slub.c 126.4 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157 158 159 160 161
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
 * sort the partial list by the number of objects in the.
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212 213
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
static void sysfs_slab_remove(struct kmem_cache *);
214
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
215
#else
216 217 218
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
219
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
220

221
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
222 223
#endif

224
static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 226
{
#ifdef CONFIG_SLUB_STATS
227
	__this_cpu_inc(s->cpu_slab->stat[si]);
228 229 230
#endif
}

C
Christoph Lameter 已提交
231 232 233 234 235 236 237 238 239
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
	return s->node[node];
}

C
Christoph Lameter 已提交
240
/* Verify that a pointer has an address that is valid within a slab page */
241 242 243 244 245
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

246
	if (!object)
247 248
		return 1;

249
	base = page_address(page);
250
	if (object < base || object >= base + page->objects * s->size ||
251 252 253 254 255 256 257
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

258 259 260 261 262
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

263 264 265 266 267
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

268 269 270 271 272 273 274 275 276 277 278 279
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

280 281 282 283 284 285
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
286 287
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
288 289 290 291 292 293 294 295
			__p += (__s)->size)

/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

296 297 298 299 300 301 302 303
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304
		return s->object_size;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

320 321 322 323 324
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

325
static inline struct kmem_cache_order_objects oo_make(int order,
326
		unsigned long size, int reserved)
327 328
{
	struct kmem_cache_order_objects x = {
329
		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 331 332 333 334 335 336
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
337
	return x.x >> OO_SHIFT;
338 339 340 341
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
342
	return x.x & OO_MASK;
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

358 359 360 361 362 363 364
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
365 366
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
367
	if (s->flags & __CMPXCHG_DOUBLE) {
368
		if (cmpxchg_double(&page->freelist, &page->counters,
369 370 371 372 373 374 375
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
		slab_lock(page);
376 377
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
			page->freelist = freelist_new;
			page->counters = counters_new;
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

396 397 398 399 400
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
401 402
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
403
	if (s->flags & __CMPXCHG_DOUBLE) {
404
		if (cmpxchg_double(&page->freelist, &page->counters,
405 406 407 408 409 410
			freelist_old, counters_old,
			freelist_new, counters_new))
		return 1;
	} else
#endif
	{
411 412 413
		unsigned long flags;

		local_irq_save(flags);
414
		slab_lock(page);
415 416
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
417 418
			page->freelist = freelist_new;
			page->counters = counters_new;
419
			slab_unlock(page);
420
			local_irq_restore(flags);
421 422
			return 1;
		}
423
		slab_unlock(page);
424
		local_irq_restore(flags);
425 426 427 428 429 430 431 432 433 434 435 436
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
	printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
#endif

	return 0;
}

C
Christoph Lameter 已提交
437
#ifdef CONFIG_SLUB_DEBUG
438 439 440
/*
 * Determine a map of object in use on a page.
 *
441
 * Node listlock must be held to guarantee that the page does
442 443 444 445 446 447 448 449 450 451 452
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
453 454 455
/*
 * Debug settings:
 */
456 457 458
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
459
static int slub_debug;
460
#endif
C
Christoph Lameter 已提交
461 462

static char *slub_debug_slabs;
463
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
464

C
Christoph Lameter 已提交
465 466 467 468 469
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
470 471
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
488
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
489
{
A
Akinobu Mita 已提交
490
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
491 492

	if (addr) {
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
511 512
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
513
		p->pid = current->pid;
C
Christoph Lameter 已提交
514 515 516 517 518 519 520
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
521 522 523
	if (!(s->flags & SLAB_STORE_USER))
		return;

524 525
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
526 527 528 529 530 531 532
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

533
	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
534
		s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
535 536 537 538 539 540 541 542 543 544
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
				printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
			else
				break;
	}
#endif
545 546 547 548 549 550 551 552 553 554 555 556 557
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
558 559 560
	printk(KERN_ERR
	       "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
	       page, page->objects, page->inuse, page->freelist, page->flags);
561 562 563 564 565 566 567 568 569 570 571 572 573

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "========================================"
			"=====================================\n");
574
	printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
575 576
	printk(KERN_ERR "----------------------------------------"
			"-------------------------------------\n\n");
577

578
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
C
Christoph Lameter 已提交
579 580
}

581 582 583 584 585 586 587 588 589 590 591 592
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
	va_list args;
	char buf[100];

	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
	va_end(args);
	printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
593 594
{
	unsigned int off;	/* Offset of last byte */
595
	u8 *addr = page_address(page);
596 597 598 599 600 601 602 603 604

	print_tracking(s, p);

	print_page_info(page);

	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
			p, p - addr, get_freepointer(s, p));

	if (p > addr + 16)
605
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
606

607
	print_section("Object ", p, min_t(unsigned long, s->object_size,
608
				PAGE_SIZE));
C
Christoph Lameter 已提交
609
	if (s->flags & SLAB_RED_ZONE)
610 611
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
612 613 614 615 616 617

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

618
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
619 620 621 622
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
623
		print_section("Padding ", p + off, s->size - off);
624 625

	dump_stack();
C
Christoph Lameter 已提交
626 627 628 629 630
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
631
	slab_bug(s, "%s", reason);
632
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
633 634
}

635 636
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
637 638 639 640
{
	va_list args;
	char buf[100];

641 642
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
643
	va_end(args);
644
	slab_bug(s, "%s", buf);
645
	print_page_info(page);
C
Christoph Lameter 已提交
646 647 648
	dump_stack();
}

649
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
650 651 652 653
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
654 655
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
656 657 658
	}

	if (s->flags & SLAB_RED_ZONE)
659
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
660 661
}

662 663 664 665 666 667 668 669 670
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
671
			u8 *start, unsigned int value, unsigned int bytes)
672 673 674 675
{
	u8 *fault;
	u8 *end;

676
	fault = memchr_inv(start, value, bytes);
677 678 679 680 681 682 683 684 685 686 687 688 689 690
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
691 692 693 694 695 696 697 698 699
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
700
 *
C
Christoph Lameter 已提交
701 702 703
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
704
 * object + s->object_size
C
Christoph Lameter 已提交
705
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
706
 * 	Padding is extended by another word if Redzoning is enabled and
707
 * 	object_size == inuse.
C
Christoph Lameter 已提交
708
 *
C
Christoph Lameter 已提交
709 710 711 712
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
713 714
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
715 716
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
717
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
718
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
719 720 721
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
722 723
 *
 * object + s->size
C
Christoph Lameter 已提交
724
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
725
 *
726
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
727
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

746 747
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
748 749
}

750
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
751 752
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
753 754 755 756 757
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
758 759 760 761

	if (!(s->flags & SLAB_POISON))
		return 1;

762
	start = page_address(page);
763
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
764 765
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
766 767 768
	if (!remainder)
		return 1;

769
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
770 771 772 773 774 775
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
776
	print_section("Padding ", end - remainder, remainder);
777

E
Eric Dumazet 已提交
778
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
779
	return 0;
C
Christoph Lameter 已提交
780 781 782
}

static int check_object(struct kmem_cache *s, struct page *page,
783
					void *object, u8 val)
C
Christoph Lameter 已提交
784 785
{
	u8 *p = object;
786
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
787 788

	if (s->flags & SLAB_RED_ZONE) {
789
		if (!check_bytes_and_report(s, page, object, "Redzone",
790
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
791 792
			return 0;
	} else {
793
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
794
			check_bytes_and_report(s, page, p, "Alignment padding",
795 796
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
797
		}
C
Christoph Lameter 已提交
798 799 800
	}

	if (s->flags & SLAB_POISON) {
801
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
802
			(!check_bytes_and_report(s, page, p, "Poison", p,
803
					POISON_FREE, s->object_size - 1) ||
804
			 !check_bytes_and_report(s, page, p, "Poison",
805
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
806 807 808 809 810 811 812
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

813
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
814 815 816 817 818 819 820 821 822 823
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
824
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
825
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
826
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
827
		 */
828
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
829 830 831 832 833 834 835
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
836 837
	int maxobj;

C
Christoph Lameter 已提交
838 839 840
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
841
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
842 843
		return 0;
	}
844

845
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
846 847 848 849 850 851
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
852
		slab_err(s, page, "inuse %u > max %u",
853
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
854 855 856 857 858 859 860 861
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
862 863
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
864 865 866 867
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
868
	void *fp;
C
Christoph Lameter 已提交
869
	void *object = NULL;
870
	unsigned long max_objects;
C
Christoph Lameter 已提交
871

872
	fp = page->freelist;
873
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
874 875 876 877 878 879
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
880
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
881 882
				break;
			} else {
883
				slab_err(s, page, "Freepointer corrupt");
884
				page->freelist = NULL;
885
				page->inuse = page->objects;
886
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
887 888 889 890 891 892 893 894 895
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

896
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
897 898
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
899 900 901 902 903 904 905

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
906
	if (page->inuse != page->objects - nr) {
907
		slab_err(s, page, "Wrong object count. Counter is %d but "
908 909
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
910
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
911 912 913 914
	}
	return search == NULL;
}

915 916
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
917 918 919 920 921 922 923 924 925
{
	if (s->flags & SLAB_TRACE) {
		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
926 927
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
928 929 930 931 932

		dump_stack();
	}
}

933 934 935 936 937 938
/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
{
939
	flags &= gfp_allowed_mask;
940 941 942
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);

