perf_event.c 119.8 KB
Newer Older
T
Thomas Gleixner 已提交
1
/*
I
Ingo Molnar 已提交
2
 * Performance events core code:
T
Thomas Gleixner 已提交
3
 *
4 5 6
 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7
 *  Copyright    2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8
 *
I
Ingo Molnar 已提交
9
 * For licensing details see kernel-base/COPYING
T
Thomas Gleixner 已提交
10 11 12
 */

#include <linux/fs.h>
13
#include <linux/mm.h>
T
Thomas Gleixner 已提交
14 15
#include <linux/cpu.h>
#include <linux/smp.h>
16
#include <linux/file.h>
T
Thomas Gleixner 已提交
17 18
#include <linux/poll.h>
#include <linux/sysfs.h>
19
#include <linux/dcache.h>
T
Thomas Gleixner 已提交
20
#include <linux/percpu.h>
21
#include <linux/ptrace.h>
22
#include <linux/vmstat.h>
23
#include <linux/vmalloc.h>
24 25
#include <linux/hardirq.h>
#include <linux/rculist.h>
T
Thomas Gleixner 已提交
26 27 28
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/anon_inodes.h>
I
Ingo Molnar 已提交
29
#include <linux/kernel_stat.h>
30
#include <linux/perf_event.h>
L
Li Zefan 已提交
31
#include <linux/ftrace_event.h>
32
#include <linux/hw_breakpoint.h>
T
Thomas Gleixner 已提交
33

34 35
#include <asm/irq_regs.h>

T
Thomas Gleixner 已提交
36
/*
37
 * Each CPU has a list of per CPU events:
T
Thomas Gleixner 已提交
38 39 40
 */
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);

41
int perf_max_events __read_mostly = 1;
T
Thomas Gleixner 已提交
42 43 44
static int perf_reserved_percpu __read_mostly;
static int perf_overcommit __read_mostly = 1;

45 46 47 48
static atomic_t nr_events __read_mostly;
static atomic_t nr_mmap_events __read_mostly;
static atomic_t nr_comm_events __read_mostly;
static atomic_t nr_task_events __read_mostly;
49

50
/*
51
 * perf event paranoia level:
52 53
 *  -1 - not paranoid at all
 *   0 - disallow raw tracepoint access for unpriv
54
 *   1 - disallow cpu events for unpriv
55
 *   2 - disallow kernel profiling for unpriv
56
 */
57
int sysctl_perf_event_paranoid __read_mostly = 1;
58

59 60
static inline bool perf_paranoid_tracepoint_raw(void)
{
61
	return sysctl_perf_event_paranoid > -1;
62 63
}

64 65
static inline bool perf_paranoid_cpu(void)
{
66
	return sysctl_perf_event_paranoid > 0;
67 68 69 70
}

static inline bool perf_paranoid_kernel(void)
{
71
	return sysctl_perf_event_paranoid > 1;
72 73
}

74
int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75 76

/*
77
 * max perf event sample rate
78
 */
79
int sysctl_perf_event_sample_rate __read_mostly = 100000;
80

81
static atomic64_t perf_event_id;
82

T
Thomas Gleixner 已提交
83
/*
84
 * Lock for (sysadmin-configurable) event reservations:
T
Thomas Gleixner 已提交
85
 */
86
static DEFINE_SPINLOCK(perf_resource_lock);
T
Thomas Gleixner 已提交
87 88 89 90

/*
 * Architecture provided APIs - weak aliases:
 */
91
extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
T
Thomas Gleixner 已提交
92
{
93
	return NULL;
T
Thomas Gleixner 已提交
94 95
}

96 97 98
void __weak hw_perf_disable(void)		{ barrier(); }
void __weak hw_perf_enable(void)		{ barrier(); }

99 100
void __weak hw_perf_event_setup(int cpu)	{ barrier(); }
void __weak hw_perf_event_setup_online(int cpu)	{ barrier(); }
101 102

int __weak
103
hw_perf_group_sched_in(struct perf_event *group_leader,
104
	       struct perf_cpu_context *cpuctx,
105
	       struct perf_event_context *ctx, int cpu)
106 107 108
{
	return 0;
}
T
Thomas Gleixner 已提交
109

110
void __weak perf_event_print_debug(void)	{ }
111

112
static DEFINE_PER_CPU(int, perf_disable_count);
113 114 115

void __perf_disable(void)
{
116
	__get_cpu_var(perf_disable_count)++;
117 118 119 120
}

bool __perf_enable(void)
{
121
	return !--__get_cpu_var(perf_disable_count);
122 123 124 125 126 127 128 129 130 131 132 133 134 135
}

void perf_disable(void)
{
	__perf_disable();
	hw_perf_disable();
}

void perf_enable(void)
{
	if (__perf_enable())
		hw_perf_enable();
}

136
static void get_ctx(struct perf_event_context *ctx)
137
{
138
	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139 140
}

141 142
static void free_ctx(struct rcu_head *head)
{
143
	struct perf_event_context *ctx;
144

145
	ctx = container_of(head, struct perf_event_context, rcu_head);
146 147 148
	kfree(ctx);
}

149
static void put_ctx(struct perf_event_context *ctx)
150
{
151 152 153
	if (atomic_dec_and_test(&ctx->refcount)) {
		if (ctx->parent_ctx)
			put_ctx(ctx->parent_ctx);
154 155 156
		if (ctx->task)
			put_task_struct(ctx->task);
		call_rcu(&ctx->rcu_head, free_ctx);
157
	}
158 159
}

160
static void unclone_ctx(struct perf_event_context *ctx)
161 162 163 164 165 166 167
{
	if (ctx->parent_ctx) {
		put_ctx(ctx->parent_ctx);
		ctx->parent_ctx = NULL;
	}
}

168
/*
169
 * If we inherit events we want to return the parent event id
170 171
 * to userspace.
 */
172
static u64 primary_event_id(struct perf_event *event)
173
{
174
	u64 id = event->id;
175

176 177
	if (event->parent)
		id = event->parent->id;
178 179 180 181

	return id;
}

182
/*
183
 * Get the perf_event_context for a task and lock it.
184 185 186
 * This has to cope with with the fact that until it is locked,
 * the context could get moved to another task.
 */
187
static struct perf_event_context *
188
perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189
{
190
	struct perf_event_context *ctx;
191 192 193

	rcu_read_lock();
 retry:
194
	ctx = rcu_dereference(task->perf_event_ctxp);
195 196 197 198
	if (ctx) {
		/*
		 * If this context is a clone of another, it might
		 * get swapped for another underneath us by
199
		 * perf_event_task_sched_out, though the
200 201 202 203 204 205 206
		 * rcu_read_lock() protects us from any context
		 * getting freed.  Lock the context and check if it
		 * got swapped before we could get the lock, and retry
		 * if so.  If we locked the right context, then it
		 * can't get swapped on us any more.
		 */
		spin_lock_irqsave(&ctx->lock, *flags);
207
		if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 209 210
			spin_unlock_irqrestore(&ctx->lock, *flags);
			goto retry;
		}
211 212 213 214 215

		if (!atomic_inc_not_zero(&ctx->refcount)) {
			spin_unlock_irqrestore(&ctx->lock, *flags);
			ctx = NULL;
		}
216 217 218 219 220 221 222 223 224 225
	}
	rcu_read_unlock();
	return ctx;
}

/*
 * Get the context for a task and increment its pin_count so it
 * can't get swapped to another task.  This also increments its
 * reference count so that the context can't get freed.
 */
226
static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227
{
228
	struct perf_event_context *ctx;
229 230 231 232 233 234 235 236 237 238
	unsigned long flags;

	ctx = perf_lock_task_context(task, &flags);
	if (ctx) {
		++ctx->pin_count;
		spin_unlock_irqrestore(&ctx->lock, flags);
	}
	return ctx;
}

239
static void perf_unpin_context(struct perf_event_context *ctx)
240 241 242 243 244 245 246 247 248
{
	unsigned long flags;

	spin_lock_irqsave(&ctx->lock, flags);
	--ctx->pin_count;
	spin_unlock_irqrestore(&ctx->lock, flags);
	put_ctx(ctx);
}

249
/*
250
 * Add a event from the lists for its context.
251 252
 * Must be called with ctx->mutex and ctx->lock held.
 */
253
static void
254
list_add_event(struct perf_event *event, struct perf_event_context *ctx)
255
{
256
	struct perf_event *group_leader = event->group_leader;
257 258

	/*
259 260
	 * Depending on whether it is a standalone or sibling event,
	 * add it straight to the context's event list, or to the group
261 262
	 * leader's sibling list:
	 */
263 264
	if (group_leader == event)
		list_add_tail(&event->group_entry, &ctx->group_list);
P
Peter Zijlstra 已提交
265
	else {
266
		list_add_tail(&event->group_entry, &group_leader->sibling_list);
P
Peter Zijlstra 已提交
267 268
		group_leader->nr_siblings++;
	}
P
Peter Zijlstra 已提交
269

270 271 272
	list_add_rcu(&event->event_entry, &ctx->event_list);
	ctx->nr_events++;
	if (event->attr.inherit_stat)
273
		ctx->nr_stat++;
274 275
}

276
/*
277
 * Remove a event from the lists for its context.
278
 * Must be called with ctx->mutex and ctx->lock held.
279
 */
280
static void
281
list_del_event(struct perf_event *event, struct perf_event_context *ctx)
282
{
283
	struct perf_event *sibling, *tmp;
284

285
	if (list_empty(&event->group_entry))
286
		return;
287 288
	ctx->nr_events--;
	if (event->attr.inherit_stat)
289
		ctx->nr_stat--;
290

291 292
	list_del_init(&event->group_entry);
	list_del_rcu(&event->event_entry);
293

294 295
	if (event->group_leader != event)
		event->group_leader->nr_siblings--;
P
Peter Zijlstra 已提交
296

297
	/*
298 299
	 * If this was a group event with sibling events then
	 * upgrade the siblings to singleton events by adding them
300 301
	 * to the context list directly:
	 */
302
	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
303

304
		list_move_tail(&sibling->group_entry, &ctx->group_list);
305 306 307 308
		sibling->group_leader = sibling;
	}
}

309
static void
310
event_sched_out(struct perf_event *event,
311
		  struct perf_cpu_context *cpuctx,
312
		  struct perf_event_context *ctx)
313
{
314
	if (event->state != PERF_EVENT_STATE_ACTIVE)
315 316
		return;

317 318 319 320
	event->state = PERF_EVENT_STATE_INACTIVE;
	if (event->pending_disable) {
		event->pending_disable = 0;
		event->state = PERF_EVENT_STATE_OFF;
321
	}
322 323 324
	event->tstamp_stopped = ctx->time;
	event->pmu->disable(event);
	event->oncpu = -1;
325

326
	if (!is_software_event(event))
327 328
		cpuctx->active_oncpu--;
	ctx->nr_active--;
329
	if (event->attr.exclusive || !cpuctx->active_oncpu)
330 331 332
		cpuctx->exclusive = 0;
}

333
static void
334
group_sched_out(struct perf_event *group_event,
335
		struct perf_cpu_context *cpuctx,
336
		struct perf_event_context *ctx)
337
{
338
	struct perf_event *event;
339

340
	if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 342
		return;

343
	event_sched_out(group_event, cpuctx, ctx);
344 345 346 347

	/*
	 * Schedule out siblings (if any):
	 */
348 349
	list_for_each_entry(event, &group_event->sibling_list, group_entry)
		event_sched_out(event, cpuctx, ctx);
350

351
	if (group_event->attr.exclusive)
352 353 354
		cpuctx->exclusive = 0;
}

T
Thomas Gleixner 已提交
355
/*
356
 * Cross CPU call to remove a performance event
T
Thomas Gleixner 已提交
357
 *
358
 * We disable the event on the hardware level first. After that we
T
Thomas Gleixner 已提交
359 360
 * remove it from the context list.
 */
361
static void __perf_event_remove_from_context(void *info)
T
Thomas Gleixner 已提交
362 363
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 365
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
366 367 368 369 370 371

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
	 */
372
	if (ctx->task && cpuctx->task_ctx != ctx)
T
Thomas Gleixner 已提交
373 374
		return;

375
	spin_lock(&ctx->lock);
376 377
	/*
	 * Protect the list operation against NMI by disabling the
378
	 * events on a global level.
379 380
	 */
	perf_disable();
T
Thomas Gleixner 已提交
381

382
	event_sched_out(event, cpuctx, ctx);
383

384
	list_del_event(event, ctx);
T
Thomas Gleixner 已提交
385 386 387

	if (!ctx->task) {
		/*
388
		 * Allow more per task events with respect to the
T
Thomas Gleixner 已提交
389 390 391
		 * reservation:
		 */
		cpuctx->max_pertask =
392 393
			min(perf_max_events - ctx->nr_events,
			    perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
394 395
	}

396
	perf_enable();
397
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
398 399 400 401
}


/*
402
 * Remove the event from a task's (or a CPU's) list of events.
T
Thomas Gleixner 已提交
403
 *
404
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
405
 *
406
 * CPU events are removed with a smp call. For task events we only
T
Thomas Gleixner 已提交
407
 * call when the task is on a CPU.
408
 *
409 410
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
411 412
 * remains valid.  This is OK when called from perf_release since
 * that only calls us on the top-level context, which can't be a clone.
413
 * When called from perf_event_exit_task, it's OK because the
414
 * context has been detached from its task.
T
Thomas Gleixner 已提交
415
 */
416
static void perf_event_remove_from_context(struct perf_event *event)
T
Thomas Gleixner 已提交
417
{
418
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
419 420 421 422
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
423
		 * Per cpu events are removed via an smp call and
T
Thomas Gleixner 已提交
424 425
		 * the removal is always sucessful.
		 */
426 427 428
		smp_call_function_single(event->cpu,
					 __perf_event_remove_from_context,
					 event, 1);
T
Thomas Gleixner 已提交
429 430 431 432
		return;
	}

retry:
433 434
	task_oncpu_function_call(task, __perf_event_remove_from_context,
				 event);
T
Thomas Gleixner 已提交
435 436 437 438 439

	spin_lock_irq(&ctx->lock);
	/*
	 * If the context is active we need to retry the smp call.
	 */
440
	if (ctx->nr_active && !list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
441 442 443 444 445 446
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
447
	 * can remove the event safely, if the call above did not
T
Thomas Gleixner 已提交
448 449
	 * succeed.
	 */
450 451
	if (!list_empty(&event->group_entry)) {
		list_del_event(event, ctx);
T
Thomas Gleixner 已提交
452 453 454 455
	}
	spin_unlock_irq(&ctx->lock);
}

456
static inline u64 perf_clock(void)
457
{
458
	return cpu_clock(smp_processor_id());
459 460 461 462 463
}

/*
 * Update the record of the current time in a context.
 */
464
static void update_context_time(struct perf_event_context *ctx)
465
{
466 467 468 469
	u64 now = perf_clock();

	ctx->time += now - ctx->timestamp;
	ctx->timestamp = now;
470 471 472
}

/*
473
 * Update the total_time_enabled and total_time_running fields for a event.
474
 */
475
static void update_event_times(struct perf_event *event)
476
{
477
	struct perf_event_context *ctx = event->ctx;
478 479
	u64 run_end;

480 481
	if (event->state < PERF_EVENT_STATE_INACTIVE ||
	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 483
		return;

484
	event->total_time_enabled = ctx->time - event->tstamp_enabled;
485

486 487
	if (event->state == PERF_EVENT_STATE_INACTIVE)
		run_end = event->tstamp_stopped;
488 489 490
	else
		run_end = ctx->time;

491
	event->total_time_running = run_end - event->tstamp_running;
492 493 494
}

/*
495
 * Update total_time_enabled and total_time_running for all events in a group.
496
 */
497
static void update_group_times(struct perf_event *leader)
498
{
499
	struct perf_event *event;
500

501 502 503
	update_event_times(leader);
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		update_event_times(event);
504 505
}

506
/*
507
 * Cross CPU call to disable a performance event
508
 */
509
static void __perf_event_disable(void *info)
510
{
511
	struct perf_event *event = info;
512
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513
	struct perf_event_context *ctx = event->ctx;
514 515

	/*
516 517
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
518
	 */
519
	if (ctx->task && cpuctx->task_ctx != ctx)
520 521
		return;

522
	spin_lock(&ctx->lock);
523 524

	/*
525
	 * If the event is on, turn it off.
526 527
	 * If it is in error state, leave it in error state.
	 */
528
	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529
		update_context_time(ctx);
530 531 532
		update_group_times(event);
		if (event == event->group_leader)
			group_sched_out(event, cpuctx, ctx);
533
		else
534 535
			event_sched_out(event, cpuctx, ctx);
		event->state = PERF_EVENT_STATE_OFF;
536 537
	}

538
	spin_unlock(&ctx->lock);
539 540 541
}

/*
542
 * Disable a event.
543
 *
544 545
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
546
 * remains valid.  This condition is satisifed when called through
547 548 549 550
 * perf_event_for_each_child or perf_event_for_each because they
 * hold the top-level event's child_mutex, so any descendant that
 * goes to exit will block in sync_child_event.
 * When called from perf_pending_event it's OK because event->ctx
551
 * is the current context on this CPU and preemption is disabled,
552
 * hence we can't get into perf_event_task_sched_out for this context.
553
 */
554
static void perf_event_disable(struct perf_event *event)
555
{
556
	struct perf_event_context *ctx = event->ctx;
557 558 559 560
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
561
		 * Disable the event on the cpu that it's on
562
		 */
563 564
		smp_call_function_single(event->cpu, __perf_event_disable,
					 event, 1);
565 566 567 568
		return;
	}

 retry:
569
	task_oncpu_function_call(task, __perf_event_disable, event);
570 571 572

	spin_lock_irq(&ctx->lock);
	/*
573
	 * If the event is still active, we need to retry the cross-call.
574
	 */
575
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 577 578 579 580 581 582 583
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
584 585 586
	if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_group_times(event);
		event->state = PERF_EVENT_STATE_OFF;
587
	}
588 589 590 591

	spin_unlock_irq(&ctx->lock);
}

592
static int
593
event_sched_in(struct perf_event *event,
594
		 struct perf_cpu_context *cpuctx,
595
		 struct perf_event_context *ctx,
596 597
		 int cpu)
{
598
	if (event->state <= PERF_EVENT_STATE_OFF)
599 600
		return 0;

601 602
	event->state = PERF_EVENT_STATE_ACTIVE;
	event->oncpu = cpu;	/* TODO: put 'cpu' into cpuctx->cpu */
603 604 605 606 607
	/*
	 * The new state must be visible before we turn it on in the hardware:
	 */
	smp_wmb();

608 609 610
	if (event->pmu->enable(event)) {
		event->state = PERF_EVENT_STATE_INACTIVE;
		event->oncpu = -1;
611 612 613
		return -EAGAIN;
	}

614
	event->tstamp_running += ctx->time - event->tstamp_stopped;
615

616
	if (!is_software_event(event))
617
		cpuctx->active_oncpu++;
618 619
	ctx->nr_active++;

620
	if (event->attr.exclusive)
621 622
		cpuctx->exclusive = 1;

623 624 625
	return 0;
}

626
static int
627
group_sched_in(struct perf_event *group_event,
628
	       struct perf_cpu_context *cpuctx,
629
	       struct perf_event_context *ctx,
630 631
	       int cpu)
{
632
	struct perf_event *event, *partial_group;
633 634
	int ret;

635
	if (group_event->state == PERF_EVENT_STATE_OFF)
636 637
		return 0;

638
	ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 640 641
	if (ret)
		return ret < 0 ? ret : 0;

642
	if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 644 645 646 647
		return -EAGAIN;

	/*
	 * Schedule in siblings as one group (if any):
	 */
648 649 650
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event_sched_in(event, cpuctx, ctx, cpu)) {
			partial_group = event;
651 652 653 654 655 656 657 658 659 660 661
			goto group_error;
		}
	}

	return 0;

group_error:
	/*
	 * Groups can be scheduled in as one unit only, so undo any
	 * partial group before returning:
	 */
662 663
	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
		if (event == partial_group)
664
			break;
665
		event_sched_out(event, cpuctx, ctx);
666
	}
667
	event_sched_out(group_event, cpuctx, ctx);
668 669 670 671

	return -EAGAIN;
}

672
/*
673 674
 * Return 1 for a group consisting entirely of software events,
 * 0 if the group contains any hardware events.
675
 */
676
static int is_software_only_group(struct perf_event *leader)
677
{
678
	struct perf_event *event;
679

