perf_event.c 120.9 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38 39 40
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205 206
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 209 210
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
211 212 213 214 215

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233 234 235 236 237 238
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242 243 244 245 246 247 248
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static inline u64 perf_clock(void)
{
	return cpu_clock(smp_processor_id());
}

/*
 * Update the record of the current time in a context.
 */
static void update_context_time(struct perf_event_context *ctx)
{
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
}

/*
 * Update the total_time_enabled and total_time_running fields for a event.
 */
static void update_event_times(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;
	u64 run_end;

	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
		return;

277 278 279 280 281 282
	if (ctx->is_active)
		run_end = ctx->time;
	else
		run_end = event->tstamp_stopped;

	event->total_time_enabled = run_end - event->tstamp_enabled;
283 284 285 286 287 288 289 290 291

	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
	else
		run_end = ctx->time;

	event->total_time_running = run_end - event->tstamp_running;
}

292
/*
293
 * Add a event from the lists for its context.
294 295
 * Must be called with ctx->mutex and ctx->lock held.
 */
296
static void
297
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
298
{
299
	struct perf_event *group_leader = event->group_leader;
300 301

	/*
302 303
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
304 305
	 * leader's sibling list:
	 */
306 307
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
308
	else {
309
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
310 311
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
312

313 314 315
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
316
		ctx->nr_stat++;
317 318
}

319
/*
320
 * Remove a event from the lists for its context.
321
 * Must be called with ctx->mutex and ctx->lock held.
322
 */
323
static void
324
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
325
{
326
	struct perf_event *sibling, *tmp;
327

328
	if (list_empty(&event->group_entry))
329
		return;
330 331
	ctx->nr_events--;
	if (event->attr.inherit_stat)
332
		ctx->nr_stat--;
333

334 335
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
336

337 338
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
339

340
	update_event_times(event);
341 342 343 344 345 346 347 348 349 350

	/*
	 * If event was in error state, then keep it
	 * that way, otherwise bogus counts will be
	 * returned on read(). The only way to get out
	 * of error state is by explicit re-enabling
	 * of the event
	 */
	if (event->state > PERF_EVENT_STATE_OFF)
		event->state = PERF_EVENT_STATE_OFF;
351

352
	/*
353 354
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
355 356
	 * to the context list directly:
	 */
357
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
358

359
		list_move_tail(&sibling->group_entry, &ctx->group_list);
360 361 362 363
		sibling->group_leader = sibling;
	}
}

364
static void
365
event_sched_out(struct perf_event *event,
366
		  struct perf_cpu_context *cpuctx,
367
		  struct perf_event_context *ctx)
368
{
369
	if (event->state != PERF_EVENT_STATE_ACTIVE)
370 371
		return;

372 373 374 375
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
376
	}
377 378 379
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
380

381
	if (!is_software_event(event))
382 383
		cpuctx->active_oncpu--;
	ctx->nr_active--;
384
	if (event->attr.exclusive || !cpuctx->active_oncpu)
385 386 387
		cpuctx->exclusive = 0;
}

388
static void
389
group_sched_out(struct perf_event *group_event,
390
		struct perf_cpu_context *cpuctx,
391
		struct perf_event_context *ctx)
392
{
393
	struct perf_event *event;
394

395
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 397
		return;

398
	event_sched_out(group_event, cpuctx, ctx);
399 400 401 402

	/*
	 * Schedule out siblings (if any):
	 */
403 404
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
405

406
	if (group_event->attr.exclusive)
407 408 409
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
410
/*
411
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
412
 *
413
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
414 415
 * remove it from the context list.
 */
416
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
417 418
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 420
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
421 422 423 424 425 426

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
427
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
428 429
		return;

430
	spin_lock(&ctx->lock);
431 432
	/*
	 * Protect the list operation against NMI by disabling the
433
	 * events on a global level.
434 435
	 */
	perf_disable();
T
Thomas Gleixner 已提交
436

437
	event_sched_out(event, cpuctx, ctx);
438

439
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
440 441 442

	if (!ctx->task) {
		/*
443
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
444 445 446
		 * reservation:
		 */
		cpuctx->max_pertask =
447 448
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
449 450
	}

451
	perf_enable();
452
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
453 454 455 456
}


/*
457
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
458
 *
459
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
460
 *
461
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
462
 * call when the task is on a CPU.
463
 *
464 465
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
466 467
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
468
 * When called from perf_event_exit_task, it's OK because the
469
 * context has been detached from its task.
T
Thomas Gleixner 已提交
470
 */
471
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
472
{
473
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
474 475 476 477
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
478
		 * Per cpu events are removed via an smp call and
T
Thomas Gleixner 已提交
479 480
		 * the removal is always sucessful.
		 */
481 482 483
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
484 485 486 487
		return;
	}

retry:
488 489
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
490 491 492 493 494

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
495
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
496 497 498 499 500 501
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
502
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
503 504
	 * succeed.
	 */
P
Peter Zijlstra 已提交
505
	if (!list_empty(&event->group_entry))
506
		list_del_event(event, ctx);
T
Thomas Gleixner 已提交
507 508 509
	spin_unlock_irq(&ctx->lock);
}

510
/*
511
 * Update total_time_enabled and total_time_running for all events in a group.
512
 */
513
static void update_group_times(struct perf_event *leader)
514
{
515
	struct perf_event *event;
516

517 518 519
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
520 521
}

522
/*
523
 * Cross CPU call to disable a performance event
524
 */
525
static void __perf_event_disable(void *info)
526
{
527
	struct perf_event *event = info;
528
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529
	struct perf_event_context *ctx = event->ctx;
530 531

	/*
532 533
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
534
	 */
535
	if (ctx->task && cpuctx->task_ctx != ctx)
536 537
		return;

538
	spin_lock(&ctx->lock);
539 540

	/*
541
	 * If the event is on, turn it off.
542 543
	 * If it is in error state, leave it in error state.
	 */
544
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545
		update_context_time(ctx);
546 547 548
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
549
		else
550 551
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
552 553
	}

554
	spin_unlock(&ctx->lock);
555 556 557
}

/*
558
 * Disable a event.
559
 *
560 561
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
562
 * remains valid.  This condition is satisifed when called through
563 564 565 566
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
567
 * is the current context on this CPU and preemption is disabled,
568
 * hence we can't get into perf_event_task_sched_out for this context.
569
 */
570
static void perf_event_disable(struct perf_event *event)
571
{
572
	struct perf_event_context *ctx = event->ctx;
573 574 575 576
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
577
		 * Disable the event on the cpu that it's on
578
		 */
579 580
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
581 582 583 584
		return;
	}

 retry:
585
	task_oncpu_function_call(task, __perf_event_disable, event);
586 587 588

	spin_lock_irq(&ctx->lock);
	/*
589
	 * If the event is still active, we need to retry the cross-call.
590
	 */
591
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
592 593 594 595 596 597 598 599
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
600 601 602
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
603
	}
604 605 606 607

	spin_unlock_irq(&ctx->lock);
}

608
static int
609
event_sched_in(struct perf_event *event,
610
		 struct perf_cpu_context *cpuctx,
611
		 struct perf_event_context *ctx,
612 613
		 int cpu)
{
614
	if (event->state <= PERF_EVENT_STATE_OFF)
615 616
		return 0;

617 618
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
619 620 621 622 623
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

624 625 626
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
627 628 629
		return -EAGAIN;
	}

630
	event->tstamp_running += ctx->time - event->tstamp_stopped;
631

632
	if (!is_software_event(event))
633
		cpuctx->active_oncpu++;
634 635
	ctx->nr_active++;

636
	if (event->attr.exclusive)
637 638
		cpuctx->exclusive = 1;

639 640 641
	return 0;
}

642
static int
643
group_sched_in(struct perf_event *group_event,
644
	       struct perf_cpu_context *cpuctx,
645
	       struct perf_event_context *ctx,
646 647
	       int cpu)
{
648
	struct perf_event *event, *partial_group;
649 650
	int ret;

651
	if (group_event->state == PERF_EVENT_STATE_OFF)
652 653
		return 0;

654
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 656 657
	if (ret)
		return ret < 0 ? ret : 0;

658
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 660 661 662 663
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
664 665 666
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
667 668 669 670 671 672 673 674 675 676 677
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
678 679
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
680
			break;
681
		event_sched_out(event, cpuctx, ctx);
682
	}
683
	event_sched_out(group_event, cpuctx, ctx);
684 685 686 687

	return -EAGAIN;
}

688
/*
689 690
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
691
 */
692
static int is_software_only_group(struct perf_event *leader)
693
{
694
	struct perf_event *event;
695

696
	if (!is_software_event(leader))
697
		return 0;
P
Peter Zijlstra 已提交
698

699 700
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
701
			return 0;
P
Peter Zijlstra 已提交
702

703 704 705 706
	return 1;
}

/*
707
 * Work out whether we can put this event group on the CPU now.
708
 */
709
static int group_can_go_on(struct perf_event *event,
710 711 712 713
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
714
	 * Groups consisting entirely of software events can always go on.
715
	 */
716
	if (is_software_only_group(event))
717 718 719
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
720
	 * events can go on.
721 722 723 724 725
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
726
	 * events on the CPU, it can't go on.
727
	 */
728
	if (event->attr.exclusive && cpuctx->active_oncpu)
729 730 731 732 733 734 735 736
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

737 738
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
739
{
740 741 742 743
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
744 745
}

T
Thomas Gleixner 已提交
746
/*
747
 * Cross CPU call to install and enable a performance event
748 749
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
750 751 752 753
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 755 756
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
757
	int cpu = smp_processor_id();
758
	int err;
T
Thomas Gleixner 已提交
759 760 761 762 763

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
764
	 * Or possibly this is the right context but it isn't
765
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
766
	 */
767
	if (ctx->task && cpuctx->task_ctx != ctx) {
768
		if (cpuctx->task_ctx || ctx->task != current)
769 770 771
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
772

773
	spin_lock(&ctx->lock);
774
	ctx->is_active = 1;
775
	update_context_time(ctx);
T
Thomas Gleixner 已提交
776 777 778

	/*
	 * Protect the list operation against NMI by disabling the
779
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
780
	 */
781
	perf_disable();
T
Thomas Gleixner 已提交
782

783
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
784

785
	/*
786
	 * Don't put the event on if it is disabled or if
787 788
	 * it is in a group and the group isn't on.
	 */
789 790
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
791 792
		goto unlock;

793
	/*
794 795 796
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
797
	 */
798
	if (!group_can_go_on(event, cpuctx, 1))
799 800
		err = -EEXIST;
	else
801
		err = event_sched_in(event, cpuctx, ctx, cpu);
802

803 804
	if (err) {
		/*
805
		 * This event couldn't go on.  If it is in a group
806
		 * then we have to pull the whole group off.
807
		 * If the event group is pinned then put it in error state.
808
		 */
809
		if (leader != event)
810
			group_sched_out(leader, cpuctx, ctx);
811
		if (leader->attr.pinned) {
812
			update_group_times(leader);
813
			leader->state = PERF_EVENT_STATE_ERROR;
814
		}
815
	}
T
Thomas Gleixner 已提交
816

817
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
818 819
		cpuctx->max_pertask--;