943
	return should_failslab(s->object_size, flags, s->flags);
944 945
}

946 947
static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
948
{
949
	flags &= gfp_allowed_mask;
950
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
951
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
952 953 954 955 956 957
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);

958 959 960 961 962 963 964 965 966 967
	/*
	 * Trouble is that we may no longer disable interupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
968 969
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
970 971 972
		local_irq_restore(flags);
	}
#endif
973
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
974
		debug_check_no_obj_freed(x, s->object_size);
975 976
}

977
/*
C
Christoph Lameter 已提交
978
 * Tracking of fully allocated slabs for debugging purposes.
979 980
 *
 * list_lock must be held.
981
 */
982 983
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
984
{
985 986 987
	if (!(s->flags & SLAB_STORE_USER))
		return;

988 989 990
	list_add(&page->lru, &n->full);
}

991 992 993
/*
 * list_lock must be held.
 */
994 995 996 997 998 999 1000 1001
static void remove_full(struct kmem_cache *s, struct page *page)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	list_del(&page->lru);
}

1002 1003 1004 1005 1006 1007 1008 1009
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1010 1011 1012 1013 1014
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1015
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1016 1017 1018 1019 1020 1021 1022 1023 1024
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1025
	if (likely(n)) {
1026
		atomic_long_inc(&n->nr_slabs);
1027 1028
		atomic_long_add(objects, &n->total_objects);
	}
1029
}
1030
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1031 1032 1033 1034
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1035
	atomic_long_sub(objects, &n->total_objects);
1036 1037 1038
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1039 1040 1041 1042 1043 1044
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1045
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1046 1047 1048
	init_tracking(s, object);
}

1049 1050
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1051
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1052 1053 1054 1055 1056 1057
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1058
		goto bad;
C
Christoph Lameter 已提交
1059 1060
	}

1061
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1062 1063
		goto bad;

C
Christoph Lameter 已提交
1064 1065 1066 1067
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1068
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1069
	return 1;
C
Christoph Lameter 已提交
1070

C
Christoph Lameter 已提交
1071 1072 1073 1074 1075
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1076
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1077
		 */
1078
		slab_fix(s, "Marking all objects used");
1079
		page->inuse = page->objects;
1080
		page->freelist = NULL;
C
Christoph Lameter 已提交
1081 1082 1083 1084
	}
	return 0;
}

1085 1086 1087
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1088
{
1089
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1090

1091
	spin_lock_irqsave(&n->list_lock, *flags);
1092 1093
	slab_lock(page);

C
Christoph Lameter 已提交
1094 1095 1096 1097
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1098
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1099 1100 1101 1102
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1103
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1104 1105 1106
		goto fail;
	}

1107
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1108
		goto out;
C
Christoph Lameter 已提交
1109

1110
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1111
		if (!PageSlab(page)) {
1112 1113
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1114
		} else if (!page->slab_cache) {
C
Christoph Lameter 已提交
1115
			printk(KERN_ERR
1116
				"SLUB <none>: no slab for object 0x%p.\n",
C
Christoph Lameter 已提交
1117
						object);
1118
			dump_stack();
P
Pekka Enberg 已提交
1119
		} else
1120 1121
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1122 1123
		goto fail;
	}
C
Christoph Lameter 已提交
1124 1125 1126 1127

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1128
	init_object(s, object, SLUB_RED_INACTIVE);
1129
out:
1130
	slab_unlock(page);
1131 1132 1133 1134 1135
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1136

C
Christoph Lameter 已提交
1137
fail:
1138 1139
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1140
	slab_fix(s, "Object at 0x%p not freed", object);
1141
	return NULL;
C
Christoph Lameter 已提交
1142 1143
}

C
Christoph Lameter 已提交
1144 1145
static int __init setup_slub_debug(char *str)
{
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1160 1161 1162 1163 1164 1165 1166 1167 1168
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1179
	for (; *str && *str != ','; str++) {
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1196 1197 1198
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1199 1200
		default:
			printk(KERN_ERR "slub_debug option '%c' "
P
Pekka Enberg 已提交
1201
				"unknown. skipped\n", *str);
1202
		}
C
Christoph Lameter 已提交
1203 1204
	}

1205
check_slabs:
C
Christoph Lameter 已提交
1206 1207
	if (*str == ',')
		slub_debug_slabs = str + 1;
1208
out:
C
Christoph Lameter 已提交
1209 1210 1211 1212 1213
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1214
static unsigned long kmem_cache_flags(unsigned long object_size,
1215
	unsigned long flags, const char *name,
1216
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1217 1218
{
	/*
1219
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1220
	 */
1221
	if (slub_debug && (!slub_debug_slabs ||
1222 1223
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
		flags |= slub_debug;
1224 1225

	return flags;
C
Christoph Lameter 已提交
1226 1227
}
#else
C
Christoph Lameter 已提交
1228 1229
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1230

C
Christoph Lameter 已提交
1231
static inline int alloc_debug_processing(struct kmem_cache *s,
1232
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1233

1234 1235 1236
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1237 1238 1239 1240

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1241
			void *object, u8 val) { return 1; }
1242 1243
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1244
static inline void remove_full(struct kmem_cache *s, struct page *page) {}
1245
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1246
	unsigned long flags, const char *name,
1247
	void (*ctor)(void *))
1248 1249 1250
{
	return flags;
}
C
Christoph Lameter 已提交
1251
#define slub_debug 0
1252

1253 1254
#define disable_higher_order_debug 0

1255 1256
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1257 1258
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1259 1260 1261 1262
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1263 1264 1265 1266 1267 1268 1269 1270 1271

static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
							{ return 0; }

static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
		void *object) {}

static inline void slab_free_hook(struct kmem_cache *s, void *x) {}

1272
#endif /* CONFIG_SLUB_DEBUG */
1273

C
Christoph Lameter 已提交
1274 1275 1276
/*
 * Slab allocation and freeing
 */
1277 1278 1279 1280 1281
static inline struct page *alloc_slab_page(gfp_t flags, int node,
					struct kmem_cache_order_objects oo)
{
	int order = oo_order(oo);

1282 1283
	flags |= __GFP_NOTRACK;

1284
	if (node == NUMA_NO_NODE)
1285 1286
		return alloc_pages(flags, order);
	else
1287
		return alloc_pages_exact_node(node, flags, order);
1288 1289
}

C
Christoph Lameter 已提交
1290 1291
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1292
	struct page *page;
1293
	struct kmem_cache_order_objects oo = s->oo;
1294
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1295

1296 1297 1298 1299 1300
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1301
	flags |= s->allocflags;
1302

1303 1304 1305 1306 1307 1308 1309
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

	page = alloc_slab_page(alloc_gfp, node, oo);
1310 1311 1312 1313 1314 1315 1316
	if (unlikely(!page)) {
		oo = s->min;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
C
Christoph Lameter 已提交
1317

1318 1319
		if (page)
			stat(s, ORDER_FALLBACK);
1320
	}
V
Vegard Nossum 已提交
1321

1322
	if (kmemcheck_enabled && page
1323
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1336 1337
	}

1338 1339 1340 1341 1342
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1343
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1344 1345 1346
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1347
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1348 1349 1350 1351 1352 1353 1354

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1355
	setup_object_debug(s, page, object);
1356
	if (unlikely(s->ctor))
1357
		s->ctor(object);
C
Christoph Lameter 已提交
1358 1359 1360 1361 1362 1363 1364 1365
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *last;
	void *p;
G
Glauber Costa 已提交
1366
	int order;
C
Christoph Lameter 已提交
1367

C
Christoph Lameter 已提交
1368
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1369

C
Christoph Lameter 已提交
1370 1371
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1372 1373 1374
	if (!page)
		goto out;

G
Glauber Costa 已提交
1375
	order = compound_order(page);
1376
	inc_slabs_node(s, page_to_nid(page), page->objects);
G
Glauber Costa 已提交
1377
	memcg_bind_pages(s, order);
1378
	page->slab_cache = s;
1379
	__SetPageSlab(page);
1380 1381
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1382 1383 1384 1385

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1386
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1387 1388

	last = start;
1389
	for_each_object(p, s, start, page->objects) {
C
Christoph Lameter 已提交
1390 1391 1392 1393 1394
		setup_object(s, page, last);
		set_freepointer(s, last, p);
		last = p;
	}
	setup_object(s, page, last);
1395
	set_freepointer(s, last, NULL);
C
Christoph Lameter 已提交
1396 1397

	page->freelist = start;
1398
	page->inuse = page->objects;
1399
	page->frozen = 1;
C
Christoph Lameter 已提交
1400 1401 1402 1403 1404 1405
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1406 1407
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1408

1409
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1410 1411 1412
		void *p;

		slab_pad_check(s, page);
1413 1414
		for_each_object(p, s, page_address(page),
						page->objects)
1415
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1416 1417
	}

1418
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1419

C
Christoph Lameter 已提交
1420 1421 1422
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1423
		-pages);
C
Christoph Lameter 已提交
1424

1425
	__ClearPageSlabPfmemalloc(page);
1426
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1427 1428

	memcg_release_pages(s, order);
1429
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1430 1431
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1432
	__free_memcg_kmem_pages(page, order);
C
Christoph Lameter 已提交
1433 1434
}

1435 1436 1437
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1438 1439 1440 1441
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1442 1443 1444 1445 1446
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1447
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1448 1449 1450 1451 1452
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1467 1468 1469 1470 1471 1472 1473 1474

