time.c 32.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
 * measurement at boot time. (for iSeries, we calibrate the timebase
 * against the Titan chip's clock.)
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
54
#include <linux/irq.h>
55
#include <linux/delay.h>
56
#include <linux/perf_event.h>
57
#include <asm/trace.h>
L
Linus Torvalds 已提交
58 59 60 61 62 63 64 65 66

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
67 68
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
69
#include <asm/smp.h>
70
#include <asm/vdso_datapage.h>
71
#include <asm/firmware.h>
M
Michael Neuling 已提交
72
#include <asm/cputime.h>
73
#ifdef CONFIG_PPC_ISERIES
74
#include <asm/iseries/it_lp_queue.h>
75
#include <asm/iseries/hv_call_xm.h>
76
#endif
L
Linus Torvalds 已提交
77

78 79
/* powerpc clocksource/clockevent code */

80
#include <linux/clockchips.h>
81 82
#include <linux/clocksource.h>

83
static cycle_t rtc_read(struct clocksource *);
84 85 86 87 88 89 90 91 92 93
static struct clocksource clocksource_rtc = {
	.name         = "rtc",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = rtc_read,
};

94
static cycle_t timebase_read(struct clocksource *);
95 96 97 98 99 100 101 102 103 104
static struct clocksource clocksource_timebase = {
	.name         = "timebase",
	.rating       = 400,
	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
	.mask         = CLOCKSOURCE_MASK(64),
	.shift        = 22,
	.mult         = 0,	/* To be filled in */
	.read         = timebase_read,
};

105 106 107 108 109 110 111 112 113 114
#define DECREMENTER_MAX	0x7fffffff

static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev);
static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev);

static struct clock_event_device decrementer_clockevent = {
       .name           = "decrementer",
       .rating         = 200,
115
       .shift          = 0,	/* To be filled in */
116 117 118 119 120 121 122
       .mult           = 0,	/* To be filled in */
       .irq            = 0,
       .set_next_event = decrementer_set_next_event,
       .set_mode       = decrementer_set_mode,
       .features       = CLOCK_EVT_FEAT_ONESHOT,
};

123 124 125 126 127 128
struct decrementer_clock {
	struct clock_event_device event;
	u64 next_tb;
};

static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
129

L
Linus Torvalds 已提交
130
#ifdef CONFIG_PPC_ISERIES
131 132
static unsigned long __initdata iSeries_recal_titan;
static signed long __initdata iSeries_recal_tb;
133 134

/* Forward declaration is only needed for iSereis compiles */
135
static void __init clocksource_init(void);
L
Linus Torvalds 已提交
136 137 138 139
#endif

#define XSEC_PER_SEC (1024*1024)

140 141 142 143 144 145 146
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
147 148 149 150
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
151
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
152 153
u64 tb_to_xs;
unsigned tb_to_us;
154

155
#define TICKLEN_SCALE	NTP_SCALE_SHIFT
156 157
static u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
static u64 ticklen_to_xs;	/* 0.64 fraction */
158 159 160 161 162

/* If last_tick_len corresponds to about 1/HZ seconds, then
   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
#define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)

L
Linus Torvalds 已提交
163
DEFINE_SPINLOCK(rtc_lock);
164
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
165

166 167 168
static u64 tb_to_ns_scale __read_mostly;
static unsigned tb_to_ns_shift __read_mostly;
static unsigned long boot_tb __read_mostly;
L
Linus Torvalds 已提交
169 170

extern struct timezone sys_tz;
171
static long timezone_offset;
L
Linus Torvalds 已提交
172

173
unsigned long ppc_proc_freq;
174
EXPORT_SYMBOL(ppc_proc_freq);
175 176
unsigned long ppc_tb_freq;

177 178
static u64 tb_last_jiffy __cacheline_aligned_in_smp;
static DEFINE_PER_CPU(u64, last_jiffy);
179