820
 unlock:
821
	perf_enable();
822

823
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
824 825 826
}

/*
827
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
828
 *
829 830
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
831
 *
832
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
833 834
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
835 836
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
837 838
 */
static void
839 840
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
841 842 843 844 845 846
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
847
		 * Per cpu events are installed via an smp call and
T
Thomas Gleixner 已提交
848 849 850
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
851
					 event, 1);
T
Thomas Gleixner 已提交
852 853 854 855 856
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
857
				 event);
T
Thomas Gleixner 已提交
858 859 860 861 862

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
863
	if (ctx->is_active && list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
864 865 866 867 868 869
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
870
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
871 872
	 * succeed.
	 */
873 874
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
875 876 877
	spin_unlock_irq(&ctx->lock);
}

878
/*
879
 * Put a event into inactive state and update time fields.
880 881 882 883 884 885
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
886 887
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
888
{
889
	struct perf_event *sub;
890

891 892 893 894
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
895 896 897 898
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

899
/*
900
 * Cross CPU call to enable a performance event
901
 */
902
static void __perf_event_enable(void *info)
903
{
904
	struct perf_event *event = info;
905
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
906 907
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
908
	int err;
909

910
	/*
911 912
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
913
	 */
914
	if (ctx->task && cpuctx->task_ctx != ctx) {
915
		if (cpuctx->task_ctx || ctx->task != current)
916 917 918
			return;
		cpuctx->task_ctx = ctx;
	}
919

920
	spin_lock(&ctx->lock);
921
	ctx->is_active = 1;
922
	update_context_time(ctx);
923

924
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
925
		goto unlock;
926
	__perf_event_mark_enabled(event, ctx);
927 928

	/*
929
	 * If the event is in a group and isn't the group leader,
930
	 * then don't put it on unless the group is on.
931
	 */
932
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
933
		goto unlock;
934

935
	if (!group_can_go_on(event, cpuctx, 1)) {
936
		err = -EEXIST;
937
	} else {
938
		perf_disable();
939 940
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
941 942
					     smp_processor_id());
		else
943
			err = event_sched_in(event, cpuctx, ctx,
944
					       smp_processor_id());
945
		perf_enable();
946
	}
947 948 949

	if (err) {
		/*
950
		 * If this event can't go on and it's part of a
951 952
		 * group, then the whole group has to come off.
		 */
953
		if (leader != event)
954
			group_sched_out(leader, cpuctx, ctx);
955
		if (leader->attr.pinned) {
956
			update_group_times(leader);
957
			leader->state = PERF_EVENT_STATE_ERROR;
958
		}
959 960 961
	}

 unlock:
962
	spin_unlock(&ctx->lock);
963 964 965
}

/*
966
 * Enable a event.
967
 *
968 969
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
970
 * remains valid.  This condition is satisfied when called through
971 972
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
973
 */
974
static void perf_event_enable(struct perf_event *event)
975
{
976
	struct perf_event_context *ctx = event->ctx;
977 978 979 980
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
981
		 * Enable the event on the cpu that it's on
982
		 */
983 984
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
985 986 987 988
		return;
	}

	spin_lock_irq(&ctx->lock);
989
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
990 991 992
		goto out;

	/*
993 994
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
995 996 997 998
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
999 1000
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
1001 1002 1003

 retry:
	spin_unlock_irq(&ctx->lock);
1004
	task_oncpu_function_call(task, __perf_event_enable, event);
1005 1006 1007 1008

	spin_lock_irq(&ctx->lock);

	/*
1009
	 * If the context is active and the event is still off,
1010 1011
	 * we need to retry the cross-call.
	 */
1012
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1013 1014 1015 1016 1017 1018
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1019 1020
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1021

1022 1023 1024 1025
 out:
	spin_unlock_irq(&ctx->lock);
}

1026
static int perf_event_refresh(struct perf_event *event, int refresh)
1027
{
1028
	/*
1029
	 * not supported on inherited events
1030
	 */
1031
	if (event->attr.inherit)
1032 1033
		return -EINVAL;

1034 1035
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1036 1037

	return 0;
1038 1039
}

1040
void __perf_event_sched_out(struct perf_event_context *ctx,
1041 1042
			      struct perf_cpu_context *cpuctx)
{
1043
	struct perf_event *event;
1044

1045 1046
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
1047
	if (likely(!ctx->nr_events))
1048
		goto out;
1049
	update_context_time(ctx);
1050

1051
	perf_disable();
P
Peter Zijlstra 已提交
1052
	if (ctx->nr_active) {
1053 1054
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);
P
Peter Zijlstra 已提交
1055
	}
1056
	perf_enable();
1057
 out:
1058 1059 1060
	spin_unlock(&ctx->lock);
}

1061 1062 1063
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1064 1065 1066 1067
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1068
 * in them directly with an fd; we can only enable/disable all
1069
 * events via prctl, or enable/disable all events in a family
1070 1071
 * via ioctl, which will have the same effect on both contexts.
 */
1072 1073
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1074 1075
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1076
		&& ctx1->parent_gen == ctx2->parent_gen
1077
		&& !ctx1->pin_count && !ctx2->pin_count;
1078 1079
}

1080 1081
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1082 1083 1084
{
	u64 value;

1085
	if (!event->attr.inherit_stat)
1086 1087 1088
		return;

	/*
1089
	 * Update the event value, we cannot use perf_event_read()
1090 1091
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1092
	 * we know the event must be on the current CPU, therefore we
1093 1094
	 * don't need to use it.
	 */
1095 1096
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1097 1098
		event->pmu->read(event);
		/* fall-through */
1099

1100 1101
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1102 1103 1104 1105 1106 1107 1108
		break;

	default:
		break;
	}

	/*
1109
	 * In order to keep per-task stats reliable we need to flip the event
1110 1111
	 * values when we flip the contexts.
	 */
1112 1113 1114
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1115

1116 1117
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1118

1119
	/*
1120
	 * Since we swizzled the values, update the user visible data too.
1121
	 */
1122 1123
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1124 1125 1126 1127 1128
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1129 1130
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1131
{
1132
	struct perf_event *event, *next_event;
1133 1134 1135 1136

	if (!ctx->nr_stat)
		return;

1137 1138
	update_context_time(ctx);

1139 1140
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1141

1142 1143
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1144

1145 1146
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1147

1148
		__perf_event_sync_stat(event, next_event);
1149

1150 1151
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1152 1153 1154
	}
}

T
Thomas Gleixner 已提交
1155
/*
1156
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1157 1158
 * with interrupts disabled.
 *
1159
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1160
 *
I
Ingo Molnar 已提交
1161
 * This does not protect us against NMI, but disable()
1162 1163 1164
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1165
 */
1166
void perf_event_task_sched_out(struct task_struct *task,
1167
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1168 1169
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1170 1171 1172
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1173
	struct pt_regs *regs;
1174
	int do_switch = 1;
T
Thomas Gleixner 已提交
1175

1176
	regs = task_pt_regs(task);
1177
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1178

1179
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1180 1181
		return;

1182 1183
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1184
	next_ctx = next->perf_event_ctxp;
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1199 1200
			/*
			 * XXX do we need a memory barrier of sorts
1201
			 * wrt to rcu_dereference() of perf_event_ctxp
1202
			 */
1203 1204
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1205 1206 1207
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1208

1209
			perf_event_sync_stat(ctx, next_ctx);
1210 1211 1212
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1213
	}
1214
	rcu_read_unlock();
1215

1216
	if (do_switch) {
1217
		__perf_event_sched_out(ctx, cpuctx);
1218 1219
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1220 1221
}

1222 1223 1224
/*
 * Called with IRQs disabled
 */
1225
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1226 1227 1228
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1229 1230
	if (!cpuctx->task_ctx)
		return;
1231 1232 1233 1234

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1235
	__perf_event_sched_out(ctx, cpuctx);
1236 1237 1238
	cpuctx->task_ctx = NULL;
}

1239 1240 1241
/*
 * Called with IRQs disabled
 */
1242
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1243
{
1244
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1245 1246
}

1247
static void
1248
__perf_event_sched_in(struct perf_event_context *ctx,
1249
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1250
{
1251
	struct perf_event *event;
1252
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1253

1254 1255
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
1256
	if (likely(!ctx->nr_events))
1257
		goto out;
T
Thomas Gleixner 已提交
1258

1259
	ctx->timestamp = perf_clock();
1260

1261
	perf_disable();
1262 1263 1264 1265 1266

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1267 1268 1269
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1270
			continue;
1271
		if (event->cpu != -1 && event->cpu != cpu)
1272 1273
			continue;

1274 1275
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1276 1277 1278 1279 1280

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1281 1282 1283
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1284
		}
1285 1286
	}

1287
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1288
		/*
1289 1290
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1291
		 */
1292 1293
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1294 1295
			continue;

1296 1297
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1298
		 * of events:
1299
		 */
1300
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1301 1302
			continue;

1303 1304
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1305
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1306
	}
1307
	perf_enable();
1308
 out:
T
Thomas Gleixner 已提交
1309
	spin_unlock(&ctx->lock);
1310 1311 1312
}

/*
1313
 * Called from scheduler to add the events of the current task
1314 1315
 * with interrupts disabled.
 *
1316
 * We restore the event value and then enable it.
1317 1318
 *
 * This does not protect us against NMI, but enable()
1319 1320 1321
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1322
 */
1323
void perf_event_task_sched_in(struct task_struct *task, int cpu)
1324 1325
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1326
	struct perf_event_context *ctx = task->perf_event_ctxp;
1327

1328 1329
	if (likely(!ctx))
		return;
1330 1331
	if (cpuctx->task_ctx == ctx)
		return;
1332
	__perf_event_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1333 1334 1335
	cpuctx->task_ctx = ctx;
}

1336
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1337
{
1338
	struct perf_event_context *ctx = &cpuctx->ctx;
1339

1340
	__perf_event_sched_in(ctx, cpuctx, cpu);
1341 1342
}

1343 1344
#define MAX_INTERRUPTS (~0ULL)

1345
static void perf_log_throttle(struct perf_event *event, int enable);
1346

1347
static void perf_adjust_period(struct perf_event *event, u64 events)
1348
{
1349
	struct hw_perf_event *hwc = &event->hw;
1350 1351 1352 1353
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1354
	period = div64_u64(events, event->attr.sample_freq);
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1367
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1368
{
1369 1370
	struct perf_event *event;
	struct hw_perf_event *hwc;
1371
	u64 interrupts, freq;
1372 1373

	spin_lock(&ctx->lock);
1374
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1375
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1376 1377
			continue;

1378
		hwc = &event->hw;
1379 1380 1381

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1382

1383
		/*
1384
		 * unthrottle events on the tick
1385
		 */
1386
		if (interrupts == MAX_INTERRUPTS) {
1387 1388 1389
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1390 1391
		}

1392
		if (!event->attr.freq || !event->attr.sample_freq)
1393 1394
			continue;

1395 1396 1397
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1398 1399
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1413
		perf_adjust_period(event, freq * interrupts);
1414

1415 1416 1417 1418 1419 1420 1421
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1422
			event->pmu->disable(event);
1423
			atomic64_set(&hwc->period_left, 0);
1424
			event->pmu->enable(event);
1425 1426
			perf_enable();
		}
1427 1428 1429 1430
	}
	spin_unlock(&ctx->lock);
}