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1475
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1476 1477 1478 1479
	free_slab(s, page);
}

/*
1480 1481 1482
 * Management of partially allocated slabs.
 *
 * list_lock must be held.
C
Christoph Lameter 已提交
1483
 */
1484
static inline void add_partial(struct kmem_cache_node *n,
1485
				struct page *page, int tail)
C
Christoph Lameter 已提交
1486
{
C
Christoph Lameter 已提交
1487
	n->nr_partial++;
1488
	if (tail == DEACTIVATE_TO_TAIL)
1489 1490 1491
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1492 1493
}

1494 1495 1496 1497
/*
 * list_lock must be held.
 */
static inline void remove_partial(struct kmem_cache_node *n,
1498 1499 1500 1501 1502 1503
					struct page *page)
{
	list_del(&page->lru);
	n->nr_partial--;
}

C
Christoph Lameter 已提交
1504
/*
1505 1506
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1507
 *
1508 1509
 * Returns a list of objects or NULL if it fails.
 *
1510
 * Must hold list_lock since we modify the partial list.
C
Christoph Lameter 已提交
1511
 */
1512
static inline void *acquire_slab(struct kmem_cache *s,
1513
		struct kmem_cache_node *n, struct page *page,
1514
		int mode, int *objects)
C
Christoph Lameter 已提交
1515
{
1516 1517 1518 1519 1520 1521 1522 1523 1524
	void *freelist;
	unsigned long counters;
	struct page new;

	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1525 1526 1527
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1528
	*objects = new.objects - new.inuse;
1529
	if (mode) {
1530
		new.inuse = page->objects;
1531 1532 1533 1534
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1535

1536 1537
	VM_BUG_ON(new.frozen);
	new.frozen = 1;
1538

1539
	if (!__cmpxchg_double_slab(s, page,
1540
			freelist, counters,
1541
			new.freelist, new.counters,
1542 1543
			"acquire_slab"))
		return NULL;
1544 1545

	remove_partial(n, page);
1546
	WARN_ON(!freelist);
1547
	return freelist;
C
Christoph Lameter 已提交
1548 1549
}

1550
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1551
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1552

C
Christoph Lameter 已提交
1553
/*
C
Christoph Lameter 已提交
1554
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1555
 */
1556 1557
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1558
{
1559 1560
	struct page *page, *page2;
	void *object = NULL;
1561 1562
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1563 1564 1565 1566

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1567 1568
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1569 1570 1571 1572 1573
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1574
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1575
		void *t;
1576

1577 1578 1579
		if (!pfmemalloc_match(page, flags))
			continue;

1580
		t = acquire_slab(s, n, page, object == NULL, &objects);
1581 1582 1583
		if (!t)
			break;

1584
		available += objects;
1585
		if (!object) {
1586 1587 1588 1589
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1590
			put_cpu_partial(s, page, 0);
1591
			stat(s, CPU_PARTIAL_NODE);
1592
		}
1593 1594
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1595 1596
			break;

1597
	}
C
Christoph Lameter 已提交
1598
	spin_unlock(&n->list_lock);
1599
	return object;
C
Christoph Lameter 已提交
1600 1601 1602
}

/*
C
Christoph Lameter 已提交
1603
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1604
 */
1605
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1606
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1607 1608 1609
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1610
	struct zoneref *z;
1611 1612
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1613
	void *object;
1614
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1615 1616

	/*
C
Christoph Lameter 已提交
1617 1618 1619 1620
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1621
	 *
C
Christoph Lameter 已提交
1622 1623 1624 1625
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1626
	 *
C
Christoph Lameter 已提交
1627
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1628 1629 1630 1631 1632
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1633
	 */
1634 1635
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1636 1637
		return NULL;

1638 1639
	do {
		cpuset_mems_cookie = get_mems_allowed();
1640
		zonelist = node_zonelist(slab_node(), flags);
1641 1642 1643 1644 1645 1646 1647
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1648
				object = get_partial_node(s, n, c, flags);
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
				if (object) {
					/*
					 * Return the object even if
					 * put_mems_allowed indicated that
					 * the cpuset mems_allowed was
					 * updated in parallel. It's a
					 * harmless race between the alloc
					 * and the cpuset update.
					 */
					put_mems_allowed(cpuset_mems_cookie);
					return object;
				}
1661
			}
C
Christoph Lameter 已提交
1662
		}
1663
	} while (!put_mems_allowed(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1664 1665 1666 1667 1668 1669 1670
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1671
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1672
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1673
{
1674
	void *object;
1675
	int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
C
Christoph Lameter 已提交
1676

1677
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1678 1679
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1680

1681
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1682 1683
}

1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
1740
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1741 1742
}

1743
static void init_kmem_cache_cpus(struct kmem_cache *s)
1744 1745 1746 1747 1748 1749
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1750

C
Christoph Lameter 已提交
1751 1752 1753
/*
 * Remove the cpu slab
 */
1754 1755
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1756
{
1757 1758 1759 1760 1761
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1762
	int tail = DEACTIVATE_TO_HEAD;
1763 1764 1765 1766
	struct page new;
	struct page old;

	if (page->freelist) {
1767
		stat(s, DEACTIVATE_REMOTE_FREES);
1768
		tail = DEACTIVATE_TO_TAIL;
1769 1770
	}

1771
	/*
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
			VM_BUG_ON(!new.frozen);

1791
		} while (!__cmpxchg_double_slab(s, page,
1792 1793 1794 1795 1796 1797 1798
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1799
	/*
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1812
	 */
1813
redo:
1814

1815 1816 1817
	old.freelist = page->freelist;
	old.counters = page->counters;
	VM_BUG_ON(!old.frozen);
1818

1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1830
	if (!new.inuse && n->nr_partial > s->min_partial)
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1863

1864 1865 1866 1867 1868
			remove_full(s, page);

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1869
			stat(s, tail);
1870 1871

		} else if (m == M_FULL) {
1872

1873 1874 1875 1876 1877 1878 1879
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1880
	if (!__cmpxchg_double_slab(s, page,
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1893
	}
C
Christoph Lameter 已提交
1894 1895
}

1896 1897 1898
/*
 * Unfreeze all the cpu partial slabs.
 *
1899 1900 1901
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1902
 */
1903 1904
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1905
{
1906
#ifdef CONFIG_SLUB_CPU_PARTIAL
1907
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1908
	struct page *page, *discard_page = NULL;
1909 1910 1911 1912 1913 1914

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1915 1916 1917 1918 1919 1920 1921 1922 1923

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
			VM_BUG_ON(!old.frozen);

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1936
		} while (!__cmpxchg_double_slab(s, page,
1937 1938 1939 1940
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1941
		if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
1942 1943
			page->next = discard_page;
			discard_page = page;
1944 1945 1946
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1947 1948 1949 1950 1951
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1952 1953 1954 1955 1956 1957 1958 1959 1960

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1961
#endif
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
1973
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
1974
{
1975
#ifdef CONFIG_SLUB_CPU_PARTIAL
1976 1977 1978 1979
	struct page *oldpage;
	int pages;
	int pobjects;

1980 1981 1982
	if (!s->cpu_partial)
		return;

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
1998
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
1999
				local_irq_restore(flags);
2000
				oldpage = NULL;
2001 2002
				pobjects = 0;
				pages = 0;
2003
				stat(s, CPU_PARTIAL_DRAIN);
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2014 2015
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2016
#endif
2017 2018
}

2019
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2020
{
2021
	stat(s, CPUSLAB_FLUSH);
2022 2023 2024 2025 2026
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2027 2028 2029 2030
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2031
 *
C
Christoph Lameter 已提交
2032 2033
 * Called from IPI handler with interrupts disabled.
 */
2034
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2035
{
2036
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2037

2038 2039 2040 2041
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2042
		unfreeze_partials(s, c);
2043
	}
C
Christoph Lameter 已提交
2044 2045 2046 2047 2048 2049
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2050
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2051 2052
}

2053 2054 2055 2056 2057
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2058
	return c->page || c->partial;
2059 2060
}

C
Christoph Lameter 已提交
2061 2062
static void flush_all(struct kmem_cache *s)
{
2063
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2064 2065
}

2066 2067 2068 2069
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2070
static inline int node_match(struct page *page, int node)
2071 2072
{
#ifdef CONFIG_NUMA
2073
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2074 2075 2076 2077 2078
		return 0;
#endif
	return 1;
}

P
Pekka Enberg 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}

2098 2099 2100 2101 2102 2103 2104 2105 2106
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
#ifdef CONFIG_SLUB_DEBUG
	return atomic_long_read(&n->total_objects);
#else
	return 0;
#endif
}

P
Pekka Enberg 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
	int node;

	printk(KERN_WARNING
		"SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
		nid, gfpflags);
	printk(KERN_WARNING "  cache: %s, object size: %d, buffer size: %d, "
2116
		"default order: %d, min order: %d\n", s->name, s->object_size,
P
Pekka Enberg 已提交
2117 2118
		s->size, oo_order(s->oo), oo_order(s->min));

2119
	if (oo_order(s->min) > get_order(s->object_size))
2120 2121 2122
		printk(KERN_WARNING "  %s debugging increased min order, use "
		       "slub_debug=O to disable.\n", s->name);

P
Pekka Enberg 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131
	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

		if (!n)
			continue;