180 181 182 183 184 185 186
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
187
EXPORT_SYMBOL(__cputime_jiffies_factor);
188
u64 __cputime_msec_factor;
189
EXPORT_SYMBOL(__cputime_msec_factor);
190
u64 __cputime_sec_factor;
191
EXPORT_SYMBOL(__cputime_sec_factor);
192
u64 __cputime_clockt_factor;
193
EXPORT_SYMBOL(__cputime_clockt_factor);
M
Michael Neuling 已提交
194 195
DEFINE_PER_CPU(unsigned long, cputime_last_delta);
DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
196

197 198
cputime_t cputime_one_jiffy;

199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
	__cputime_msec_factor = res.result_low;
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
 * Read the PURR on systems that have it, otherwise the timebase.
 */
static u64 read_purr(void)
{
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
	return mftb();
}

223 224 225 226 227
/*
 * Read the SPURR on systems that have it, otherwise the purr
 */
static u64 read_spurr(u64 purr)
{
228 229 230 231 232
	/*
	 * cpus without PURR won't have a SPURR
	 * We already know the former when we use this, so tell gcc
	 */
	if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
233 234 235 236
		return mfspr(SPRN_SPURR);
	return purr;
}

237 238 239 240 241 242
/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
243
	u64 now, nowscaled, delta, deltascaled, sys_time;
244 245 246 247
	unsigned long flags;

	local_irq_save(flags);
	now = read_purr();
248
	nowscaled = read_spurr(now);
249
	delta = now - get_paca()->startpurr;
250
	deltascaled = nowscaled - get_paca()->startspurr;
251
	get_paca()->startpurr = now;
252
	get_paca()->startspurr = nowscaled;
253
	if (!in_interrupt()) {
254 255 256
		/* deltascaled includes both user and system time.
		 * Hence scale it based on the purr ratio to estimate
		 * the system time */
257
		sys_time = get_paca()->system_time;
258
		if (get_paca()->user_time)
259 260 261
			deltascaled = deltascaled * sys_time /
			     (sys_time + get_paca()->user_time);
		delta += sys_time;
262 263
		get_paca()->system_time = 0;
	}
264 265 266 267
	if (in_irq() || idle_task(smp_processor_id()) != tsk)
		account_system_time(tsk, 0, delta, deltascaled);
	else
		account_idle_time(delta);
M
Michael Neuling 已提交
268 269
	per_cpu(cputime_last_delta, smp_processor_id()) = delta;
	per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
270 271
	local_irq_restore(flags);
}
A
Alexander Graf 已提交
272
EXPORT_SYMBOL_GPL(account_system_vtime);
273 274 275 276 277 278 279

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
 */
280
void account_process_tick(struct task_struct *tsk, int user_tick)
281
{
282
	cputime_t utime, utimescaled;
283 284 285

	utime = get_paca()->user_time;
	get_paca()->user_time = 0;
M
Michael Neuling 已提交
286
	utimescaled = cputime_to_scaled(utime);
287
	account_user_time(tsk, utime, utimescaled);
288 289 290 291 292 293 294 295 296
}

/*
 * Stuff for accounting stolen time.
 */
struct cpu_purr_data {
	int	initialized;			/* thread is running */
	u64	tb;			/* last TB value read */
	u64	purr;			/* last PURR value read */
297
	u64	spurr;			/* last SPURR value read */
298 299
};

300 301 302 303 304 305 306
/*
 * Each entry in the cpu_purr_data array is manipulated only by its
 * "owner" cpu -- usually in the timer interrupt but also occasionally
 * in process context for cpu online.  As long as cpus do not touch
 * each others' cpu_purr_data, disabling local interrupts is
 * sufficient to serialize accesses.
 */
307 308 309 310
static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);

static void snapshot_tb_and_purr(void *data)
{
311
	unsigned long flags;
312 313
	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);

314
	local_irq_save(flags);
315
	p->tb = get_tb_or_rtc();
316
	p->purr = mfspr(SPRN_PURR);
317 318
	wmb();
	p->initialized = 1;
319
	local_irq_restore(flags);
320 321 322 323 324 325 326 327 328
}

/*
 * Called during boot when all cpus have come up.
 */
void snapshot_timebases(void)
{
	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
329
	on_each_cpu(snapshot_tb_and_purr, NULL, 1);
330 331
}