680
	if (!is_software_event(leader))
681
		return 0;
P
Peter Zijlstra 已提交
682

683 684
	list_for_each_entry(event, &leader->sibling_list, group_entry)
		if (!is_software_event(event))
685
			return 0;
P
Peter Zijlstra 已提交
686

687 688 689 690
	return 1;
}

/*
691
 * Work out whether we can put this event group on the CPU now.
692
 */
693
static int group_can_go_on(struct perf_event *event,
694 695 696 697
			   struct perf_cpu_context *cpuctx,
			   int can_add_hw)
{
	/*
698
	 * Groups consisting entirely of software events can always go on.
699
	 */
700
	if (is_software_only_group(event))
701 702 703
		return 1;
	/*
	 * If an exclusive group is already on, no other hardware
704
	 * events can go on.
705 706 707 708 709
	 */
	if (cpuctx->exclusive)
		return 0;
	/*
	 * If this group is exclusive and there are already
710
	 * events on the CPU, it can't go on.
711
	 */
712
	if (event->attr.exclusive && cpuctx->active_oncpu)
713 714 715 716 717 718 719 720
		return 0;
	/*
	 * Otherwise, try to add it if all previous groups were able
	 * to go on.
	 */
	return can_add_hw;
}

721 722
static void add_event_to_ctx(struct perf_event *event,
			       struct perf_event_context *ctx)
723
{
724 725 726 727
	list_add_event(event, ctx);
	event->tstamp_enabled = ctx->time;
	event->tstamp_running = ctx->time;
	event->tstamp_stopped = ctx->time;
728 729
}

T
Thomas Gleixner 已提交
730
/*
731
 * Cross CPU call to install and enable a performance event
732 733
 *
 * Must be called with ctx->mutex held
T
Thomas Gleixner 已提交
734 735 736 737
 */
static void __perf_install_in_context(void *info)
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 739 740
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
T
Thomas Gleixner 已提交
741
	int cpu = smp_processor_id();
742
	int err;
T
Thomas Gleixner 已提交
743 744 745 746 747

	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu. If not it has been
	 * scheduled out before the smp call arrived.
748
	 * Or possibly this is the right context but it isn't
749
	 * on this cpu because it had no events.
T
Thomas Gleixner 已提交
750
	 */
751
	if (ctx->task && cpuctx->task_ctx != ctx) {
752
		if (cpuctx->task_ctx || ctx->task != current)
753 754 755
			return;
		cpuctx->task_ctx = ctx;
	}
T
Thomas Gleixner 已提交
756

757
	spin_lock(&ctx->lock);
758
	ctx->is_active = 1;
759
	update_context_time(ctx);
T
Thomas Gleixner 已提交
760 761 762

	/*
	 * Protect the list operation against NMI by disabling the
763
	 * events on a global level. NOP for non NMI based events.
T
Thomas Gleixner 已提交
764
	 */
765
	perf_disable();
T
Thomas Gleixner 已提交
766

767
	add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
768

769
	/*
770
	 * Don't put the event on if it is disabled or if
771 772
	 * it is in a group and the group isn't on.
	 */
773 774
	if (event->state != PERF_EVENT_STATE_INACTIVE ||
	    (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 776
		goto unlock;

777
	/*
778 779 780
	 * An exclusive event can't go on if there are already active
	 * hardware events, and no hardware event can go on if there
	 * is already an exclusive event on.
781
	 */
782
	if (!group_can_go_on(event, cpuctx, 1))
783 784
		err = -EEXIST;
	else
785
		err = event_sched_in(event, cpuctx, ctx, cpu);
786

787 788
	if (err) {
		/*
789
		 * This event couldn't go on.  If it is in a group
790
		 * then we have to pull the whole group off.
791
		 * If the event group is pinned then put it in error state.
792
		 */
793
		if (leader != event)
794
			group_sched_out(leader, cpuctx, ctx);
795
		if (leader->attr.pinned) {
796
			update_group_times(leader);
797
			leader->state = PERF_EVENT_STATE_ERROR;
798
		}
799
	}
T
Thomas Gleixner 已提交
800

801
	if (!err && !ctx->task && cpuctx->max_pertask)
T
Thomas Gleixner 已提交
802 803
		cpuctx->max_pertask--;

804
 unlock:
805
	perf_enable();
806

807
	spin_unlock(&ctx->lock);
T
Thomas Gleixner 已提交
808 809 810
}

/*
811
 * Attach a performance event to a context
T
Thomas Gleixner 已提交
812
 *
813 814
 * First we add the event to the list with the hardware enable bit
 * in event->hw_config cleared.
T
Thomas Gleixner 已提交
815
 *
816
 * If the event is attached to a task which is on a CPU we use a smp
T
Thomas Gleixner 已提交
817 818
 * call to enable it in the task context. The task might have been
 * scheduled away, but we check this in the smp call again.
819 820
 *
 * Must be called with ctx->mutex held.
T
Thomas Gleixner 已提交
821 822
 */
static void
823 824
perf_install_in_context(struct perf_event_context *ctx,
			struct perf_event *event,
T
Thomas Gleixner 已提交
825 826 827 828 829 830
			int cpu)
{
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
831
		 * Per cpu events are installed via an smp call and
T
Thomas Gleixner 已提交
832 833 834
		 * the install is always sucessful.
		 */
		smp_call_function_single(cpu, __perf_install_in_context,
835
					 event, 1);
T
Thomas Gleixner 已提交
836 837 838 839 840
		return;
	}

retry:
	task_oncpu_function_call(task, __perf_install_in_context,
841
				 event);
T
Thomas Gleixner 已提交
842 843 844 845 846

	spin_lock_irq(&ctx->lock);
	/*
	 * we need to retry the smp call.
	 */
847
	if (ctx->is_active && list_empty(&event->group_entry)) {
T
Thomas Gleixner 已提交
848 849 850 851 852 853
		spin_unlock_irq(&ctx->lock);
		goto retry;
	}

	/*
	 * The lock prevents that this context is scheduled in so we
854
	 * can add the event safely, if it the call above did not
T
Thomas Gleixner 已提交
855 856
	 * succeed.
	 */
857 858
	if (list_empty(&event->group_entry))
		add_event_to_ctx(event, ctx);
T
Thomas Gleixner 已提交
859 860 861
	spin_unlock_irq(&ctx->lock);
}

862
/*
863
 * Put a event into inactive state and update time fields.
864 865 866 867 868 869
 * Enabling the leader of a group effectively enables all
 * the group members that aren't explicitly disabled, so we
 * have to update their ->tstamp_enabled also.
 * Note: this works for group members as well as group leaders
 * since the non-leader members' sibling_lists will be empty.
 */
870 871
static void __perf_event_mark_enabled(struct perf_event *event,
					struct perf_event_context *ctx)
872
{
873
	struct perf_event *sub;
874

875 876 877 878
	event->state = PERF_EVENT_STATE_INACTIVE;
	event->tstamp_enabled = ctx->time - event->total_time_enabled;
	list_for_each_entry(sub, &event->sibling_list, group_entry)
		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 880 881 882
			sub->tstamp_enabled =
				ctx->time - sub->total_time_enabled;
}

883
/*
884
 * Cross CPU call to enable a performance event
885
 */
886
static void __perf_event_enable(void *info)
887
{
888
	struct perf_event *event = info;
889
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 891
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *leader = event->group_leader;
892
	int err;
893

894
	/*
895 896
	 * If this is a per-task event, need to check whether this
	 * event's task is the current task on this cpu.
897
	 */
898
	if (ctx->task && cpuctx->task_ctx != ctx) {
899
		if (cpuctx->task_ctx || ctx->task != current)
900 901 902
			return;
		cpuctx->task_ctx = ctx;
	}
903

904
	spin_lock(&ctx->lock);
905
	ctx->is_active = 1;
906
	update_context_time(ctx);
907

908
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
909
		goto unlock;
910
	__perf_event_mark_enabled(event, ctx);
911 912

	/*
913
	 * If the event is in a group and isn't the group leader,
914
	 * then don't put it on unless the group is on.
915
	 */
916
	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917
		goto unlock;
918

919
	if (!group_can_go_on(event, cpuctx, 1)) {
920
		err = -EEXIST;
921
	} else {
922
		perf_disable();
923 924
		if (event == leader)
			err = group_sched_in(event, cpuctx, ctx,
925 926
					     smp_processor_id());
		else
927
			err = event_sched_in(event, cpuctx, ctx,
928
					       smp_processor_id());
929
		perf_enable();
930
	}
931 932 933

	if (err) {
		/*
934
		 * If this event can't go on and it's part of a
935 936
		 * group, then the whole group has to come off.
		 */
937
		if (leader != event)
938
			group_sched_out(leader, cpuctx, ctx);
939
		if (leader->attr.pinned) {
940
			update_group_times(leader);
941
			leader->state = PERF_EVENT_STATE_ERROR;
942
		}
943 944 945
	}

 unlock:
946
	spin_unlock(&ctx->lock);
947 948 949
}

/*
950
 * Enable a event.
951
 *
952 953
 * If event->ctx is a cloned context, callers must make sure that
 * every task struct that event->ctx->task could possibly point to
954
 * remains valid.  This condition is satisfied when called through
955 956
 * perf_event_for_each_child or perf_event_for_each as described
 * for perf_event_disable.
957
 */
958
static void perf_event_enable(struct perf_event *event)
959
{
960
	struct perf_event_context *ctx = event->ctx;
961 962 963 964
	struct task_struct *task = ctx->task;

	if (!task) {
		/*
965
		 * Enable the event on the cpu that it's on
966
		 */
967 968
		smp_call_function_single(event->cpu, __perf_event_enable,
					 event, 1);
969 970 971 972
		return;
	}

	spin_lock_irq(&ctx->lock);
973
	if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 975 976
		goto out;

	/*
977 978
	 * If the event is in error state, clear that first.
	 * That way, if we see the event in error state below, we
979 980 981 982
	 * know that it has gone back into error state, as distinct
	 * from the task having been scheduled away before the
	 * cross-call arrived.
	 */
983 984
	if (event->state == PERF_EVENT_STATE_ERROR)
		event->state = PERF_EVENT_STATE_OFF;
985 986 987

 retry:
	spin_unlock_irq(&ctx->lock);
988
	task_oncpu_function_call(task, __perf_event_enable, event);
989 990 991 992

	spin_lock_irq(&ctx->lock);

	/*
993
	 * If the context is active and the event is still off,
994 995
	 * we need to retry the cross-call.
	 */
996
	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 998 999 1000 1001 1002
		goto retry;

	/*
	 * Since we have the lock this context can't be scheduled
	 * in, so we can change the state safely.
	 */
1003 1004
	if (event->state == PERF_EVENT_STATE_OFF)
		__perf_event_mark_enabled(event, ctx);
1005

1006 1007 1008 1009
 out:
	spin_unlock_irq(&ctx->lock);
}

1010
static int perf_event_refresh(struct perf_event *event, int refresh)
1011
{
1012
	/*
1013
	 * not supported on inherited events
1014
	 */
1015
	if (event->attr.inherit)
1016 1017
		return -EINVAL;

1018 1019
	atomic_add(refresh, &event->event_limit);
	perf_event_enable(event);
1020 1021

	return 0;
1022 1023
}

1024
void __perf_event_sched_out(struct perf_event_context *ctx,
1025 1026
			      struct perf_cpu_context *cpuctx)
{
1027
	struct perf_event *event;
1028

1029 1030
	spin_lock(&ctx->lock);
	ctx->is_active = 0;
1031
	if (likely(!ctx->nr_events))
1032
		goto out;
1033
	update_context_time(ctx);
1034

1035
	perf_disable();
1036 1037 1038 1039
	if (ctx->nr_active)
		list_for_each_entry(event, &ctx->group_list, group_entry)
			group_sched_out(event, cpuctx, ctx);

1040
	perf_enable();
1041
 out:
1042 1043 1044
	spin_unlock(&ctx->lock);
}

1045 1046 1047
/*
 * Test whether two contexts are equivalent, i.e. whether they
 * have both been cloned from the same version of the same context
1048 1049 1050 1051
 * and they both have the same number of enabled events.
 * If the number of enabled events is the same, then the set
 * of enabled events should be the same, because these are both
 * inherited contexts, therefore we can't access individual events
1052
 * in them directly with an fd; we can only enable/disable all
1053
 * events via prctl, or enable/disable all events in a family
1054 1055
 * via ioctl, which will have the same effect on both contexts.
 */
1056 1057
static int context_equiv(struct perf_event_context *ctx1,
			 struct perf_event_context *ctx2)
1058 1059
{
	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060
		&& ctx1->parent_gen == ctx2->parent_gen
1061
		&& !ctx1->pin_count && !ctx2->pin_count;
1062 1063
}

1064 1065
static void __perf_event_sync_stat(struct perf_event *event,
				     struct perf_event *next_event)
1066 1067 1068
{
	u64 value;

1069
	if (!event->attr.inherit_stat)
1070 1071 1072
		return;

	/*
1073
	 * Update the event value, we cannot use perf_event_read()
1074 1075
	 * because we're in the middle of a context switch and have IRQs
	 * disabled, which upsets smp_call_function_single(), however
1076
	 * we know the event must be on the current CPU, therefore we
1077 1078
	 * don't need to use it.
	 */
1079 1080
	switch (event->state) {
	case PERF_EVENT_STATE_ACTIVE:
1081 1082
		event->pmu->read(event);
		/* fall-through */
1083

1084 1085
	case PERF_EVENT_STATE_INACTIVE:
		update_event_times(event);
1086 1087 1088 1089 1090 1091 1092
		break;

	default:
		break;
	}

	/*
1093
	 * In order to keep per-task stats reliable we need to flip the event
1094 1095
	 * values when we flip the contexts.
	 */
1096 1097 1098
	value = atomic64_read(&next_event->count);
	value = atomic64_xchg(&event->count, value);
	atomic64_set(&next_event->count, value);
1099

1100 1101
	swap(event->total_time_enabled, next_event->total_time_enabled);
	swap(event->total_time_running, next_event->total_time_running);
1102

1103
	/*
1104
	 * Since we swizzled the values, update the user visible data too.
1105
	 */
1106 1107
	perf_event_update_userpage(event);
	perf_event_update_userpage(next_event);
1108 1109 1110 1111 1112
}

#define list_next_entry(pos, member) \
	list_entry(pos->member.next, typeof(*pos), member)

1113 1114
static void perf_event_sync_stat(struct perf_event_context *ctx,
				   struct perf_event_context *next_ctx)
1115
{
1116
	struct perf_event *event, *next_event;
1117 1118 1119 1120

	if (!ctx->nr_stat)
		return;

1121 1122
	update_context_time(ctx);

1123 1124
	event = list_first_entry(&ctx->event_list,
				   struct perf_event, event_entry);
1125

1126 1127
	next_event = list_first_entry(&next_ctx->event_list,
					struct perf_event, event_entry);
1128

1129 1130
	while (&event->event_entry != &ctx->event_list &&
	       &next_event->event_entry != &next_ctx->event_list) {
1131

1132
		__perf_event_sync_stat(event, next_event);
1133

1134 1135
		event = list_next_entry(event, event_entry);
		next_event = list_next_entry(next_event, event_entry);
1136 1137 1138
	}
}

T
Thomas Gleixner 已提交
1139
/*
1140
 * Called from scheduler to remove the events of the current task,
T
Thomas Gleixner 已提交
1141 1142
 * with interrupts disabled.
 *
1143
 * We stop each event and update the event value in event->count.
T
Thomas Gleixner 已提交
1144
 *
I
Ingo Molnar 已提交
1145
 * This does not protect us against NMI, but disable()
1146 1147 1148
 * sets the disabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * not restart the event.
T
Thomas Gleixner 已提交
1149
 */
1150
void perf_event_task_sched_out(struct task_struct *task,
1151
				 struct task_struct *next, int cpu)
T
Thomas Gleixner 已提交
1152 1153
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1154 1155 1156
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event_context *next_ctx;
	struct perf_event_context *parent;
1157
	struct pt_regs *regs;
1158
	int do_switch = 1;
T
Thomas Gleixner 已提交
1159

1160
	regs = task_pt_regs(task);
1161
	perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1162

1163
	if (likely(!ctx || !cpuctx->task_ctx))
T
Thomas Gleixner 已提交
1164 1165
		return;

1166 1167
	rcu_read_lock();
	parent = rcu_dereference(ctx->parent_ctx);
1168
	next_ctx = next->perf_event_ctxp;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	if (parent && next_ctx &&
	    rcu_dereference(next_ctx->parent_ctx) == parent) {
		/*
		 * Looks like the two contexts are clones, so we might be
		 * able to optimize the context switch.  We lock both
		 * contexts and check that they are clones under the
		 * lock (including re-checking that neither has been
		 * uncloned in the meantime).  It doesn't matter which
		 * order we take the locks because no other cpu could
		 * be trying to lock both of these tasks.
		 */
		spin_lock(&ctx->lock);
		spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
		if (context_equiv(ctx, next_ctx)) {
1183 1184
			/*
			 * XXX do we need a memory barrier of sorts
1185
			 * wrt to rcu_dereference() of perf_event_ctxp
1186
			 */
1187 1188
			task->perf_event_ctxp = next_ctx;
			next->perf_event_ctxp = ctx;
1189 1190 1191
			ctx->task = next;
			next_ctx->task = task;
			do_switch = 0;
1192

1193
			perf_event_sync_stat(ctx, next_ctx);
1194 1195 1196
		}
		spin_unlock(&next_ctx->lock);
		spin_unlock(&ctx->lock);
1197
	}
1198
	rcu_read_unlock();
1199

1200
	if (do_switch) {
1201
		__perf_event_sched_out(ctx, cpuctx);
1202 1203
		cpuctx->task_ctx = NULL;
	}
T
Thomas Gleixner 已提交
1204 1205
}

1206 1207 1208
/*
 * Called with IRQs disabled
 */
1209
static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1210 1211 1212
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);

1213 1214
	if (!cpuctx->task_ctx)
		return;
1215 1216 1217 1218

	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
		return;

1219
	__perf_event_sched_out(ctx, cpuctx);
1220 1221 1222
	cpuctx->task_ctx = NULL;
}

1223 1224 1225
/*
 * Called with IRQs disabled
 */
1226
static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1227
{
1228
	__perf_event_sched_out(&cpuctx->ctx, cpuctx);
1229 1230
}

1231
static void
1232
__perf_event_sched_in(struct perf_event_context *ctx,
1233
			struct perf_cpu_context *cpuctx, int cpu)
T
Thomas Gleixner 已提交
1234
{
1235
	struct perf_event *event;
1236
	int can_add_hw = 1;
T
Thomas Gleixner 已提交
1237

1238 1239
	spin_lock(&ctx->lock);
	ctx->is_active = 1;
1240
	if (likely(!ctx->nr_events))
1241
		goto out;
T
Thomas Gleixner 已提交
1242

1243
	ctx->timestamp = perf_clock();
1244

1245
	perf_disable();
1246 1247 1248 1249 1250

	/*
	 * First go through the list and put on any pinned groups
	 * in order to give them the best chance of going on.
	 */
1251 1252 1253
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    !event->attr.pinned)
1254
			continue;
1255
		if (event->cpu != -1 && event->cpu != cpu)
1256 1257
			continue;

1258 1259
		if (group_can_go_on(event, cpuctx, 1))
			group_sched_in(event, cpuctx, ctx, cpu);
1260 1261 1262 1263 1264

		/*
		 * If this pinned group hasn't been scheduled,
		 * put it in error state.
		 */
1265 1266 1267
		if (event->state == PERF_EVENT_STATE_INACTIVE) {
			update_group_times(event);
			event->state = PERF_EVENT_STATE_ERROR;
1268
		}
1269 1270
	}

1271
	list_for_each_entry(event, &ctx->group_list, group_entry) {
1272
		/*
1273 1274
		 * Ignore events in OFF or ERROR state, and
		 * ignore pinned events since we did them already.
1275
		 */
1276 1277
		if (event->state <= PERF_EVENT_STATE_OFF ||
		    event->attr.pinned)
1278 1279
			continue;

1280 1281
		/*
		 * Listen to the 'cpu' scheduling filter constraint
1282
		 * of events:
1283
		 */
1284
		if (event->cpu != -1 && event->cpu != cpu)
T
Thomas Gleixner 已提交
1285 1286
			continue;

1287 1288
		if (group_can_go_on(event, cpuctx, can_add_hw))
			if (group_sched_in(event, cpuctx, ctx, cpu))
1289
				can_add_hw = 0;
T
Thomas Gleixner 已提交
1290
	}
1291
	perf_enable();
1292
 out:
T
Thomas Gleixner 已提交
1293
	spin_unlock(&ctx->lock);
1294 1295 1296
}