2132 2133 2134
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2135 2136 2137 2138 2139 2140 2141

		printk(KERN_WARNING
			"  node %d: slabs: %ld, objs: %ld, free: %ld\n",
			node, nr_slabs, nr_objs, nr_free);
	}
}

2142 2143 2144
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2145
	void *freelist;
2146 2147
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2148

2149
	freelist = get_partial(s, flags, node, c);
2150

2151 2152 2153 2154
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2155 2156 2157 2158 2159 2160 2161 2162 2163
	if (page) {
		c = __this_cpu_ptr(s->cpu_slab);
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2164
		freelist = page->freelist;
2165 2166 2167 2168 2169 2170
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2171
		freelist = NULL;
2172

2173
	return freelist;
2174 2175
}

2176 2177 2178 2179 2180 2181 2182 2183
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2184
/*
2185 2186
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2187 2188 2189 2190
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2191 2192
 *
 * This function must be called with interrupt disabled.
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2203

2204 2205 2206 2207 2208 2209
		new.counters = counters;
		VM_BUG_ON(!new.frozen);

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2210
	} while (!__cmpxchg_double_slab(s, page,
2211 2212 2213 2214 2215 2216 2217
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2218
/*
2219 2220 2221 2222 2223 2224
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2225
 *
2226 2227 2228
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2229
 *
2230
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2231 2232
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2233
 */
2234 2235
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2236
{
2237
	void *freelist;
2238
	struct page *page;
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2250

2251 2252
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2253
		goto new_slab;
2254
redo:
2255

2256
	if (unlikely(!node_match(page, node))) {
2257
		stat(s, ALLOC_NODE_MISMATCH);
2258
		deactivate_slab(s, page, c->freelist);
2259 2260
		c->page = NULL;
		c->freelist = NULL;
2261 2262
		goto new_slab;
	}
C
Christoph Lameter 已提交
2263

2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2276
	/* must check again c->freelist in case of cpu migration or IRQ */
2277 2278
	freelist = c->freelist;
	if (freelist)
2279
		goto load_freelist;
2280

2281
	stat(s, ALLOC_SLOWPATH);
2282

2283
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2284

2285
	if (!freelist) {
2286 2287
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2288
		goto new_slab;
2289
	}
C
Christoph Lameter 已提交
2290

2291
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2292

2293
load_freelist:
2294 2295 2296 2297 2298 2299
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
	VM_BUG_ON(!c->page->frozen);
2300
	c->freelist = get_freepointer(s, freelist);
2301 2302
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2303
	return freelist;
C
Christoph Lameter 已提交
2304 2305

new_slab:
2306

2307
	if (c->partial) {
2308 2309
		page = c->page = c->partial;
		c->partial = page->next;
2310 2311 2312
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2313 2314
	}

2315
	freelist = new_slab_objects(s, gfpflags, node, &c);
2316

2317 2318 2319
	if (unlikely(!freelist)) {
		if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
			slab_out_of_memory(s, gfpflags, node);
2320

2321 2322
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2323
	}
2324

2325
	page = c->page;
2326
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2327
		goto load_freelist;
2328

2329
	/* Only entered in the debug case */
2330 2331
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2332
		goto new_slab;	/* Slab failed checks. Next slab needed */
2333

2334
	deactivate_slab(s, page, get_freepointer(s, freelist));
2335 2336
	c->page = NULL;
	c->freelist = NULL;
2337
	local_irq_restore(flags);
2338
	return freelist;
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2351
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2352
		gfp_t gfpflags, int node, unsigned long addr)
2353 2354
{
	void **object;
2355
	struct kmem_cache_cpu *c;
2356
	struct page *page;
2357
	unsigned long tid;
2358

2359
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2360
		return NULL;
2361

2362
	s = memcg_kmem_get_cache(s, gfpflags);
2363 2364 2365 2366 2367 2368
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2369 2370 2371 2372 2373
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2374
	 */
2375
	preempt_disable();
2376
	c = __this_cpu_ptr(s->cpu_slab);
2377 2378 2379 2380 2381 2382 2383 2384

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2385
	preempt_enable();
2386

2387
	object = c->freelist;
2388
	page = c->page;
2389
	if (unlikely(!object || !page || !node_match(page, node)))
2390
		object = __slab_alloc(s, gfpflags, node, addr, c);
2391 2392

	else {
2393 2394
		void *next_object = get_freepointer_safe(s, object);

2395
		/*
L
Lucas De Marchi 已提交
2396
		 * The cmpxchg will only match if there was no additional
2397 2398
		 * operation and if we are on the right processor.
		 *
2399 2400
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2401 2402 2403 2404
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2405 2406 2407
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2408
		 */
2409
		if (unlikely(!this_cpu_cmpxchg_double(
2410 2411
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2412
				next_object, next_tid(tid)))) {
2413 2414 2415 2416

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2417
		prefetch_freepointer(s, next_object);
2418
		stat(s, ALLOC_FASTPATH);
2419
	}
2420

2421
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2422
		memset(object, 0, s->object_size);
2423

2424
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2425

2426
	return object;
C
Christoph Lameter 已提交
2427 2428
}

2429 2430 2431 2432 2433 2434
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2435 2436
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2437
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2438

2439 2440
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2441 2442

	return ret;
C
Christoph Lameter 已提交
2443 2444 2445
}
EXPORT_SYMBOL(kmem_cache_alloc);

2446
#ifdef CONFIG_TRACING
2447 2448
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2449
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2450 2451 2452 2453 2454 2455
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);

void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
E
Eduard - Gabriel Munteanu 已提交
2456
{
2457 2458 2459
	void *ret = kmalloc_order(size, flags, order);
	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2460
}
2461
EXPORT_SYMBOL(kmalloc_order_trace);
E
Eduard - Gabriel Munteanu 已提交
2462 2463
#endif

C
Christoph Lameter 已提交
2464 2465 2466
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2467
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2468

2469
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2470
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2471 2472

	return ret;
C
Christoph Lameter 已提交
2473 2474 2475
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2476
#ifdef CONFIG_TRACING
2477
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2478
				    gfp_t gfpflags,
2479
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2480
{
2481
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2482 2483 2484 2485

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2486
}
2487
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2488
#endif
2489
#endif
E
Eduard - Gabriel Munteanu 已提交
2490

C
Christoph Lameter 已提交
2491
/*
2492 2493
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2494
 *
2495 2496 2497
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2498
 */
2499
static void __slab_free(struct kmem_cache *s, struct page *page,
2500
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2501 2502 2503
{
	void *prior;
	void **object = (void *)x;
2504 2505 2506 2507
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2508
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2509

2510
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2511

2512 2513
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2514
		return;
C
Christoph Lameter 已提交
2515

2516
	do {
2517 2518 2519 2520
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2521 2522 2523 2524 2525 2526
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2527
		if ((!new.inuse || !prior) && !was_frozen) {
2528

2529
			if (kmem_cache_has_cpu_partial(s) && !prior)
2530 2531

				/*
2532 2533 2534 2535
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
				 */
				new.frozen = 1;

			else { /* Needs to be taken off a list */

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2553
		}
C
Christoph Lameter 已提交
2554

2555 2556 2557 2558
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2559

2560
	if (likely(!n)) {
2561 2562 2563 2564 2565

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2566
		if (new.frozen && !was_frozen) {
2567
			put_cpu_partial(s, page, 1);
2568 2569
			stat(s, CPU_PARTIAL_FREE);
		}
2570
		/*
2571 2572 2573 2574 2575
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2576
                return;
2577
        }
C
Christoph Lameter 已提交
2578

2579 2580 2581
	if (unlikely(!new.inuse && n->nr_partial > s->min_partial))
		goto slab_empty;

C
Christoph Lameter 已提交
2582
	/*
2583 2584
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2585
	 */
2586 2587 2588
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
			remove_full(s, page);
2589 2590
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2591
	}
2592
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2593 2594 2595
	return;

slab_empty:
2596
	if (prior) {
C
Christoph Lameter 已提交
2597
		/*
2598
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2599
		 */
2600
		remove_partial(n, page);
2601
		stat(s, FREE_REMOVE_PARTIAL);
2602 2603 2604
	} else
		/* Slab must be on the full list */
		remove_full(s, page);
2605

2606
	spin_unlock_irqrestore(&n->list_lock, flags);
2607
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2608 2609 2610
	discard_slab(s, page);
}

2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2622
static __always_inline void slab_free(struct kmem_cache *s,
2623
			struct page *page, void *x, unsigned long addr)
2624 2625
{
	void **object = (void *)x;
2626
	struct kmem_cache_cpu *c;
2627
	unsigned long tid;
2628

2629 2630
	slab_free_hook(s, x);

2631 2632 2633 2634 2635 2636 2637
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2638
	preempt_disable();
2639
	c = __this_cpu_ptr(s->cpu_slab);
2640

2641
	tid = c->tid;
2642
	preempt_enable();
2643

2644
	if (likely(page == c->page)) {
2645
		set_freepointer(s, object, c->freelist);
2646

2647
		if (unlikely(!this_cpu_cmpxchg_double(
2648 2649 2650 2651 2652 2653 2654
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2655
		stat(s, FREE_FASTPATH);
2656
	} else
2657
		__slab_free(s, page, x, addr);
2658 2659 2660