332 333 334
/*
 * Must be called with interrupts disabled.
 */
335 336
void calculate_steal_time(void)
{
337
	u64 tb, purr;
338
	s64 stolen;
339
	struct cpu_purr_data *pme;
340

341
	pme = &__get_cpu_var(cpu_purr_data);
342
	if (!pme->initialized)
343
		return;		/* !CPU_FTR_PURR or early in early boot */
344
	tb = mftb();
345 346
	purr = mfspr(SPRN_PURR);
	stolen = (tb - pme->tb) - (purr - pme->purr);
347 348 349 350 351 352
	if (stolen > 0) {
		if (idle_task(smp_processor_id()) != current)
			account_steal_time(stolen);
		else
			account_idle_time(stolen);
	}
353 354 355 356
	pme->tb = tb;
	pme->purr = purr;
}

357
#ifdef CONFIG_PPC_SPLPAR
358 359 360 361 362 363
/*
 * Must be called before the cpu is added to the online map when
 * a cpu is being brought up at runtime.
 */
static void snapshot_purr(void)
{
364
	struct cpu_purr_data *pme;
365 366 367 368
	unsigned long flags;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
369
	local_irq_save(flags);
370
	pme = &__get_cpu_var(cpu_purr_data);
371 372
	pme->tb = mftb();
	pme->purr = mfspr(SPRN_PURR);
373
	pme->initialized = 1;
374
	local_irq_restore(flags);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
}

#endif /* CONFIG_PPC_SPLPAR */

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#define calculate_steal_time()		do { } while (0)
#endif

#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
#define snapshot_purr()			do { } while (0)
#endif

/*
 * Called when a cpu comes up after the system has finished booting,
 * i.e. as a result of a hotplug cpu action.
 */
void snapshot_timebase(void)
{
394
	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
395 396 397
	snapshot_purr();
}

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

426
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
427
			       u64 new_tb_to_xs)
L
Linus Torvalds 已提交
428
{
429 430 431 432 433 434 435 436
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
437 438
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
439
	 */
440 441 442 443 444
	vdso_data->tb_orig_stamp = new_tb_stamp;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
445
	vdso_data->stamp_xtime = xtime;
446
	smp_wmb();
447
	++(vdso_data->tb_update_count);
448 449
}

L
Linus Torvalds 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

#ifdef CONFIG_PPC_ISERIES

/* 
 * This function recalibrates the timebase based on the 49-bit time-of-day
 * value in the Titan chip.  The Titan is much more accurate than the value
 * returned by the service processor for the timebase frequency.  
 */

471
static int __init iSeries_tb_recal(void)
L
Linus Torvalds 已提交
472 473 474
{
	struct div_result divres;
	unsigned long titan, tb;
475 476 477 478 479

	/* Make sure we only run on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		return -ENODEV;

L
Linus Torvalds 已提交
480 481 482 483 484 485
	tb = get_tb();
	titan = HvCallXm_loadTod();
	if ( iSeries_recal_titan ) {
		unsigned long tb_ticks = tb - iSeries_recal_tb;
		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
486 487
		unsigned long new_tb_ticks_per_jiffy =
			DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
L
Linus Torvalds 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
		char sign = '+';		
		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;

		if ( tick_diff < 0 ) {
			tick_diff = -tick_diff;
			sign = '-';
		}
		if ( tick_diff ) {
			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
						new_tb_ticks_per_jiffy, sign, tick_diff );
				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
				tb_ticks_per_sec   = new_tb_ticks_per_sec;
503
				calc_cputime_factors();
L
Linus Torvalds 已提交
504 505
				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
				tb_to_xs = divres.result_low;
506 507
				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
				vdso_data->tb_to_xs = tb_to_xs;
508
				setup_cputime_one_jiffy();
L
Linus Torvalds 已提交
509 510 511 512 513 514 515 516 517 518 519
			}
			else {
				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
					"                   new tb_ticks_per_jiffy = %lu\n"
					"                   old tb_ticks_per_jiffy = %lu\n",
					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
			}
		}
	}
	iSeries_recal_titan = titan;
	iSeries_recal_tb = tb;
520