1431
/*
1432
 * Round-robin a context's events:
1433
 */
1434
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1435
{
1436
	struct perf_event *event;
T
Thomas Gleixner 已提交
1437

1438
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1439 1440 1441 1442
		return;

	spin_lock(&ctx->lock);
	/*
1443
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1444
	 */
1445
	perf_disable();
1446 1447
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1448 1449
		break;
	}
1450
	perf_enable();
T
Thomas Gleixner 已提交
1451 1452

	spin_unlock(&ctx->lock);
1453 1454
}

1455
void perf_event_task_tick(struct task_struct *curr, int cpu)
1456
{
1457
	struct perf_cpu_context *cpuctx;
1458
	struct perf_event_context *ctx;
1459

1460
	if (!atomic_read(&nr_events))
1461 1462 1463
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1464
	ctx = curr->perf_event_ctxp;
1465

1466
	perf_ctx_adjust_freq(&cpuctx->ctx);
1467
	if (ctx)
1468
		perf_ctx_adjust_freq(ctx);
1469

1470
	perf_event_cpu_sched_out(cpuctx);
1471
	if (ctx)
1472
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1473

1474
	rotate_ctx(&cpuctx->ctx);
1475 1476
	if (ctx)
		rotate_ctx(ctx);
1477

1478
	perf_event_cpu_sched_in(cpuctx, cpu);
1479
	if (ctx)
1480
		perf_event_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1481 1482
}

1483
/*
1484
 * Enable all of a task's events that have been marked enable-on-exec.
1485 1486
 * This expects task == current.
 */
1487
static void perf_event_enable_on_exec(struct task_struct *task)
1488
{
1489 1490
	struct perf_event_context *ctx;
	struct perf_event *event;
1491 1492 1493 1494
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1495 1496
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1497 1498
		goto out;

1499
	__perf_event_task_sched_out(ctx);
1500 1501 1502

	spin_lock(&ctx->lock);

1503 1504
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1505
			continue;
1506 1507
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1508
			continue;
1509
		__perf_event_mark_enabled(event, ctx);
1510 1511 1512 1513
		enabled = 1;
	}

	/*
1514
	 * Unclone this context if we enabled any event.
1515
	 */
1516 1517
	if (enabled)
		unclone_ctx(ctx);
1518 1519 1520

	spin_unlock(&ctx->lock);

1521
	perf_event_task_sched_in(task, smp_processor_id());
1522 1523 1524 1525
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1526
/*
1527
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1528
 */
1529
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1530
{
1531
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1532 1533
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1534

1535 1536 1537 1538
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1539 1540
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1541 1542 1543 1544
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

P
Peter Zijlstra 已提交
1545
	spin_lock(&ctx->lock);
P
Peter Zijlstra 已提交
1546
	update_context_time(ctx);
1547
	update_event_times(event);
P
Peter Zijlstra 已提交
1548 1549
	spin_unlock(&ctx->lock);

P
Peter Zijlstra 已提交
1550
	event->pmu->read(event);
T
Thomas Gleixner 已提交
1551 1552
}

1553
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1554 1555
{
	/*
1556 1557
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1558
	 */
1559 1560 1561 1562
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
P
Peter Zijlstra 已提交
1563 1564 1565 1566 1567
		struct perf_event_context *ctx = event->ctx;
		unsigned long flags;

		spin_lock_irqsave(&ctx->lock, flags);
		update_context_time(ctx);
1568
		update_event_times(event);
P
Peter Zijlstra 已提交
1569
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1570 1571
	}

1572
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1573 1574
}

1575
/*
1576
 * Initialize the perf_event context in a task_struct:
1577 1578
 */
static void
1579
__perf_event_init_context(struct perf_event_context *ctx,
1580 1581 1582 1583 1584
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
1585
	INIT_LIST_HEAD(&ctx->group_list);
1586 1587 1588 1589 1590
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1591
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1592
{
1593
	struct perf_event_context *ctx;
1594
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1595
	struct task_struct *task;
1596
	unsigned long flags;
1597
	int err;
T
Thomas Gleixner 已提交
1598 1599

	/*
1600
	 * If cpu is not a wildcard then this is a percpu event:
T
Thomas Gleixner 已提交
1601 1602
	 */
	if (cpu != -1) {
1603
		/* Must be root to operate on a CPU event: */
1604
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1605 1606 1607 1608 1609 1610
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
1611
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1612 1613 1614 1615 1616 1617 1618 1619
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1620
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1637
	/*
1638
	 * Can't attach events to a dying task.
1639 1640 1641 1642 1643
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1644
	/* Reuse ptrace permission checks for now. */
1645 1646 1647 1648 1649
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1650
	ctx = perf_lock_task_context(task, &flags);
1651
	if (ctx) {
1652
		unclone_ctx(ctx);
1653
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1654 1655
	}

1656
	if (!ctx) {
1657
		ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1658 1659 1660
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1661
		__perf_event_init_context(ctx, task);
1662
		get_ctx(ctx);
1663
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1664 1665 1666 1667 1668
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1669
			goto retry;
1670
		}
1671
		get_task_struct(task);
1672 1673
	}

1674
	put_task_struct(task);
T
Thomas Gleixner 已提交
1675
	return ctx;
1676 1677 1678 1679

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1680 1681
}

L
Li Zefan 已提交
1682 1683
static void perf_event_free_filter(struct perf_event *event);

1684
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1685
{
1686
	struct perf_event *event;
P
Peter Zijlstra 已提交
1687

1688 1689 1690
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1691
	perf_event_free_filter(event);
1692
	kfree(event);
P
Peter Zijlstra 已提交
1693 1694
}

1695
static void perf_pending_sync(struct perf_event *event);
1696

1697
static void free_event(struct perf_event *event)
1698
{
1699
	perf_pending_sync(event);
1700

1701 1702 1703 1704 1705 1706 1707 1708
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1709
	}
1710

1711 1712 1713
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1714 1715
	}

1716 1717
	if (event->destroy)
		event->destroy(event);
1718

1719 1720
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1721 1722
}

1723
int perf_event_release_kernel(struct perf_event *event)
T
Thomas Gleixner 已提交
1724
{
1725
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1726

1727
	WARN_ON_ONCE(ctx->parent_ctx);
1728
	mutex_lock(&ctx->mutex);
1729
	perf_event_remove_from_context(event);
1730
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1731

1732 1733 1734 1735
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1736

1737
	free_event(event);
T
Thomas Gleixner 已提交
1738 1739 1740

	return 0;
}
1741
EXPORT_SYMBOL_GPL(perf_event_release_kernel);
T
Thomas Gleixner 已提交
1742

1743 1744 1745 1746
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
1747
{
1748
	struct perf_event *event = file->private_data;
1749

1750
	file->private_data = NULL;
1751

1752
	return perf_event_release_kernel(event);
1753 1754
}

1755
static int perf_event_read_size(struct perf_event *event)
1756 1757 1758 1759 1760
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1761
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1762 1763
		size += sizeof(u64);

1764
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1765 1766
		size += sizeof(u64);

1767
	if (event->attr.read_format & PERF_FORMAT_ID)
1768 1769
		entry += sizeof(u64);

1770 1771
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1772 1773 1774 1775 1776 1777 1778 1779
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1780
u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1781
{
1782
	struct perf_event *child;
1783 1784
	u64 total = 0;

1785 1786 1787
	*enabled = 0;
	*running = 0;

1788
	mutex_lock(&event->child_mutex);
1789
	total += perf_event_read(event);
1790 1791 1792 1793 1794 1795
	*enabled += event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
	*running += event->total_time_running +
			atomic64_read(&event->child_total_time_running);

	list_for_each_entry(child, &event->child_list, child_list) {
1796
		total += perf_event_read(child);
1797 1798 1799
		*enabled += child->total_time_enabled;
		*running += child->total_time_running;
	}
1800
	mutex_unlock(&event->child_mutex);
1801 1802 1803

	return total;
}
1804
EXPORT_SYMBOL_GPL(perf_event_read_value);
1805

1806
static int perf_event_read_group(struct perf_event *event,
1807 1808
				   u64 read_format, char __user *buf)
{
1809
	struct perf_event *leader = event->group_leader, *sub;
1810 1811
	int n = 0, size = 0, ret = -EFAULT;
	struct perf_event_context *ctx = leader->ctx;
1812
	u64 values[5];
1813
	u64 count, enabled, running;
1814

1815
	mutex_lock(&ctx->mutex);
1816
	count = perf_event_read_value(leader, &enabled, &running);
1817 1818

	values[n++] = 1 + leader->nr_siblings;
1819 1820 1821 1822
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1823 1824 1825
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1826 1827 1828 1829

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
1830
		goto unlock;
1831

1832
	ret = size;
1833

1834
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1835
		n = 0;
1836

1837
		values[n++] = perf_event_read_value(sub, &enabled, &running);
1838 1839 1840 1841 1842
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

1843
		if (copy_to_user(buf + ret, values, size)) {
1844 1845 1846
			ret = -EFAULT;
			goto unlock;
		}
1847 1848

		ret += size;
1849
	}
1850 1851
unlock:
	mutex_unlock(&ctx->mutex);
1852

1853
	return ret;
1854 1855
}

1856
static int perf_event_read_one(struct perf_event *event,
1857 1858
				 u64 read_format, char __user *buf)
{
1859
	u64 enabled, running;
1860 1861 1862
	u64 values[4];
	int n = 0;

1863 1864 1865 1866 1867
	values[n++] = perf_event_read_value(event, &enabled, &running);
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = enabled;
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = running;
1868
	if (read_format & PERF_FORMAT_ID)
1869
		values[n++] = primary_event_id(event);
1870 1871 1872 1873 1874 1875 1876

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1877
/*
1878
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1879 1880
 */
static ssize_t
1881
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1882
{
1883
	u64 read_format = event->attr.read_format;
1884
	int ret;
T
Thomas Gleixner 已提交
1885

1886
	/*
1887
	 * Return end-of-file for a read on a event that is in
1888 1889 1890
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1891
	if (event->state == PERF_EVENT_STATE_ERROR)
1892 1893
		return 0;

1894
	if (count < perf_event_read_size(event))
1895 1896
		return -ENOSPC;

1897
	WARN_ON_ONCE(event->ctx->parent_ctx);
1898
	if (read_format & PERF_FORMAT_GROUP)
1899
		ret = perf_event_read_group(event, read_format, buf);
1900
	else
1901
		ret = perf_event_read_one(event, read_format, buf);
T
Thomas Gleixner 已提交
1902

1903
	return ret;
T
Thomas Gleixner 已提交
1904 1905 1906 1907 1908
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1909
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1910

1911
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1912 1913 1914 1915
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1916
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1917
	struct perf_mmap_data *data;
1918
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1919 1920

	rcu_read_lock();
1921
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1922
	if (data)
1923
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1924
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1925

1926
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1927 1928 1929 1930

	return events;
}

1931
static void perf_event_reset(struct perf_event *event)
1932
{
1933 1934 1935
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1936 1937
}

1938
/*
1939 1940 1941 1942
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1943
 */
1944 1945
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1946
{
1947
	struct perf_event *child;
P
Peter Zijlstra 已提交
1948

1949 1950 1951 1952
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1953
		func(child);
1954
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1955 1956
}

1957 1958
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1959
{
1960 1961
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1962