}

C
Christoph Lameter 已提交
2661 2662
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2663 2664
	s = cache_from_obj(s, x);
	if (!s)
2665
		return;
2666
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2667
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2668 2669 2670 2671
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2672 2673 2674 2675
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2676 2677 2678 2679
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2680
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2691
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2692
static int slub_min_objects;
C
Christoph Lameter 已提交
2693 2694 2695

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2696
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2697 2698 2699 2700 2701 2702
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2703 2704 2705 2706
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2707
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2708 2709 2710 2711 2712 2713
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2714
 *
C
Christoph Lameter 已提交
2715 2716 2717 2718
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2719
 *
C
Christoph Lameter 已提交
2720 2721 2722 2723
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2724
 */
2725
static inline int slab_order(int size, int min_objects,
2726
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2727 2728 2729
{
	int order;
	int rem;
2730
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2731

2732
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2733
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2734

2735
	for (order = max(min_order,
2736 2737
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2738

2739
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2740

2741
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2742 2743
			continue;

2744
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2745

2746
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2747 2748 2749
			break;

	}
C
Christoph Lameter 已提交
2750

C
Christoph Lameter 已提交
2751 2752 2753
	return order;
}

2754
static inline int calculate_order(int size, int reserved)
2755 2756 2757 2758
{
	int order;
	int min_objects;
	int fraction;
2759
	int max_objects;
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2770 2771
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2772
	max_objects = order_objects(slub_max_order, size, reserved);
2773 2774
	min_objects = min(min_objects, max_objects);

2775
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2776
		fraction = 16;
2777 2778
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2779
					slub_max_order, fraction, reserved);
2780 2781 2782 2783
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2784
		min_objects--;
2785 2786 2787 2788 2789 2790
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2791
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2792 2793 2794 2795 2796 2797
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2798
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2799
	if (order < MAX_ORDER)
2800 2801 2802 2803
		return order;
	return -ENOSYS;
}

2804
static void
2805
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2806 2807 2808 2809
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2810
#ifdef CONFIG_SLUB_DEBUG
2811
	atomic_long_set(&n->nr_slabs, 0);
2812
	atomic_long_set(&n->total_objects, 0);
2813
	INIT_LIST_HEAD(&n->full);
2814
#endif
C
Christoph Lameter 已提交
2815 2816
}

2817
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2818
{
2819
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2820
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2821

2822
	/*
2823 2824
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2825
	 */
2826 2827
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2828 2829 2830 2831 2832

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2833

2834
	return 1;
2835 2836
}

2837 2838
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2839 2840 2841 2842 2843 2844
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
 * Note that this function only works on the kmalloc_node_cache
2845 2846
 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2847
 */
2848
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2849 2850 2851 2852
{
	struct page *page;
	struct kmem_cache_node *n;

2853
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2854

2855
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2856 2857

	BUG_ON(!page);
2858 2859 2860 2861 2862 2863 2864
	if (page_to_nid(page) != node) {
		printk(KERN_ERR "SLUB: Unable to allocate memory from "
				"node %d\n", node);
		printk(KERN_ERR "SLUB: Allocating a useless per node structure "
				"in order to be able to continue\n");
	}

C
Christoph Lameter 已提交
2865 2866
	n = page->freelist;
	BUG_ON(!n);
2867
	page->freelist = get_freepointer(kmem_cache_node, n);
2868
	page->inuse = 1;
2869
	page->frozen = 0;
2870
	kmem_cache_node->node[node] = n;
2871
#ifdef CONFIG_SLUB_DEBUG
2872
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2873
	init_tracking(kmem_cache_node, n);
2874
#endif
2875
	init_kmem_cache_node(n);
2876
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2877

2878
	add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2879 2880 2881 2882 2883 2884
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;

C
Christoph Lameter 已提交
2885
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2886
		struct kmem_cache_node *n = s->node[node];
2887

2888
		if (n)
2889 2890
			kmem_cache_free(kmem_cache_node, n);

C
Christoph Lameter 已提交
2891 2892 2893 2894
		s->node[node] = NULL;
	}
}

2895
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2896 2897 2898
{
	int node;

C
Christoph Lameter 已提交
2899
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2900 2901
		struct kmem_cache_node *n;

2902
		if (slab_state == DOWN) {
2903
			early_kmem_cache_node_alloc(node);
2904 2905
			continue;
		}
2906
		n = kmem_cache_alloc_node(kmem_cache_node,
2907
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2908

2909 2910 2911
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2912
		}
2913

C
Christoph Lameter 已提交
2914
		s->node[node] = n;
2915
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2916 2917 2918 2919
	}
	return 1;
}

2920
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2921 2922 2923 2924 2925 2926 2927 2928
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2929 2930 2931 2932
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2933
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2934 2935
{
	unsigned long flags = s->flags;
2936
	unsigned long size = s->object_size;
2937
	int order;
C
Christoph Lameter 已提交
2938

2939 2940 2941 2942 2943 2944 2945 2946
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2947 2948 2949 2950 2951 2952
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2953
			!s->ctor)
C
Christoph Lameter 已提交
2954 2955 2956 2957 2958 2959
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2960
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2961
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2962
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2963
	 */
2964
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2965
		size += sizeof(void *);
C
Christoph Lameter 已提交
2966
#endif
C
Christoph Lameter 已提交
2967 2968

	/*
C
Christoph Lameter 已提交
2969 2970
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2971 2972 2973 2974
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2975
		s->ctor)) {
C
Christoph Lameter 已提交
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

2988
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2989 2990 2991 2992 2993 2994 2995
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

2996
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
2997 2998 2999 3000
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3001
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3002 3003 3004
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3005
#endif
C
Christoph Lameter 已提交
3006

C
Christoph Lameter 已提交
3007 3008 3009 3010 3011
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3012
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3013
	s->size = size;
3014 3015 3016
	if (forced_order >= 0)
		order = forced_order;
	else
3017
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3018

3019
	if (order < 0)
C
Christoph Lameter 已提交
3020 3021
		return 0;

3022
	s->allocflags = 0;
3023
	if (order)
3024 3025 3026
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3027
		s->allocflags |= GFP_DMA;
3028 3029 3030 3031

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3032 3033 3034
	/*
	 * Determine the number of objects per slab
	 */
3035 3036
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3037 3038
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3039

3040
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3041 3042
}

3043
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3044
{
3045
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3046
	s->reserved = 0;
C
Christoph Lameter 已提交
3047

3048 3049
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3050

3051
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3052
		goto error;
3053 3054 3055 3056 3057
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3058
		if (get_order(s->size) > get_order(s->object_size)) {
3059 3060 3061 3062 3063 3064
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3065

3066 3067
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3068 3069 3070 3071 3072
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3073 3074 3075 3076
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3092
	 * B) The number of objects in cpu partial slabs to extract from the
3093 3094
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3095
	 */
3096
	if (!kmem_cache_has_cpu_partial(s))
3097 3098
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3099 3100 3101 3102 3103 3104 3105 3106
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3107
#ifdef CONFIG_NUMA
3108
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3109
#endif
3110
	if (!init_kmem_cache_nodes(s))
3111
		goto error;
C
Christoph Lameter 已提交
3112

3113
	if (alloc_kmem_cache_cpus(s))
3114
		return 0;
3115

3116
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3117 3118 3119 3120
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3121 3122
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3123
	return -EINVAL;
C
Christoph Lameter 已提交
3124 3125
}

3126 3127 3128 3129 3130 3131
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3132 3133
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3134 3135
	if (!map)
		return;
3136
	slab_err(s, page, text, s->name);
3137 3138
	slab_lock(page);

3139
	get_map(s, page, map);
3140 3141 3142 3143 3144 3145 3146 3147 3148
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
							p, p - addr);
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3149
	kfree(map);
3150 3151 3152
#endif
}

C
Christoph Lameter 已提交
3153
/*
C
Christoph Lameter 已提交
3154
 * Attempt to free all partial slabs on a node.
3155 3156
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3157
 */
C
Christoph Lameter 已提交
3158
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3159 3160 3161
{
	struct page *page, *h;

3162
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3163
		if (!page->inuse) {
3164
			remove_partial(n, page);
C
Christoph Lameter 已提交
3165
			discard_slab(s, page);
3166 3167
		} else {
			list_slab_objects(s, page,
3168
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3169
		}
3170
	}
C
Christoph Lameter 已提交
3171 3172 3173
}

/*
C
Christoph Lameter 已提交
3174
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3175
 */
3176
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3177 3178 3179 3180 3181
{
	int node;

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3182
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3183 3184
		struct kmem_cache_node *n = get_node(s, node);

C
Christoph Lameter 已提交
3185 3186
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3187 3188
			return 1;
	}
3189
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3190 3191 3192 3193
	free_kmem_cache_nodes(s);
	return 0;
}

3194
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3195
{
3196
	int rc = kmem_cache_close(s);
3197

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	if (!rc) {
		/*
		 * We do the same lock strategy around sysfs_slab_add, see
		 * __kmem_cache_create. Because this is pretty much the last
		 * operation we do and the lock will be released shortly after
		 * that in slab_common.c, we could just move sysfs_slab_remove
		 * to a later point in common code. We should do that when we
		 * have a common sysfs framework for all allocators.
		 */
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3208
		sysfs_slab_remove(s);
3209 3210
		mutex_lock(&slab_mutex);
	}
3211 3212

	return rc;
C
Christoph Lameter 已提交
3213 3214 3215 3216 3217 3218 3219 3220
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3221
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3222 3223 3224 3225 3226 3227 3228 3229

