event(struct perf_event *bp, void *data)
4443
{
4444 4445 4446
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

4447
	perf_sample_data_init(&sample, bp->attr.bp_addr);
4448 4449 4450

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4463
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4464

4465
static void sw_perf_event_destroy(struct perf_event *event)
4466
{
4467
	u64 event_id = event->attr.config;
4468

4469
	WARN_ON(event->parent);
4470

4471
	atomic_dec(&perf_swevent_enabled[event_id]);
4472 4473
}

4474
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4475
{
4476
	const struct pmu *pmu = NULL;
4477
	u64 event_id = event->attr.config;
4478

4479
	/*
4480
	 * Software events (currently) can't in general distinguish
4481 4482 4483 4484 4485
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4486
	switch (event_id) {
4487
	case PERF_COUNT_SW_CPU_CLOCK:
4488
		pmu = &perf_ops_cpu_clock;
4489

4490
		break;
4491
	case PERF_COUNT_SW_TASK_CLOCK:
4492
		/*
4493 4494
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4495
		 */
4496
		if (event->ctx->task)
4497
			pmu = &perf_ops_task_clock;
4498
		else
4499
			pmu = &perf_ops_cpu_clock;
4500

4501
		break;
4502 4503 4504 4505 4506
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4507 4508
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4509 4510 4511
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4512
		}
4513
		pmu = &perf_ops_generic;
4514
		break;
4515
	}
4516

4517
	return pmu;
4518 4519
}

T
Thomas Gleixner 已提交
4520
/*
4521
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4522
 */
4523 4524
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4525
		   int cpu,
4526 4527 4528
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4529
		   perf_overflow_handler_t overflow_handler,
4530
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4531
{
4532
	const struct pmu *pmu;
4533 4534
	struct perf_event *event;
	struct hw_perf_event *hwc;
4535
	long err;
T
Thomas Gleixner 已提交
4536

4537 4538
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4539
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4540

4541
	/*
4542
	 * Single events are their own group leaders, with an
4543 4544 4545
	 * empty sibling list:
	 */
	if (!group_leader)
4546
		group_leader = event;
4547

4548 4549
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4550

4551 4552 4553 4554
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4555

4556
	mutex_init(&event->mmap_mutex);
4557

4558 4559 4560 4561 4562 4563
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4564

4565
	event->parent		= parent_event;
4566

4567 4568
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4569

4570
	event->state		= PERF_EVENT_STATE_INACTIVE;
4571

4572 4573
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4574
	
4575
	event->overflow_handler	= overflow_handler;
4576

4577
	if (attr->disabled)
4578
		event->state = PERF_EVENT_STATE_OFF;
4579

4580
	pmu = NULL;
4581

4582
	hwc = &event->hw;
4583
	hwc->sample_period = attr->sample_period;
4584
	if (attr->freq && attr->sample_freq)
4585
		hwc->sample_period = 1;
4586
	hwc->last_period = hwc->sample_period;
4587 4588

	atomic64_set(&hwc->period_left, hwc->sample_period);
4589

4590
	/*
4591
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4592
	 */
4593
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4594 4595
		goto done;

4596
	switch (attr->type) {
4597
	case PERF_TYPE_RAW:
4598
	case PERF_TYPE_HARDWARE:
4599
	case PERF_TYPE_HW_CACHE:
4600
		pmu = hw_perf_event_init(event);
4601 4602 4603
		break;

	case PERF_TYPE_SOFTWARE:
4604
		pmu = sw_perf_event_init(event);
4605 4606 4607
		break;

	case PERF_TYPE_TRACEPOINT:
4608
		pmu = tp_perf_event_init(event);
4609
		break;
4610

4611 4612 4613 4614 4615
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4616 4617
	default:
		break;
4618
	}
4619 4620
done:
	err = 0;
4621
	if (!pmu)
4622
		err = -EINVAL;
4623 4624
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4625

4626
	if (err) {
4627 4628 4629
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4630
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4631
	}
4632

4633
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4634

4635 4636 4637 4638 4639 4640 4641 4642
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4643
	}
4644