/*
1297
 * Called from scheduler to add the events of the current task
1298 1299
 * with interrupts disabled.
 *
1300
 * We restore the event value and then enable it.
1301 1302
 *
 * This does not protect us against NMI, but enable()
1303 1304 1305
 * sets the enabled bit in the control field of event _before_
 * accessing the event control register. If a NMI hits, then it will
 * keep the event running.
1306
 */
1307
void perf_event_task_sched_in(struct task_struct *task, int cpu)
1308 1309
{
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310
	struct perf_event_context *ctx = task->perf_event_ctxp;
1311

1312 1313
	if (likely(!ctx))
		return;
1314 1315
	if (cpuctx->task_ctx == ctx)
		return;
1316
	__perf_event_sched_in(ctx, cpuctx, cpu);
T
Thomas Gleixner 已提交
1317 1318 1319
	cpuctx->task_ctx = ctx;
}

1320
static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1321
{
1322
	struct perf_event_context *ctx = &cpuctx->ctx;
1323

1324
	__perf_event_sched_in(ctx, cpuctx, cpu);
1325 1326
}

1327 1328
#define MAX_INTERRUPTS (~0ULL)

1329
static void perf_log_throttle(struct perf_event *event, int enable);
1330

1331
static void perf_adjust_period(struct perf_event *event, u64 events)
1332
{
1333
	struct hw_perf_event *hwc = &event->hw;
1334 1335 1336 1337
	u64 period, sample_period;
	s64 delta;

	events *= hwc->sample_period;
1338
	period = div64_u64(events, event->attr.sample_freq);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350

	delta = (s64)(period - hwc->sample_period);
	delta = (delta + 7) / 8; /* low pass filter */

	sample_period = hwc->sample_period + delta;

	if (!sample_period)
		sample_period = 1;

	hwc->sample_period = sample_period;
}

1351
static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1352
{
1353 1354
	struct perf_event *event;
	struct hw_perf_event *hwc;
1355
	u64 interrupts, freq;
1356 1357

	spin_lock(&ctx->lock);
1358
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1359
		if (event->state != PERF_EVENT_STATE_ACTIVE)
1360 1361
			continue;

1362
		hwc = &event->hw;
1363 1364 1365

		interrupts = hwc->interrupts;
		hwc->interrupts = 0;
1366

1367
		/*
1368
		 * unthrottle events on the tick
1369
		 */
1370
		if (interrupts == MAX_INTERRUPTS) {
1371 1372 1373
			perf_log_throttle(event, 1);
			event->pmu->unthrottle(event);
			interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1374 1375
		}

1376
		if (!event->attr.freq || !event->attr.sample_freq)
1377 1378
			continue;

1379 1380 1381
		/*
		 * if the specified freq < HZ then we need to skip ticks
		 */
1382 1383
		if (event->attr.sample_freq < HZ) {
			freq = event->attr.sample_freq;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396

			hwc->freq_count += freq;
			hwc->freq_interrupts += interrupts;

			if (hwc->freq_count < HZ)
				continue;

			interrupts = hwc->freq_interrupts;
			hwc->freq_interrupts = 0;
			hwc->freq_count -= HZ;
		} else
			freq = HZ;

1397
		perf_adjust_period(event, freq * interrupts);
1398

1399 1400 1401 1402 1403 1404 1405
		/*
		 * In order to avoid being stalled by an (accidental) huge
		 * sample period, force reset the sample period if we didn't
		 * get any events in this freq period.
		 */
		if (!interrupts) {
			perf_disable();
1406
			event->pmu->disable(event);
1407
			atomic64_set(&hwc->period_left, 0);
1408
			event->pmu->enable(event);
1409 1410
			perf_enable();
		}
1411 1412 1413 1414
	}
	spin_unlock(&ctx->lock);
}

1415
/*
1416
 * Round-robin a context's events:
1417
 */
1418
static void rotate_ctx(struct perf_event_context *ctx)
T
Thomas Gleixner 已提交
1419
{
1420
	struct perf_event *event;
T
Thomas Gleixner 已提交
1421

1422
	if (!ctx->nr_events)
T
Thomas Gleixner 已提交
1423 1424 1425 1426
		return;

	spin_lock(&ctx->lock);
	/*
1427
	 * Rotate the first entry last (works just fine for group events too):
T
Thomas Gleixner 已提交
1428
	 */
1429
	perf_disable();
1430 1431
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		list_move_tail(&event->group_entry, &ctx->group_list);
T
Thomas Gleixner 已提交
1432 1433
		break;
	}
1434
	perf_enable();
T
Thomas Gleixner 已提交
1435 1436

	spin_unlock(&ctx->lock);
1437 1438
}

1439
void perf_event_task_tick(struct task_struct *curr, int cpu)
1440
{
1441
	struct perf_cpu_context *cpuctx;
1442
	struct perf_event_context *ctx;
1443

1444
	if (!atomic_read(&nr_events))
1445 1446 1447
		return;

	cpuctx = &per_cpu(perf_cpu_context, cpu);
1448
	ctx = curr->perf_event_ctxp;
1449

1450
	perf_ctx_adjust_freq(&cpuctx->ctx);
1451
	if (ctx)
1452
		perf_ctx_adjust_freq(ctx);
1453

1454
	perf_event_cpu_sched_out(cpuctx);
1455
	if (ctx)
1456
		__perf_event_task_sched_out(ctx);
T
Thomas Gleixner 已提交
1457

1458
	rotate_ctx(&cpuctx->ctx);
1459 1460
	if (ctx)
		rotate_ctx(ctx);
1461

1462
	perf_event_cpu_sched_in(cpuctx, cpu);
1463
	if (ctx)
1464
		perf_event_task_sched_in(curr, cpu);
T
Thomas Gleixner 已提交
1465 1466
}

1467
/*
1468
 * Enable all of a task's events that have been marked enable-on-exec.
1469 1470
 * This expects task == current.
 */
1471
static void perf_event_enable_on_exec(struct task_struct *task)
1472
{
1473 1474
	struct perf_event_context *ctx;
	struct perf_event *event;
1475 1476 1477 1478
	unsigned long flags;
	int enabled = 0;

	local_irq_save(flags);
1479 1480
	ctx = task->perf_event_ctxp;
	if (!ctx || !ctx->nr_events)
1481 1482
		goto out;

1483
	__perf_event_task_sched_out(ctx);
1484 1485 1486

	spin_lock(&ctx->lock);

1487 1488
	list_for_each_entry(event, &ctx->group_list, group_entry) {
		if (!event->attr.enable_on_exec)
1489
			continue;
1490 1491
		event->attr.enable_on_exec = 0;
		if (event->state >= PERF_EVENT_STATE_INACTIVE)
1492
			continue;
1493
		__perf_event_mark_enabled(event, ctx);
1494 1495 1496 1497
		enabled = 1;
	}

	/*
1498
	 * Unclone this context if we enabled any event.
1499
	 */
1500 1501
	if (enabled)
		unclone_ctx(ctx);
1502 1503 1504

	spin_unlock(&ctx->lock);

1505
	perf_event_task_sched_in(task, smp_processor_id());
1506 1507 1508 1509
 out:
	local_irq_restore(flags);
}

T
Thomas Gleixner 已提交
1510
/*
1511
 * Cross CPU call to read the hardware event
T
Thomas Gleixner 已提交
1512
 */
1513
static void __perf_event_read(void *info)
T
Thomas Gleixner 已提交
1514
{
1515
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1516 1517
	struct perf_event *event = info;
	struct perf_event_context *ctx = event->ctx;
I
Ingo Molnar 已提交
1518

1519 1520 1521 1522
	/*
	 * If this is a task context, we need to check whether it is
	 * the current task context of this cpu.  If not it has been
	 * scheduled out before the smp call arrived.  In that case
1523 1524
	 * event->count would have been updated to a recent sample
	 * when the event was scheduled out.
1525 1526 1527 1528
	 */
	if (ctx->task && cpuctx->task_ctx != ctx)
		return;

1529
	if (ctx->is_active)
1530
		update_context_time(ctx);
1531 1532
	event->pmu->read(event);
	update_event_times(event);
T
Thomas Gleixner 已提交
1533 1534
}

1535
static u64 perf_event_read(struct perf_event *event)
T
Thomas Gleixner 已提交
1536 1537
{
	/*
1538 1539
	 * If event is enabled and currently active on a CPU, update the
	 * value in the event structure:
T
Thomas Gleixner 已提交
1540
	 */
1541 1542 1543 1544 1545
	if (event->state == PERF_EVENT_STATE_ACTIVE) {
		smp_call_function_single(event->oncpu,
					 __perf_event_read, event, 1);
	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
		update_event_times(event);
T
Thomas Gleixner 已提交
1546 1547
	}

1548
	return atomic64_read(&event->count);
T
Thomas Gleixner 已提交
1549 1550
}

1551
/*
1552
 * Initialize the perf_event context in a task_struct:
1553 1554
 */
static void
1555
__perf_event_init_context(struct perf_event_context *ctx,
1556 1557 1558 1559 1560
			    struct task_struct *task)
{
	memset(ctx, 0, sizeof(*ctx));
	spin_lock_init(&ctx->lock);
	mutex_init(&ctx->mutex);
1561
	INIT_LIST_HEAD(&ctx->group_list);
1562 1563 1564 1565 1566
	INIT_LIST_HEAD(&ctx->event_list);
	atomic_set(&ctx->refcount, 1);
	ctx->task = task;
}

1567
static struct perf_event_context *find_get_context(pid_t pid, int cpu)
T
Thomas Gleixner 已提交
1568
{
1569
	struct perf_event_context *ctx;
1570
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
1571
	struct task_struct *task;
1572
	unsigned long flags;
1573
	int err;
T
Thomas Gleixner 已提交
1574 1575

	/*
1576
	 * If cpu is not a wildcard then this is a percpu event:
T
Thomas Gleixner 已提交
1577 1578
	 */
	if (cpu != -1) {
1579
		/* Must be root to operate on a CPU event: */
1580
		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
T
Thomas Gleixner 已提交
1581 1582 1583 1584 1585 1586
			return ERR_PTR(-EACCES);

		if (cpu < 0 || cpu > num_possible_cpus())
			return ERR_PTR(-EINVAL);

		/*
1587
		 * We could be clever and allow to attach a event to an
T
Thomas Gleixner 已提交
1588 1589 1590 1591 1592 1593 1594 1595
		 * offline CPU and activate it when the CPU comes up, but
		 * that's for later.
		 */
		if (!cpu_isset(cpu, cpu_online_map))
			return ERR_PTR(-ENODEV);

		cpuctx = &per_cpu(perf_cpu_context, cpu);
		ctx = &cpuctx->ctx;
1596
		get_ctx(ctx);
T
Thomas Gleixner 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612

		return ctx;
	}

	rcu_read_lock();
	if (!pid)
		task = current;
	else
		task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();

	if (!task)
		return ERR_PTR(-ESRCH);

1613
	/*
1614
	 * Can't attach events to a dying task.
1615 1616 1617 1618 1619
	 */
	err = -ESRCH;
	if (task->flags & PF_EXITING)
		goto errout;

T
Thomas Gleixner 已提交
1620
	/* Reuse ptrace permission checks for now. */
1621 1622 1623 1624 1625
	err = -EACCES;
	if (!ptrace_may_access(task, PTRACE_MODE_READ))
		goto errout;

 retry:
1626
	ctx = perf_lock_task_context(task, &flags);
1627
	if (ctx) {
1628
		unclone_ctx(ctx);
1629
		spin_unlock_irqrestore(&ctx->lock, flags);
T
Thomas Gleixner 已提交
1630 1631
	}

1632
	if (!ctx) {
1633
		ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1634 1635 1636
		err = -ENOMEM;
		if (!ctx)
			goto errout;
1637
		__perf_event_init_context(ctx, task);
1638
		get_ctx(ctx);
1639
		if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1640 1641 1642 1643 1644
			/*
			 * We raced with some other task; use
			 * the context they set.
			 */
			kfree(ctx);
1645
			goto retry;
1646
		}
1647
		get_task_struct(task);
1648 1649
	}

1650
	put_task_struct(task);
T
Thomas Gleixner 已提交
1651
	return ctx;
1652 1653 1654 1655

 errout:
	put_task_struct(task);
	return ERR_PTR(err);
T
Thomas Gleixner 已提交
1656 1657
}

L
Li Zefan 已提交
1658 1659
static void perf_event_free_filter(struct perf_event *event);

1660
static void free_event_rcu(struct rcu_head *head)
P
Peter Zijlstra 已提交
1661
{
1662
	struct perf_event *event;
P
Peter Zijlstra 已提交
1663

1664 1665 1666
	event = container_of(head, struct perf_event, rcu_head);
	if (event->ns)
		put_pid_ns(event->ns);
L
Li Zefan 已提交
1667
	perf_event_free_filter(event);
1668
	kfree(event);
P
Peter Zijlstra 已提交
1669 1670
}

1671
static void perf_pending_sync(struct perf_event *event);
1672

1673
static void free_event(struct perf_event *event)
1674
{
1675
	perf_pending_sync(event);
1676

1677 1678 1679 1680 1681 1682 1683 1684
	if (!event->parent) {
		atomic_dec(&nr_events);
		if (event->attr.mmap)
			atomic_dec(&nr_mmap_events);
		if (event->attr.comm)
			atomic_dec(&nr_comm_events);
		if (event->attr.task)
			atomic_dec(&nr_task_events);
1685
	}
1686

1687 1688 1689
	if (event->output) {
		fput(event->output->filp);
		event->output = NULL;
1690 1691
	}

1692 1693
	if (event->destroy)
		event->destroy(event);
1694

1695 1696
	put_ctx(event->ctx);
	call_rcu(&event->rcu_head, free_event_rcu);
1697 1698
}

T
Thomas Gleixner 已提交
1699 1700 1701 1702 1703
/*
 * Called when the last reference to the file is gone.
 */
static int perf_release(struct inode *inode, struct file *file)
{
1704 1705
	struct perf_event *event = file->private_data;
	struct perf_event_context *ctx = event->ctx;
T
Thomas Gleixner 已提交
1706 1707 1708

	file->private_data = NULL;

1709
	WARN_ON_ONCE(ctx->parent_ctx);
1710
	mutex_lock(&ctx->mutex);
1711
	perf_event_remove_from_context(event);
1712
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
1713

1714 1715 1716 1717
	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);
1718

1719
	free_event(event);
T
Thomas Gleixner 已提交
1720 1721 1722 1723

	return 0;
}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
int perf_event_release_kernel(struct perf_event *event)
{
	struct perf_event_context *ctx = event->ctx;

	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_event_remove_from_context(event);
	mutex_unlock(&ctx->mutex);

	mutex_lock(&event->owner->perf_event_mutex);
	list_del_init(&event->owner_entry);
	mutex_unlock(&event->owner->perf_event_mutex);
	put_task_struct(event->owner);

	free_event(event);

	return 0;
}
EXPORT_SYMBOL_GPL(perf_event_release_kernel);

1744
static int perf_event_read_size(struct perf_event *event)
1745 1746 1747 1748 1749
{
	int entry = sizeof(u64); /* value */
	int size = 0;
	int nr = 1;

1750
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1751 1752
		size += sizeof(u64);

1753
	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1754 1755
		size += sizeof(u64);

1756
	if (event->attr.read_format & PERF_FORMAT_ID)
1757 1758
		entry += sizeof(u64);

1759 1760
	if (event->attr.read_format & PERF_FORMAT_GROUP) {
		nr += event->group_leader->nr_siblings;
1761 1762 1763 1764 1765 1766 1767 1768
		size += sizeof(u64);
	}

	size += entry * nr;

	return size;
}

1769
u64 perf_event_read_value(struct perf_event *event)
1770
{
1771
	struct perf_event *child;
1772 1773
	u64 total = 0;

1774 1775 1776
	total += perf_event_read(event);
	list_for_each_entry(child, &event->child_list, child_list)
		total += perf_event_read(child);
1777 1778 1779

	return total;
}
1780
EXPORT_SYMBOL_GPL(perf_event_read_value);
1781

1782
static int perf_event_read_group(struct perf_event *event,
1783 1784
				   u64 read_format, char __user *buf)
{
1785
	struct perf_event *leader = event->group_leader, *sub;
1786 1787 1788 1789 1790
	int n = 0, size = 0, ret = 0;
	u64 values[5];
	u64 count;

	count = perf_event_read_value(leader);
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800

	values[n++] = 1 + leader->nr_siblings;
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
		values[n++] = leader->total_time_enabled +
			atomic64_read(&leader->child_total_time_enabled);
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
		values[n++] = leader->total_time_running +
			atomic64_read(&leader->child_total_time_running);
	}
1801 1802 1803
	values[n++] = count;
	if (read_format & PERF_FORMAT_ID)
		values[n++] = primary_event_id(leader);
1804 1805 1806 1807 1808 1809

	size = n * sizeof(u64);

	if (copy_to_user(buf, values, size))
		return -EFAULT;

1810
	ret += size;
1811

1812
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1813
		n = 0;
1814

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
		values[n++] = perf_event_read_value(sub);
		if (read_format & PERF_FORMAT_ID)
			values[n++] = primary_event_id(sub);

		size = n * sizeof(u64);

		if (copy_to_user(buf + size, values, size))
			return -EFAULT;

		ret += size;
1825 1826
	}

1827
	return ret;
1828 1829
}

1830
static int perf_event_read_one(struct perf_event *event,
1831 1832 1833 1834 1835
				 u64 read_format, char __user *buf)
{
	u64 values[4];
	int n = 0;

1836
	values[n++] = perf_event_read_value(event);
1837
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1838 1839
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
1840 1841
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1842 1843
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
1844 1845
	}
	if (read_format & PERF_FORMAT_ID)
1846
		values[n++] = primary_event_id(event);
1847 1848 1849 1850 1851 1852 1853

	if (copy_to_user(buf, values, n * sizeof(u64)))
		return -EFAULT;

	return n * sizeof(u64);
}

T
Thomas Gleixner 已提交
1854
/*
1855
 * Read the performance event - simple non blocking version for now
T
Thomas Gleixner 已提交
1856 1857
 */
static ssize_t
1858
perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
T
Thomas Gleixner 已提交
1859
{
1860
	u64 read_format = event->attr.read_format;
1861
	int ret;
T
Thomas Gleixner 已提交
1862

1863
	/*
1864
	 * Return end-of-file for a read on a event that is in
1865 1866 1867
	 * error state (i.e. because it was pinned but it couldn't be
	 * scheduled on to the CPU at some point).
	 */
1868
	if (event->state == PERF_EVENT_STATE_ERROR)
1869 1870
		return 0;

1871
	if (count < perf_event_read_size(event))
1872 1873
		return -ENOSPC;

1874 1875
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
1876
	if (read_format & PERF_FORMAT_GROUP)
1877
		ret = perf_event_read_group(event, read_format, buf);
1878
	else
1879 1880
		ret = perf_event_read_one(event, read_format, buf);
	mutex_unlock(&event->child_mutex);
T
Thomas Gleixner 已提交
1881

1882
	return ret;
T
Thomas Gleixner 已提交
1883 1884 1885 1886 1887
}

static ssize_t
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
1888
	struct perf_event *event = file->private_data;
T
Thomas Gleixner 已提交
1889

1890
	return perf_read_hw(event, buf, count);
T
Thomas Gleixner 已提交
1891 1892 1893 1894
}

static unsigned int perf_poll(struct file *file, poll_table *wait)
{
1895
	struct perf_event *event = file->private_data;
P
Peter Zijlstra 已提交
1896
	struct perf_mmap_data *data;
1897
	unsigned int events = POLL_HUP;
P
Peter Zijlstra 已提交
1898 1899

	rcu_read_lock();
1900
	data = rcu_dereference(event->data);
P
Peter Zijlstra 已提交
1901
	if (data)
1902
		events = atomic_xchg(&data->poll, 0);
P
Peter Zijlstra 已提交
1903
	rcu_read_unlock();
T
Thomas Gleixner 已提交
1904

1905
	poll_wait(file, &event->waitq, wait);
T
Thomas Gleixner 已提交
1906 1907 1908 1909

	return events;
}

1910
static void perf_event_reset(struct perf_event *event)
1911
{
1912 1913 1914
	(void)perf_event_read(event);
	atomic64_set(&event->count, 0);
	perf_event_update_userpage(event);
P
Peter Zijlstra 已提交
1915 1916
}