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3230
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3231
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3232 3233 3234 3235 3236 3237 3238 3239

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3240
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3257
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3258
	void *ret;
C
Christoph Lameter 已提交
3259

3260
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3261
		return kmalloc_large(size, flags);
3262

3263
	s = kmalloc_slab(size, flags);
3264 3265

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3266 3267
		return s;

3268
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3269

3270
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3271 3272

	return ret;
C
Christoph Lameter 已提交
3273 3274 3275
}
EXPORT_SYMBOL(__kmalloc);

3276
#ifdef CONFIG_NUMA
3277 3278
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3279
	struct page *page;
3280
	void *ptr = NULL;
3281

3282
	flags |= __GFP_COMP | __GFP_NOTRACK | __GFP_KMEMCG;
3283
	page = alloc_pages_node(node, flags, get_order(size));
3284
	if (page)
3285 3286 3287 3288
		ptr = page_address(page);

	kmemleak_alloc(ptr, size, 1, flags);
	return ptr;
3289 3290
}

C
Christoph Lameter 已提交
3291 3292
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3293
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3294
	void *ret;
C
Christoph Lameter 已提交
3295

3296
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3297 3298
		ret = kmalloc_large_node(size, flags, node);

3299 3300 3301
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3302 3303 3304

		return ret;
	}
3305

3306
	s = kmalloc_slab(size, flags);
3307 3308

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3309 3310
		return s;

3311
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3312

3313
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3314 3315

	return ret;
C
Christoph Lameter 已提交
3316 3317 3318 3319 3320 3321
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3322
	struct page *page;
C
Christoph Lameter 已提交
3323

3324
	if (unlikely(object == ZERO_SIZE_PTR))
3325 3326
		return 0;

3327 3328
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3329 3330
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3331
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3332
	}
C
Christoph Lameter 已提交
3333

3334
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3335
}
K
Kirill A. Shutemov 已提交
3336
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3337

3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
#ifdef CONFIG_SLUB_DEBUG
bool verify_mem_not_deleted(const void *x)
{
	struct page *page;
	void *object = (void *)x;
	unsigned long flags;
	bool rv;

	if (unlikely(ZERO_OR_NULL_PTR(x)))
		return false;

	local_irq_save(flags);

	page = virt_to_head_page(x);
	if (unlikely(!PageSlab(page))) {
		/* maybe it was from stack? */
		rv = true;
		goto out_unlock;
	}

	slab_lock(page);
3359
	if (on_freelist(page->slab_cache, page, object)) {
3360 3361
		object_err(page->slab_cache, page, object,
				"Object is on free-list");
3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
		rv = false;
	} else {
		rv = true;
	}
	slab_unlock(page);

out_unlock:
	local_irq_restore(flags);
	return rv;
}
EXPORT_SYMBOL(verify_mem_not_deleted);
#endif

C
Christoph Lameter 已提交
3375 3376 3377
void kfree(const void *x)
{
	struct page *page;
3378
	void *object = (void *)x;
C
Christoph Lameter 已提交
3379

3380 3381
	trace_kfree(_RET_IP_, x);

3382
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3383 3384
		return;

3385
	page = virt_to_head_page(x);
3386
	if (unlikely(!PageSlab(page))) {
3387
		BUG_ON(!PageCompound(page));
3388
		kmemleak_free(x);
3389
		__free_memcg_kmem_pages(page, compound_order(page));
3390 3391
		return;
	}
3392
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3393 3394 3395
}
EXPORT_SYMBOL(kfree);

3396
/*
C
Christoph Lameter 已提交
3397 3398 3399 3400 3401 3402 3403 3404
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3405 3406 3407 3408 3409 3410 3411 3412
 */
int kmem_cache_shrink(struct kmem_cache *s)
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3413
	int objects = oo_objects(s->max);
3414
	struct list_head *slabs_by_inuse =
3415
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3416 3417 3418 3419 3420 3421
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3422
	for_each_node_state(node, N_NORMAL_MEMORY) {
3423 3424 3425 3426 3427
		n = get_node(s, node);

		if (!n->nr_partial)
			continue;

3428
		for (i = 0; i < objects; i++)
3429 3430 3431 3432 3433
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3434
		 * Build lists indexed by the items in use in each slab.
3435
		 *
C
Christoph Lameter 已提交
3436 3437
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3438 3439
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3440 3441 3442
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3443 3444 3445
		}

		/*
C
Christoph Lameter 已提交
3446 3447
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3448
		 */
3449
		for (i = objects - 1; i > 0; i--)
3450 3451 3452
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3453 3454 3455 3456

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3457 3458 3459 3460 3461 3462 3463
	}

	kfree(slabs_by_inuse);
	return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);

3464 3465 3466 3467
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3468
	mutex_lock(&slab_mutex);
3469 3470
	list_for_each_entry(s, &slab_caches, list)
		kmem_cache_shrink(s);
3471
	mutex_unlock(&slab_mutex);
3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3483
	offline_node = marg->status_change_nid_normal;
3484 3485 3486 3487 3488 3489 3490 3491

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3492
	mutex_lock(&slab_mutex);
3493 3494 3495 3496 3497 3498
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3499
			 * and offline_pages() function shouldn't call this
3500 3501
			 * callback. So, we must fail.
			 */
3502
			BUG_ON(slabs_node(s, offline_node));
3503 3504

			s->node[offline_node] = NULL;
3505
			kmem_cache_free(kmem_cache_node, n);
3506 3507
		}
	}
3508
	mutex_unlock(&slab_mutex);
3509 3510 3511 3512 3513 3514 3515
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3516
	int nid = marg->status_change_nid_normal;
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3527
	 * We are bringing a node online. No memory is available yet. We must
3528 3529 3530
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3531
	mutex_lock(&slab_mutex);
3532 3533 3534 3535 3536 3537
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3538
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3539 3540 3541 3542
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3543
		init_kmem_cache_node(n);
3544 3545 3546
		s->node[nid] = n;
	}
out:
3547
	mutex_unlock(&slab_mutex);
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3571 3572 3573 3574
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3575 3576 3577
	return ret;
}

3578 3579 3580 3581
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3582

C
Christoph Lameter 已提交
3583 3584 3585 3586
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3587 3588
/*
 * Used for early kmem_cache structures that were allocated using
3589 3590
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3591 3592
 */

3593
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3594 3595
{
	int node;
3596
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
3597

3598
	memcpy(s, static_cache, kmem_cache->object_size);
3599

3600 3601 3602 3603 3604 3605
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
3606 3607 3608 3609 3610 3611
	for_each_node_state(node, N_NORMAL_MEMORY) {
		struct kmem_cache_node *n = get_node(s, node);
		struct page *p;

		if (n) {
			list_for_each_entry(p, &n->partial, lru)
3612
				p->slab_cache = s;
3613

L
Li Zefan 已提交
3614
#ifdef CONFIG_SLUB_DEBUG
3615
			list_for_each_entry(p, &n->full, lru)
3616
				p->slab_cache = s;
3617 3618 3619
#endif
		}
	}
3620 3621
	list_add(&s->list, &slab_caches);
	return s;
3622 3623
}

C
Christoph Lameter 已提交
3624 3625
void __init kmem_cache_init(void)
{
3626 3627
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3628

3629 3630 3631
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3632 3633
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3634

3635 3636
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3637

3638
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3639 3640 3641 3642

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3643 3644 3645 3646
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3647

3648
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3649

3650 3651 3652 3653 3654
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3655
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3656 3657

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3658
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3659 3660 3661

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3662
#endif
C
Christoph Lameter 已提交
3663

I
Ingo Molnar 已提交
3664
	printk(KERN_INFO
3665
		"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
3666
		" CPUs=%d, Nodes=%d\n",
3667
		cache_line_size(),
C
Christoph Lameter 已提交
3668 3669 3670 3671
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3672 3673 3674 3675
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3676 3677 3678 3679 3680 3681 3682 3683
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3684
	if (s->ctor)
C
Christoph Lameter 已提交
3685 3686
		return 1;

3687 3688 3689 3690 3691 3692
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3693 3694 3695
	return 0;
}

3696
static struct kmem_cache *find_mergeable(struct mem_cgroup *memcg, size_t size,
3697
		size_t align, unsigned long flags, const char *name,
3698
		void (*ctor)(void *))
C
Christoph Lameter 已提交
3699
{
3700
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3701 3702 3703 3704

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3705
	if (ctor)
C
Christoph Lameter 已提交
3706 3707 3708 3709 3710
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3711
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3712

3713
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3714 3715 3716 3717 3718 3719
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3720
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
C
Christoph Lameter 已提交
3721 3722 3723 3724 3725
				continue;
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3726
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3727 3728 3729 3730 3731
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

3732 3733 3734
		if (!cache_match_memcg(s, memcg))
			continue;

C
Christoph Lameter 已提交
3735 3736 3737 3738 3739
		return s;
	}
	return NULL;
}

3740 3741 3742
struct kmem_cache *
__kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
		   size_t align, unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3743 3744 3745
{
	struct kmem_cache *s;

3746
	s = find_mergeable(memcg, size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3747 3748 3749 3750 3751 3752
	if (s) {
		s->refcount++;
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3753
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3754
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3755

3756 3757
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3758
			s = NULL;
3759
		}
3760
	}
C
Christoph Lameter 已提交
3761