4645
	return event;
T
Thomas Gleixner 已提交
4646 4647
}

4648 4649
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4650 4651
{
	u32 size;
4652
	int ret;
4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4677 4678 4679
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4680 4681
	 */
	if (size > sizeof(*attr)) {
4682 4683 4684
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4685

4686 4687
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4688

4689
		for (; addr < end; addr++) {
4690 4691 4692 4693 4694 4695
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4696
		size = sizeof(*attr);
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

4710
	if (attr->__reserved_1)
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4728
static int perf_event_set_output(struct perf_event *event, int output_fd)
4729
{
4730
	struct perf_event *output_event = NULL;
4731
	struct file *output_file = NULL;
4732
	struct perf_event *old_output;
4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4746
	output_event = output_file->private_data;
4747 4748

	/* Don't chain output fds */
4749
	if (output_event->output)
4750 4751 4752
		goto out;

	/* Don't set an output fd when we already have an output channel */
4753
	if (event->data)
4754 4755 4756 4757 4758
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4759 4760 4761 4762
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4763 4764 4765 4766

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4767
		 * is still referencing this event.
4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4779
/**
4780
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4781
 *
4782
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4783
 * @pid:		target pid
I
Ingo Molnar 已提交
4784
 * @cpu:		target cpu
4785
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4786
 */
4787 4788
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4789
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4790
{
4791 4792 4793 4794
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4795 4796
	struct file *group_file = NULL;
	int fput_needed = 0;
4797
	int fput_needed2 = 0;
4798
	int err;
T
Thomas Gleixner 已提交
4799

4800
	/* for future expandability... */
4801
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4802 4803
		return -EINVAL;

4804 4805 4806
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4807

4808 4809 4810 4811 4812
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4813
	if (attr.freq) {
4814
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4815 4816 4817
			return -EINVAL;
	}

4818
	/*
I
Ingo Molnar 已提交
4819 4820 4821 4822 4823 4824 4825
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4826
	 * Look up the group leader (we will attach this event to it):
4827 4828
	 */
	group_leader = NULL;
4829
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4830
		err = -EINVAL;
4831 4832
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4833
			goto err_put_context;
4834
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4835
			goto err_put_context;
4836 4837 4838

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4839 4840 4841 4842 4843 4844 4845 4846
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4847
		 */
I
Ingo Molnar 已提交
4848 4849
		if (group_leader->ctx != ctx)
			goto err_put_context;
4850 4851 4852
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4853
		if (attr.exclusive || attr.pinned)
4854
			goto err_put_context;
4855 4856
	}

4857
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4858
				     NULL, NULL, GFP_KERNEL);
4859 4860
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4861 4862
		goto err_put_context;

4863
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
4864
	if (err < 0)
4865 4866
		goto err_free_put_context;

4867 4868
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4869 4870
		goto err_free_put_context;

4871
	if (flags & PERF_FLAG_FD_OUTPUT) {
4872
		err = perf_event_set_output(event, group_fd);
4873 4874
		if (err)
			goto err_fput_free_put_context;
4875 4876
	}

4877
	event->filp = event_file;
4878
	WARN_ON_ONCE(ctx->parent_ctx);
4879
	mutex_lock(&ctx->mutex);
4880
	perf_install_in_context(ctx, event, cpu);
4881
	++ctx->generation;
4882
	mutex_unlock(&ctx->mutex);
4883

4884
	event->owner = current;
4885
	get_task_struct(current);
4886 4887 4888
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4889

4890
err_fput_free_put_context:
4891
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4892

4893
err_free_put_context:
4894
	if (err < 0)
4895
		kfree(event);
T
Thomas Gleixner 已提交
4896 4897

err_put_context:
4898 4899 4900 4901
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4902

4903
	return err;
T
Thomas Gleixner 已提交
4904 4905
}

4906 4907 4908 4909 4910 4911 4912 4913 4914
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4915 4916
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4917 4918 4919 4920 4921 4922 4923 4924 4925 4926
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4927 4928 4929 4930
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4931 4932