1963 1964
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1965
	event = event->group_leader;
1966

1967 1968 1969 1970
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1971
	mutex_unlock(&ctx->mutex);
1972 1973
}

1974
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1975
{
1976
	struct perf_event_context *ctx = event->ctx;
1977 1978 1979 1980
	unsigned long size;
	int ret = 0;
	u64 value;

1981
	if (!event->attr.sample_period)
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1992 1993
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
1994 1995 1996 1997
			ret = -EINVAL;
			goto unlock;
		}

1998
		event->attr.sample_freq = value;
1999
	} else {
2000 2001
		event->attr.sample_period = value;
		event->hw.sample_period = value;
2002 2003 2004 2005 2006 2007 2008
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

L
Li Zefan 已提交
2009 2010
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2011

2012 2013
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
2014 2015
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
2016
	u32 flags = arg;
2017 2018

	switch (cmd) {
2019 2020
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2021
		break;
2022 2023
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2024
		break;
2025 2026
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2027
		break;
P
Peter Zijlstra 已提交
2028

2029 2030
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2031

2032 2033
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2034

2035 2036
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2037

L
Li Zefan 已提交
2038 2039 2040
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2041
	default:
P
Peter Zijlstra 已提交
2042
		return -ENOTTY;
2043
	}
P
Peter Zijlstra 已提交
2044 2045

	if (flags & PERF_IOC_FLAG_GROUP)
2046
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2047
	else
2048
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2049 2050

	return 0;
2051 2052
}

2053
int perf_event_task_enable(void)
2054
{
2055
	struct perf_event *event;
2056

2057 2058 2059 2060
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2061 2062 2063 2064

	return 0;
}

2065
int perf_event_task_disable(void)
2066
{
2067
	struct perf_event *event;
2068

2069 2070 2071 2072
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2073 2074 2075 2076

	return 0;
}

2077 2078
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2079 2080
#endif

2081
static int perf_event_index(struct perf_event *event)
2082
{
2083
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2084 2085
		return 0;

2086
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2087 2088
}

2089 2090 2091 2092 2093
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2094
void perf_event_update_userpage(struct perf_event *event)
2095
{
2096
	struct perf_event_mmap_page *userpg;
2097
	struct perf_mmap_data *data;
2098 2099

	rcu_read_lock();
2100
	data = rcu_dereference(event->data);
2101 2102 2103 2104
	if (!data)
		goto unlock;

	userpg = data->user_page;
2105

2106 2107 2108 2109 2110
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2111
	++userpg->lock;
2112
	barrier();
2113 2114 2115 2116
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2117

2118 2119
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2120

2121 2122
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2123

2124
	barrier();
2125
	++userpg->lock;
2126
	preempt_enable();
2127
unlock:
2128
	rcu_read_unlock();
2129 2130
}

2131
static unsigned long perf_data_size(struct perf_mmap_data *data)
2132
{
2133 2134
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2135

2136
#ifndef CONFIG_PERF_USE_VMALLOC
2137

2138 2139 2140
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2141

2142 2143 2144 2145 2146
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2147

2148 2149
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2150

2151
	return virt_to_page(data->data_pages[pgoff - 1]);
2152 2153
}

2154 2155
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2156 2157 2158 2159 2160
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2161
	WARN_ON(atomic_read(&event->mmap_count));
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2180
	data->data_order = 0;
2181 2182
	data->nr_pages = nr_pages;

2183
	return data;
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2195
	return NULL;
2196 2197
}

2198 2199
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2200
	struct page *page = virt_to_page((void *)addr);
2201 2202 2203 2204 2205

	page->mapping = NULL;
	__free_page(page);
}

2206
static void perf_mmap_data_free(struct perf_mmap_data *data)
2207 2208 2209
{
	int i;

2210
	perf_mmap_free_page((unsigned long)data->user_page);
2211
	for (i = 0; i < data->nr_pages; i++)
2212
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2213
	kfree(data);
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
2254
	kfree(data);
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2270

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
2348
		data->watermark = max_size / 2;
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2360 2361
}

2362
static void perf_mmap_data_release(struct perf_event *event)
2363
{
2364
	struct perf_mmap_data *data = event->data;
2365

2366
	WARN_ON(atomic_read(&event->mmap_count));
2367

2368
	rcu_assign_pointer(event->data, NULL);
2369
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2370 2371 2372 2373
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2374
	struct perf_event *event = vma->vm_file->private_data;
2375

2376
	atomic_inc(&event->mmap_count);
2377 2378 2379 2380
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2381
	struct perf_event *event = vma->vm_file->private_data;
2382

2383 2384
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2385
		unsigned long size = perf_data_size(event->data);
2386 2387
		struct user_struct *user = current_user();

2388
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2389
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2390
		perf_mmap_data_release(event);
2391
		mutex_unlock(&event->mmap_mutex);
2392
	}
2393 2394
}

2395
static const struct vm_operations_struct perf_mmap_vmops = {
2396 2397 2398 2399
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2400 2401 2402 2403
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2404
	struct perf_event *event = file->private_data;
2405
	unsigned long user_locked, user_lock_limit;
2406
	struct user_struct *user = current_user();
2407
	unsigned long locked, lock_limit;
2408
	struct perf_mmap_data *data;
2409 2410
	unsigned long vma_size;
	unsigned long nr_pages;
2411
	long user_extra, extra;
2412
	int ret = 0;
2413

2414
	if (!(vma->vm_flags & VM_SHARED))
2415
		return -EINVAL;
2416 2417 2418 2419

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2420 2421 2422 2423 2424
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2425 2426
		return -EINVAL;

2427
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2428 2429
		return -EINVAL;

2430 2431
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2432

2433 2434 2435
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2436 2437 2438 2439
		ret = -EINVAL;
		goto unlock;
	}

2440 2441
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2442 2443 2444 2445
			ret = -EINVAL;
		goto unlock;
	}

2446
	user_extra = nr_pages + 1;
2447
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2448 2449 2450 2451 2452 2453

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2454
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2455

2456 2457 2458
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2459 2460 2461

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2462
	locked = vma->vm_mm->locked_vm + extra;
2463

2464 2465
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2466 2467 2468
		ret = -EPERM;
		goto unlock;
	}
2469

2470
	WARN_ON(event->data);
2471 2472 2473 2474

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2475 2476
		goto unlock;

2477 2478 2479
	ret = 0;
	perf_mmap_data_init(event, data);

2480
	atomic_set(&event->mmap_count, 1);
2481
	atomic_long_add(user_extra, &user->locked_vm);
2482
	vma->vm_mm->locked_vm += extra;
2483
	event->data->nr_locked = extra;
2484
	if (vma->vm_flags & VM_WRITE)
2485
		event->data->writable = 1;
2486

2487
unlock:
2488
	mutex_unlock(&event->mmap_mutex);
2489 2490 2491

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2492 2493

	return ret;
2494 2495
}

P
Peter Zijlstra 已提交
2496 2497 2498
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2499
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2500 2501 2502
	int retval;

	mutex_lock(&inode->i_mutex);
2503
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2504 2505 2506 2507 2508 2509 2510 2511
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2512 2513 2514 2515
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2516 2517
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2518
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2519
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2520 2521
};

2522
/*
2523
 * Perf event wakeup
2524 2525 2526 2527 2528
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2529
void perf_event_wakeup(struct perf_event *event)
2530
{
2531
	wake_up_all(&event->waitq);
2532

2533 2534 2535
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2536
	}
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2548
static void perf_pending_event(struct perf_pending_entry *entry)
2549
{
2550 2551
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2552

2553 2554 2555
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2556 2557
	}

2558 2559 2560
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2561 2562 2563
	}
}

2564
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2565

2566
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2567 2568 2569
	PENDING_TAIL,
};

2570 2571
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2572
{
2573
	struct perf_pending_entry **head;
2574

2575
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2576 2577
		return;

2578 2579 2580
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2581 2582

	do {
2583 2584
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2585

2586
	set_perf_event_pending();
2587

2588
	put_cpu_var(perf_pending_head);
2589 2590 2591 2592
}

static int __perf_pending_run(void)
{
2593
	struct perf_pending_entry *list;
2594 2595
	int nr = 0;

2596
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2597
	while (list != PENDING_TAIL) {
2598 2599
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2600 2601 2602

		list = list->next;

2603 2604
		func = entry->func;
		entry->next = NULL;
2605 2606 2607 2608 2609 2610 2611
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2612
		func(entry);
2613 2614 2615 2616 2617 2618
		nr++;
	}

	return nr;
}

2619
static inline int perf_not_pending(struct perf_event *event)
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2634
	return event->pending.next == NULL;
2635 2636
}

2637
static void perf_pending_sync(struct perf_event *event)
2638
{
2639
	wait_event(event->waitq, perf_not_pending(event));
2640 2641
}

2642
void perf_event_do_pending(void)
2643 2644 2645 2646
{
	__perf_pending_run();
}

2647 2648 2649 2650
/*
 * Callchain support -- arch specific
 */

2651
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2652 2653 2654 2655
{
	return NULL;
}

2656 2657 2658
/*
 * Output
 */
2659 2660
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2661 2662 2663 2664 2665 2666
{
	unsigned long mask;

	if (!data->writable)
		return true;

2667
	mask = perf_data_size(data) - 1;
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2678
static void perf_output_wakeup(struct perf_output_handle *handle)
2679
{
2680 2681
	atomic_set(&handle->data->poll, POLL_IN);

2682
	if (handle->nmi) {
2683 2684 2685
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2686
	} else
2687
		perf_event_wakeup(handle->event);
2688 2689
}

2690 2691 2692
/*
 * Curious locking construct.
 *
2693 2694
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2695 2696 2697 2698 2699 2700
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2701
 * event_id completes.
2702 2703 2704 2705
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2706
	int cur, cpu = get_cpu();
2707 2708 2709

	handle->locked = 0;

2710 2711 2712 2713 2714 2715 2716 2717
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2718 2719

		cpu_relax();
2720
	}
2721 2722 2723 2724 2725
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2726 2727
	unsigned long head;
	int cpu;
2728

2729
	data->done_head = data->head;
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2740
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2741 2742 2743
		data->user_page->data_head = head;

	/*
2744
	 * NMI can happen here, which means we can miss a done_head update.
2745 2746
	 */

2747
	cpu = atomic_xchg(&data->lock, -1);
2748 2749 2750 2751 2752
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2753
	if (unlikely(atomic_long_read(&data->done_head))) {
2754 2755 2756
		/*
		 * Since we had it locked, we can lock it again.
		 */
2757
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2758 2759 2760 2761 2762
			cpu_relax();

		goto again;
	}

2763
	if (atomic_xchg(&data->wakeup, 0))
2764 2765
		perf_output_wakeup(handle);
out:
2766
	put_cpu();
2767 2768
}

2769 2770
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2771 2772
{
	unsigned int pages_mask;
2773
	unsigned long offset;
2774 2775 2776 2777 2778 2779 2780 2781
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2782 2783
		unsigned long page_offset;
		unsigned long page_size;
2784 2785 2786
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2787 2788 2789
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2807
int perf_output_begin(struct perf_output_handle *handle,
2808
		      struct perf_event *event, unsigned int size,
2809
		      int nmi, int sample)
2810
{
2811
	struct perf_event *output_event;
2812
	struct perf_mmap_data *data;
2813
	unsigned long tail, offset, head;
2814 2815 2816 2817 2818 2819
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2820