1917
/*
1918 1919 1920 1921
 * Holding the top-level event's child_mutex means that any
 * descendant process that has inherited this event will block
 * in sync_child_event if it goes to exit, thus satisfying the
 * task existence requirements of perf_event_enable/disable.
1922
 */
1923 1924
static void perf_event_for_each_child(struct perf_event *event,
					void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1925
{
1926
	struct perf_event *child;
P
Peter Zijlstra 已提交
1927

1928 1929 1930 1931
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->child_mutex);
	func(event);
	list_for_each_entry(child, &event->child_list, child_list)
P
Peter Zijlstra 已提交
1932
		func(child);
1933
	mutex_unlock(&event->child_mutex);
P
Peter Zijlstra 已提交
1934 1935
}

1936 1937
static void perf_event_for_each(struct perf_event *event,
				  void (*func)(struct perf_event *))
P
Peter Zijlstra 已提交
1938
{
1939 1940
	struct perf_event_context *ctx = event->ctx;
	struct perf_event *sibling;
P
Peter Zijlstra 已提交
1941

1942 1943
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
1944
	event = event->group_leader;
1945

1946 1947 1948 1949
	perf_event_for_each_child(event, func);
	func(event);
	list_for_each_entry(sibling, &event->sibling_list, group_entry)
		perf_event_for_each_child(event, func);
1950
	mutex_unlock(&ctx->mutex);
1951 1952
}

1953
static int perf_event_period(struct perf_event *event, u64 __user *arg)
1954
{
1955
	struct perf_event_context *ctx = event->ctx;
1956 1957 1958 1959
	unsigned long size;
	int ret = 0;
	u64 value;

1960
	if (!event->attr.sample_period)
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
		return -EINVAL;

	size = copy_from_user(&value, arg, sizeof(value));
	if (size != sizeof(value))
		return -EFAULT;

	if (!value)
		return -EINVAL;

	spin_lock_irq(&ctx->lock);
1971 1972
	if (event->attr.freq) {
		if (value > sysctl_perf_event_sample_rate) {
1973 1974 1975 1976
			ret = -EINVAL;
			goto unlock;
		}

1977
		event->attr.sample_freq = value;
1978
	} else {
1979 1980
		event->attr.sample_period = value;
		event->hw.sample_period = value;
1981 1982 1983 1984 1985 1986 1987
	}
unlock:
	spin_unlock_irq(&ctx->lock);

	return ret;
}

L
Li Zefan 已提交
1988 1989
static int perf_event_set_output(struct perf_event *event, int output_fd);
static int perf_event_set_filter(struct perf_event *event, void __user *arg);
1990

1991 1992
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
1993 1994
	struct perf_event *event = file->private_data;
	void (*func)(struct perf_event *);
P
Peter Zijlstra 已提交
1995
	u32 flags = arg;
1996 1997

	switch (cmd) {
1998 1999
	case PERF_EVENT_IOC_ENABLE:
		func = perf_event_enable;
2000
		break;
2001 2002
	case PERF_EVENT_IOC_DISABLE:
		func = perf_event_disable;
2003
		break;
2004 2005
	case PERF_EVENT_IOC_RESET:
		func = perf_event_reset;
2006
		break;
P
Peter Zijlstra 已提交
2007

2008 2009
	case PERF_EVENT_IOC_REFRESH:
		return perf_event_refresh(event, arg);
2010

2011 2012
	case PERF_EVENT_IOC_PERIOD:
		return perf_event_period(event, (u64 __user *)arg);
2013

2014 2015
	case PERF_EVENT_IOC_SET_OUTPUT:
		return perf_event_set_output(event, arg);
2016

L
Li Zefan 已提交
2017 2018 2019
	case PERF_EVENT_IOC_SET_FILTER:
		return perf_event_set_filter(event, (void __user *)arg);

2020
	default:
P
Peter Zijlstra 已提交
2021
		return -ENOTTY;
2022
	}
P
Peter Zijlstra 已提交
2023 2024

	if (flags & PERF_IOC_FLAG_GROUP)
2025
		perf_event_for_each(event, func);
P
Peter Zijlstra 已提交
2026
	else
2027
		perf_event_for_each_child(event, func);
P
Peter Zijlstra 已提交
2028 2029

	return 0;
2030 2031
}

2032
int perf_event_task_enable(void)
2033
{
2034
	struct perf_event *event;
2035

2036 2037 2038 2039
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_enable);
	mutex_unlock(&current->perf_event_mutex);
2040 2041 2042 2043

	return 0;
}

2044
int perf_event_task_disable(void)
2045
{
2046
	struct perf_event *event;
2047

2048 2049 2050 2051
	mutex_lock(&current->perf_event_mutex);
	list_for_each_entry(event, &current->perf_event_list, owner_entry)
		perf_event_for_each_child(event, perf_event_disable);
	mutex_unlock(&current->perf_event_mutex);
2052 2053 2054 2055

	return 0;
}

2056 2057
#ifndef PERF_EVENT_INDEX_OFFSET
# define PERF_EVENT_INDEX_OFFSET 0
I
Ingo Molnar 已提交
2058 2059
#endif

2060
static int perf_event_index(struct perf_event *event)
2061
{
2062
	if (event->state != PERF_EVENT_STATE_ACTIVE)
2063 2064
		return 0;

2065
	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2066 2067
}

2068 2069 2070 2071 2072
/*
 * Callers need to ensure there can be no nesting of this function, otherwise
 * the seqlock logic goes bad. We can not serialize this because the arch
 * code calls this from NMI context.
 */
2073
void perf_event_update_userpage(struct perf_event *event)
2074
{
2075
	struct perf_event_mmap_page *userpg;
2076
	struct perf_mmap_data *data;
2077 2078

	rcu_read_lock();
2079
	data = rcu_dereference(event->data);
2080 2081 2082 2083
	if (!data)
		goto unlock;

	userpg = data->user_page;
2084

2085 2086 2087 2088 2089
	/*
	 * Disable preemption so as to not let the corresponding user-space
	 * spin too long if we get preempted.
	 */
	preempt_disable();
2090
	++userpg->lock;
2091
	barrier();
2092 2093 2094 2095
	userpg->index = perf_event_index(event);
	userpg->offset = atomic64_read(&event->count);
	if (event->state == PERF_EVENT_STATE_ACTIVE)
		userpg->offset -= atomic64_read(&event->hw.prev_count);
2096

2097 2098
	userpg->time_enabled = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2099

2100 2101
	userpg->time_running = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2102

2103
	barrier();
2104
	++userpg->lock;
2105
	preempt_enable();
2106
unlock:
2107
	rcu_read_unlock();
2108 2109
}

2110
static unsigned long perf_data_size(struct perf_mmap_data *data)
2111
{
2112 2113
	return data->nr_pages << (PAGE_SHIFT + data->data_order);
}
2114

2115
#ifndef CONFIG_PERF_USE_VMALLOC
2116

2117 2118 2119
/*
 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
 */
2120

2121 2122 2123 2124 2125
static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > data->nr_pages)
		return NULL;
2126

2127 2128
	if (pgoff == 0)
		return virt_to_page(data->user_page);
2129

2130
	return virt_to_page(data->data_pages[pgoff - 1]);
2131 2132
}

2133 2134
static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2135 2136 2137 2138 2139
{
	struct perf_mmap_data *data;
	unsigned long size;
	int i;

2140
	WARN_ON(atomic_read(&event->mmap_count));
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

	size = sizeof(struct perf_mmap_data);
	size += nr_pages * sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
	if (!data->user_page)
		goto fail_user_page;

	for (i = 0; i < nr_pages; i++) {
		data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
		if (!data->data_pages[i])
			goto fail_data_pages;
	}

2159
	data->data_order = 0;
2160 2161
	data->nr_pages = nr_pages;

2162
	return data;
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

fail_data_pages:
	for (i--; i >= 0; i--)
		free_page((unsigned long)data->data_pages[i]);

	free_page((unsigned long)data->user_page);

fail_user_page:
	kfree(data);

fail:
2174
	return NULL;
2175 2176
}

2177 2178
static void perf_mmap_free_page(unsigned long addr)
{
K
Kevin Cernekee 已提交
2179
	struct page *page = virt_to_page((void *)addr);
2180 2181 2182 2183 2184

	page->mapping = NULL;
	__free_page(page);
}

2185
static void perf_mmap_data_free(struct perf_mmap_data *data)
2186 2187 2188
{
	int i;

2189
	perf_mmap_free_page((unsigned long)data->user_page);
2190
	for (i = 0; i < data->nr_pages; i++)
2191
		perf_mmap_free_page((unsigned long)data->data_pages[i]);
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
}

#else

/*
 * Back perf_mmap() with vmalloc memory.
 *
 * Required for architectures that have d-cache aliasing issues.
 */

static struct page *
perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
{
	if (pgoff > (1UL << data->data_order))
		return NULL;

	return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
}

static void perf_mmap_unmark_page(void *addr)
{
	struct page *page = vmalloc_to_page(addr);

	page->mapping = NULL;
}

static void perf_mmap_data_free_work(struct work_struct *work)
{
	struct perf_mmap_data *data;
	void *base;
	int i, nr;

	data = container_of(work, struct perf_mmap_data, work);
	nr = 1 << data->data_order;

	base = data->user_page;
	for (i = 0; i < nr + 1; i++)
		perf_mmap_unmark_page(base + (i * PAGE_SIZE));

	vfree(base);
}

static void perf_mmap_data_free(struct perf_mmap_data *data)
{
	schedule_work(&data->work);
}

static struct perf_mmap_data *
perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
{
	struct perf_mmap_data *data;
	unsigned long size;
	void *all_buf;

	WARN_ON(atomic_read(&event->mmap_count));
2247

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
	size = sizeof(struct perf_mmap_data);
	size += sizeof(void *);

	data = kzalloc(size, GFP_KERNEL);
	if (!data)
		goto fail;

	INIT_WORK(&data->work, perf_mmap_data_free_work);

	all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
	if (!all_buf)
		goto fail_all_buf;

	data->user_page = all_buf;
	data->data_pages[0] = all_buf + PAGE_SIZE;
	data->data_order = ilog2(nr_pages);
	data->nr_pages = 1;

	return data;

fail_all_buf:
	kfree(data);

fail:
	return NULL;
}

#endif

static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct perf_event *event = vma->vm_file->private_data;
	struct perf_mmap_data *data;
	int ret = VM_FAULT_SIGBUS;

	if (vmf->flags & FAULT_FLAG_MKWRITE) {
		if (vmf->pgoff == 0)
			ret = 0;
		return ret;
	}

	rcu_read_lock();
	data = rcu_dereference(event->data);
	if (!data)
		goto unlock;

	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
		goto unlock;

	vmf->page = perf_mmap_to_page(data, vmf->pgoff);
	if (!vmf->page)
		goto unlock;

	get_page(vmf->page);
	vmf->page->mapping = vma->vm_file->f_mapping;
	vmf->page->index   = vmf->pgoff;

	ret = 0;
unlock:
	rcu_read_unlock();

	return ret;
}

static void
perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
{
	long max_size = perf_data_size(data);

	atomic_set(&data->lock, -1);

	if (event->attr.watermark) {
		data->watermark = min_t(long, max_size,
					event->attr.wakeup_watermark);
	}

	if (!data->watermark)
		data->watermark = max_t(long, PAGE_SIZE, max_size / 2);


	rcu_assign_pointer(event->data, data);
}

static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
{
	struct perf_mmap_data *data;

	data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
	perf_mmap_data_free(data);
2337 2338 2339
	kfree(data);
}

2340
static void perf_mmap_data_release(struct perf_event *event)
2341
{
2342
	struct perf_mmap_data *data = event->data;
2343

2344
	WARN_ON(atomic_read(&event->mmap_count));
2345

2346
	rcu_assign_pointer(event->data, NULL);
2347
	call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2348 2349 2350 2351
}

static void perf_mmap_open(struct vm_area_struct *vma)
{
2352
	struct perf_event *event = vma->vm_file->private_data;
2353

2354
	atomic_inc(&event->mmap_count);
2355 2356 2357 2358
}

static void perf_mmap_close(struct vm_area_struct *vma)
{
2359
	struct perf_event *event = vma->vm_file->private_data;
2360

2361 2362
	WARN_ON_ONCE(event->ctx->parent_ctx);
	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2363
		unsigned long size = perf_data_size(event->data);
2364 2365
		struct user_struct *user = current_user();

2366
		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2367
		vma->vm_mm->locked_vm -= event->data->nr_locked;
2368
		perf_mmap_data_release(event);
2369
		mutex_unlock(&event->mmap_mutex);
2370
	}
2371 2372
}

2373
static const struct vm_operations_struct perf_mmap_vmops = {
2374 2375 2376 2377
	.open		= perf_mmap_open,
	.close		= perf_mmap_close,
	.fault		= perf_mmap_fault,
	.page_mkwrite	= perf_mmap_fault,
2378 2379 2380 2381
};

static int perf_mmap(struct file *file, struct vm_area_struct *vma)
{
2382
	struct perf_event *event = file->private_data;
2383
	unsigned long user_locked, user_lock_limit;
2384
	struct user_struct *user = current_user();
2385
	unsigned long locked, lock_limit;
2386
	struct perf_mmap_data *data;
2387 2388
	unsigned long vma_size;
	unsigned long nr_pages;
2389
	long user_extra, extra;
2390
	int ret = 0;
2391

2392
	if (!(vma->vm_flags & VM_SHARED))
2393
		return -EINVAL;
2394 2395 2396 2397

	vma_size = vma->vm_end - vma->vm_start;
	nr_pages = (vma_size / PAGE_SIZE) - 1;

2398 2399 2400 2401 2402
	/*
	 * If we have data pages ensure they're a power-of-two number, so we
	 * can do bitmasks instead of modulo.
	 */
	if (nr_pages != 0 && !is_power_of_2(nr_pages))
2403 2404
		return -EINVAL;

2405
	if (vma_size != PAGE_SIZE * (1 + nr_pages))
2406 2407
		return -EINVAL;

2408 2409
	if (vma->vm_pgoff != 0)
		return -EINVAL;
2410

2411 2412 2413
	WARN_ON_ONCE(event->ctx->parent_ctx);
	mutex_lock(&event->mmap_mutex);
	if (event->output) {
2414 2415 2416 2417
		ret = -EINVAL;
		goto unlock;
	}

2418 2419
	if (atomic_inc_not_zero(&event->mmap_count)) {
		if (nr_pages != event->data->nr_pages)
2420 2421 2422 2423
			ret = -EINVAL;
		goto unlock;
	}

2424
	user_extra = nr_pages + 1;
2425
	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
I
Ingo Molnar 已提交
2426 2427 2428 2429 2430 2431

	/*
	 * Increase the limit linearly with more CPUs:
	 */
	user_lock_limit *= num_online_cpus();

2432
	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2433

2434 2435 2436
	extra = 0;
	if (user_locked > user_lock_limit)
		extra = user_locked - user_lock_limit;
2437 2438 2439

	lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
	lock_limit >>= PAGE_SHIFT;
2440
	locked = vma->vm_mm->locked_vm + extra;
2441

2442 2443
	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
		!capable(CAP_IPC_LOCK)) {
2444 2445 2446
		ret = -EPERM;
		goto unlock;
	}
2447

2448
	WARN_ON(event->data);
2449 2450 2451 2452

	data = perf_mmap_data_alloc(event, nr_pages);
	ret = -ENOMEM;
	if (!data)
2453 2454
		goto unlock;

2455 2456 2457
	ret = 0;
	perf_mmap_data_init(event, data);

2458
	atomic_set(&event->mmap_count, 1);
2459
	atomic_long_add(user_extra, &user->locked_vm);
2460
	vma->vm_mm->locked_vm += extra;
2461
	event->data->nr_locked = extra;
2462
	if (vma->vm_flags & VM_WRITE)
2463
		event->data->writable = 1;
2464

2465
unlock:
2466
	mutex_unlock(&event->mmap_mutex);
2467 2468 2469

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &perf_mmap_vmops;
2470 2471

	return ret;
2472 2473
}

P
Peter Zijlstra 已提交
2474 2475 2476
static int perf_fasync(int fd, struct file *filp, int on)
{
	struct inode *inode = filp->f_path.dentry->d_inode;
2477
	struct perf_event *event = filp->private_data;
P
Peter Zijlstra 已提交
2478 2479 2480
	int retval;

	mutex_lock(&inode->i_mutex);
2481
	retval = fasync_helper(fd, filp, on, &event->fasync);
P
Peter Zijlstra 已提交
2482 2483 2484 2485 2486 2487 2488 2489
	mutex_unlock(&inode->i_mutex);

	if (retval < 0)
		return retval;

	return 0;
}

T
Thomas Gleixner 已提交
2490 2491 2492 2493
static const struct file_operations perf_fops = {
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
2494 2495
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_ioctl,
2496
	.mmap			= perf_mmap,
P
Peter Zijlstra 已提交
2497
	.fasync			= perf_fasync,
T
Thomas Gleixner 已提交
2498 2499
};

2500
/*
2501
 * Perf event wakeup
2502 2503 2504 2505 2506
 *
 * If there's data, ensure we set the poll() state and publish everything
 * to user-space before waking everybody up.
 */

2507
void perf_event_wakeup(struct perf_event *event)
2508
{
2509
	wake_up_all(&event->waitq);
2510

2511 2512 2513
	if (event->pending_kill) {
		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
		event->pending_kill = 0;
2514
	}
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
}

/*
 * Pending wakeups
 *
 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
 *
 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
 * single linked list and use cmpxchg() to add entries lockless.
 */

2526
static void perf_pending_event(struct perf_pending_entry *entry)
2527
{
2528 2529
	struct perf_event *event = container_of(entry,
			struct perf_event, pending);
2530

2531 2532 2533
	if (event->pending_disable) {
		event->pending_disable = 0;
		__perf_event_disable(event);
2534 2535
	}

2536 2537 2538
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		perf_event_wakeup(event);
2539 2540 2541
	}
}

2542
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2543

2544
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2545 2546 2547
	PENDING_TAIL,
};

2548 2549
static void perf_pending_queue(struct perf_pending_entry *entry,
			       void (*func)(struct perf_pending_entry *))
2550
{
2551
	struct perf_pending_entry **head;
2552

2553
	if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2554 2555
		return;

2556 2557 2558
	entry->func = func;

	head = &get_cpu_var(perf_pending_head);
2559 2560

	do {
2561 2562
		entry->next = *head;
	} while (cmpxchg(head, entry->next, entry) != entry->next);
2563

2564
	set_perf_event_pending();
2565

2566
	put_cpu_var(perf_pending_head);
2567 2568 2569 2570
}

static int __perf_pending_run(void)
{
2571
	struct perf_pending_entry *list;
2572 2573
	int nr = 0;

2574
	list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2575
	while (list != PENDING_TAIL) {
2576 2577
		void (*func)(struct perf_pending_entry *);
		struct perf_pending_entry *entry = list;
2578 2579 2580

		list = list->next;

2581 2582
		func = entry->func;
		entry->next = NULL;
2583 2584 2585 2586 2587 2588 2589
		/*
		 * Ensure we observe the unqueue before we issue the wakeup,
		 * so that we won't be waiting forever.
		 * -- see perf_not_pending().
		 */
		smp_wmb();

2590
		func(entry);
2591 2592 2593 2594 2595 2596
		nr++;
	}

	return nr;
}

2597
static inline int perf_not_pending(struct perf_event *event)
2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
{
	/*
	 * If we flush on whatever cpu we run, there is a chance we don't
	 * need to wait.
	 */
	get_cpu();
	__perf_pending_run();
	put_cpu();

	/*
	 * Ensure we see the proper queue state before going to sleep
	 * so that we do not miss the wakeup. -- see perf_pending_handle()
	 */
	smp_rmb();
2612
	return event->pending.next == NULL;
2613 2614
}

2615
static void perf_pending_sync(struct perf_event *event)
2616
{
2617
	wait_event(event->waitq, perf_not_pending(event));
2618 2619
}

2620
void perf_event_do_pending(void)
2621 2622 2623 2624
{
	__perf_pending_run();
}

2625 2626 2627 2628
/*
 * Callchain support -- arch specific
 */

2629
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2630 2631 2632 2633
{
	return NULL;
}

2634 2635 2636
/*
 * Output
 */
2637 2638
static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
			      unsigned long offset, unsigned long head)
2639 2640 2641 2642 2643 2644
{
	unsigned long mask;

	if (!data->writable)
		return true;

2645
	mask = perf_data_size(data) - 1;
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

	offset = (offset - tail) & mask;
	head   = (head   - tail) & mask;

	if ((int)(head - offset) < 0)
		return false;

	return true;
}

2656
static void perf_output_wakeup(struct perf_output_handle *handle)
2657
{
2658 2659
	atomic_set(&handle->data->poll, POLL_IN);