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4933
				 NULL, overflow_handler, GFP_KERNEL);
4934 4935
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4936
		goto err_put_context;
4937
	}
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4954 4955 4956 4957
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4958 4959 4960
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4961
/*
4962
 * inherit a event from parent task to child task:
4963
 */
4964 4965
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4966
	      struct task_struct *parent,
4967
	      struct perf_event_context *parent_ctx,
4968
	      struct task_struct *child,
4969 4970
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4971
{
4972
	struct perf_event *child_event;
4973

4974
	/*
4975 4976
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4977 4978 4979
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4980 4981
	if (parent_event->parent)
		parent_event = parent_event->parent;
4982

4983 4984 4985
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4986
					   NULL, GFP_KERNEL);
4987 4988
	if (IS_ERR(child_event))
		return child_event;
4989
	get_ctx(child_ctx);
4990

4991
	/*
4992
	 * Make the child state follow the state of the parent event,
4993
	 * not its attr.disabled bit.  We hold the parent's mutex,
4994
	 * so we won't race with perf_event_{en, dis}able_family.
4995
	 */
4996 4997
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4998
	else
4999
		child_event->state = PERF_EVENT_STATE_OFF;
5000

5001 5002 5003 5004 5005 5006 5007 5008 5009
	if (parent_event->attr.freq) {
		u64 sample_period = parent_event->hw.sample_period;
		struct hw_perf_event *hwc = &child_event->hw;

		hwc->sample_period = sample_period;
		hwc->last_period   = sample_period;

		atomic64_set(&hwc->period_left, sample_period);
	}
5010

5011 5012
	child_event->overflow_handler = parent_event->overflow_handler;

5013 5014 5015
	/*
	 * Link it up in the child's context:
	 */
5016
	add_event_to_ctx(child_event, child_ctx);
5017 5018 5019

	/*
	 * Get a reference to the parent filp - we will fput it
5020
	 * when the child event exits. This is safe to do because
5021 5022 5023
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
5024
	atomic_long_inc(&parent_event->filp->f_count);
5025

5026
	/*
5027
	 * Link this into the parent event's child list
5028
	 */
5029 5030 5031 5032
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5033

5034
	return child_event;
5035 5036
}

5037
static int inherit_group(struct perf_event *parent_event,
5038
	      struct task_struct *parent,
5039
	      struct perf_event_context *parent_ctx,
5040
	      struct task_struct *child,
5041
	      struct perf_event_context *child_ctx)
5042
{
5043 5044 5045
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
5046

5047
	leader = inherit_event(parent_event, parent, parent_ctx,
5048
				 child, NULL, child_ctx);
5049 5050
	if (IS_ERR(leader))
		return PTR_ERR(leader);
5051 5052
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
5053 5054 5055
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
5056
	}
5057 5058 5059
	return 0;
}

5060
static void sync_child_event(struct perf_event *child_event,
5061
			       struct task_struct *child)
5062
{
5063
	struct perf_event *parent_event = child_event->parent;
5064
	u64 child_val;
5065

5066 5067
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
5068

5069
	child_val = atomic64_read(&child_event->count);
5070 5071 5072 5073

	/*
	 * Add back the child's count to the parent's count:
	 */
5074 5075 5076 5077 5078
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
5079 5080

	/*
5081
	 * Remove this event from the parent's list
5082
	 */
5083 5084 5085 5086
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
5087 5088

	/*
5089
	 * Release the parent event, if this was the last
5090 5091
	 * reference to it.
	 */
5092
	fput(parent_event->filp);
5093 5094
}

5095
static void
5096 5097
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
5098
			 struct task_struct *child)
5099
{
5100
	struct perf_event *parent_event;
5101

5102
	perf_event_remove_from_context(child_event);
5103

5104
	parent_event = child_event->parent;
5105
	/*
5106
	 * It can happen that parent exits first, and has events
5107
	 * that are still around due to the child reference. These
5108
	 * events need to be zapped - but otherwise linger.
5109
	 */
5110 5111 5112
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
5113
	}
5114 5115 5116
}