3762 3763
	return s;
}
P
Pekka Enberg 已提交
3764

3765
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3766
{
3767 3768 3769 3770 3771
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3772

3773 3774 3775 3776
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3777
	memcg_propagate_slab_attrs(s);
3778 3779 3780
	mutex_unlock(&slab_mutex);
	err = sysfs_slab_add(s);
	mutex_lock(&slab_mutex);
3781

3782 3783
	if (err)
		kmem_cache_close(s);
3784

3785
	return err;
C
Christoph Lameter 已提交
3786 3787 3788 3789
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3790 3791
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3792 3793 3794 3795 3796
 */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3797 3798
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3799 3800 3801

	switch (action) {
	case CPU_UP_CANCELED:
3802
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3803
	case CPU_DEAD:
3804
	case CPU_DEAD_FROZEN:
3805
		mutex_lock(&slab_mutex);
3806 3807 3808 3809 3810
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3811
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3812 3813 3814 3815 3816 3817 3818
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

P
Pekka Enberg 已提交
3819
static struct notifier_block __cpuinitdata slab_notifier = {
I
Ingo Molnar 已提交
3820
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3821
};
C
Christoph Lameter 已提交
3822 3823 3824

#endif

3825
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3826
{
3827
	struct kmem_cache *s;
3828
	void *ret;
3829

3830
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3831 3832
		return kmalloc_large(size, gfpflags);

3833
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3834

3835
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3836
		return s;
C
Christoph Lameter 已提交
3837

3838
	ret = slab_alloc(s, gfpflags, caller);
3839

L
Lucas De Marchi 已提交
3840
	/* Honor the call site pointer we received. */
3841
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3842 3843

	return ret;
C
Christoph Lameter 已提交
3844 3845
}

3846
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3847
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3848
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3849
{
3850
	struct kmem_cache *s;
3851
	void *ret;
3852

3853
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3854 3855 3856 3857 3858 3859 3860 3861
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3862

3863
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3864

3865
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3866
		return s;
C
Christoph Lameter 已提交
3867

3868
	ret = slab_alloc_node(s, gfpflags, node, caller);
3869

L
Lucas De Marchi 已提交
3870
	/* Honor the call site pointer we received. */
3871
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3872 3873

	return ret;
C
Christoph Lameter 已提交
3874
}
3875
#endif
C
Christoph Lameter 已提交
3876

3877
#ifdef CONFIG_SYSFS
3878 3879 3880 3881 3882 3883 3884 3885 3886
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3887
#endif
3888

3889
#ifdef CONFIG_SLUB_DEBUG
3890 3891
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3892 3893
{
	void *p;
3894
	void *addr = page_address(page);
3895 3896 3897 3898 3899 3900

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3901
	bitmap_zero(map, page->objects);
3902

3903 3904 3905 3906 3907
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3908 3909
	}

3910
	for_each_object(p, s, addr, page->objects)
3911
		if (!test_bit(slab_index(p, s, addr), map))
3912
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3913 3914 3915 3916
				return 0;
	return 1;
}

3917 3918
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3919
{
3920 3921 3922
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3923 3924
}

3925 3926
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3927 3928 3929 3930 3931 3932 3933 3934
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3935
		validate_slab_slab(s, page, map);
3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
		count++;
	}
	if (count != n->nr_partial)
		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
			"counter=%ld\n", s->name, count, n->nr_partial);

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3946
		validate_slab_slab(s, page, map);
3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
		printk(KERN_ERR "SLUB: %s %ld slabs counted but "
			"counter=%ld\n", s->name, count,
			atomic_long_read(&n->nr_slabs));

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3959
static long validate_slab_cache(struct kmem_cache *s)
3960 3961 3962
{
	int node;
	unsigned long count = 0;
3963
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3964 3965 3966 3967
				sizeof(unsigned long), GFP_KERNEL);

	if (!map)
		return -ENOMEM;
3968 3969

	flush_all(s);
C
Christoph Lameter 已提交
3970
	for_each_node_state(node, N_NORMAL_MEMORY) {
3971 3972
		struct kmem_cache_node *n = get_node(s, node);

3973
		count += validate_slab_node(s, n, map);
3974
	}
3975
	kfree(map);
3976 3977
	return count;
}
3978
/*
C
Christoph Lameter 已提交
3979
 * Generate lists of code addresses where slabcache objects are allocated
3980 3981 3982 3983 3984
 * and freed.
 */

struct location {
	unsigned long count;
3985
	unsigned long addr;
3986 3987 3988 3989 3990
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3991
	DECLARE_BITMAP(cpus, NR_CPUS);
3992
	nodemask_t nodes;
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4008
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4009 4010 4011 4012 4013 4014
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4015
	l = (void *)__get_free_pages(flags, order);
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4029
				const struct track *track)
4030 4031 4032
{
	long start, end, pos;
	struct location *l;
4033
	unsigned long caddr;
4034
	unsigned long age = jiffies - track->when;
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4066 4067
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4068 4069
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4070 4071 4072
			return 1;
		}

4073
		if (track->addr < caddr)
4074 4075 4076 4077 4078 4079
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4080
	 * Not found. Insert new tracking element.
4081
	 */
4082
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4083 4084 4085 4086 4087 4088 4089 4090
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4091 4092 4093 4094 4095 4096
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4097 4098
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4099 4100
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4101 4102 4103 4104
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4105
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4106
		unsigned long *map)
4107
{
4108
	void *addr = page_address(page);
4109 4110
	void *p;

4111
	bitmap_zero(map, page->objects);
4112
	get_map(s, page, map);
4113

4114
	for_each_object(p, s, addr, page->objects)
4115 4116
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4117 4118 4119 4120 4121
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4122
	int len = 0;
4123
	unsigned long i;
4124
	struct loc_track t = { 0, 0, NULL };
4125
	int node;
E
Eric Dumazet 已提交
4126 4127
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
4128

E
Eric Dumazet 已提交
4129 4130 4131
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4132
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4133
	}
4134 4135 4136
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4137
	for_each_node_state(node, N_NORMAL_MEMORY) {
4138 4139 4140 4141
		struct kmem_cache_node *n = get_node(s, node);
		unsigned long flags;
		struct page *page;

4142
		if (!atomic_long_read(&n->nr_slabs))
4143 4144 4145 4146
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4147
			process_slab(&t, s, page, alloc, map);
4148
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4149
			process_slab(&t, s, page, alloc, map);
4150 4151 4152 4153
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4154
		struct location *l = &t.loc[i];
4155

H
Hugh Dickins 已提交
4156
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4157
			break;
4158
		len += sprintf(buf + len, "%7ld ", l->count);
4159 4160

		if (l->addr)
J
Joe Perches 已提交
4161
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4162
		else
4163
			len += sprintf(buf + len, "<not-available>");
4164 4165

		if (l->sum_time != l->min_time) {
4166
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4167 4168 4169
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4170
		} else
4171
			len += sprintf(buf + len, " age=%ld",
4172 4173 4174
				l->min_time);

		if (l->min_pid != l->max_pid)
4175
			len += sprintf(buf + len, " pid=%ld-%ld",
4176 4177
				l->min_pid, l->max_pid);
		else
4178
			len += sprintf(buf + len, " pid=%ld",
4179 4180
				l->min_pid);

R
Rusty Russell 已提交
4181 4182
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4183 4184
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4185 4186
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4187
						 to_cpumask(l->cpus));
4188 4189
		}

4190
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4191 4192
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4193 4194 4195
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4196 4197
		}

4198
		len += sprintf(buf + len, "\n");
4199 4200 4201
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4202
	kfree(map);
4203
	if (!t.count)
4204 4205
		len += sprintf(buf, "No data\n");
	return len;
4206
}
4207
#endif
4208

4209 4210 4211 4212 4213
#ifdef SLUB_RESILIENCY_TEST
static void resiliency_test(void)
{
	u8 *p;

4214
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270

	printk(KERN_ERR "SLUB resiliency testing\n");
	printk(KERN_ERR "-----------------------\n");
	printk(KERN_ERR "A. Corruption after allocation\n");

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
			" 0x12->0x%p\n\n", p + 16);

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
			" 0x34 -> -0x%p\n", p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
									p);
	printk(KERN_ERR
		"If allocated object is overwritten then not detectable\n\n");
	validate_slab_cache(kmalloc_caches[6]);

	printk(KERN_ERR "\nB. Corruption after free\n");
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
			p);
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4271
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4272
enum slab_stat_type {
4273 4274 4275 4276 4277
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4278 4279
};

4280
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4281 4282 4283
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4284
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4285

4286 4287
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4288 4289 4290 4291 4292 4293
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4294
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4295 4296
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4297

4298 4299
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4300

4301
		for_each_possible_cpu(cpu) {
4302 4303
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4304
			int node;
4305
			struct page *page;
4306

4307
			page = ACCESS_ONCE(c->page);
4308 4309
			if (!page)
				continue;
4310

4311 4312 4313 4314 4315 4316 4317
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4318

4319 4320 4321 4322
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4323 4324
			if (page) {
				x = page->pobjects;
4325 4326
				total += x;
				nodes[node] += x;
4327
			}
C
Christoph Lameter 已提交
4328 4329 4330
		}
	}

4331
	lock_memory_hotplug();
4332
#ifdef CONFIG_SLUB_DEBUG
4333 4334 4335 4336
	if (flags & SO_ALL) {
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);