2821
	rcu_read_lock();
2822
	/*
2823
	 * For inherited events we send all the output towards the parent.
2824
	 */
2825 2826
	if (event->parent)
		event = event->parent;
2827

2828 2829 2830
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2831

2832
	data = rcu_dereference(event->data);
2833 2834 2835
	if (!data)
		goto out;

2836
	handle->data	= data;
2837
	handle->event	= event;
2838 2839
	handle->nmi	= nmi;
	handle->sample	= sample;
2840

2841
	if (!data->nr_pages)
2842
		goto fail;
2843

2844 2845 2846 2847
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2848 2849
	perf_output_lock(handle);

2850
	do {
2851 2852 2853 2854 2855 2856 2857
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2858
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2859
		head += size;
2860
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2861
			goto fail;
2862
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2863

2864
	handle->offset	= offset;
2865
	handle->head	= head;
2866

2867
	if (head - tail > data->watermark)
2868
		atomic_set(&data->wakeup, 1);
2869

2870
	if (have_lost) {
2871
		lost_event.header.type = PERF_RECORD_LOST;
2872 2873
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2874
		lost_event.id          = event->id;
2875 2876 2877 2878 2879
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2880
	return 0;
2881

2882
fail:
2883 2884
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2885 2886
out:
	rcu_read_unlock();
2887

2888 2889
	return -ENOSPC;
}
2890

2891
void perf_output_end(struct perf_output_handle *handle)
2892
{
2893
	struct perf_event *event = handle->event;
2894 2895
	struct perf_mmap_data *data = handle->data;

2896
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2897

2898
	if (handle->sample && wakeup_events) {
2899
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2900
		if (events >= wakeup_events) {
2901
			atomic_sub(wakeup_events, &data->events);
2902
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2903
		}
2904 2905 2906
	}

	perf_output_unlock(handle);
2907
	rcu_read_unlock();
2908 2909
}

2910
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2911 2912
{
	/*
2913
	 * only top level events have the pid namespace they were created in
2914
	 */
2915 2916
	if (event->parent)
		event = event->parent;
2917

2918
	return task_tgid_nr_ns(p, event->ns);
2919 2920
}

2921
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2922 2923
{
	/*
2924
	 * only top level events have the pid namespace they were created in
2925
	 */
2926 2927
	if (event->parent)
		event = event->parent;
2928

2929
	return task_pid_nr_ns(p, event->ns);
2930 2931
}

2932
static void perf_output_read_one(struct perf_output_handle *handle,
2933
				 struct perf_event *event)
2934
{
2935
	u64 read_format = event->attr.read_format;
2936 2937 2938
	u64 values[4];
	int n = 0;

2939
	values[n++] = atomic64_read(&event->count);
2940
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2941 2942
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2943 2944
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2945 2946
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2947 2948
	}
	if (read_format & PERF_FORMAT_ID)
2949
		values[n++] = primary_event_id(event);
2950 2951 2952 2953 2954

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2955
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2956 2957
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2958
			    struct perf_event *event)
2959
{
2960 2961
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2973
	if (leader != event)
2974 2975 2976 2977
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2978
		values[n++] = primary_event_id(leader);
2979 2980 2981

	perf_output_copy(handle, values, n * sizeof(u64));

2982
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2983 2984
		n = 0;

2985
		if (sub != event)
2986 2987 2988 2989
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2990
			values[n++] = primary_event_id(sub);
2991 2992 2993 2994 2995 2996

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
2997
			     struct perf_event *event)
2998
{
2999 3000
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
3001
	else
3002
		perf_output_read_one(handle, event);
3003 3004
}

3005 3006 3007
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
3008
			struct perf_event *event)
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3039
		perf_output_read(handle, event);
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3077
			 struct perf_event *event,
3078
			 struct pt_regs *regs)
3079
{
3080
	u64 sample_type = event->attr.sample_type;
3081

3082
	data->type = sample_type;
3083

3084
	header->type = PERF_RECORD_SAMPLE;
3085 3086 3087 3088
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3089

3090
	if (sample_type & PERF_SAMPLE_IP) {
3091 3092 3093
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3094
	}
3095

3096
	if (sample_type & PERF_SAMPLE_TID) {
3097
		/* namespace issues */
3098 3099
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3100

3101
		header->size += sizeof(data->tid_entry);
3102 3103
	}

3104
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3105
		data->time = perf_clock();
3106

3107
		header->size += sizeof(data->time);
3108 3109
	}

3110
	if (sample_type & PERF_SAMPLE_ADDR)
3111
		header->size += sizeof(data->addr);
3112

3113
	if (sample_type & PERF_SAMPLE_ID) {
3114
		data->id = primary_event_id(event);
3115

3116 3117 3118 3119
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3120
		data->stream_id = event->id;
3121 3122 3123

		header->size += sizeof(data->stream_id);
	}
3124

3125
	if (sample_type & PERF_SAMPLE_CPU) {
3126 3127
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3128

3129
		header->size += sizeof(data->cpu_entry);
3130 3131
	}

3132
	if (sample_type & PERF_SAMPLE_PERIOD)
3133
		header->size += sizeof(data->period);
3134

3135
	if (sample_type & PERF_SAMPLE_READ)
3136
		header->size += perf_event_read_size(event);
3137

3138
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3139
		int size = 1;
3140

3141 3142 3143 3144 3145 3146
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3147 3148
	}

3149
	if (sample_type & PERF_SAMPLE_RAW) {
3150 3151 3152 3153 3154 3155 3156 3157
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3158
		header->size += size;
3159
	}
3160
}
3161

3162
static void perf_event_output(struct perf_event *event, int nmi,
3163 3164 3165 3166 3167
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3168

3169
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3170

3171
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3172
		return;
3173

3174
	perf_output_sample(&handle, &header, data, event);
3175

3176
	perf_output_end(&handle);
3177 3178
}

3179
/*
3180
 * read event_id
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3191
perf_event_read_event(struct perf_event *event,
3192 3193 3194
			struct task_struct *task)
{
	struct perf_output_handle handle;
3195
	struct perf_read_event read_event = {
3196
		.header = {
3197
			.type = PERF_RECORD_READ,
3198
			.misc = 0,
3199
			.size = sizeof(read_event) + perf_event_read_size(event),
3200
		},
3201 3202
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3203
	};
3204
	int ret;
3205

3206
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3207 3208 3209
	if (ret)
		return;

3210
	perf_output_put(&handle, read_event);
3211
	perf_output_read(&handle, event);
3212

3213 3214 3215
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3216
/*
P
Peter Zijlstra 已提交
3217 3218 3219
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3220 3221
 */

P
Peter Zijlstra 已提交
3222
struct perf_task_event {
3223
	struct task_struct		*task;
3224
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3225 3226 3227 3228 3229 3230

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3231 3232
		u32				tid;
		u32				ptid;
3233
		u64				time;
3234
	} event_id;
P
Peter Zijlstra 已提交
3235 3236
};

3237
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3238
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3239 3240
{
	struct perf_output_handle handle;
3241
	int size;
P
Peter Zijlstra 已提交
3242
	struct task_struct *task = task_event->task;
3243 3244
	int ret;

3245 3246
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3247 3248 3249 3250

	if (ret)
		return;

3251 3252
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3253

3254 3255
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3256

3257
	task_event->event_id.time = perf_clock();
3258

3259
	perf_output_put(&handle, task_event->event_id);
3260

P
Peter Zijlstra 已提交
3261 3262 3263
	perf_output_end(&handle);
}

3264
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3265
{
3266
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3267 3268 3269 3270 3271
		return 1;

	return 0;
}

3272
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3273
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3274
{
3275
	struct perf_event *event;
P
Peter Zijlstra 已提交
3276

3277 3278 3279
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3280 3281 3282
	}
}

3283
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3284 3285
{
	struct perf_cpu_context *cpuctx;
3286
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3287

3288
	rcu_read_lock();
P
Peter Zijlstra 已提交
3289
	cpuctx = &get_cpu_var(perf_cpu_context);
3290
	perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3291 3292
	put_cpu_var(perf_cpu_context);

3293
	if (!ctx)
3294
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3295
	if (ctx)
3296
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3297 3298 3299
	rcu_read_unlock();
}

3300 3301
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3302
			      int new)
P
Peter Zijlstra 已提交
3303
{
P
Peter Zijlstra 已提交
3304
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3305

3306 3307 3308
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3309 3310
		return;

P
Peter Zijlstra 已提交
3311
	task_event = (struct perf_task_event){
3312 3313
		.task	  = task,
		.task_ctx = task_ctx,
3314
		.event_id    = {
P
Peter Zijlstra 已提交
3315
			.header = {
3316
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3317
				.misc = 0,
3318
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3319
			},
3320 3321
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3322 3323
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3324 3325 3326
		},
	};

3327
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3328 3329
}

3330
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3331
{
3332
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3333 3334
}

3335 3336 3337 3338 3339
/*
 * comm tracking
 */

struct perf_comm_event {
3340 3341
	struct task_struct	*task;
	char			*comm;
3342 3343 3344 3345 3346 3347 3348
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3349
	} event_id;
3350 3351
};

3352
static void perf_event_comm_output(struct perf_event *event,
3353 3354 3355
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3356 3357
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3358 3359 3360 3361

	if (ret)
		return;

3362 3363
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3364

3365
	perf_output_put(&handle, comm_event->event_id);
3366 3367 3368 3369 3370
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3371
static int perf_event_comm_match(struct perf_event *event)
3372
{
3373
	if (event->attr.comm)
3374 3375 3376 3377 3378
		return 1;

	return 0;
}

3379
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3380 3381
				  struct perf_comm_event *comm_event)
{
3382
	struct perf_event *event;
3383

3384 3385 3386
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3387 3388 3389
	}
}

3390
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3391 3392
{
	struct perf_cpu_context *cpuctx;
3393
	struct perf_event_context *ctx;
3394
	unsigned int size;
3395
	char comm[TASK_COMM_LEN];
3396

3397
	memset(comm, 0, sizeof(comm));
3398
	strlcpy(comm, comm_event->task->comm, sizeof(comm));
3399
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3400 3401 3402 3403

	comm_event->comm = comm;
	comm_event->comm_size = size;

3404
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3405

3406
	rcu_read_lock();
3407
	cpuctx = &get_cpu_var(perf_cpu_context);
3408
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3409
	put_cpu_var(perf_cpu_context);
3410 3411 3412 3413 3414

	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3415
	ctx = rcu_dereference(current->perf_event_ctxp);
3416
	if (ctx)
3417
		perf_event_comm_ctx(ctx, comm_event);
3418
	rcu_read_unlock();
3419 3420
}

3421
void perf_event_comm(struct task_struct *task)
3422
{
3423 3424
	struct perf_comm_event comm_event;

3425 3426
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3427

3428
	if (!atomic_read(&nr_comm_events))
3429
		return;
3430

3431
	comm_event = (struct perf_comm_event){
3432
		.task	= task,
3433 3434
		/* .comm      */
		/* .comm_size */
3435
		.event_id  = {
3436
			.header = {
3437
				.type = PERF_RECORD_COMM,
3438 3439 3440 3441 3442
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3443 3444 3445
		},
	};