2660
	if (handle->nmi) {
2661 2662 2663
		handle->event->pending_wakeup = 1;
		perf_pending_queue(&handle->event->pending,
				   perf_pending_event);
2664
	} else
2665
		perf_event_wakeup(handle->event);
2666 2667
}

2668 2669 2670
/*
 * Curious locking construct.
 *
2671 2672
 * We need to ensure a later event_id doesn't publish a head when a former
 * event_id isn't done writing. However since we need to deal with NMIs we
2673 2674 2675 2676 2677 2678
 * cannot fully serialize things.
 *
 * What we do is serialize between CPUs so we only have to deal with NMI
 * nesting on a single CPU.
 *
 * We only publish the head (and generate a wakeup) when the outer-most
2679
 * event_id completes.
2680 2681 2682 2683
 */
static void perf_output_lock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2684
	int cur, cpu = get_cpu();
2685 2686 2687

	handle->locked = 0;

2688 2689 2690 2691 2692 2693 2694 2695
	for (;;) {
		cur = atomic_cmpxchg(&data->lock, -1, cpu);
		if (cur == -1) {
			handle->locked = 1;
			break;
		}
		if (cur == cpu)
			break;
2696 2697

		cpu_relax();
2698
	}
2699 2700 2701 2702 2703
}

static void perf_output_unlock(struct perf_output_handle *handle)
{
	struct perf_mmap_data *data = handle->data;
2704 2705
	unsigned long head;
	int cpu;
2706

2707
	data->done_head = data->head;
2708 2709 2710 2711 2712 2713 2714 2715 2716 2717

	if (!handle->locked)
		goto out;

again:
	/*
	 * The xchg implies a full barrier that ensures all writes are done
	 * before we publish the new head, matched by a rmb() in userspace when
	 * reading this position.
	 */
2718
	while ((head = atomic_long_xchg(&data->done_head, 0)))
2719 2720 2721
		data->user_page->data_head = head;

	/*
2722
	 * NMI can happen here, which means we can miss a done_head update.
2723 2724
	 */

2725
	cpu = atomic_xchg(&data->lock, -1);
2726 2727 2728 2729 2730
	WARN_ON_ONCE(cpu != smp_processor_id());

	/*
	 * Therefore we have to validate we did not indeed do so.
	 */
2731
	if (unlikely(atomic_long_read(&data->done_head))) {
2732 2733 2734
		/*
		 * Since we had it locked, we can lock it again.
		 */
2735
		while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2736 2737 2738 2739 2740
			cpu_relax();

		goto again;
	}

2741
	if (atomic_xchg(&data->wakeup, 0))
2742 2743
		perf_output_wakeup(handle);
out:
2744
	put_cpu();
2745 2746
}

2747 2748
void perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
2749 2750
{
	unsigned int pages_mask;
2751
	unsigned long offset;
2752 2753 2754 2755 2756 2757 2758 2759
	unsigned int size;
	void **pages;

	offset		= handle->offset;
	pages_mask	= handle->data->nr_pages - 1;
	pages		= handle->data->data_pages;

	do {
2760 2761
		unsigned long page_offset;
		unsigned long page_size;
2762 2763 2764
		int nr;

		nr	    = (offset >> PAGE_SHIFT) & pages_mask;
2765 2766 2767
		page_size   = 1UL << (handle->data->data_order + PAGE_SHIFT);
		page_offset = offset & (page_size - 1);
		size	    = min_t(unsigned int, page_size - page_offset, len);
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784

		memcpy(pages[nr] + page_offset, buf, size);

		len	    -= size;
		buf	    += size;
		offset	    += size;
	} while (len);

	handle->offset = offset;

	/*
	 * Check we didn't copy past our reservation window, taking the
	 * possible unsigned int wrap into account.
	 */
	WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
}

2785
int perf_output_begin(struct perf_output_handle *handle,
2786
		      struct perf_event *event, unsigned int size,
2787
		      int nmi, int sample)
2788
{
2789
	struct perf_event *output_event;
2790
	struct perf_mmap_data *data;
2791
	unsigned long tail, offset, head;
2792 2793 2794 2795 2796 2797
	int have_lost;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;
2798

2799
	rcu_read_lock();
2800
	/*
2801
	 * For inherited events we send all the output towards the parent.
2802
	 */
2803 2804
	if (event->parent)
		event = event->parent;
2805

2806 2807 2808
	output_event = rcu_dereference(event->output);
	if (output_event)
		event = output_event;
2809

2810
	data = rcu_dereference(event->data);
2811 2812 2813
	if (!data)
		goto out;

2814
	handle->data	= data;
2815
	handle->event	= event;
2816 2817
	handle->nmi	= nmi;
	handle->sample	= sample;
2818

2819
	if (!data->nr_pages)
2820
		goto fail;
2821

2822 2823 2824 2825
	have_lost = atomic_read(&data->lost);
	if (have_lost)
		size += sizeof(lost_event);

2826 2827
	perf_output_lock(handle);

2828
	do {
2829 2830 2831 2832 2833 2834 2835
		/*
		 * Userspace could choose to issue a mb() before updating the
		 * tail pointer. So that all reads will be completed before the
		 * write is issued.
		 */
		tail = ACCESS_ONCE(data->user_page->data_tail);
		smp_rmb();
2836
		offset = head = atomic_long_read(&data->head);
P
Peter Zijlstra 已提交
2837
		head += size;
2838
		if (unlikely(!perf_output_space(data, tail, offset, head)))
2839
			goto fail;
2840
	} while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2841

2842
	handle->offset	= offset;
2843
	handle->head	= head;
2844

2845
	if (head - tail > data->watermark)
2846
		atomic_set(&data->wakeup, 1);
2847

2848
	if (have_lost) {
2849
		lost_event.header.type = PERF_RECORD_LOST;
2850 2851
		lost_event.header.misc = 0;
		lost_event.header.size = sizeof(lost_event);
2852
		lost_event.id          = event->id;
2853 2854 2855 2856 2857
		lost_event.lost        = atomic_xchg(&data->lost, 0);

		perf_output_put(handle, lost_event);
	}

2858
	return 0;
2859

2860
fail:
2861 2862
	atomic_inc(&data->lost);
	perf_output_unlock(handle);
2863 2864
out:
	rcu_read_unlock();
2865

2866 2867
	return -ENOSPC;
}
2868

2869
void perf_output_end(struct perf_output_handle *handle)
2870
{
2871
	struct perf_event *event = handle->event;
2872 2873
	struct perf_mmap_data *data = handle->data;

2874
	int wakeup_events = event->attr.wakeup_events;
P
Peter Zijlstra 已提交
2875

2876
	if (handle->sample && wakeup_events) {
2877
		int events = atomic_inc_return(&data->events);
P
Peter Zijlstra 已提交
2878
		if (events >= wakeup_events) {
2879
			atomic_sub(wakeup_events, &data->events);
2880
			atomic_set(&data->wakeup, 1);
P
Peter Zijlstra 已提交
2881
		}
2882 2883 2884
	}

	perf_output_unlock(handle);
2885
	rcu_read_unlock();
2886 2887
}

2888
static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2889 2890
{
	/*
2891
	 * only top level events have the pid namespace they were created in
2892
	 */
2893 2894
	if (event->parent)
		event = event->parent;
2895

2896
	return task_tgid_nr_ns(p, event->ns);
2897 2898
}

2899
static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2900 2901
{
	/*
2902
	 * only top level events have the pid namespace they were created in
2903
	 */
2904 2905
	if (event->parent)
		event = event->parent;
2906

2907
	return task_pid_nr_ns(p, event->ns);
2908 2909
}

2910
static void perf_output_read_one(struct perf_output_handle *handle,
2911
				 struct perf_event *event)
2912
{
2913
	u64 read_format = event->attr.read_format;
2914 2915 2916
	u64 values[4];
	int n = 0;

2917
	values[n++] = atomic64_read(&event->count);
2918
	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2919 2920
		values[n++] = event->total_time_enabled +
			atomic64_read(&event->child_total_time_enabled);
2921 2922
	}
	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2923 2924
		values[n++] = event->total_time_running +
			atomic64_read(&event->child_total_time_running);
2925 2926
	}
	if (read_format & PERF_FORMAT_ID)
2927
		values[n++] = primary_event_id(event);
2928 2929 2930 2931 2932

	perf_output_copy(handle, values, n * sizeof(u64));
}

/*
2933
 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2934 2935
 */
static void perf_output_read_group(struct perf_output_handle *handle,
2936
			    struct perf_event *event)
2937
{
2938 2939
	struct perf_event *leader = event->group_leader, *sub;
	u64 read_format = event->attr.read_format;
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950
	u64 values[5];
	int n = 0;

	values[n++] = 1 + leader->nr_siblings;

	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
		values[n++] = leader->total_time_enabled;

	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
		values[n++] = leader->total_time_running;

2951
	if (leader != event)
2952 2953 2954 2955
		leader->pmu->read(leader);

	values[n++] = atomic64_read(&leader->count);
	if (read_format & PERF_FORMAT_ID)
2956
		values[n++] = primary_event_id(leader);
2957 2958 2959

	perf_output_copy(handle, values, n * sizeof(u64));

2960
	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2961 2962
		n = 0;

2963
		if (sub != event)
2964 2965 2966 2967
			sub->pmu->read(sub);

		values[n++] = atomic64_read(&sub->count);
		if (read_format & PERF_FORMAT_ID)
2968
			values[n++] = primary_event_id(sub);
2969 2970 2971 2972 2973 2974

		perf_output_copy(handle, values, n * sizeof(u64));
	}
}

static void perf_output_read(struct perf_output_handle *handle,
2975
			     struct perf_event *event)
2976
{
2977 2978
	if (event->attr.read_format & PERF_FORMAT_GROUP)
		perf_output_read_group(handle, event);
2979
	else
2980
		perf_output_read_one(handle, event);
2981 2982
}

2983 2984 2985
void perf_output_sample(struct perf_output_handle *handle,
			struct perf_event_header *header,
			struct perf_sample_data *data,
2986
			struct perf_event *event)
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
{
	u64 sample_type = data->type;

	perf_output_put(handle, *header);

	if (sample_type & PERF_SAMPLE_IP)
		perf_output_put(handle, data->ip);

	if (sample_type & PERF_SAMPLE_TID)
		perf_output_put(handle, data->tid_entry);

	if (sample_type & PERF_SAMPLE_TIME)
		perf_output_put(handle, data->time);

	if (sample_type & PERF_SAMPLE_ADDR)
		perf_output_put(handle, data->addr);

	if (sample_type & PERF_SAMPLE_ID)
		perf_output_put(handle, data->id);

	if (sample_type & PERF_SAMPLE_STREAM_ID)
		perf_output_put(handle, data->stream_id);

	if (sample_type & PERF_SAMPLE_CPU)
		perf_output_put(handle, data->cpu_entry);

	if (sample_type & PERF_SAMPLE_PERIOD)
		perf_output_put(handle, data->period);

	if (sample_type & PERF_SAMPLE_READ)
3017
		perf_output_read(handle, event);
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054

	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
		if (data->callchain) {
			int size = 1;

			if (data->callchain)
				size += data->callchain->nr;

			size *= sizeof(u64);

			perf_output_copy(handle, data->callchain, size);
		} else {
			u64 nr = 0;
			perf_output_put(handle, nr);
		}
	}

	if (sample_type & PERF_SAMPLE_RAW) {
		if (data->raw) {
			perf_output_put(handle, data->raw->size);
			perf_output_copy(handle, data->raw->data,
					 data->raw->size);
		} else {
			struct {
				u32	size;
				u32	data;
			} raw = {
				.size = sizeof(u32),
				.data = 0,
			};
			perf_output_put(handle, raw);
		}
	}
}

void perf_prepare_sample(struct perf_event_header *header,
			 struct perf_sample_data *data,
3055
			 struct perf_event *event,
3056
			 struct pt_regs *regs)
3057
{
3058
	u64 sample_type = event->attr.sample_type;
3059

3060
	data->type = sample_type;
3061

3062
	header->type = PERF_RECORD_SAMPLE;
3063 3064 3065 3066
	header->size = sizeof(*header);

	header->misc = 0;
	header->misc |= perf_misc_flags(regs);
3067

3068
	if (sample_type & PERF_SAMPLE_IP) {
3069 3070 3071
		data->ip = perf_instruction_pointer(regs);

		header->size += sizeof(data->ip);
3072
	}
3073

3074
	if (sample_type & PERF_SAMPLE_TID) {
3075
		/* namespace issues */
3076 3077
		data->tid_entry.pid = perf_event_pid(event, current);
		data->tid_entry.tid = perf_event_tid(event, current);
3078

3079
		header->size += sizeof(data->tid_entry);
3080 3081
	}

3082
	if (sample_type & PERF_SAMPLE_TIME) {
P
Peter Zijlstra 已提交
3083
		data->time = perf_clock();
3084

3085
		header->size += sizeof(data->time);
3086 3087
	}

3088
	if (sample_type & PERF_SAMPLE_ADDR)
3089
		header->size += sizeof(data->addr);
3090

3091
	if (sample_type & PERF_SAMPLE_ID) {
3092
		data->id = primary_event_id(event);
3093

3094 3095 3096 3097
		header->size += sizeof(data->id);
	}

	if (sample_type & PERF_SAMPLE_STREAM_ID) {
3098
		data->stream_id = event->id;
3099 3100 3101

		header->size += sizeof(data->stream_id);
	}
3102

3103
	if (sample_type & PERF_SAMPLE_CPU) {
3104 3105
		data->cpu_entry.cpu		= raw_smp_processor_id();
		data->cpu_entry.reserved	= 0;
3106

3107
		header->size += sizeof(data->cpu_entry);
3108 3109
	}

3110
	if (sample_type & PERF_SAMPLE_PERIOD)
3111
		header->size += sizeof(data->period);
3112

3113
	if (sample_type & PERF_SAMPLE_READ)
3114
		header->size += perf_event_read_size(event);
3115

3116
	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3117
		int size = 1;
3118

3119 3120 3121 3122 3123 3124
		data->callchain = perf_callchain(regs);

		if (data->callchain)
			size += data->callchain->nr;

		header->size += size * sizeof(u64);
3125 3126
	}

3127
	if (sample_type & PERF_SAMPLE_RAW) {
3128 3129 3130 3131 3132 3133 3134 3135
		int size = sizeof(u32);

		if (data->raw)
			size += data->raw->size;
		else
			size += sizeof(u32);

		WARN_ON_ONCE(size & (sizeof(u64)-1));
3136
		header->size += size;
3137
	}
3138
}
3139

3140
static void perf_event_output(struct perf_event *event, int nmi,
3141 3142 3143 3144 3145
				struct perf_sample_data *data,
				struct pt_regs *regs)
{
	struct perf_output_handle handle;
	struct perf_event_header header;
3146

3147
	perf_prepare_sample(&header, data, event, regs);
P
Peter Zijlstra 已提交
3148

3149
	if (perf_output_begin(&handle, event, header.size, nmi, 1))
3150
		return;
3151

3152
	perf_output_sample(&handle, &header, data, event);
3153

3154
	perf_output_end(&handle);
3155 3156
}

3157
/*
3158
 * read event_id
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
 */

struct perf_read_event {
	struct perf_event_header	header;

	u32				pid;
	u32				tid;
};

static void
3169
perf_event_read_event(struct perf_event *event,
3170 3171 3172
			struct task_struct *task)
{
	struct perf_output_handle handle;
3173
	struct perf_read_event read_event = {
3174
		.header = {
3175
			.type = PERF_RECORD_READ,
3176
			.misc = 0,
3177
			.size = sizeof(read_event) + perf_event_read_size(event),
3178
		},
3179 3180
		.pid = perf_event_pid(event, task),
		.tid = perf_event_tid(event, task),
3181
	};
3182
	int ret;
3183

3184
	ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3185 3186 3187
	if (ret)
		return;

3188
	perf_output_put(&handle, read_event);
3189
	perf_output_read(&handle, event);
3190

3191 3192 3193
	perf_output_end(&handle);
}

P
Peter Zijlstra 已提交
3194
/*
P
Peter Zijlstra 已提交
3195 3196 3197
 * task tracking -- fork/exit
 *
 * enabled by: attr.comm | attr.mmap | attr.task
P
Peter Zijlstra 已提交
3198 3199
 */

P
Peter Zijlstra 已提交
3200
struct perf_task_event {
3201
	struct task_struct		*task;
3202
	struct perf_event_context	*task_ctx;
P
Peter Zijlstra 已提交
3203 3204 3205 3206 3207 3208

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				ppid;
P
Peter Zijlstra 已提交
3209 3210
		u32				tid;
		u32				ptid;
3211
		u64				time;
3212
	} event_id;
P
Peter Zijlstra 已提交
3213 3214
};

3215
static void perf_event_task_output(struct perf_event *event,
P
Peter Zijlstra 已提交
3216
				     struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3217 3218
{
	struct perf_output_handle handle;
3219
	int size;
P
Peter Zijlstra 已提交
3220
	struct task_struct *task = task_event->task;
3221 3222
	int ret;

3223 3224
	size  = task_event->event_id.header.size;
	ret = perf_output_begin(&handle, event, size, 0, 0);
P
Peter Zijlstra 已提交
3225 3226 3227 3228

	if (ret)
		return;

3229 3230
	task_event->event_id.pid = perf_event_pid(event, task);
	task_event->event_id.ppid = perf_event_pid(event, current);
P
Peter Zijlstra 已提交
3231

3232 3233
	task_event->event_id.tid = perf_event_tid(event, task);
	task_event->event_id.ptid = perf_event_tid(event, current);
P
Peter Zijlstra 已提交
3234

3235
	task_event->event_id.time = perf_clock();
3236

3237
	perf_output_put(&handle, task_event->event_id);
3238

P
Peter Zijlstra 已提交
3239 3240 3241
	perf_output_end(&handle);
}

3242
static int perf_event_task_match(struct perf_event *event)
P
Peter Zijlstra 已提交
3243
{
3244
	if (event->attr.comm || event->attr.mmap || event->attr.task)
P
Peter Zijlstra 已提交
3245 3246 3247 3248 3249
		return 1;

	return 0;
}

3250
static void perf_event_task_ctx(struct perf_event_context *ctx,
P
Peter Zijlstra 已提交
3251
				  struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3252
{
3253
	struct perf_event *event;
P
Peter Zijlstra 已提交
3254

3255 3256 3257
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_task_match(event))
			perf_event_task_output(event, task_event);
P
Peter Zijlstra 已提交
3258 3259 3260
	}
}

3261
static void perf_event_task_event(struct perf_task_event *task_event)
P
Peter Zijlstra 已提交
3262 3263
{
	struct perf_cpu_context *cpuctx;
3264
	struct perf_event_context *ctx = task_event->task_ctx;
P
Peter Zijlstra 已提交
3265

3266
	rcu_read_lock();
P
Peter Zijlstra 已提交
3267
	cpuctx = &get_cpu_var(perf_cpu_context);
3268
	perf_event_task_ctx(&cpuctx->ctx, task_event);
P
Peter Zijlstra 已提交
3269 3270
	put_cpu_var(perf_cpu_context);

3271
	if (!ctx)
3272
		ctx = rcu_dereference(task_event->task->perf_event_ctxp);
P
Peter Zijlstra 已提交
3273
	if (ctx)
3274
		perf_event_task_ctx(ctx, task_event);
P
Peter Zijlstra 已提交
3275 3276 3277
	rcu_read_unlock();
}

3278 3279
static void perf_event_task(struct task_struct *task,
			      struct perf_event_context *task_ctx,
3280
			      int new)
P
Peter Zijlstra 已提交
3281
{
P
Peter Zijlstra 已提交
3282
	struct perf_task_event task_event;
P
Peter Zijlstra 已提交
3283

3284 3285 3286
	if (!atomic_read(&nr_comm_events) &&
	    !atomic_read(&nr_mmap_events) &&
	    !atomic_read(&nr_task_events))
P
Peter Zijlstra 已提交
3287 3288
		return;

P
Peter Zijlstra 已提交
3289
	task_event = (struct perf_task_event){
3290 3291
		.task	  = task,
		.task_ctx = task_ctx,
3292
		.event_id    = {
P
Peter Zijlstra 已提交
3293
			.header = {
3294
				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3295
				.misc = 0,
3296
				.size = sizeof(task_event.event_id),
P
Peter Zijlstra 已提交
3297
			},
3298 3299
			/* .pid  */
			/* .ppid */
P
Peter Zijlstra 已提交
3300 3301
			/* .tid  */
			/* .ptid */
P
Peter Zijlstra 已提交
3302 3303 3304
		},
	};