521 522
	/* Called here as now we know accurate values for the timebase */
	clocksource_init();
523
	return 0;
L
Linus Torvalds 已提交
524
}
525 526 527 528 529 530 531 532 533
late_initcall(iSeries_tb_recal);

/* Called from platform early init */
void __init iSeries_time_init_early(void)
{
	iSeries_recal_tb = get_tb();
	iSeries_recal_titan = HvCallXm_loadTod();
}
#endif /* CONFIG_PPC_ISERIES */
L
Linus Torvalds 已提交
534

535 536
#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
DEFINE_PER_CPU(u8, perf_event_pending);
537

538
void set_perf_event_pending(void)
539
{
540
	get_cpu_var(perf_event_pending) = 1;
541
	set_dec(1);
542
	put_cpu_var(perf_event_pending);
543 544
}

545 546
#define test_perf_event_pending()	__get_cpu_var(perf_event_pending)
#define clear_perf_event_pending()	__get_cpu_var(perf_event_pending) = 0
547

548
#else  /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
549

550 551
#define test_perf_event_pending()	0
#define clear_perf_event_pending()
552

553
#endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
554

L
Linus Torvalds 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568
/*
 * For iSeries shared processors, we have to let the hypervisor
 * set the hardware decrementer.  We set a virtual decrementer
 * in the lppaca and call the hypervisor if the virtual
 * decrementer is less than the current value in the hardware
 * decrementer. (almost always the new decrementer value will
 * be greater than the current hardware decementer so the hypervisor
 * call will not be needed)
 */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
569
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
570
{
571
	struct pt_regs *old_regs;
572 573
	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
	struct clock_event_device *evt = &decrementer->event;
574
	u64 now;
575

576 577
	trace_timer_interrupt_entry(regs);

578 579 580
	/* Ensure a positive value is written to the decrementer, or else
	 * some CPUs will continuue to take decrementer exceptions */
	set_dec(DECREMENTER_MAX);
581 582

#ifdef CONFIG_PPC32
583 584 585
	if (test_perf_event_pending()) {
		clear_perf_event_pending();
		perf_event_do_pending();
586
	}
587 588 589
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
590

591
	now = get_tb_or_rtc();
592
	if (now < decrementer->next_tb) {
593
		/* not time for this event yet */
594
		now = decrementer->next_tb - now;
595
		if (now <= DECREMENTER_MAX)
596
			set_dec((int)now);
597
		trace_timer_interrupt_exit(regs);
598 599
		return;
	}
600
	old_regs = set_irq_regs(regs);
L
Linus Torvalds 已提交
601 602
	irq_enter();

603
	calculate_steal_time();
L
Linus Torvalds 已提交
604

605
#ifdef CONFIG_PPC_ISERIES
606 607
	if (firmware_has_feature(FW_FEATURE_ISERIES))
		get_lppaca()->int_dword.fields.decr_int = 0;
608 609
#endif

610 611
	if (evt->event_handler)
		evt->event_handler(evt);
L
Linus Torvalds 已提交
612 613

#ifdef CONFIG_PPC_ISERIES
614
	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
O
Olaf Hering 已提交
615
		process_hvlpevents();
L
Linus Torvalds 已提交
616 617
#endif

618
#ifdef CONFIG_PPC64
619
	/* collect purr register values often, for accurate calculations */
620
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
621 622 623
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
624
#endif
L
Linus Torvalds 已提交
625 626

	irq_exit();
627
	set_irq_regs(old_regs);
628 629

	trace_timer_interrupt_exit(regs);
L
Linus Torvalds 已提交
630 631
}

632 633
void wakeup_decrementer(void)
{
634
	unsigned long ticks;
635 636

	/*
637 638
	 * The timebase gets saved on sleep and restored on wakeup,
	 * so all we need to do is to reset the decrementer.
639
	 */
640 641 642 643 644 645
	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
	if (ticks < tb_ticks_per_jiffy)
		ticks = tb_ticks_per_jiffy - ticks;
	else
		ticks = 1;
	set_dec(ticks);
646 647
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
#ifdef CONFIG_SUSPEND
void generic_suspend_disable_irqs(void)
{
	preempt_disable();