3446
	perf_event_comm_event(&comm_event);
3447 3448
}

3449 3450 3451 3452 3453
/*
 * mmap tracking
 */

struct perf_mmap_event {
3454 3455 3456 3457
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3458 3459 3460 3461 3462 3463 3464 3465 3466

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3467
	} event_id;
3468 3469
};

3470
static void perf_event_mmap_output(struct perf_event *event,
3471 3472 3473
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3474 3475
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3476 3477 3478 3479

	if (ret)
		return;

3480 3481
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3482

3483
	perf_output_put(&handle, mmap_event->event_id);
3484 3485
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3486
	perf_output_end(&handle);
3487 3488
}

3489
static int perf_event_mmap_match(struct perf_event *event,
3490 3491
				   struct perf_mmap_event *mmap_event)
{
3492
	if (event->attr.mmap)
3493 3494 3495 3496 3497
		return 1;

	return 0;
}

3498
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3499 3500
				  struct perf_mmap_event *mmap_event)
{
3501
	struct perf_event *event;
3502

3503 3504 3505
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3506 3507 3508
	}
}

3509
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3510 3511
{
	struct perf_cpu_context *cpuctx;
3512
	struct perf_event_context *ctx;
3513 3514
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3515 3516 3517
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3518
	const char *name;
3519

3520 3521
	memset(tmp, 0, sizeof(tmp));

3522
	if (file) {
3523 3524 3525 3526 3527 3528
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3529 3530 3531 3532
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3533
		name = d_path(&file->f_path, buf, PATH_MAX);
3534 3535 3536 3537 3538
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3539 3540 3541
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3542
			goto got_name;
3543
		}
3544 3545 3546 3547 3548 3549

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3550 3551 3552 3553 3554
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3555
	size = ALIGN(strlen(name)+1, sizeof(u64));
3556 3557 3558 3559

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3560
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3561

3562
	rcu_read_lock();
3563
	cpuctx = &get_cpu_var(perf_cpu_context);
3564
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3565 3566
	put_cpu_var(perf_cpu_context);

3567 3568 3569 3570
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3571
	ctx = rcu_dereference(current->perf_event_ctxp);
3572
	if (ctx)
3573
		perf_event_mmap_ctx(ctx, mmap_event);
3574 3575
	rcu_read_unlock();

3576 3577 3578
	kfree(buf);
}

3579
void __perf_event_mmap(struct vm_area_struct *vma)
3580
{
3581 3582
	struct perf_mmap_event mmap_event;

3583
	if (!atomic_read(&nr_mmap_events))
3584 3585 3586
		return;

	mmap_event = (struct perf_mmap_event){
3587
		.vma	= vma,
3588 3589
		/* .file_name */
		/* .file_size */
3590
		.event_id  = {
3591
			.header = {
3592
				.type = PERF_RECORD_MMAP,
3593 3594 3595 3596 3597
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3598 3599 3600
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3601 3602 3603
		},
	};

3604
	perf_event_mmap_event(&mmap_event);
3605 3606
}

3607 3608 3609 3610
/*
 * IRQ throttle logging
 */

3611
static void perf_log_throttle(struct perf_event *event, int enable)
3612 3613 3614 3615 3616 3617 3618
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3619
		u64				id;
3620
		u64				stream_id;
3621 3622
	} throttle_event = {
		.header = {
3623
			.type = PERF_RECORD_THROTTLE,
3624 3625 3626
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3627
		.time		= perf_clock(),
3628 3629
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3630 3631
	};

3632
	if (enable)
3633
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3634

3635
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3636 3637 3638 3639 3640 3641 3642
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3643
/*
3644
 * Generic event overflow handling, sampling.
3645 3646
 */

3647
static int __perf_event_overflow(struct perf_event *event, int nmi,
3648 3649
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3650
{
3651 3652
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3653 3654
	int ret = 0;

3655
	throttle = (throttle && event->pmu->unthrottle != NULL);
3656

3657
	if (!throttle) {
3658
		hwc->interrupts++;
3659
	} else {
3660 3661
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3662
			if (HZ * hwc->interrupts >
3663
					(u64)sysctl_perf_event_sample_rate) {
3664
				hwc->interrupts = MAX_INTERRUPTS;
3665
				perf_log_throttle(event, 0);
3666 3667 3668 3669
				ret = 1;
			}
		} else {
			/*
3670
			 * Keep re-disabling events even though on the previous
3671
			 * pass we disabled it - just in case we raced with a
3672
			 * sched-in and the event got enabled again:
3673
			 */
3674 3675 3676
			ret = 1;
		}
	}
3677

3678
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3679
		u64 now = perf_clock();
3680 3681 3682 3683 3684
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3685
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3686 3687
	}

3688 3689
	/*
	 * XXX event_limit might not quite work as expected on inherited
3690
	 * events
3691 3692
	 */

3693 3694
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3695
		ret = 1;
3696
		event->pending_kill = POLL_HUP;
3697
		if (nmi) {
3698 3699 3700
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3701
		} else
3702
			perf_event_disable(event);
3703 3704
	}

3705 3706 3707 3708 3709
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3710
	return ret;
3711 3712
}

3713
int perf_event_overflow(struct perf_event *event, int nmi,
3714 3715
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3716
{
3717
	return __perf_event_overflow(event, nmi, 1, data, regs);
3718 3719
}

3720
/*
3721
 * Generic software event infrastructure
3722 3723
 */

3724
/*
3725 3726
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3727 3728 3729 3730
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3731
static u64 perf_swevent_set_period(struct perf_event *event)
3732
{
3733
	struct hw_perf_event *hwc = &event->hw;
3734 3735 3736 3737 3738
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3739 3740

again:
3741 3742 3743
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3744

3745 3746 3747 3748 3749
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3750

3751
	return nr;
3752 3753
}

3754
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3755 3756
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3757
{
3758
	struct hw_perf_event *hwc = &event->hw;
3759
	int throttle = 0;
3760

3761
	data->period = event->hw.last_period;
3762 3763
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3764

3765 3766
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3767

3768
	for (; overflow; overflow--) {
3769
		if (__perf_event_overflow(event, nmi, throttle,
3770
					    data, regs)) {
3771 3772 3773 3774 3775 3776
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3777
		throttle = 1;
3778
	}
3779 3780
}

3781
static void perf_swevent_unthrottle(struct perf_event *event)
3782 3783
{
	/*
3784
	 * Nothing to do, we already reset hwc->interrupts.
3785
	 */
3786
}
3787

3788
static void perf_swevent_add(struct perf_event *event, u64 nr,
3789 3790
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3791
{
3792
	struct hw_perf_event *hwc = &event->hw;
3793

3794
	atomic64_add(nr, &event->count);
3795

3796 3797 3798
	if (!regs)
		return;

3799 3800
	if (!hwc->sample_period)
		return;
3801

3802 3803 3804 3805
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3806
		return;
3807

3808
	perf_swevent_overflow(event, 0, nmi, data, regs);
3809 3810
}

3811
static int perf_swevent_is_counting(struct perf_event *event)
3812
{
3813
	/*
3814
	 * The event is active, we're good!
3815
	 */
3816
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3817 3818
		return 1;

3819
	/*
3820
	 * The event is off/error, not counting.
3821
	 */
3822
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3823 3824 3825
		return 0;

	/*
3826
	 * The event is inactive, if the context is active
3827 3828
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3829
	 */
3830
	if (event->ctx->is_active)
3831 3832 3833 3834 3835 3836 3837 3838
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3839 3840
}

L
Li Zefan 已提交
3841 3842 3843
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857
static int perf_exclude_event(struct perf_event *event,
			      struct pt_regs *regs)
{
	if (regs) {
		if (event->attr.exclude_user && user_mode(regs))
			return 1;

		if (event->attr.exclude_kernel && !user_mode(regs))
			return 1;
	}

	return 0;
}

3858
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3859
				enum perf_type_id type,
L
Li Zefan 已提交
3860 3861 3862
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3863
{
3864
	if (!perf_swevent_is_counting(event))
3865 3866
		return 0;

3867
	if (event->attr.type != type)
3868
		return 0;
3869

3870
	if (event->attr.config != event_id)
3871 3872
		return 0;

3873 3874
	if (perf_exclude_event(event, regs))
		return 0;
3875

L
Li Zefan 已提交
3876 3877 3878 3879
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3880 3881 3882
	return 1;
}

3883
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3884
				     enum perf_type_id type,
3885
				     u32 event_id, u64 nr, int nmi,
3886 3887
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3888
{
3889
	struct perf_event *event;
3890

3891
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3892
		if (perf_swevent_match(event, type, event_id, data, regs))
3893
			perf_swevent_add(event, nr, nmi, data, regs);
3894 3895 3896
	}
}

3897
int perf_swevent_get_recursion_context(void)
P
Peter Zijlstra 已提交
3898
{
3899 3900
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
	int rctx;
3901

P
Peter Zijlstra 已提交
3902
	if (in_nmi())
3903
		rctx = 3;
3904
	else if (in_irq())
3905
		rctx = 2;
3906
	else if (in_softirq())
3907
		rctx = 1;
3908
	else
3909
		rctx = 0;
P
Peter Zijlstra 已提交
3910

3911 3912
	if (cpuctx->recursion[rctx]) {
		put_cpu_var(perf_cpu_context);
3913
		return -1;
3914
	}
P
Peter Zijlstra 已提交
3915

3916 3917
	cpuctx->recursion[rctx]++;
	barrier();
P
Peter Zijlstra 已提交
3918

3919
	return rctx;
P
Peter Zijlstra 已提交
3920
}
I
Ingo Molnar 已提交
3921
EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
P
Peter Zijlstra 已提交
3922

3923
void perf_swevent_put_recursion_context(int rctx)
3924
{
3925 3926
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
	barrier();
3927
	cpuctx->recursion[rctx]--;
3928
	put_cpu_var(perf_cpu_context);
3929
}
I
Ingo Molnar 已提交
3930
EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
P
Peter Zijlstra 已提交
3931

3932 3933 3934 3935
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
				    u64 nr, int nmi,
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3936
{
3937
	struct perf_cpu_context *cpuctx;
3938
	struct perf_event_context *ctx;
3939

3940
	cpuctx = &__get_cpu_var(perf_cpu_context);
3941
	rcu_read_lock();
3942
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3943
				 nr, nmi, data, regs);
3944 3945 3946 3947
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3948
	ctx = rcu_dereference(current->perf_event_ctxp);
3949
	if (ctx)
3950
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3951
	rcu_read_unlock();
3952
}
3953

3954
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3955
			    struct pt_regs *regs, u64 addr)
3956
{
3957
	struct perf_sample_data data;
3958 3959 3960 3961 3962
	int rctx;

	rctx = perf_swevent_get_recursion_context();
	if (rctx < 0)
		return;
3963 3964 3965

	data.addr = addr;
	data.raw  = NULL;
3966

3967
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
3968 3969

	perf_swevent_put_recursion_context(rctx);
3970 3971
}

3972
static void perf_swevent_read(struct perf_event *event)
3973 3974 3975
{
}

3976
static int perf_swevent_enable(struct perf_event *event)
3977
{
3978
	struct hw_perf_event *hwc = &event->hw;
3979 3980 3981