3305
	perf_event_task_event(&task_event);
P
Peter Zijlstra 已提交
3306 3307
}

3308
void perf_event_fork(struct task_struct *task)
P
Peter Zijlstra 已提交
3309
{
3310
	perf_event_task(task, NULL, 1);
P
Peter Zijlstra 已提交
3311 3312
}

3313 3314 3315 3316 3317
/*
 * comm tracking
 */

struct perf_comm_event {
3318 3319
	struct task_struct	*task;
	char			*comm;
3320 3321 3322 3323 3324 3325 3326
	int			comm_size;

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
3327
	} event_id;
3328 3329
};

3330
static void perf_event_comm_output(struct perf_event *event,
3331 3332 3333
				     struct perf_comm_event *comm_event)
{
	struct perf_output_handle handle;
3334 3335
	int size = comm_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3336 3337 3338 3339

	if (ret)
		return;

3340 3341
	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3342

3343
	perf_output_put(&handle, comm_event->event_id);
3344 3345 3346 3347 3348
	perf_output_copy(&handle, comm_event->comm,
				   comm_event->comm_size);
	perf_output_end(&handle);
}

3349
static int perf_event_comm_match(struct perf_event *event)
3350
{
3351
	if (event->attr.comm)
3352 3353 3354 3355 3356
		return 1;

	return 0;
}

3357
static void perf_event_comm_ctx(struct perf_event_context *ctx,
3358 3359
				  struct perf_comm_event *comm_event)
{
3360
	struct perf_event *event;
3361

3362 3363 3364
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_comm_match(event))
			perf_event_comm_output(event, comm_event);
3365 3366 3367
	}
}

3368
static void perf_event_comm_event(struct perf_comm_event *comm_event)
3369 3370
{
	struct perf_cpu_context *cpuctx;
3371
	struct perf_event_context *ctx;
3372
	unsigned int size;
3373
	char comm[TASK_COMM_LEN];
3374

3375 3376
	memset(comm, 0, sizeof(comm));
	strncpy(comm, comm_event->task->comm, sizeof(comm));
3377
	size = ALIGN(strlen(comm)+1, sizeof(u64));
3378 3379 3380 3381

	comm_event->comm = comm;
	comm_event->comm_size = size;

3382
	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3383

3384
	rcu_read_lock();
3385
	cpuctx = &get_cpu_var(perf_cpu_context);
3386
	perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3387
	put_cpu_var(perf_cpu_context);
3388 3389 3390 3391 3392

	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3393
	ctx = rcu_dereference(current->perf_event_ctxp);
3394
	if (ctx)
3395
		perf_event_comm_ctx(ctx, comm_event);
3396
	rcu_read_unlock();
3397 3398
}

3399
void perf_event_comm(struct task_struct *task)
3400
{
3401 3402
	struct perf_comm_event comm_event;

3403 3404
	if (task->perf_event_ctxp)
		perf_event_enable_on_exec(task);
3405

3406
	if (!atomic_read(&nr_comm_events))
3407
		return;
3408

3409
	comm_event = (struct perf_comm_event){
3410
		.task	= task,
3411 3412
		/* .comm      */
		/* .comm_size */
3413
		.event_id  = {
3414
			.header = {
3415
				.type = PERF_RECORD_COMM,
3416 3417 3418 3419 3420
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3421 3422 3423
		},
	};

3424
	perf_event_comm_event(&comm_event);
3425 3426
}

3427 3428 3429 3430 3431
/*
 * mmap tracking
 */

struct perf_mmap_event {
3432 3433 3434 3435
	struct vm_area_struct	*vma;

	const char		*file_name;
	int			file_size;
3436 3437 3438 3439 3440 3441 3442 3443 3444

	struct {
		struct perf_event_header	header;

		u32				pid;
		u32				tid;
		u64				start;
		u64				len;
		u64				pgoff;
3445
	} event_id;
3446 3447
};

3448
static void perf_event_mmap_output(struct perf_event *event,
3449 3450 3451
				     struct perf_mmap_event *mmap_event)
{
	struct perf_output_handle handle;
3452 3453
	int size = mmap_event->event_id.header.size;
	int ret = perf_output_begin(&handle, event, size, 0, 0);
3454 3455 3456 3457

	if (ret)
		return;

3458 3459
	mmap_event->event_id.pid = perf_event_pid(event, current);
	mmap_event->event_id.tid = perf_event_tid(event, current);
3460

3461
	perf_output_put(&handle, mmap_event->event_id);
3462 3463
	perf_output_copy(&handle, mmap_event->file_name,
				   mmap_event->file_size);
3464
	perf_output_end(&handle);
3465 3466
}

3467
static int perf_event_mmap_match(struct perf_event *event,
3468 3469
				   struct perf_mmap_event *mmap_event)
{
3470
	if (event->attr.mmap)
3471 3472 3473 3474 3475
		return 1;

	return 0;
}

3476
static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3477 3478
				  struct perf_mmap_event *mmap_event)
{
3479
	struct perf_event *event;
3480

3481 3482 3483
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
		if (perf_event_mmap_match(event, mmap_event))
			perf_event_mmap_output(event, mmap_event);
3484 3485 3486
	}
}

3487
static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3488 3489
{
	struct perf_cpu_context *cpuctx;
3490
	struct perf_event_context *ctx;
3491 3492
	struct vm_area_struct *vma = mmap_event->vma;
	struct file *file = vma->vm_file;
3493 3494 3495
	unsigned int size;
	char tmp[16];
	char *buf = NULL;
3496
	const char *name;
3497

3498 3499
	memset(tmp, 0, sizeof(tmp));

3500
	if (file) {
3501 3502 3503 3504 3505 3506
		/*
		 * d_path works from the end of the buffer backwards, so we
		 * need to add enough zero bytes after the string to handle
		 * the 64bit alignment we do later.
		 */
		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3507 3508 3509 3510
		if (!buf) {
			name = strncpy(tmp, "//enomem", sizeof(tmp));
			goto got_name;
		}
3511
		name = d_path(&file->f_path, buf, PATH_MAX);
3512 3513 3514 3515 3516
		if (IS_ERR(name)) {
			name = strncpy(tmp, "//toolong", sizeof(tmp));
			goto got_name;
		}
	} else {
3517 3518 3519
		if (arch_vma_name(mmap_event->vma)) {
			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
				       sizeof(tmp));
3520
			goto got_name;
3521
		}
3522 3523 3524 3525 3526 3527

		if (!vma->vm_mm) {
			name = strncpy(tmp, "[vdso]", sizeof(tmp));
			goto got_name;
		}

3528 3529 3530 3531 3532
		name = strncpy(tmp, "//anon", sizeof(tmp));
		goto got_name;
	}

got_name:
3533
	size = ALIGN(strlen(name)+1, sizeof(u64));
3534 3535 3536 3537

	mmap_event->file_name = name;
	mmap_event->file_size = size;

3538
	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3539

3540
	rcu_read_lock();
3541
	cpuctx = &get_cpu_var(perf_cpu_context);
3542
	perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3543 3544
	put_cpu_var(perf_cpu_context);

3545 3546 3547 3548
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3549
	ctx = rcu_dereference(current->perf_event_ctxp);
3550
	if (ctx)
3551
		perf_event_mmap_ctx(ctx, mmap_event);
3552 3553
	rcu_read_unlock();

3554 3555 3556
	kfree(buf);
}

3557
void __perf_event_mmap(struct vm_area_struct *vma)
3558
{
3559 3560
	struct perf_mmap_event mmap_event;

3561
	if (!atomic_read(&nr_mmap_events))
3562 3563 3564
		return;

	mmap_event = (struct perf_mmap_event){
3565
		.vma	= vma,
3566 3567
		/* .file_name */
		/* .file_size */
3568
		.event_id  = {
3569
			.header = {
3570
				.type = PERF_RECORD_MMAP,
3571 3572 3573 3574 3575
				.misc = 0,
				/* .size */
			},
			/* .pid */
			/* .tid */
3576 3577 3578
			.start  = vma->vm_start,
			.len    = vma->vm_end - vma->vm_start,
			.pgoff  = vma->vm_pgoff,
3579 3580 3581
		},
	};

3582
	perf_event_mmap_event(&mmap_event);
3583 3584
}

3585 3586 3587 3588
/*
 * IRQ throttle logging
 */

3589
static void perf_log_throttle(struct perf_event *event, int enable)
3590 3591 3592 3593 3594 3595 3596
{
	struct perf_output_handle handle;
	int ret;

	struct {
		struct perf_event_header	header;
		u64				time;
3597
		u64				id;
3598
		u64				stream_id;
3599 3600
	} throttle_event = {
		.header = {
3601
			.type = PERF_RECORD_THROTTLE,
3602 3603 3604
			.misc = 0,
			.size = sizeof(throttle_event),
		},
P
Peter Zijlstra 已提交
3605
		.time		= perf_clock(),
3606 3607
		.id		= primary_event_id(event),
		.stream_id	= event->id,
3608 3609
	};

3610
	if (enable)
3611
		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3612

3613
	ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3614 3615 3616 3617 3618 3619 3620
	if (ret)
		return;

	perf_output_put(&handle, throttle_event);
	perf_output_end(&handle);
}

3621
/*
3622
 * Generic event overflow handling, sampling.
3623 3624
 */

3625
static int __perf_event_overflow(struct perf_event *event, int nmi,
3626 3627
				   int throttle, struct perf_sample_data *data,
				   struct pt_regs *regs)
3628
{
3629 3630
	int events = atomic_read(&event->event_limit);
	struct hw_perf_event *hwc = &event->hw;
3631 3632
	int ret = 0;

3633
	throttle = (throttle && event->pmu->unthrottle != NULL);
3634

3635
	if (!throttle) {
3636
		hwc->interrupts++;
3637
	} else {
3638 3639
		if (hwc->interrupts != MAX_INTERRUPTS) {
			hwc->interrupts++;
3640
			if (HZ * hwc->interrupts >
3641
					(u64)sysctl_perf_event_sample_rate) {
3642
				hwc->interrupts = MAX_INTERRUPTS;
3643
				perf_log_throttle(event, 0);
3644 3645 3646 3647
				ret = 1;
			}
		} else {
			/*
3648
			 * Keep re-disabling events even though on the previous
3649
			 * pass we disabled it - just in case we raced with a
3650
			 * sched-in and the event got enabled again:
3651
			 */
3652 3653 3654
			ret = 1;
		}
	}
3655

3656
	if (event->attr.freq) {
P
Peter Zijlstra 已提交
3657
		u64 now = perf_clock();
3658 3659 3660 3661 3662
		s64 delta = now - hwc->freq_stamp;

		hwc->freq_stamp = now;

		if (delta > 0 && delta < TICK_NSEC)
3663
			perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3664 3665
	}

3666 3667
	/*
	 * XXX event_limit might not quite work as expected on inherited
3668
	 * events
3669 3670
	 */

3671 3672
	event->pending_kill = POLL_IN;
	if (events && atomic_dec_and_test(&event->event_limit)) {
3673
		ret = 1;
3674
		event->pending_kill = POLL_HUP;
3675
		if (nmi) {
3676 3677 3678
			event->pending_disable = 1;
			perf_pending_queue(&event->pending,
					   perf_pending_event);
3679
		} else
3680
			perf_event_disable(event);
3681 3682
	}

3683 3684 3685 3686 3687
	if (event->overflow_handler)
		event->overflow_handler(event, nmi, data, regs);
	else
		perf_event_output(event, nmi, data, regs);

3688
	return ret;
3689 3690
}

3691
int perf_event_overflow(struct perf_event *event, int nmi,
3692 3693
			  struct perf_sample_data *data,
			  struct pt_regs *regs)
3694
{
3695
	return __perf_event_overflow(event, nmi, 1, data, regs);
3696 3697
}

3698
/*
3699
 * Generic software event infrastructure
3700 3701
 */

3702
/*
3703 3704
 * We directly increment event->count and keep a second value in
 * event->hw.period_left to count intervals. This period event
3705 3706 3707 3708
 * is kept in the range [-sample_period, 0] so that we can use the
 * sign as trigger.
 */

3709
static u64 perf_swevent_set_period(struct perf_event *event)
3710
{
3711
	struct hw_perf_event *hwc = &event->hw;
3712 3713 3714 3715 3716
	u64 period = hwc->last_period;
	u64 nr, offset;
	s64 old, val;

	hwc->last_period = hwc->sample_period;
3717 3718

again:
3719 3720 3721
	old = val = atomic64_read(&hwc->period_left);
	if (val < 0)
		return 0;
3722

3723 3724 3725 3726 3727
	nr = div64_u64(period + val, period);
	offset = nr * period;
	val -= offset;
	if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
		goto again;
3728

3729
	return nr;
3730 3731
}

3732
static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3733 3734
				    int nmi, struct perf_sample_data *data,
				    struct pt_regs *regs)
3735
{
3736
	struct hw_perf_event *hwc = &event->hw;
3737
	int throttle = 0;
3738

3739
	data->period = event->hw.last_period;
3740 3741
	if (!overflow)
		overflow = perf_swevent_set_period(event);
3742

3743 3744
	if (hwc->interrupts == MAX_INTERRUPTS)
		return;
3745

3746
	for (; overflow; overflow--) {
3747
		if (__perf_event_overflow(event, nmi, throttle,
3748
					    data, regs)) {
3749 3750 3751 3752 3753 3754
			/*
			 * We inhibit the overflow from happening when
			 * hwc->interrupts == MAX_INTERRUPTS.
			 */
			break;
		}
3755
		throttle = 1;
3756
	}
3757 3758
}

3759
static void perf_swevent_unthrottle(struct perf_event *event)
3760 3761
{
	/*
3762
	 * Nothing to do, we already reset hwc->interrupts.
3763
	 */
3764
}
3765

3766
static void perf_swevent_add(struct perf_event *event, u64 nr,
3767 3768
			       int nmi, struct perf_sample_data *data,
			       struct pt_regs *regs)
3769
{
3770
	struct hw_perf_event *hwc = &event->hw;
3771

3772
	atomic64_add(nr, &event->count);
3773

3774 3775 3776
	if (!regs)
		return;

3777 3778
	if (!hwc->sample_period)
		return;
3779

3780 3781 3782 3783
	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
		return perf_swevent_overflow(event, 1, nmi, data, regs);

	if (atomic64_add_negative(nr, &hwc->period_left))
3784
		return;
3785

3786
	perf_swevent_overflow(event, 0, nmi, data, regs);
3787 3788
}

3789
static int perf_swevent_is_counting(struct perf_event *event)
3790
{
3791
	/*
3792
	 * The event is active, we're good!
3793
	 */
3794
	if (event->state == PERF_EVENT_STATE_ACTIVE)
3795 3796
		return 1;

3797
	/*
3798
	 * The event is off/error, not counting.
3799
	 */
3800
	if (event->state != PERF_EVENT_STATE_INACTIVE)
3801 3802 3803
		return 0;

	/*
3804
	 * The event is inactive, if the context is active
3805 3806
	 * we're part of a group that didn't make it on the 'pmu',
	 * not counting.
3807
	 */
3808
	if (event->ctx->is_active)
3809 3810 3811 3812 3813 3814 3815 3816
		return 0;

	/*
	 * We're inactive and the context is too, this means the
	 * task is scheduled out, we're counting events that happen
	 * to us, like migration events.
	 */
	return 1;
3817 3818
}

L
Li Zefan 已提交
3819 3820 3821
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data);

3822
static int perf_swevent_match(struct perf_event *event,
P
Peter Zijlstra 已提交
3823
				enum perf_type_id type,
L
Li Zefan 已提交
3824 3825 3826
				u32 event_id,
				struct perf_sample_data *data,
				struct pt_regs *regs)
3827
{
3828
	if (!perf_swevent_is_counting(event))
3829 3830
		return 0;

3831
	if (event->attr.type != type)
3832
		return 0;
3833
	if (event->attr.config != event_id)
3834 3835
		return 0;

3836
	if (regs) {
3837
		if (event->attr.exclude_user && user_mode(regs))
3838
			return 0;
3839

3840
		if (event->attr.exclude_kernel && !user_mode(regs))
3841 3842
			return 0;
	}
3843

L
Li Zefan 已提交
3844 3845 3846 3847
	if (event->attr.type == PERF_TYPE_TRACEPOINT &&
	    !perf_tp_event_match(event, data))
		return 0;

3848 3849 3850
	return 1;
}

3851
static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3852
				     enum perf_type_id type,
3853
				     u32 event_id, u64 nr, int nmi,
3854 3855
				     struct perf_sample_data *data,
				     struct pt_regs *regs)
3856
{
3857
	struct perf_event *event;
3858

3859
	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
L
Li Zefan 已提交
3860
		if (perf_swevent_match(event, type, event_id, data, regs))
3861
			perf_swevent_add(event, nr, nmi, data, regs);
3862 3863 3864
	}
}

3865
static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
P
Peter Zijlstra 已提交
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
{
	if (in_nmi())
		return &cpuctx->recursion[3];

	if (in_irq())
		return &cpuctx->recursion[2];

	if (in_softirq())
		return &cpuctx->recursion[1];

	return &cpuctx->recursion[0];
}

3879
static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3880
				    u64 nr, int nmi,
3881 3882
				    struct perf_sample_data *data,
				    struct pt_regs *regs)
3883 3884
{
	struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3885 3886
	int *recursion = perf_swevent_recursion_context(cpuctx);
	struct perf_event_context *ctx;
P
Peter Zijlstra 已提交
3887 3888 3889 3890 3891 3892

	if (*recursion)
		goto out;

	(*recursion)++;
	barrier();
3893

3894
	rcu_read_lock();
3895
	perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3896
				 nr, nmi, data, regs);
3897 3898 3899 3900
	/*
	 * doesn't really matter which of the child contexts the
	 * events ends up in.
	 */
3901
	ctx = rcu_dereference(current->perf_event_ctxp);
3902
	if (ctx)
3903
		perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3904
	rcu_read_unlock();
3905

P
Peter Zijlstra 已提交
3906 3907 3908 3909
	barrier();
	(*recursion)--;

out:
3910 3911 3912
	put_cpu_var(perf_cpu_context);
}

3913
void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3914
			    struct pt_regs *regs, u64 addr)
3915
{
3916 3917 3918 3919
	struct perf_sample_data data = {
		.addr = addr,
	};

3920
	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3921
				&data, regs);
3922 3923
}

3924
static void perf_swevent_read(struct perf_event *event)
3925 3926 3927
{
}

3928
static int perf_swevent_enable(struct perf_event *event)
3929
{
3930
	struct hw_perf_event *hwc = &event->hw;
3931 3932 3933

	if (hwc->sample_period) {
		hwc->last_period = hwc->sample_period;
3934
		perf_swevent_set_period(event);
3935
	}
3936 3937 3938
	return 0;
}

3939
static void perf_swevent_disable(struct perf_event *event)
3940 3941 3942
{
}

3943
static const struct pmu perf_ops_generic = {
3944 3945 3946 3947
	.enable		= perf_swevent_enable,
	.disable	= perf_swevent_disable,
	.read		= perf_swevent_read,
	.unthrottle	= perf_swevent_unthrottle,
3948 3949
};

3950
/*
3951
 * hrtimer based swevent callback
3952 3953
 */

3954
static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3955 3956 3957
{
	enum hrtimer_restart ret = HRTIMER_RESTART;
	struct perf_sample_data data;
3958
	struct pt_regs *regs;
3959
	struct perf_event *event;
3960 3961
	u64 period;

3962 3963
	event	= container_of(hrtimer, struct perf_event, hw.hrtimer);
	event->pmu->read(event);
3964 3965

	data.addr = 0;
3966
	regs = get_irq_regs();
3967 3968 3969 3970
	/*
	 * In case we exclude kernel IPs or are somehow not in interrupt
	 * context, provide the next best thing, the user IP.
	 */
3971 3972
	if ((event->attr.exclude_kernel || !regs) &&
			!event->attr.exclude_user)
3973
		regs = task_pt_regs(current);
3974

3975
	if (regs) {
3976 3977 3978
		if (!(event->attr.exclude_idle && current->pid == 0))
			if (perf_event_overflow(event, 0, &data, regs))
				ret = HRTIMER_NORESTART;
3979 3980
	}