	/* Disable the decrementer, so that it doesn't interfere
	 * with suspending.
	 */

	set_dec(0x7fffffff);
	local_irq_disable();
	set_dec(0x7fffffff);
}

void generic_suspend_enable_irqs(void)
{
	wakeup_decrementer();

	local_irq_enable();
	preempt_enable();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_disable_irqs(void)
{
	if (ppc_md.suspend_disable_irqs)
		ppc_md.suspend_disable_irqs();
	generic_suspend_disable_irqs();
}

/* Overrides the weak version in kernel/power/main.c */
void arch_suspend_enable_irqs(void)
{
	generic_suspend_enable_irqs();
	if (ppc_md.suspend_enable_irqs)
		ppc_md.suspend_enable_irqs();
}
#endif

687
#ifdef CONFIG_SMP
688 689 690
void __init smp_space_timers(unsigned int max_cpus)
{
	int i;
691
	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
692

693 694
	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
	previous_tb -= tb_ticks_per_jiffy;
695

696
	for_each_possible_cpu(i) {
697 698
		if (i == boot_cpuid)
			continue;
699
		per_cpu(last_jiffy, i) = previous_tb;
700 701 702 703
	}
}
#endif

L
Linus Torvalds 已提交
704 705 706 707 708 709 710 711 712
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
713 714
	if (__USE_RTC())
		return get_rtc();
715
	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
L
Linus Torvalds 已提交
716 717
}

718
static int __init get_freq(char *name, int cells, unsigned long *val)
719 720
{
	struct device_node *cpu;
721
	const unsigned int *fp;
722
	int found = 0;
723

724
	/* The cpu node should have timebase and clock frequency properties */
725 726
	cpu = of_find_node_by_type(NULL, "cpu");

727
	if (cpu) {
728
		fp = of_get_property(cpu, name, NULL);
729
		if (fp) {
730
			found = 1;
731
			*val = of_read_ulong(fp, cells);
732
		}
733 734

		of_node_put(cpu);
735
	}
736 737 738 739

	return found;
}

740 741 742 743 744 745 746 747 748 749 750 751
/* should become __cpuinit when secondary_cpu_time_init also is */
void start_cpu_decrementer(void)
{
#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
}

752 753 754 755 756 757 758
void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

759 760
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
761
	}
762

763 764 765 766 767 768 769
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
770 771 772
	}
}

773
int update_persistent_clock(struct timespec now)
774 775 776
{
	struct rtc_time tm;

777 778 779 780 781 782 783 784 785 786
	if (!ppc_md.set_rtc_time)
		return 0;

	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
	tm.tm_year -= 1900;
	tm.tm_mon -= 1;

	return ppc_md.set_rtc_time(&tm);
}

787
static void __read_persistent_clock(struct timespec *ts)
788 789 790 791
{
	struct rtc_time tm;
	static int first = 1;

792
	ts->tv_nsec = 0;
793 794 795 796 797 798 799
	/* XXX this is a litle fragile but will work okay in the short term */
	if (first) {
		first = 0;
		if (ppc_md.time_init)
			timezone_offset = ppc_md.time_init();

		/* get_boot_time() isn't guaranteed to be safe to call late */
800 801 802 803 804 805 806 807
		if (ppc_md.get_boot_time) {
			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
			return;
		}
	}
	if (!ppc_md.get_rtc_time) {
		ts->tv_sec = 0;
		return;
808
	}
809
	ppc_md.get_rtc_time(&tm);
810

811 812
	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
			    tm.tm_hour, tm.tm_min, tm.tm_sec);
813 814
}

815 816 817 818 819 820 821 822 823 824 825 826
void read_persistent_clock(struct timespec *ts)
{
	__read_persistent_clock(ts);

	/* Sanitize it in case real time clock is set below EPOCH */
	if (ts->tv_sec < 0) {
		ts->tv_sec = 0;
		ts->tv_nsec = 0;
	}
		
}

827
/* clocksource code */
828
static cycle_t rtc_read(struct clocksource *cs)
829 830 831 832
{
	return (cycle_t)get_rtc();
}