4337 4338 4339 4340 4341
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4342
			else
4343
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4344 4345 4346 4347
			total += x;
			nodes[node] += x;
		}

4348 4349 4350
	} else
#endif
	if (flags & SO_PARTIAL) {
4351 4352
		for_each_node_state(node, N_NORMAL_MEMORY) {
			struct kmem_cache_node *n = get_node(s, node);
C
Christoph Lameter 已提交
4353

4354 4355 4356 4357
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4358
			else
4359
				x = n->nr_partial;
C
Christoph Lameter 已提交
4360 4361 4362 4363 4364 4365
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4366
	for_each_node_state(node, N_NORMAL_MEMORY)
C
Christoph Lameter 已提交
4367 4368 4369 4370
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4371
	unlock_memory_hotplug();
C
Christoph Lameter 已提交
4372 4373 4374 4375
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4376
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4377 4378 4379 4380
static int any_slab_objects(struct kmem_cache *s)
{
	int node;

4381
	for_each_online_node(node) {
C
Christoph Lameter 已提交
4382 4383
		struct kmem_cache_node *n = get_node(s, node);

4384 4385 4386
		if (!n)
			continue;

4387
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4388 4389 4390 4391
			return 1;
	}
	return 0;
}
4392
#endif
C
Christoph Lameter 已提交
4393 4394

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4395
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4396 4397 4398 4399 4400 4401 4402 4403

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4404 4405
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4406 4407 4408

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4409
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4425
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4426 4427 4428 4429 4430
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4431
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4432 4433 4434
}
SLAB_ATTR_RO(objs_per_slab);

4435 4436 4437
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4438 4439 4440 4441 4442 4443
	unsigned long order;
	int err;

	err = strict_strtoul(buf, 10, &order);
	if (err)
		return err;
4444 4445 4446 4447 4448 4449 4450 4451

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4452 4453
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4454
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4455
}
4456
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4457

4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

	err = strict_strtoul(buf, 10, &min);
	if (err)
		return err;

4473
	set_min_partial(s, min);
4474 4475 4476 4477
	return length;
}
SLAB_ATTR(min_partial);

4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

	err = strict_strtoul(buf, 10, &objects);
	if (err)
		return err;
4492
	if (objects && !kmem_cache_has_cpu_partial(s))
4493
		return -EINVAL;
4494 4495 4496 4497 4498 4499 4500

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4501 4502
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4503 4504 4505
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->refcount - 1);
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4517
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4518 4519 4520 4521 4522
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4523
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4524 4525 4526 4527 4528
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4529
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4530 4531 4532
}
SLAB_ATTR_RO(objects);

4533 4534 4535 4536 4537 4538
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4605 4606 4607 4608 4609 4610
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4611
#ifdef CONFIG_SLUB_DEBUG
4612 4613 4614 4615 4616 4617
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4618 4619 4620 4621 4622 4623
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4624 4625 4626 4627 4628 4629 4630 4631 4632
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4633 4634
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4635
		s->flags |= SLAB_DEBUG_FREE;
4636
	}
C
Christoph Lameter 已提交
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4650 4651
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4652
		s->flags |= SLAB_TRACE;
4653
	}
C
Christoph Lameter 已提交
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4670 4671
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4672
		s->flags |= SLAB_RED_ZONE;
4673
	}
4674
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4691 4692
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4693
		s->flags |= SLAB_POISON;
4694
	}
4695
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4712 4713
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4714
		s->flags |= SLAB_STORE_USER;
4715
	}
4716
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4717 4718 4719 4720
	return length;
}
SLAB_ATTR(store_user);

4721 4722 4723 4724 4725 4726 4727 4728
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4729 4730 4731 4732 4733 4734 4735 4736
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4737 4738
}
SLAB_ATTR(validate);
4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4772
#endif
4773

4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4793
#ifdef CONFIG_NUMA
4794
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4795
{
4796
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4797 4798
}

4799
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4800 4801
				const char *buf, size_t length)
{
4802 4803 4804 4805 4806 4807 4808
	unsigned long ratio;
	int err;

	err = strict_strtoul(buf, 10, &ratio);
	if (err)
		return err;

4809
	if (ratio <= 100)
4810
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4811 4812 4813

	return length;
}
4814
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4815 4816
#endif

4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4829
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4830 4831 4832 4833 4834 4835 4836

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4837
#ifdef CONFIG_SMP
4838 4839
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4840
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4841
	}
4842
#endif
4843 4844 4845 4846
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4847 4848 4849 4850 4851
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4852
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4853 4854
}

4855 4856 4857 4858 4859
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4860 4861 4862 4863 4864 4865 4866 4867 4868
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4880
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4881 4882 4883 4884 4885 4886 4887
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4888
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4889
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4890 4891
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4892 4893
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4894 4895
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4896 4897
#endif

P
Pekka Enberg 已提交
4898
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4899 4900 4901 4902
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4903
	&min_partial_attr.attr,
4904
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4905
	&objects_attr.attr,
4906
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4907 4908 4909 4910 4911 4912 4913 4914
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4915
	&shrink_attr.attr,
4916
	&reserved_attr.attr,
4917
	&slabs_cpu_partial_attr.attr,
4918
#ifdef CONFIG_SLUB_DEBUG
4919 4920 4921 4922
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4923 4924 4925
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4926
	&validate_attr.attr,
4927 4928
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4929
#endif
C
Christoph Lameter 已提交
4930 4931 4932 4933
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4934
	&remote_node_defrag_ratio_attr.attr,
4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4947
	&alloc_node_mismatch_attr.attr,
4948 4949 4950 4951 4952 4953 4954
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4955
	&deactivate_bypass_attr.attr,
4956
	&order_fallback_attr.attr,
4957 4958
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4959 4960
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4961 4962
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4963
#endif
4964 4965 4966 4967
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5009 5010 5011
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
5012

5013 5014 5015 5016
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5034 5035 5036 5037 5038 5039 5040 5041
		for_each_memcg_cache_index(i) {
			struct kmem_cache *c = cache_from_memcg(s, i);
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5042 5043 5044
	return err;
}

5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;

	if (!is_root_cache(s))
		return;

	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
	if (!s->max_attr_size)
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
		else if (s->max_attr_size < ARRAY_SIZE(mbuf))
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

		attr->show(s->memcg_params->root_cache, buf);
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5098
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5116
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5117 5118 5119
	.filter = uevent_filter,
};

5120
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5121 5122 5123 5124

#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5125 5126
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5149 5150
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5151 5152 5153
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5154 5155 5156

#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
5157 5158
		p += sprintf(p, "-%08d",
				memcg_cache_id(s->memcg_params->memcg));
5159 5160
#endif

C
Christoph Lameter 已提交
5161 5162 5163 5164 5165 5166 5167 5168
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5169
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5170 5171 5172 5173 5174 5175 5176

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5177
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5178 5179 5180 5181 5182 5183 5184 5185 5186
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5187
	s->kobj.kset = slab_kset;
5188 5189 5190
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
	if (err) {
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5191
		return err;
5192
	}
C
Christoph Lameter 已提交
5193 5194

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5195 5196 5197
	if (err) {
		kobject_del(&s->kobj);
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5198
		return err;
5199
	}
C
Christoph Lameter 已提交
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
		kfree(name);
	}
	return 0;
}

static void sysfs_slab_remove(struct kmem_cache *s)
{
5211
	if (slab_state < FULL)
5212 5213 5214 5215 5216 5217
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

C
Christoph Lameter 已提交
5218 5219
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5220
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5221 5222 5223 5224
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5225
 * available lest we lose that information.
C
Christoph Lameter 已提交
5226 5227 5228 5229 5230 5231 5232
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5233
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5234 5235 5236 5237 5238

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5239
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5240 5241 5242
		/*
		 * If we have a leftover link then remove it.
		 */
5243 5244
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5260
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5261 5262
	int err;

5263
	mutex_lock(&slab_mutex);
5264

5265
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5266
	if (!slab_kset) {
5267
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5268 5269 5270 5271
		printk(KERN_ERR "Cannot register slab subsystem.\n");
		return -ENOSYS;
	}

5272
	slab_state = FULL;
5273

5274
	list_for_each_entry(s, &slab_caches, list) {
5275
		err = sysfs_slab_add(s);
5276 5277 5278
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab %s"
						" to sysfs\n", s->name);
5279
	}
C
Christoph Lameter 已提交
5280 5281 5282 5283 5284 5285

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5286 5287
		if (err)
			printk(KERN_ERR "SLUB: Unable to add boot slab alias"
5288
					" %s to sysfs\n", al->name);
C
Christoph Lameter 已提交
5289 5290 5291
		kfree(al);
	}

5292
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5293 5294 5295 5296 5297
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5298
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5299 5300 5301 5302

/*
 * The /proc/slabinfo ABI
 */
5303
#ifdef CONFIG_SLABINFO
5304
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5305 5306
{
	unsigned long nr_slabs = 0;
5307 5308
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5309 5310 5311 5312 5313 5314 5315 5316
	int node;

	for_each_online_node(node) {
		struct kmem_cache_node *n = get_node(s, node);

		if (!n)
			continue;

5317 5318
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5319
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5320 5321
	}

5322 5323 5324 5325 5326 5327
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5328 5329
}

5330
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5331 5332 5333
{
}

5334 5335
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5336
{
5337
	return -EIO;
5338
}
5339
#endif /* CONFIG_SLABINFO */