3981
	period = max_t(u64, 10000, event->hw.sample_period);
3982 3983 3984 3985 3986
	hrtimer_forward_now(hrtimer, ns_to_ktime(period));

	return ret;
}

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
static void perf_swevent_start_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	hwc->hrtimer.function = perf_swevent_hrtimer;
	if (hwc->sample_period) {
		u64 period;

		if (hwc->remaining) {
			if (hwc->remaining < 0)
				period = 10000;
			else
				period = hwc->remaining;
			hwc->remaining = 0;
		} else {
			period = max_t(u64, 10000, hwc->sample_period);
		}
		__hrtimer_start_range_ns(&hwc->hrtimer,
				ns_to_ktime(period), 0,
				HRTIMER_MODE_REL, 0);
	}
}

static void perf_swevent_cancel_hrtimer(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (hwc->sample_period) {
		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
		hwc->remaining = ktime_to_ns(remaining);

		hrtimer_cancel(&hwc->hrtimer);
	}
}

4023
/*
4024
 * Software event: cpu wall time clock
4025 4026
 */

4027
static void cpu_clock_perf_event_update(struct perf_event *event)
4028 4029 4030 4031 4032 4033
{
	int cpu = raw_smp_processor_id();
	s64 prev;
	u64 now;

	now = cpu_clock(cpu);
4034 4035 4036
	prev = atomic64_read(&event->hw.prev_count);
	atomic64_set(&event->hw.prev_count, now);
	atomic64_add(now - prev, &event->count);
4037 4038
}

4039
static int cpu_clock_perf_event_enable(struct perf_event *event)
4040
{
4041
	struct hw_perf_event *hwc = &event->hw;
4042 4043 4044
	int cpu = raw_smp_processor_id();

	atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4045
	perf_swevent_start_hrtimer(event);
4046 4047 4048 4049

	return 0;
}

4050
static void cpu_clock_perf_event_disable(struct perf_event *event)
4051
{
4052
	perf_swevent_cancel_hrtimer(event);
4053
	cpu_clock_perf_event_update(event);
4054 4055
}

4056
static void cpu_clock_perf_event_read(struct perf_event *event)
4057
{
4058
	cpu_clock_perf_event_update(event);
4059 4060
}

4061
static const struct pmu perf_ops_cpu_clock = {
4062 4063 4064
	.enable		= cpu_clock_perf_event_enable,
	.disable	= cpu_clock_perf_event_disable,
	.read		= cpu_clock_perf_event_read,
4065 4066
};

4067
/*
4068
 * Software event: task time clock
4069 4070
 */

4071
static void task_clock_perf_event_update(struct perf_event *event, u64 now)
I
Ingo Molnar 已提交
4072
{
4073
	u64 prev;
I
Ingo Molnar 已提交
4074 4075
	s64 delta;

4076
	prev = atomic64_xchg(&event->hw.prev_count, now);
I
Ingo Molnar 已提交
4077
	delta = now - prev;
4078
	atomic64_add(delta, &event->count);
4079 4080
}

4081
static int task_clock_perf_event_enable(struct perf_event *event)
I
Ingo Molnar 已提交
4082
{
4083
	struct hw_perf_event *hwc = &event->hw;
4084 4085
	u64 now;

4086
	now = event->ctx->time;
4087

4088
	atomic64_set(&hwc->prev_count, now);
4089 4090

	perf_swevent_start_hrtimer(event);
4091 4092

	return 0;
I
Ingo Molnar 已提交
4093 4094
}

4095
static void task_clock_perf_event_disable(struct perf_event *event)
4096
{
4097
	perf_swevent_cancel_hrtimer(event);
4098
	task_clock_perf_event_update(event, event->ctx->time);
4099

4100
}
I
Ingo Molnar 已提交
4101

4102
static void task_clock_perf_event_read(struct perf_event *event)
4103
{
4104 4105 4106
	u64 time;

	if (!in_nmi()) {
4107 4108
		update_context_time(event->ctx);
		time = event->ctx->time;
4109 4110
	} else {
		u64 now = perf_clock();
4111 4112
		u64 delta = now - event->ctx->timestamp;
		time = event->ctx->time + delta;
4113 4114
	}

4115
	task_clock_perf_event_update(event, time);
4116 4117
}

4118
static const struct pmu perf_ops_task_clock = {
4119 4120 4121
	.enable		= task_clock_perf_event_enable,
	.disable	= task_clock_perf_event_disable,
	.read		= task_clock_perf_event_read,
4122 4123
};

4124
#ifdef CONFIG_EVENT_PROFILE
L
Li Zefan 已提交
4125

4126
void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4127
			  int entry_size)
4128
{
4129
	struct perf_raw_record raw = {
4130
		.size = entry_size,
4131
		.data = record,
4132 4133
	};

4134
	struct perf_sample_data data = {
4135
		.addr = addr,
4136
		.raw = &raw,
4137
	};
4138

4139 4140 4141 4142
	struct pt_regs *regs = get_irq_regs();

	if (!regs)
		regs = task_pt_regs(current);
4143

4144
	do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4145
				&data, regs);
4146
}
4147
EXPORT_SYMBOL_GPL(perf_tp_event);
4148

L
Li Zefan 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157
static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	void *record = data->raw->data;

	if (likely(!event->filter) || filter_match_preds(event->filter, record))
		return 1;
	return 0;
}
4158

4159
static void tp_perf_event_destroy(struct perf_event *event)
4160
{
4161
	ftrace_profile_disable(event->attr.config);
4162 4163
}

4164
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4165
{
4166 4167 4168 4169
	/*
	 * Raw tracepoint data is a severe data leak, only allow root to
	 * have these.
	 */
4170
	if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4171
			perf_paranoid_tracepoint_raw() &&
4172 4173 4174
			!capable(CAP_SYS_ADMIN))
		return ERR_PTR(-EPERM);

4175
	if (ftrace_profile_enable(event->attr.config))
4176 4177
		return NULL;

4178
	event->destroy = tp_perf_event_destroy;
4179 4180 4181

	return &perf_ops_generic;
}
L
Li Zefan 已提交
4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	char *filter_str;
	int ret;

	if (event->attr.type != PERF_TYPE_TRACEPOINT)
		return -EINVAL;

	filter_str = strndup_user(arg, PAGE_SIZE);
	if (IS_ERR(filter_str))
		return PTR_ERR(filter_str);

	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);

	kfree(filter_str);
	return ret;
}

static void perf_event_free_filter(struct perf_event *event)
{
	ftrace_profile_free_filter(event);
}

4206
#else
L
Li Zefan 已提交
4207 4208 4209 4210 4211 4212 4213

static int perf_tp_event_match(struct perf_event *event,
				struct perf_sample_data *data)
{
	return 1;
}

4214
static const struct pmu *tp_perf_event_init(struct perf_event *event)
4215 4216 4217
{
	return NULL;
}
L
Li Zefan 已提交
4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228

static int perf_event_set_filter(struct perf_event *event, void __user *arg)
{
	return -ENOENT;
}

static void perf_event_free_filter(struct perf_event *event)
{
}

#endif /* CONFIG_EVENT_PROFILE */
4229

4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274
#ifdef CONFIG_HAVE_HW_BREAKPOINT
static void bp_perf_event_destroy(struct perf_event *event)
{
	release_bp_slot(event);
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	int err;
	/*
	 * The breakpoint is already filled if we haven't created the counter
	 * through perf syscall
	 * FIXME: manage to get trigerred to NULL if it comes from syscalls
	 */
	if (!bp->callback)
		err = register_perf_hw_breakpoint(bp);
	else
		err = __register_perf_hw_breakpoint(bp);
	if (err)
		return ERR_PTR(err);

	bp->destroy = bp_perf_event_destroy;

	return &perf_ops_bp;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
	/* TODO */
}
#else
static void bp_perf_event_destroy(struct perf_event *event)
{
}

static const struct pmu *bp_perf_event_init(struct perf_event *bp)
{
	return NULL;
}

void perf_bp_event(struct perf_event *bp, void *regs)
{
}
#endif

4275
atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4276

4277
static void sw_perf_event_destroy(struct perf_event *event)
4278
{
4279
	u64 event_id = event->attr.config;
4280

4281
	WARN_ON(event->parent);
4282

4283
	atomic_dec(&perf_swevent_enabled[event_id]);
4284 4285
}

4286
static const struct pmu *sw_perf_event_init(struct perf_event *event)
4287
{
4288
	const struct pmu *pmu = NULL;
4289
	u64 event_id = event->attr.config;
4290

4291
	/*
4292
	 * Software events (currently) can't in general distinguish
4293 4294 4295 4296 4297
	 * between user, kernel and hypervisor events.
	 * However, context switches and cpu migrations are considered
	 * to be kernel events, and page faults are never hypervisor
	 * events.
	 */
4298
	switch (event_id) {
4299
	case PERF_COUNT_SW_CPU_CLOCK:
4300
		pmu = &perf_ops_cpu_clock;
4301

4302
		break;
4303
	case PERF_COUNT_SW_TASK_CLOCK:
4304
		/*
4305 4306
		 * If the user instantiates this as a per-cpu event,
		 * use the cpu_clock event instead.
4307
		 */
4308
		if (event->ctx->task)
4309
			pmu = &perf_ops_task_clock;
4310
		else
4311
			pmu = &perf_ops_cpu_clock;
4312

4313
		break;
4314 4315 4316 4317 4318
	case PERF_COUNT_SW_PAGE_FAULTS:
	case PERF_COUNT_SW_PAGE_FAULTS_MIN:
	case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
	case PERF_COUNT_SW_CONTEXT_SWITCHES:
	case PERF_COUNT_SW_CPU_MIGRATIONS:
4319 4320
	case PERF_COUNT_SW_ALIGNMENT_FAULTS:
	case PERF_COUNT_SW_EMULATION_FAULTS:
4321 4322 4323
		if (!event->parent) {
			atomic_inc(&perf_swevent_enabled[event_id]);
			event->destroy = sw_perf_event_destroy;
4324
		}
4325
		pmu = &perf_ops_generic;
4326
		break;
4327
	}
4328

4329
	return pmu;
4330 4331
}

T
Thomas Gleixner 已提交
4332
/*
4333
 * Allocate and initialize a event structure
T
Thomas Gleixner 已提交
4334
 */
4335 4336
static struct perf_event *
perf_event_alloc(struct perf_event_attr *attr,
4337
		   int cpu,
4338 4339 4340
		   struct perf_event_context *ctx,
		   struct perf_event *group_leader,
		   struct perf_event *parent_event,
4341
		   perf_callback_t callback,
4342
		   gfp_t gfpflags)
T
Thomas Gleixner 已提交
4343
{
4344
	const struct pmu *pmu;
4345 4346
	struct perf_event *event;
	struct hw_perf_event *hwc;
4347
	long err;
T
Thomas Gleixner 已提交
4348

4349 4350
	event = kzalloc(sizeof(*event), gfpflags);
	if (!event)
4351
		return ERR_PTR(-ENOMEM);
T
Thomas Gleixner 已提交
4352

4353
	/*
4354
	 * Single events are their own group leaders, with an
4355 4356 4357
	 * empty sibling list:
	 */
	if (!group_leader)
4358
		group_leader = event;
4359

4360 4361
	mutex_init(&event->child_mutex);
	INIT_LIST_HEAD(&event->child_list);
4362

4363 4364 4365 4366
	INIT_LIST_HEAD(&event->group_entry);
	INIT_LIST_HEAD(&event->event_entry);
	INIT_LIST_HEAD(&event->sibling_list);
	init_waitqueue_head(&event->waitq);
T
Thomas Gleixner 已提交
4367

4368
	mutex_init(&event->mmap_mutex);
4369

4370 4371 4372 4373 4374 4375
	event->cpu		= cpu;
	event->attr		= *attr;
	event->group_leader	= group_leader;
	event->pmu		= NULL;
	event->ctx		= ctx;
	event->oncpu		= -1;
4376

4377
	event->parent		= parent_event;
4378

4379 4380
	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
	event->id		= atomic64_inc_return(&perf_event_id);
4381

4382
	event->state		= PERF_EVENT_STATE_INACTIVE;
4383

4384 4385 4386 4387 4388
	if (!callback && parent_event)
		callback = parent_event->callback;
	
	event->callback	= callback;

4389
	if (attr->disabled)
4390
		event->state = PERF_EVENT_STATE_OFF;
4391

4392
	pmu = NULL;
4393

4394
	hwc = &event->hw;
4395
	hwc->sample_period = attr->sample_period;
4396
	if (attr->freq && attr->sample_freq)
4397
		hwc->sample_period = 1;
4398
	hwc->last_period = hwc->sample_period;
4399 4400

	atomic64_set(&hwc->period_left, hwc->sample_period);
4401

4402
	/*
4403
	 * we currently do not support PERF_FORMAT_GROUP on inherited events
4404
	 */
4405
	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4406 4407
		goto done;

4408
	switch (attr->type) {
4409
	case PERF_TYPE_RAW:
4410
	case PERF_TYPE_HARDWARE:
4411
	case PERF_TYPE_HW_CACHE:
4412
		pmu = hw_perf_event_init(event);
4413 4414 4415
		break;

	case PERF_TYPE_SOFTWARE:
4416
		pmu = sw_perf_event_init(event);
4417 4418 4419
		break;

	case PERF_TYPE_TRACEPOINT:
4420
		pmu = tp_perf_event_init(event);
4421
		break;
4422

4423 4424 4425 4426 4427
	case PERF_TYPE_BREAKPOINT:
		pmu = bp_perf_event_init(event);
		break;


4428 4429
	default:
		break;
4430
	}
4431 4432
done:
	err = 0;
4433
	if (!pmu)
4434
		err = -EINVAL;
4435 4436
	else if (IS_ERR(pmu))
		err = PTR_ERR(pmu);
4437

4438
	if (err) {
4439 4440 4441
		if (event->ns)
			put_pid_ns(event->ns);
		kfree(event);
4442
		return ERR_PTR(err);
I
Ingo Molnar 已提交
4443
	}
4444

4445
	event->pmu = pmu;
T
Thomas Gleixner 已提交
4446

4447 4448 4449 4450 4451 4452 4453 4454
	if (!event->parent) {
		atomic_inc(&nr_events);
		if (event->attr.mmap)
			atomic_inc(&nr_mmap_events);
		if (event->attr.comm)
			atomic_inc(&nr_comm_events);
		if (event->attr.task)
			atomic_inc(&nr_task_events);
4455
	}
4456

4457
	return event;
T
Thomas Gleixner 已提交
4458 4459
}

4460 4461
static int perf_copy_attr(struct perf_event_attr __user *uattr,
			  struct perf_event_attr *attr)
4462 4463
{
	u32 size;
4464
	int ret;
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488

	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
		return -EFAULT;

	/*
	 * zero the full structure, so that a short copy will be nice.
	 */
	memset(attr, 0, sizeof(*attr));

	ret = get_user(size, &uattr->size);
	if (ret)
		return ret;

	if (size > PAGE_SIZE)	/* silly large */
		goto err_size;

	if (!size)		/* abi compat */
		size = PERF_ATTR_SIZE_VER0;

	if (size < PERF_ATTR_SIZE_VER0)
		goto err_size;

	/*
	 * If we're handed a bigger struct than we know of,
4489 4490 4491
	 * ensure all the unknown bits are 0 - i.e. new
	 * user-space does not rely on any kernel feature
	 * extensions we dont know about yet.
4492 4493
	 */
	if (size > sizeof(*attr)) {
4494 4495 4496
		unsigned char __user *addr;
		unsigned char __user *end;
		unsigned char val;
4497

4498 4499
		addr = (void __user *)uattr + sizeof(*attr);
		end  = (void __user *)uattr + size;
4500

4501
		for (; addr < end; addr++) {
4502 4503 4504 4505 4506 4507
			ret = get_user(val, addr);
			if (ret)
				return ret;
			if (val)
				goto err_size;
		}
4508
		size = sizeof(*attr);
4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539
	}

	ret = copy_from_user(attr, uattr, size);
	if (ret)
		return -EFAULT;

	/*
	 * If the type exists, the corresponding creation will verify
	 * the attr->config.
	 */
	if (attr->type >= PERF_TYPE_MAX)
		return -EINVAL;

	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
		return -EINVAL;

	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
		return -EINVAL;

	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
		return -EINVAL;

out:
	return ret;

err_size:
	put_user(sizeof(*attr), &uattr->size);
	ret = -E2BIG;
	goto out;
}

L
Li Zefan 已提交
4540
static int perf_event_set_output(struct perf_event *event, int output_fd)
4541
{
4542
	struct perf_event *output_event = NULL;
4543
	struct file *output_file = NULL;
4544
	struct perf_event *old_output;
4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557
	int fput_needed = 0;
	int ret = -EINVAL;

	if (!output_fd)
		goto set;

	output_file = fget_light(output_fd, &fput_needed);
	if (!output_file)
		return -EBADF;

	if (output_file->f_op != &perf_fops)
		goto out;

4558
	output_event = output_file->private_data;
4559 4560

	/* Don't chain output fds */
4561
	if (output_event->output)
4562 4563 4564
		goto out;

	/* Don't set an output fd when we already have an output channel */
4565
	if (event->data)
4566 4567 4568 4569 4570
		goto out;

	atomic_long_inc(&output_file->f_count);

set:
4571 4572 4573 4574
	mutex_lock(&event->mmap_mutex);
	old_output = event->output;
	rcu_assign_pointer(event->output, output_event);
	mutex_unlock(&event->mmap_mutex);
4575 4576 4577 4578

	if (old_output) {
		/*
		 * we need to make sure no existing perf_output_*()
4579
		 * is still referencing this event.
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590
		 */
		synchronize_rcu();
		fput(old_output->filp);
	}

	ret = 0;
out:
	fput_light(output_file, fput_needed);
	return ret;
}

T
Thomas Gleixner 已提交
4591
/**
4592
 * sys_perf_event_open - open a performance event, associate it to a task/cpu
I
Ingo Molnar 已提交
4593
 *
4594
 * @attr_uptr:	event_id type attributes for monitoring/sampling
T
Thomas Gleixner 已提交
4595
 * @pid:		target pid
I
Ingo Molnar 已提交
4596
 * @cpu:		target cpu
4597
 * @group_fd:		group leader event fd
T
Thomas Gleixner 已提交
4598
 */
4599 4600
SYSCALL_DEFINE5(perf_event_open,
		struct perf_event_attr __user *, attr_uptr,
4601
		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
T
Thomas Gleixner 已提交
4602
{
4603 4604 4605 4606
	struct perf_event *event, *group_leader;
	struct perf_event_attr attr;
	struct perf_event_context *ctx;
	struct file *event_file = NULL;
4607 4608
	struct file *group_file = NULL;
	int fput_needed = 0;
4609
	int fput_needed2 = 0;
4610
	int err;
T
Thomas Gleixner 已提交
4611

4612
	/* for future expandability... */
4613
	if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4614 4615
		return -EINVAL;

4616 4617 4618
	err = perf_copy_attr(attr_uptr, &attr);
	if (err)
		return err;
4619

4620 4621 4622 4623 4624
	if (!attr.exclude_kernel) {
		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
			return -EACCES;
	}

4625
	if (attr.freq) {
4626
		if (attr.sample_freq > sysctl_perf_event_sample_rate)
4627 4628 4629
			return -EINVAL;
	}

4630
	/*
I
Ingo Molnar 已提交
4631 4632 4633 4634 4635 4636 4637
	 * Get the target context (task or percpu):
	 */
	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
		return PTR_ERR(ctx);

	/*
4638
	 * Look up the group leader (we will attach this event to it):
4639 4640
	 */
	group_leader = NULL;
4641
	if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4642
		err = -EINVAL;
4643 4644
		group_file = fget_light(group_fd, &fput_needed);
		if (!group_file)
I
Ingo Molnar 已提交
4645
			goto err_put_context;
4646
		if (group_file->f_op != &perf_fops)
I
Ingo Molnar 已提交
4647
			goto err_put_context;
4648 4649 4650

		group_leader = group_file->private_data;
		/*
I
Ingo Molnar 已提交
4651 4652 4653 4654 4655 4656 4657 4658
		 * Do not allow a recursive hierarchy (this new sibling
		 * becoming part of another group-sibling):
		 */
		if (group_leader->group_leader != group_leader)
			goto err_put_context;
		/*
		 * Do not allow to attach to a group in a different
		 * task or CPU context:
4659
		 */
I
Ingo Molnar 已提交
4660 4661
		if (group_leader->ctx != ctx)
			goto err_put_context;
4662 4663 4664
		/*
		 * Only a group leader can be exclusive or pinned
		 */
4665
		if (attr.exclusive || attr.pinned)
4666
			goto err_put_context;
4667 4668
	}