/*
5117
 * When a child task exits, feed back event values to parent events.
5118
 */
5119
void perf_event_exit_task(struct task_struct *child)
5120
{
5121 5122
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
5123
	unsigned long flags;
5124

5125 5126
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
5127
		return;
P
Peter Zijlstra 已提交
5128
	}
5129

5130
	local_irq_save(flags);
5131 5132 5133 5134 5135 5136
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
5137 5138
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
5139 5140 5141

	/*
	 * Take the context lock here so that if find_get_context is
5142
	 * reading child->perf_event_ctxp, we wait until it has
5143 5144
	 * incremented the context's refcount before we do put_ctx below.
	 */
5145
	raw_spin_lock(&child_ctx->lock);
5146
	child->perf_event_ctxp = NULL;
5147 5148 5149
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5150
	 * the events from it.
5151 5152
	 */
	unclone_ctx(child_ctx);
5153
	update_context_time(child_ctx);
5154
	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
P
Peter Zijlstra 已提交
5155 5156

	/*
5157 5158 5159
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5160
	 */
5161
	perf_event_task(child, child_ctx, 0);
5162

5163 5164 5165
	/*
	 * We can recurse on the same lock type through:
	 *
5166 5167 5168
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5169 5170 5171 5172 5173 5174
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5175

5176
again:
5177 5178 5179 5180 5181
	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
				 group_entry)
		__perf_event_exit_task(child_event, child_ctx, child);

	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
5182
				 group_entry)
5183
		__perf_event_exit_task(child_event, child_ctx, child);
5184 5185

	/*
5186
	 * If the last event was a group event, it will have appended all
5187 5188 5189
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5190 5191
	if (!list_empty(&child_ctx->pinned_groups) ||
	    !list_empty(&child_ctx->flexible_groups))
5192
		goto again;
5193 5194 5195 5196

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5197 5198
}

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216
static void perf_free_event(struct perf_event *event,
			    struct perf_event_context *ctx)
{
	struct perf_event *parent = event->parent;

	if (WARN_ON_ONCE(!parent))
		return;

	mutex_lock(&parent->child_mutex);
	list_del_init(&event->child_list);
	mutex_unlock(&parent->child_mutex);

	fput(parent->filp);

	list_del_event(event, ctx);
	free_event(event);
}

5217 5218 5219 5220
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5221
void perf_event_free_task(struct task_struct *task)
5222
{
5223 5224
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5225 5226 5227 5228 5229 5230

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5231 5232
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		perf_free_event(event, ctx);
5233

5234 5235 5236
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
				 group_entry)
		perf_free_event(event, ctx);
5237

5238 5239 5240
	if (!list_empty(&ctx->pinned_groups) ||
	    !list_empty(&ctx->flexible_groups))
		goto again;
5241

5242
	mutex_unlock(&ctx->mutex);
5243

5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258
	put_ctx(ctx);
}

static int
inherit_task_group(struct perf_event *event, struct task_struct *parent,
		   struct perf_event_context *parent_ctx,
		   struct task_struct *child,
		   int *inherited_all)
{
	int ret;
	struct perf_event_context *child_ctx = child->perf_event_ctxp;

	if (!event->attr.inherit) {
		*inherited_all = 0;
		return 0;
5259 5260
	}

5261 5262 5263 5264 5265 5266 5267
	if (!child_ctx) {
		/*
		 * This is executed from the parent task context, so
		 * inherit events that have been marked for cloning.
		 * First allocate and initialize a context for the
		 * child.
		 */
5268

5269 5270 5271 5272
		child_ctx = kzalloc(sizeof(struct perf_event_context),
				    GFP_KERNEL);
		if (!child_ctx)
			return -ENOMEM;
5273

5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
		__perf_event_init_context(child_ctx, child);
		child->perf_event_ctxp = child_ctx;
		get_task_struct(child);
	}

	ret = inherit_group(event, parent, parent_ctx,
			    child, child_ctx);

	if (ret)
		*inherited_all = 0;

	return ret;
5286 5287
}

5288

5289
/*
5290
 * Initialize the perf_event context in task_struct
5291
 */
5292
int perf_event_init_task(struct task_struct *child)
5293
{
5294
	struct perf_event_context *child_ctx, *parent_ctx;
5295 5296
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5297
	struct task_struct *parent = current;
5298
	int inherited_all = 1;
5299
	int ret = 0;
5300