833
static cycle_t timebase_read(struct clocksource *cs)
834 835 836 837
{
	return (cycle_t)get_tb();
}

838 839
void update_vsyscall(struct timespec *wall_time, struct clocksource *clock,
		     u32 mult)
840 841 842 843 844 845 846 847 848 849 850 851
{
	u64 t2x, stamp_xsec;

	if (clock != &clocksource_timebase)
		return;

	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

	/* XXX this assumes clock->shift == 22 */
	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
852
	t2x = (u64) mult * 4611686018ULL;
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
	do_div(stamp_xsec, 1000000000);
	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
	update_gtod(clock->cycle_last, stamp_xsec, t2x);
}

void update_vsyscall_tz(void)
{
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
	smp_mb();
	++vdso_data->tb_update_count;
}

870
static void __init clocksource_init(void)
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
{
	struct clocksource *clock;

	if (__USE_RTC())
		clock = &clocksource_rtc;
	else
		clock = &clocksource_timebase;

	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);

	if (clocksource_register(clock)) {
		printk(KERN_ERR "clocksource: %s is already registered\n",
		       clock->name);
		return;
	}

	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
	       clock->name, clock->mult, clock->shift);
}

891 892 893
static int decrementer_set_next_event(unsigned long evt,
				      struct clock_event_device *dev)
{
894
	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
895 896 897 898 899 900 901 902 903 904 905
	set_dec(evt);
	return 0;
}

static void decrementer_set_mode(enum clock_event_mode mode,
				 struct clock_event_device *dev)
{
	if (mode != CLOCK_EVT_MODE_ONESHOT)
		decrementer_set_next_event(DECREMENTER_MAX, dev);
}

906 907 908 909 910 911 912 913 914
static inline uint64_t div_sc64(unsigned long ticks, unsigned long nsec,
				int shift)
{
	uint64_t tmp = ((uint64_t)ticks) << shift;

	do_div(tmp, nsec);
	return tmp;
}

915 916 917 918 919
static void __init setup_clockevent_multiplier(unsigned long hz)
{
	u64 mult, shift = 32;

	while (1) {
920
		mult = div_sc64(hz, NSEC_PER_SEC, shift);
921 922 923 924 925 926 927 928 929 930
		if (mult && (mult >> 32UL) == 0UL)
			break;

		shift--;
	}

	decrementer_clockevent.shift = shift;
	decrementer_clockevent.mult = mult;
}

931 932
static void register_decrementer_clockevent(int cpu)
{
933
	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
934 935

	*dec = decrementer_clockevent;
936
	dec->cpumask = cpumask_of(cpu);
937

938
	printk(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
939 940 941 942 943
	       dec->name, dec->mult, dec->shift, cpu);

	clockevents_register_device(dec);
}

944
static void __init init_decrementer_clockevent(void)
945 946 947
{
	int cpu = smp_processor_id();

948
	setup_clockevent_multiplier(ppc_tb_freq);
949 950
	decrementer_clockevent.max_delta_ns =
		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
951 952
	decrementer_clockevent.min_delta_ns =
		clockevent_delta2ns(2, &decrementer_clockevent);
953 954 955 956 957 958

	register_decrementer_clockevent(cpu);
}

void secondary_cpu_time_init(void)
{
959 960 961 962 963
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

964 965 966 967 968
	/* FIME: Should make unrelatred change to move snapshot_timebase
	 * call here ! */
	register_decrementer_clockevent(smp_processor_id());
}

969
/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
970 971 972 973
void __init time_init(void)
{
	unsigned long flags;
	struct div_result res;
974
	u64 scale, x;
975 976
	unsigned shift;

977 978 979
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
980
		tb_last_jiffy = get_rtcl();
981 982 983
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
984
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
985
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
986
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
987
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
988
		tb_last_jiffy = get_tb();
989
	}
990 991

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
992
	tb_ticks_per_sec = ppc_tb_freq;
993 994
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
995
	calc_cputime_factors();
996
	setup_cputime_one_jiffy();
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