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3982
		perf_swevent_set_period(event);
3983
	}
3984 3985 3986
	return 0;
}

3987
static void perf_swevent_disable(struct perf_event *event)
3988 3989 3990
{
}

3991
static const struct pmu perf_ops_generic = {
3992 3993 3994 3995
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
3996 3997
};

3998
/*
3999
 * hrtimer based swevent callback
4000 4001
 */

4002
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4003 4004 4005
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
4006
	struct pt_regs *regs;
4007
	struct perf_event *event;
4008 4009
	u64 period;

4010 4011
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
4012 4013

	data.addr = 0;
4014
	data.period = event->hw.last_period;
4015
	regs = get_irq_regs();
4016 4017 4018 4019
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
4020 4021
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
4022
		regs = task_pt_regs(current);
4023

4024
	if (regs) {
4025 4026 4027
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
4028 4029
	}

4030
	period = max_t(u64, 10000, event->hw.sample_period);
4031 4032 4033 4034 4035
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4072
/*
4073
 * Software event: cpu wall time clock
4074 4075
 */

4076
static void cpu_clock_perf_event_update(struct perf_event *event)
4077 4078 4079 4080 4081 4082
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4083 4084 4085
	prev = atomic64_read(&event->hw.prev_count);
	atomic64_set(&event->hw.prev_count, now);
	atomic64_add(now - prev, &event->count);
4086 4087
}

4088
static int cpu_clock_perf_event_enable(struct perf_event *event)
4089
{
4090
	struct hw_perf_event *hwc = &event->hw;
4091 4092 4093
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4094
	perf_swevent_start_hrtimer(event);
4095 4096 4097 4098

	return 0;
}

4099
static void cpu_clock_perf_event_disable(struct perf_event *event)
4100
{
4101
	perf_swevent_cancel_hrtimer(event);
4102
	cpu_clock_perf_event_update(event);
4103 4104
}

4105
static void cpu_clock_perf_event_read(struct perf_event *event)
4106
{
4107
	cpu_clock_perf_event_update(event);
4108 4109
}

4110
static const struct pmu perf_ops_cpu_clock = {
4111 4112 4113
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4114 4115
};

4116
/*
4117
 * Software event: task time clock
4118 4119
 */

4120
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4121
{
4122
	u64 prev;
I
Ingo Molnar 已提交
4123 4124
	s64 delta;

4125
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4126
	delta = now - prev;
4127
	atomic64_add(delta, &event->count);
4128 4129
}

4130
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4131
{
4132
	struct hw_perf_event *hwc = &event->hw;
4133 4134
	u64 now;

4135
	now = event->ctx->time;
4136

4137
	atomic64_set(&hwc->prev_count, now);
4138 4139

	perf_swevent_start_hrtimer(event);
4140 4141

	return 0;
I
Ingo Molnar 已提交
4142 4143
}

4144
static void task_clock_perf_event_disable(struct perf_event *event)
4145
{
4146
	perf_swevent_cancel_hrtimer(event);
4147
	task_clock_perf_event_update(event, event->ctx->time);
4148

4149
}
I
Ingo Molnar 已提交
4150

4151
static void task_clock_perf_event_read(struct perf_event *event)
4152
{
4153 4154 4155
	u64 time;

	if (!in_nmi()) {
4156 4157
		update_context_time(event->ctx);
		time = event->ctx->time;
4158 4159
	} else {
		u64 now = perf_clock();
4160 4161
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4162 4163
	}

4164
	task_clock_perf_event_update(event, time);
4165 4166
}

4167
static const struct pmu perf_ops_task_clock = {
4168 4169 4170
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4171 4172
};

4173
#ifdef CONFIG_EVENT_PROFILE
L
Li Zefan 已提交
4174

4175
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4176
			  int entry_size)
4177
{
4178
	struct perf_raw_record raw = {
4179
		.size = entry_size,
4180
		.data = record,
4181 4182
	};

4183
	struct perf_sample_data data = {
4184
		.addr = addr,
4185
		.raw = &raw,
4186
	};
4187

4188 4189 4190 4191
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4192

4193
	/* Trace events already protected against recursion */
4194
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4195
				&data, regs);
4196
}
4197
EXPORT_SYMBOL_GPL(perf_tp_event);
4198

L
Li Zefan 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4208

4209
static void tp_perf_event_destroy(struct perf_event *event)
4210
{
4211
	ftrace_profile_disable(event->attr.config);
4212 4213
}

4214
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4215
{
4216 4217 4218 4219
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4220
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4221
			perf_paranoid_tracepoint_raw() &&
4222 4223 4224
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4225
	if (ftrace_profile_enable(event->attr.config))
4226 4227
		return NULL;

4228
	event->destroy = tp_perf_event_destroy;
4229 4230 4231

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4256
#else
L
Li Zefan 已提交
4257 4258 4259 4260 4261 4262 4263

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4264
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4265 4266 4267
{
	return NULL;
}
L
Li Zefan 已提交
4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

#endif /* CONFIG_EVENT_PROFILE */
4279

4280 4281 4282 4283 4284 4285 4286 4287 4288
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
4289 4290

	err = register_perf_hw_breakpoint(bp);
4291 4292 4293 4294 4295 4296 4297 4298
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

4299
void perf_bp_event(struct perf_event *bp, void *data)
4300
{
4301 4302 4303 4304 4305 4306 4307
	struct perf_sample_data sample;
	struct pt_regs *regs = data;

	sample.addr = bp->attr.bp_addr;

	if (!perf_exclude_event(bp, regs))
		perf_swevent_add(bp, 1, 1, &sample, regs);
4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
}
#else
static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4320
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4321

4322
static void sw_perf_event_destroy(struct perf_event *event)
4323
{
4324
	u64 event_id = event->attr.config;
4325

4326
	WARN_ON(event->parent);
4327

4328
	atomic_dec(&perf_swevent_enabled[event_id]);
4329 4330
}

4331
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4332
{
4333
	const struct pmu *pmu = NULL;
4334
	u64 event_id = event->attr.config;
4335

4336
	/*
4337
	 * Software events (currently) can't in general distinguish
4338 4339 4340 4341 4342
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4343
	switch (event_id) {
4344
	case PERF_COUNT_SW_CPU_CLOCK:
4345
		pmu = &perf_ops_cpu_clock;
4346

4347
		break;
4348
	case PERF_COUNT_SW_TASK_CLOCK:
4349
		/*
4350 4351
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4352
		 */
4353
		if (event->ctx->task)
4354
			pmu = &perf_ops_task_clock;
4355
		else
4356
			pmu = &perf_ops_cpu_clock;
4357

4358
		break;
4359 4360 4361 4362 4363
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4364 4365
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4366 4367 4368
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4369
		}
4370
		pmu = &perf_ops_generic;
4371
		break;
4372
	}
4373

4374
	return pmu;
4375 4376
}

T
Thomas Gleixner 已提交
4377
/*
4378
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4379
 */
4380 4381
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4382
		   int cpu,
4383 4384 4385
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4386
		   perf_overflow_handler_t overflow_handler,
4387
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4388
{
4389
	const struct pmu *pmu;
4390 4391
	struct perf_event *event;
	struct hw_perf_event *hwc;
4392
	long err;
T
Thomas Gleixner 已提交
4393

4394 4395
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4396
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4397

4398
	/*
4399
	 * Single events are their own group leaders, with an
4400 4401 4402
	 * empty sibling list:
	 */
	if (!group_leader)
4403
		group_leader = event;
4404

4405 4406
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4407

4408 4409 4410 4411
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4412

4413
	mutex_init(&event->mmap_mutex);
4414

4415 4416 4417 4418 4419 4420
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4421

4422
	event->parent		= parent_event;
4423

4424 4425
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4426

4427
	event->state		= PERF_EVENT_STATE_INACTIVE;
4428

4429 4430
	if (!overflow_handler && parent_event)
		overflow_handler = parent_event->overflow_handler;
4431
	
4432
	event->overflow_handler	= overflow_handler;
4433

4434
	if (attr->disabled)
4435
		event->state = PERF_EVENT_STATE_OFF;
4436

4437
	pmu = NULL;
4438

4439
	hwc = &event->hw;
4440
	hwc->sample_period = attr->sample_period;
4441
	if (attr->freq && attr->sample_freq)
4442
		hwc->sample_period = 1;
4443
	hwc->last_period = hwc->sample_period;
4444 4445

	atomic64_set(&hwc->period_left, hwc->sample_period);
4446

4447
	/*
4448
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4449
	 */
4450
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4451 4452
		goto done;

4453
	switch (attr->type) {
4454
	case PERF_TYPE_RAW:
4455
	case PERF_TYPE_HARDWARE:
4456
	case PERF_TYPE_HW_CACHE:
4457
		pmu = hw_perf_event_init(event);
4458 4459 4460
		break;

	case PERF_TYPE_SOFTWARE:
4461
		pmu = sw_perf_event_init(event);
4462 4463 4464
		break;

	case PERF_TYPE_TRACEPOINT:
4465
		pmu = tp_perf_event_init(event);
4466
		break;
4467

4468 4469 4470 4471 4472
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4473 4474
	default:
		break;
4475
	}
4476 4477
done:
	err = 0;
4478
	if (!pmu)
4479
		err = -EINVAL;
4480 4481
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4482

4483
	if (err) {
4484 4485 4486
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4487
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4488
	}
4489

4490
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4491

4492 4493 4494 4495 4496 4497 4498 4499
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4500
	}
4501

4502
	return event;
T
Thomas Gleixner 已提交
4503 4504
}

4505 4506
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4507 4508
{
	u32 size;
4509
	int ret;
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4534 4535 4536
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4537 4538
	 */
	if (size > sizeof(*attr)) {
4539 4540 4541
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4542

4543 4544
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4545

4546
		for (; addr < end; addr++) {
4547 4548 4549 4550 4551 4552
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4553
		size = sizeof(*attr);
4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4585
static int perf_event_set_output(struct perf_event *event, int output_fd)
4586
{
4587
	struct perf_event *output_event = NULL;
4588
	struct file *output_file = NULL;
4589
	struct perf_event *old_output;
4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4603
	output_event = output_file->private_data;
4604 4605

	/* Don't chain output fds */
4606
	if (output_event->output)
4607 4608 4609
		goto out;

	/* Don't set an output fd when we already have an output channel */
4610
	if (event->data)
4611 4612 4613 4614 4615
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4616 4617 4618 4619
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4620 4621 4622 4623

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4624
		 * is still referencing this event.
4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4636
/**
4637
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4638
 *
4639
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4640
 * @pid:		target pid
I
Ingo Molnar 已提交
4641
 * @cpu:		target cpu
4642
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4643
 */
4644 4645
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4646
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4647
{
4648 4649 4650 4651
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4652 4653
	struct file *group_file = NULL;
	int fput_needed = 0;
4654
	int fput_needed2 = 0;
4655
	int err;
T
Thomas Gleixner 已提交
4656

4657
	/* for future expandability... */
4658
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4659 4660
		return -EINVAL;

4661 4662 4663
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4664

4665 4666 4667 4668 4669
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4670
	if (attr.freq) {
4671
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4672 4673 4674
			return -EINVAL;
	}