4669
	event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4670
				     NULL, NULL, GFP_KERNEL);
4671 4672
	err = PTR_ERR(event);
	if (IS_ERR(event))
T
Thomas Gleixner 已提交
4673 4674
		goto err_put_context;

4675
	err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4676
	if (err < 0)
4677 4678
		goto err_free_put_context;

4679 4680
	event_file = fget_light(err, &fput_needed2);
	if (!event_file)
4681 4682
		goto err_free_put_context;

4683
	if (flags & PERF_FLAG_FD_OUTPUT) {
4684
		err = perf_event_set_output(event, group_fd);
4685 4686
		if (err)
			goto err_fput_free_put_context;
4687 4688
	}

4689
	event->filp = event_file;
4690
	WARN_ON_ONCE(ctx->parent_ctx);
4691
	mutex_lock(&ctx->mutex);
4692
	perf_install_in_context(ctx, event, cpu);
4693
	++ctx->generation;
4694
	mutex_unlock(&ctx->mutex);
4695

4696
	event->owner = current;
4697
	get_task_struct(current);
4698 4699 4700
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);
4701

4702
err_fput_free_put_context:
4703
	fput_light(event_file, fput_needed2);
T
Thomas Gleixner 已提交
4704

4705
err_free_put_context:
4706
	if (err < 0)
4707
		kfree(event);
T
Thomas Gleixner 已提交
4708 4709

err_put_context:
4710 4711 4712 4713
	if (err < 0)
		put_ctx(ctx);

	fput_light(group_file, fput_needed);
T
Thomas Gleixner 已提交
4714

4715
	return err;
T
Thomas Gleixner 已提交
4716 4717
}

4718 4719 4720 4721 4722 4723 4724 4725 4726
/**
 * perf_event_create_kernel_counter
 *
 * @attr: attributes of the counter to create
 * @cpu: cpu in which the counter is bound
 * @pid: task to profile
 */
struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4727
				 pid_t pid, perf_callback_t callback)
4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
{
	struct perf_event *event;
	struct perf_event_context *ctx;
	int err;

	/*
	 * Get the target context (task or percpu):
	 */

	ctx = find_get_context(pid, cpu);
	if (IS_ERR(ctx))
4739
		return NULL;
4740 4741

	event = perf_event_alloc(attr, cpu, ctx, NULL,
4742
				     NULL, callback, GFP_KERNEL);
4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
	err = PTR_ERR(event);
	if (IS_ERR(event))
		goto err_put_context;

	event->filp = NULL;
	WARN_ON_ONCE(ctx->parent_ctx);
	mutex_lock(&ctx->mutex);
	perf_install_in_context(ctx, event, cpu);
	++ctx->generation;
	mutex_unlock(&ctx->mutex);

	event->owner = current;
	get_task_struct(current);
	mutex_lock(&current->perf_event_mutex);
	list_add_tail(&event->owner_entry, &current->perf_event_list);
	mutex_unlock(&current->perf_event_mutex);

	return event;

err_put_context:
	if (err < 0)
		put_ctx(ctx);

	return NULL;
}
EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);

4770
/*
4771
 * inherit a event from parent task to child task:
4772
 */
4773 4774
static struct perf_event *
inherit_event(struct perf_event *parent_event,
4775
	      struct task_struct *parent,
4776
	      struct perf_event_context *parent_ctx,
4777
	      struct task_struct *child,
4778 4779
	      struct perf_event *group_leader,
	      struct perf_event_context *child_ctx)
4780
{
4781
	struct perf_event *child_event;
4782

4783
	/*
4784 4785
	 * Instead of creating recursive hierarchies of events,
	 * we link inherited events back to the original parent,
4786 4787 4788
	 * which has a filp for sure, which we use as the reference
	 * count:
	 */
4789 4790
	if (parent_event->parent)
		parent_event = parent_event->parent;
4791

4792 4793 4794
	child_event = perf_event_alloc(&parent_event->attr,
					   parent_event->cpu, child_ctx,
					   group_leader, parent_event,
4795
					   NULL, GFP_KERNEL);
4796 4797
	if (IS_ERR(child_event))
		return child_event;
4798
	get_ctx(child_ctx);
4799

4800
	/*
4801
	 * Make the child state follow the state of the parent event,
4802
	 * not its attr.disabled bit.  We hold the parent's mutex,
4803
	 * so we won't race with perf_event_{en, dis}able_family.
4804
	 */
4805 4806
	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
		child_event->state = PERF_EVENT_STATE_INACTIVE;
4807
	else
4808
		child_event->state = PERF_EVENT_STATE_OFF;
4809

4810 4811
	if (parent_event->attr.freq)
		child_event->hw.sample_period = parent_event->hw.sample_period;
4812

4813 4814
	child_event->overflow_handler = parent_event->overflow_handler;

4815 4816 4817
	/*
	 * Link it up in the child's context:
	 */
4818
	add_event_to_ctx(child_event, child_ctx);
4819 4820 4821

	/*
	 * Get a reference to the parent filp - we will fput it
4822
	 * when the child event exits. This is safe to do because
4823 4824 4825
	 * we are in the parent and we know that the filp still
	 * exists and has a nonzero count:
	 */
4826
	atomic_long_inc(&parent_event->filp->f_count);
4827

4828
	/*
4829
	 * Link this into the parent event's child list
4830
	 */
4831 4832 4833 4834
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_add_tail(&child_event->child_list, &parent_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4835

4836
	return child_event;
4837 4838
}

4839
static int inherit_group(struct perf_event *parent_event,
4840
	      struct task_struct *parent,
4841
	      struct perf_event_context *parent_ctx,
4842
	      struct task_struct *child,
4843
	      struct perf_event_context *child_ctx)
4844
{
4845 4846 4847
	struct perf_event *leader;
	struct perf_event *sub;
	struct perf_event *child_ctr;
4848

4849
	leader = inherit_event(parent_event, parent, parent_ctx,
4850
				 child, NULL, child_ctx);
4851 4852
	if (IS_ERR(leader))
		return PTR_ERR(leader);
4853 4854
	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
		child_ctr = inherit_event(sub, parent, parent_ctx,
4855 4856 4857
					    child, leader, child_ctx);
		if (IS_ERR(child_ctr))
			return PTR_ERR(child_ctr);
4858
	}
4859 4860 4861
	return 0;
}

4862
static void sync_child_event(struct perf_event *child_event,
4863
			       struct task_struct *child)
4864
{
4865
	struct perf_event *parent_event = child_event->parent;
4866
	u64 child_val;
4867

4868 4869
	if (child_event->attr.inherit_stat)
		perf_event_read_event(child_event, child);
4870

4871
	child_val = atomic64_read(&child_event->count);
4872 4873 4874 4875

	/*
	 * Add back the child's count to the parent's count:
	 */
4876 4877 4878 4879 4880
	atomic64_add(child_val, &parent_event->count);
	atomic64_add(child_event->total_time_enabled,
		     &parent_event->child_total_time_enabled);
	atomic64_add(child_event->total_time_running,
		     &parent_event->child_total_time_running);
4881 4882

	/*
4883
	 * Remove this event from the parent's list
4884
	 */
4885 4886 4887 4888
	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
	mutex_lock(&parent_event->child_mutex);
	list_del_init(&child_event->child_list);
	mutex_unlock(&parent_event->child_mutex);
4889 4890

	/*
4891
	 * Release the parent event, if this was the last
4892 4893
	 * reference to it.
	 */
4894
	fput(parent_event->filp);
4895 4896
}

4897
static void
4898 4899
__perf_event_exit_task(struct perf_event *child_event,
			 struct perf_event_context *child_ctx,
4900
			 struct task_struct *child)
4901
{
4902
	struct perf_event *parent_event;
4903

4904 4905
	update_event_times(child_event);
	perf_event_remove_from_context(child_event);
4906

4907
	parent_event = child_event->parent;
4908
	/*
4909
	 * It can happen that parent exits first, and has events
4910
	 * that are still around due to the child reference. These
4911
	 * events need to be zapped - but otherwise linger.
4912
	 */
4913 4914 4915
	if (parent_event) {
		sync_child_event(child_event, child);
		free_event(child_event);
4916
	}
4917 4918 4919
}

/*
4920
 * When a child task exits, feed back event values to parent events.
4921
 */
4922
void perf_event_exit_task(struct task_struct *child)
4923
{
4924 4925
	struct perf_event *child_event, *tmp;
	struct perf_event_context *child_ctx;
4926
	unsigned long flags;
4927

4928 4929
	if (likely(!child->perf_event_ctxp)) {
		perf_event_task(child, NULL, 0);
4930
		return;
P
Peter Zijlstra 已提交
4931
	}
4932

4933
	local_irq_save(flags);
4934 4935 4936 4937 4938 4939
	/*
	 * We can't reschedule here because interrupts are disabled,
	 * and either child is current or it is a task that can't be
	 * scheduled, so we are now safe from rescheduling changing
	 * our context.
	 */
4940 4941
	child_ctx = child->perf_event_ctxp;
	__perf_event_task_sched_out(child_ctx);
4942 4943 4944

	/*
	 * Take the context lock here so that if find_get_context is
4945
	 * reading child->perf_event_ctxp, we wait until it has
4946 4947 4948
	 * incremented the context's refcount before we do put_ctx below.
	 */
	spin_lock(&child_ctx->lock);
4949
	child->perf_event_ctxp = NULL;
4950 4951 4952
	/*
	 * If this context is a clone; unclone it so it can't get
	 * swapped to another process while we're removing all
4953
	 * the events from it.
4954 4955
	 */
	unclone_ctx(child_ctx);
P
Peter Zijlstra 已提交
4956 4957 4958
	spin_unlock_irqrestore(&child_ctx->lock, flags);

	/*
4959 4960 4961
	 * Report the task dead after unscheduling the events so that we
	 * won't get any samples after PERF_RECORD_EXIT. We can however still
	 * get a few PERF_RECORD_READ events.
P
Peter Zijlstra 已提交
4962
	 */
4963
	perf_event_task(child, child_ctx, 0);
4964

4965 4966 4967
	/*
	 * We can recurse on the same lock type through:
	 *
4968 4969 4970
	 *   __perf_event_exit_task()
	 *     sync_child_event()
	 *       fput(parent_event->filp)
4971 4972 4973 4974 4975 4976
	 *         perf_release()
	 *           mutex_lock(&ctx->mutex)
	 *
	 * But since its the parent context it won't be the same instance.
	 */
	mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4977

4978
again:
4979
	list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4980
				 group_entry)
4981
		__perf_event_exit_task(child_event, child_ctx, child);
4982 4983

	/*
4984
	 * If the last event was a group event, it will have appended all
4985 4986 4987
	 * its siblings to the list, but we obtained 'tmp' before that which
	 * will still point to the list head terminating the iteration.
	 */
4988
	if (!list_empty(&child_ctx->group_list))
4989
		goto again;
4990 4991 4992 4993

	mutex_unlock(&child_ctx->mutex);

	put_ctx(child_ctx);
4994 4995
}

4996 4997 4998 4999
/*
 * free an unexposed, unused context as created by inheritance by
 * init_task below, used by fork() in case of fail.
 */
5000
void perf_event_free_task(struct task_struct *task)
5001
{
5002 5003
	struct perf_event_context *ctx = task->perf_event_ctxp;
	struct perf_event *event, *tmp;
5004 5005 5006 5007 5008 5009

	if (!ctx)
		return;

	mutex_lock(&ctx->mutex);
again:
5010 5011
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
		struct perf_event *parent = event->parent;
5012 5013 5014 5015 5016

		if (WARN_ON_ONCE(!parent))
			continue;

		mutex_lock(&parent->child_mutex);
5017
		list_del_init(&event->child_list);
5018 5019 5020 5021
		mutex_unlock(&parent->child_mutex);

		fput(parent->filp);

5022 5023
		list_del_event(event, ctx);
		free_event(event);
5024 5025
	}

5026
	if (!list_empty(&ctx->group_list))
5027 5028 5029 5030 5031 5032 5033
		goto again;

	mutex_unlock(&ctx->mutex);

	put_ctx(ctx);
}

5034
/*
5035
 * Initialize the perf_event context in task_struct
5036
 */
5037
int perf_event_init_task(struct task_struct *child)
5038
{
5039 5040 5041
	struct perf_event_context *child_ctx, *parent_ctx;
	struct perf_event_context *cloned_ctx;
	struct perf_event *event;
5042
	struct task_struct *parent = current;
5043
	int inherited_all = 1;
5044
	int ret = 0;
5045

5046
	child->perf_event_ctxp = NULL;
5047

5048 5049
	mutex_init(&child->perf_event_mutex);
	INIT_LIST_HEAD(&child->perf_event_list);
5050

5051
	if (likely(!parent->perf_event_ctxp))
5052 5053
		return 0;

5054 5055
	/*
	 * This is executed from the parent task context, so inherit
5056
	 * events that have been marked for cloning.
5057
	 * First allocate and initialize a context for the child.
5058 5059
	 */

5060
	child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5061
	if (!child_ctx)
5062
		return -ENOMEM;
5063

5064 5065
	__perf_event_init_context(child_ctx, child);
	child->perf_event_ctxp = child_ctx;
5066
	get_task_struct(child);
5067

5068
	/*
5069 5070
	 * If the parent's context is a clone, pin it so it won't get
	 * swapped under us.
5071
	 */
5072 5073
	parent_ctx = perf_pin_task_context(parent);

5074 5075 5076 5077 5078 5079 5080
	/*
	 * No need to check if parent_ctx != NULL here; since we saw
	 * it non-NULL earlier, the only reason for it to become NULL
	 * is if we exit, and since we're currently in the middle of
	 * a fork we can't be exiting at the same time.
	 */

5081 5082 5083 5084
	/*
	 * Lock the parent list. No need to lock the child - not PID
	 * hashed yet and not running, so nobody can access it.
	 */
5085
	mutex_lock(&parent_ctx->mutex);
5086 5087 5088 5089 5090

	/*
	 * We dont have to disable NMIs - we are only looking at
	 * the list, not manipulating it:
	 */
5091
	list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5092

5093
		if (!event->attr.inherit) {
5094
			inherited_all = 0;
5095
			continue;
5096
		}
5097

5098
		ret = inherit_group(event, parent, parent_ctx,
5099 5100
					     child, child_ctx);
		if (ret) {
5101
			inherited_all = 0;
5102
			break;
5103 5104 5105 5106 5107 5108 5109
		}
	}

	if (inherited_all) {
		/*
		 * Mark the child context as a clone of the parent
		 * context, or of whatever the parent is a clone of.
5110 5111
		 * Note that if the parent is a clone, it could get
		 * uncloned at any point, but that doesn't matter
5112
		 * because the list of events and the generation
5113
		 * count can't have changed since we took the mutex.
5114
		 */
5115 5116 5117
		cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
		if (cloned_ctx) {
			child_ctx->parent_ctx = cloned_ctx;
5118
			child_ctx->parent_gen = parent_ctx->parent_gen;
5119 5120 5121 5122 5123
		} else {
			child_ctx->parent_ctx = parent_ctx;
			child_ctx->parent_gen = parent_ctx->generation;
		}
		get_ctx(child_ctx->parent_ctx);
5124 5125
	}

5126
	mutex_unlock(&parent_ctx->mutex);
5127

5128
	perf_unpin_context(parent_ctx);
5129

5130
	return ret;
5131 5132
}

5133
static void __cpuinit perf_event_init_cpu(int cpu)
T
Thomas Gleixner 已提交
5134
{
5135
	struct perf_cpu_context *cpuctx;
T
Thomas Gleixner 已提交
5136

5137
	cpuctx = &per_cpu(perf_cpu_context, cpu);
5138
	__perf_event_init_context(&cpuctx->ctx, NULL);
T
Thomas Gleixner 已提交
5139

5140
	spin_lock(&perf_resource_lock);
5141
	cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5142
	spin_unlock(&perf_resource_lock);
5143

5144
	hw_perf_event_setup(cpu);
T
Thomas Gleixner 已提交
5145 5146 5147
}

#ifdef CONFIG_HOTPLUG_CPU
5148
static void __perf_event_exit_cpu(void *info)
T
Thomas Gleixner 已提交
5149 5150
{
	struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5151 5152
	struct perf_event_context *ctx = &cpuctx->ctx;
	struct perf_event *event, *tmp;
T
Thomas Gleixner 已提交
5153

5154 5155
	list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
		__perf_event_remove_from_context(event);
T
Thomas Gleixner 已提交
5156
}
5157
static void perf_event_exit_cpu(int cpu)
T
Thomas Gleixner 已提交
5158
{
5159
	struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5160
	struct perf_event_context *ctx = &cpuctx->ctx;
5161 5162

	mutex_lock(&ctx->mutex);
5163
	smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5164
	mutex_unlock(&ctx->mutex);
T
Thomas Gleixner 已提交
5165 5166
}
#else
5167
static inline void perf_event_exit_cpu(int cpu) { }
T
Thomas Gleixner 已提交
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
#endif

static int __cpuinit
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
{
	unsigned int cpu = (long)hcpu;

	switch (action) {

	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
5179
		perf_event_init_cpu(cpu);
T
Thomas Gleixner 已提交
5180 5181
		break;

5182 5183
	case CPU_ONLINE:
	case CPU_ONLINE_FROZEN:
5184
		hw_perf_event_setup_online(cpu);
5185 5186
		break;

T
Thomas Gleixner 已提交
5187 5188
	case CPU_DOWN_PREPARE:
	case CPU_DOWN_PREPARE_FROZEN:
5189
		perf_event_exit_cpu(cpu);
T
Thomas Gleixner 已提交
5190 5191 5192 5193 5194 5195 5196 5197 5198
		break;

	default:
		break;
	}

	return NOTIFY_OK;
}

5199 5200 5201
/*
 * This has to have a higher priority than migration_notifier in sched.c.
 */
T
Thomas Gleixner 已提交
5202 5203
static struct notifier_block __cpuinitdata perf_cpu_nb = {
	.notifier_call		= perf_cpu_notify,
5204
	.priority		= 20,
T
Thomas Gleixner 已提交
5205 5206
};

5207
void __init perf_event_init(void)
T
Thomas Gleixner 已提交
5208 5209 5210
{
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
			(void *)(long)smp_processor_id());
5211 5212
	perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
			(void *)(long)smp_processor_id());
T
Thomas Gleixner 已提交
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
	register_cpu_notifier(&perf_cpu_nb);
}

static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_reserved_percpu);
}

static ssize_t
perf_set_reserve_percpu(struct sysdev_class *class,
			const char *buf,
			size_t count)
{
	struct perf_cpu_context *cpuctx;
	unsigned long val;
	int err, cpu, mpt;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
5233
	if (val > perf_max_events)
T
Thomas Gleixner 已提交
5234 5235
		return -EINVAL;

5236
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5237 5238 5239 5240
	perf_reserved_percpu = val;
	for_each_online_cpu(cpu) {
		cpuctx = &per_cpu(perf_cpu_context, cpu);
		spin_lock_irq(&cpuctx->ctx.lock);
5241 5242
		mpt = min(perf_max_events - cpuctx->ctx.nr_events,
			  perf_max_events - perf_reserved_percpu);
T
Thomas Gleixner 已提交
5243 5244 5245
		cpuctx->max_pertask = mpt;
		spin_unlock_irq(&cpuctx->ctx.lock);
	}
5246
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267

	return count;
}

static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
{
	return sprintf(buf, "%d\n", perf_overcommit);
}

static ssize_t
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
{
	unsigned long val;
	int err;

	err = strict_strtoul(buf, 10, &val);
	if (err)
		return err;
	if (val > 1)
		return -EINVAL;

5268
	spin_lock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5269
	perf_overcommit = val;
5270
	spin_unlock(&perf_resource_lock);
T
Thomas Gleixner 已提交
5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296

	return count;
}

static SYSDEV_CLASS_ATTR(
				reserve_percpu,
				0644,
				perf_show_reserve_percpu,
				perf_set_reserve_percpu
			);

static SYSDEV_CLASS_ATTR(
				overcommit,
				0644,
				perf_show_overcommit,
				perf_set_overcommit
			);

static struct attribute *perfclass_attrs[] = {
	&attr_reserve_percpu.attr,
	&attr_overcommit.attr,
	NULL
};

static struct attribute_group perfclass_attr_group = {
	.attrs			= perfclass_attrs,
5297
	.name			= "perf_events",
T
Thomas Gleixner 已提交
5298 5299
};

5300
static int __init perf_event_sysfs_init(void)
T
Thomas Gleixner 已提交
5301 5302 5303 5304
{
	return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
				  &perfclass_attr_group);
}
5305
device_initcall(perf_event_sysfs_init);