5301
	child->perf_event_ctxp = NULL;
5302

5303 5304
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5305

5306
	if (likely(!parent->perf_event_ctxp))
5307 5308
		return 0;

5309
	/*
5310 5311
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5312
	 */
5313 5314
	parent_ctx = perf_pin_task_context(parent);

5315 5316 5317 5318 5319 5320 5321
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5322 5323 5324 5325
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5326
	mutex_lock(&parent_ctx->mutex);
5327 5328 5329 5330 5331

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5332 5333 5334 5335 5336 5337
	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
			break;
	}
5338

5339 5340 5341 5342
	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
		ret = inherit_task_group(event, parent, parent_ctx, child,
					 &inherited_all);
		if (ret)
5343
			break;
5344 5345
	}

5346 5347
	child_ctx = child->perf_event_ctxp;

5348
	if (child_ctx && inherited_all) {
5349 5350 5351
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5352 5353
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5354
		 * because the list of events and the generation
5355
		 * count can't have changed since we took the mutex.
5356
		 */
5357 5358 5359
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5360
			child_ctx->parent_gen = parent_ctx->parent_gen;
5361 5362 5363 5364 5365
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5366 5367
	}

5368
	mutex_unlock(&parent_ctx->mutex);
5369

5370
	perf_unpin_context(parent_ctx);
5371

5372
	return ret;
5373 5374
}

5375
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5376
{
5377
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5378

5379
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5380
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5381

5382
	spin_lock(&perf_resource_lock);
5383
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5384
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5385 5386 5387
}

#ifdef CONFIG_HOTPLUG_CPU
5388
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5389 5390
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5391 5392
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5393

5394 5395 5396
	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
		__perf_event_remove_from_context(event);
	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
5397
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5398
}
5399
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5400
{
5401
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5402
	struct perf_event_context *ctx = &cpuctx->ctx;
5403 5404

	mutex_lock(&ctx->mutex);
5405
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5406
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5407 5408
}
#else
5409
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5421
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5422 5423 5424 5425
		break;

	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5426
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5427 5428 5429 5430 5431 5432 5433 5434 5435
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5436 5437 5438
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5439 5440
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5441
	.priority		= 20,
T
Thomas Gleixner 已提交
5442 5443
};

5444
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5445 5446 5447
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5448 5449
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5450 5451 5452
	register_cpu_notifier(&perf_cpu_nb);
}

5453 5454 5455
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class,
					struct sysdev_class_attribute *attr,
					char *buf)
T
Thomas Gleixner 已提交
5456 5457 5458 5459 5460 5461
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
5462
			struct sysdev_class_attribute *attr,
T
Thomas Gleixner 已提交
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5473
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5474 5475
		return -EINVAL;

5476
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5477 5478 5479
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
5480
		raw_spin_lock_irq(&cpuctx->ctx.lock);
5481 5482
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5483
		cpuctx->max_pertask = mpt;
5484
		raw_spin_unlock_irq(&cpuctx->ctx.lock);
T
Thomas Gleixner 已提交
5485
	}
5486
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5487 5488 5489 5490

	return count;
}

5491 5492 5493
static ssize_t perf_show_overcommit(struct sysdev_class *class,
				    struct sysdev_class_attribute *attr,
				    char *buf)
T
Thomas Gleixner 已提交
5494 5495 5496 5497 5498
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
5499 5500 5501
perf_set_overcommit(struct sysdev_class *class,
		    struct sysdev_class_attribute *attr,
		    const char *buf, size_t count)
T
Thomas Gleixner 已提交
5502 5503 5504 5505 5506 5507 5508 5509 5510 5511
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5512
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5513
	perf_overcommit = val;
5514
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5541
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5542 5543
};

5544
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5545 5546 5547 5548
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5549
device_initcall(perf_event_sysfs_init);