4675
	/*
I
Ingo Molnar 已提交
4676 4677 4678 4679 4680 4681 4682
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4683
	 * Look up the group leader (we will attach this event to it):
4684 4685
	 */
	group_leader = NULL;
4686
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4687
		err = -EINVAL;
4688 4689
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4690
			goto err_put_context;
4691
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4692
			goto err_put_context;
4693 4694 4695

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4696 4697 4698 4699 4700 4701 4702 4703
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4704
		 */
I
Ingo Molnar 已提交
4705 4706
		if (group_leader->ctx != ctx)
			goto err_put_context;
4707 4708 4709
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4710
		if (attr.exclusive || attr.pinned)
4711
			goto err_put_context;
4712 4713
	}

4714
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4715
				     NULL, NULL, GFP_KERNEL);
4716 4717
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4718 4719
		goto err_put_context;

4720
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4721
	if (err < 0)
4722 4723
		goto err_free_put_context;

4724 4725
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4726 4727
		goto err_free_put_context;

4728
	if (flags & PERF_FLAG_FD_OUTPUT) {
4729
		err = perf_event_set_output(event, group_fd);
4730 4731
		if (err)
			goto err_fput_free_put_context;
4732 4733
	}

4734
	event->filp = event_file;
4735
	WARN_ON_ONCE(ctx->parent_ctx);
4736
	mutex_lock(&ctx->mutex);
4737
	perf_install_in_context(ctx, event, cpu);
4738
	++ctx->generation;
4739
	mutex_unlock(&ctx->mutex);
4740

4741
	event->owner = current;
4742
	get_task_struct(current);
4743 4744 4745
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4746

4747
err_fput_free_put_context:
4748
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4749

4750
err_free_put_context:
4751
	if (err < 0)
4752
		kfree(event);
T
Thomas Gleixner 已提交
4753 4754

err_put_context:
4755 4756 4757 4758
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4759

4760
	return err;
T
Thomas Gleixner 已提交
4761 4762
}

4763 4764 4765 4766 4767 4768 4769 4770 4771
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4772 4773
				 pid_t pid,
				 perf_overflow_handler_t overflow_handler)
4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
4784 4785 4786 4787
	if (IS_ERR(ctx)) {
		err = PTR_ERR(ctx);
		goto err_exit;
	}
4788 4789

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4790
				 NULL, overflow_handler, GFP_KERNEL);
4791 4792
	if (IS_ERR(event)) {
		err = PTR_ERR(event);
4793
		goto err_put_context;
4794
	}
4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

4811 4812 4813 4814
 err_put_context:
	put_ctx(ctx);
 err_exit:
	return ERR_PTR(err);
4815 4816 4817
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4818
/*
4819
 * inherit a event from parent task to child task:
4820
 */
4821 4822
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4823
	      struct task_struct *parent,
4824
	      struct perf_event_context *parent_ctx,
4825
	      struct task_struct *child,
4826 4827
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4828
{
4829
	struct perf_event *child_event;
4830

4831
	/*
4832 4833
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4834 4835 4836
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4837 4838
	if (parent_event->parent)
		parent_event = parent_event->parent;
4839

4840 4841 4842
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4843
					   NULL, GFP_KERNEL);
4844 4845
	if (IS_ERR(child_event))
		return child_event;
4846
	get_ctx(child_ctx);
4847

4848
	/*
4849
	 * Make the child state follow the state of the parent event,
4850
	 * not its attr.disabled bit.  We hold the parent's mutex,
4851
	 * so we won't race with perf_event_{en, dis}able_family.
4852
	 */
4853 4854
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4855
	else
4856
		child_event->state = PERF_EVENT_STATE_OFF;
4857

4858 4859
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4860

4861 4862
	child_event->overflow_handler = parent_event->overflow_handler;

4863 4864 4865
	/*
	 * Link it up in the child's context:
	 */
4866
	add_event_to_ctx(child_event, child_ctx);
4867 4868 4869

	/*
	 * Get a reference to the parent filp - we will fput it
4870
	 * when the child event exits. This is safe to do because
4871 4872 4873
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4874
	atomic_long_inc(&parent_event->filp->f_count);
4875

4876
	/*
4877
	 * Link this into the parent event's child list
4878
	 */
4879 4880 4881 4882
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4883

4884
	return child_event;
4885 4886
}

4887
static int inherit_group(struct perf_event *parent_event,
4888
	      struct task_struct *parent,
4889
	      struct perf_event_context *parent_ctx,
4890
	      struct task_struct *child,
4891
	      struct perf_event_context *child_ctx)
4892
{
4893 4894 4895
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4896

4897
	leader = inherit_event(parent_event, parent, parent_ctx,
4898
				 child, NULL, child_ctx);
4899 4900
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4901 4902
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4903 4904 4905
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4906
	}
4907 4908 4909
	return 0;
}

4910
static void sync_child_event(struct perf_event *child_event,
4911
			       struct task_struct *child)
4912
{
4913
	struct perf_event *parent_event = child_event->parent;
4914
	u64 child_val;
4915

4916 4917
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4918

4919
	child_val = atomic64_read(&child_event->count);
4920 4921 4922 4923

	/*
	 * Add back the child's count to the parent's count:
	 */
4924 4925 4926 4927 4928
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4929 4930

	/*
4931
	 * Remove this event from the parent's list
4932
	 */
4933 4934 4935 4936
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4937 4938

	/*
4939
	 * Release the parent event, if this was the last
4940 4941
	 * reference to it.
	 */
4942
	fput(parent_event->filp);
4943 4944
}

4945
static void
4946 4947
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4948
			 struct task_struct *child)
4949
{
4950
	struct perf_event *parent_event;
4951

4952
	perf_event_remove_from_context(child_event);
4953

4954
	parent_event = child_event->parent;
4955
	/*
4956
	 * It can happen that parent exits first, and has events
4957
	 * that are still around due to the child reference. These
4958
	 * events need to be zapped - but otherwise linger.
4959
	 */
4960 4961 4962
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4963
	}
4964 4965 4966
}

/*
4967
 * When a child task exits, feed back event values to parent events.
4968
 */
4969
void perf_event_exit_task(struct task_struct *child)
4970
{
4971 4972
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4973
	unsigned long flags;
4974

4975 4976
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4977
		return;
P
Peter Zijlstra 已提交
4978
	}
4979

4980
	local_irq_save(flags);
4981 4982 4983 4984 4985 4986
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
4987 4988
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
4989 4990 4991

	/*
	 * Take the context lock here so that if find_get_context is
4992
	 * reading child->perf_event_ctxp, we wait until it has
4993 4994 4995
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4996
	child->perf_event_ctxp = NULL;
4997 4998 4999
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
5000
	 * the events from it.
5001 5002
	 */
	unclone_ctx(child_ctx);
5003
	update_context_time(child_ctx);
P
Peter Zijlstra 已提交
5004 5005 5006
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
5007 5008 5009
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
5010
	 */
5011
	perf_event_task(child, child_ctx, 0);
5012

5013 5014 5015
	/*
	 * We can recurse on the same lock type through:
	 *
5016 5017 5018
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
5019 5020 5021 5022 5023 5024
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5025

5026
again:
5027
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5028
				 group_entry)
5029
		__perf_event_exit_task(child_event, child_ctx, child);
5030 5031

	/*
5032
	 * If the last event was a group event, it will have appended all
5033 5034 5035
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
5036
	if (!list_empty(&child_ctx->group_list))
5037
		goto again;
5038 5039 5040 5041

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
5042 5043
}

5044 5045 5046 5047
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5048
void perf_event_free_task(struct task_struct *task)
5049
{
5050 5051
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5052 5053 5054 5055 5056 5057

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5058 5059
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
5060 5061 5062 5063 5064

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
5065
		list_del_init(&event->child_list);
5066 5067 5068 5069
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

5070 5071
		list_del_event(event, ctx);
		free_event(event);
5072 5073
	}

5074
	if (!list_empty(&ctx->group_list))
5075 5076 5077 5078 5079 5080 5081
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

5082
/*
5083
 * Initialize the perf_event context in task_struct
5084
 */
5085
int perf_event_init_task(struct task_struct *child)
5086
{
5087 5088 5089
	struct perf_event_context *child_ctx, *parent_ctx;
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5090
	struct task_struct *parent = current;
5091
	int inherited_all = 1;
5092
	int ret = 0;
5093

5094
	child->perf_event_ctxp = NULL;
5095

5096 5097
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5098

5099
	if (likely(!parent->perf_event_ctxp))
5100 5101
		return 0;

5102 5103
	/*
	 * This is executed from the parent task context, so inherit
5104
	 * events that have been marked for cloning.
5105
	 * First allocate and initialize a context for the child.
5106 5107
	 */

5108
	child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5109
	if (!child_ctx)
5110
		return -ENOMEM;
5111

5112 5113
	__perf_event_init_context(child_ctx, child);
	child->perf_event_ctxp = child_ctx;
5114
	get_task_struct(child);
5115

5116
	/*
5117 5118
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5119
	 */
5120 5121
	parent_ctx = perf_pin_task_context(parent);

5122 5123 5124 5125 5126 5127 5128
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5129 5130 5131 5132
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5133
	mutex_lock(&parent_ctx->mutex);
5134 5135 5136 5137 5138

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5139
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5140

5141
		if (!event->attr.inherit) {
5142
			inherited_all = 0;
5143
			continue;
5144
		}
5145

5146
		ret = inherit_group(event, parent, parent_ctx,
5147 5148
					     child, child_ctx);
		if (ret) {
5149
			inherited_all = 0;
5150
			break;
5151 5152 5153 5154 5155 5156 5157
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5158 5159
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5160
		 * because the list of events and the generation
5161
		 * count can't have changed since we took the mutex.
5162
		 */
5163 5164 5165
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5166
			child_ctx->parent_gen = parent_ctx->parent_gen;
5167 5168 5169 5170 5171
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5172 5173
	}

5174
	mutex_unlock(&parent_ctx->mutex);
5175

5176
	perf_unpin_context(parent_ctx);
5177

5178
	return ret;
5179 5180
}

5181
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5182
{
5183
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5184

5185
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5186
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5187

5188
	spin_lock(&perf_resource_lock);
5189
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5190
	spin_unlock(&perf_resource_lock);
5191

5192
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5193 5194 5195
}

#ifdef CONFIG_HOTPLUG_CPU
5196
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5197 5198
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5199 5200
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5201

5202 5203
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5204
}
5205
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5206
{
5207
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5208
	struct perf_event_context *ctx = &cpuctx->ctx;
5209 5210

	mutex_lock(&ctx->mutex);
5211
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5212
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5213 5214
}
#else
5215
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5227
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5228 5229
		break;

5230 5231
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5232
		hw_perf_event_setup_online(cpu);
5233 5234
		break;

T
Thomas Gleixner 已提交
5235 5236
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5237
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5238 5239 5240 5241 5242 5243 5244 5245 5246
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5247 5248 5249
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5250 5251
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5252
	.priority		= 20,
T
Thomas Gleixner 已提交
5253 5254
};

5255
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5256 5257 5258
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5259 5260
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5281
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5282 5283
		return -EINVAL;

5284
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5285 5286 5287 5288
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
5289 5290
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5291 5292 5293
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
5294
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5316
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5317
	perf_overcommit = val;
5318
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5345
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5346 5347
};

5348
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5349 5350 5351 5352
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5353
device_initcall(perf_event_sysfs_init);