	/*
	 * Calculate the length of each tick in ns.  It will not be
	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
	 * rounded up.
	 */
	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
	do_div(x, ppc_tb_freq);
	tick_nsec = x;
	last_tick_len = x << TICKLEN_SCALE;

	/*
	 * Compute ticklen_to_xs, which is a factor which gets multiplied
	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
	 * It is computed as:
	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
1015 1016 1017 1018 1019 1020 1021
	 * which turns out to be N = 51 - SHIFT_HZ.
	 * This gives the result as a 0.64 fixed-point fraction.
	 * That value is reduced by an offset amounting to 1 xsec per
	 * 2^31 timebase ticks to avoid problems with time going backwards
	 * by 1 xsec when we do timer_recalc_offset due to losing the
	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
	 * since there are 2^20 xsec in a second.
1022
	 */
1023 1024
	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
1025 1026 1027 1028 1029
	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
	ticklen_to_xs = res.result_low;

	/* Compute tb_to_xs from tick_nsec */
	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
1030

L
Linus Torvalds 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;
1049
	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1050
	boot_tb = get_tb_or_rtc();
L
Linus Torvalds 已提交
1051 1052

	write_seqlock_irqsave(&xtime_lock, flags);
1053 1054 1055 1056 1057 1058 1059

	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
        }

1060 1061 1062
	vdso_data->tb_orig_stamp = tb_last_jiffy;
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1063
	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1064
	vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
1065 1066 1067

	write_sequnlock_irqrestore(&xtime_lock, flags);

1068 1069 1070 1071 1072
	/* Start the decrementer on CPUs that have manual control
	 * such as BookE
	 */
	start_cpu_decrementer();

1073 1074 1075 1076
	/* Register the clocksource, if we're not running on iSeries */
	if (!firmware_has_feature(FW_FEATURE_ISERIES))
		clocksource_init();

1077
	init_decrementer_clockevent();
L
Linus Torvalds 已提交
1078 1079 1080 1081 1082 1083 1084
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
1085 1086
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

1104
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
1105 1106 1107 1108

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
1109
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
1110 1111 1112 1113 1114

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
1115
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
1116
	 */
1117
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
1118 1119 1120 1121

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

1122
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
 * It makes this computation very precise (27-28 bits typically) which
 * is optimistic considering the stability of most processor clock
 * oscillators and the precision with which the timebase frequency
 * is measured but does not harm.
 */
1168 1169
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
L
Linus Torvalds 已提交
1170 1171 1172 1173 1174 1175
        unsigned mlt=0, tmp, err;
        /* No concern for performance, it's done once: use a stupid
         * but safe and compact method to find the multiplier.
         */
  
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1176 1177
                if (mulhwu(inscale, mlt|tmp) < outscale)
			mlt |= tmp;
L
Linus Torvalds 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186
        }
  
        /* We might still be off by 1 for the best approximation.
         * A side effect of this is that if outscale is too large
         * the returned value will be zero.
         * Many corner cases have been checked and seem to work,
         * some might have been forgotten in the test however.
         */
  
1187 1188 1189
        err = inscale * (mlt+1);
        if (err <= inscale/2)
		mlt++;
L
Linus Torvalds 已提交
1190
        return mlt;
1191
}
L
Linus Torvalds 已提交
1192 1193 1194 1195 1196

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1197 1198
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1199
{
1200 1201 1202
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1203 1204 1205 1206 1207 1208

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1209 1210 1211 1212 1213
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1214

1215 1216 1217 1218 1219
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1220

1221 1222
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1223 1224

}
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234
/* We don't need to calibrate delay, we use the CPU timebase for that */
void calibrate_delay(void)
{
	/* Some generic code (such as spinlock debug) use loops_per_jiffy
	 * as the number of __delay(1) in a jiffy, so make it so
	 */
	loops_per_jiffy = tb_ticks_per_jiffy;
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
static int __init rtc_init(void)
{
	struct platform_device *pdev;

	if (!ppc_md.get_rtc_time)
		return -ENODEV;

	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
	if (IS_ERR(pdev))
		return PTR_ERR(pdev);

	return 0;
}

module_init(rtc_init);