time.c 33.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*
 * Common time routines among all ppc machines.
 *
 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 * Paul Mackerras' version and mine for PReP and Pmac.
 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 *
 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 * to make clock more stable (2.4.0-test5). The only thing
 * that this code assumes is that the timebases have been synchronized
 * by firmware on SMP and are never stopped (never do sleep
 * on SMP then, nap and doze are OK).
 * 
 * Speeded up do_gettimeofday by getting rid of references to
 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 *
 * TODO (not necessarily in this file):
 * - improve precision and reproducibility of timebase frequency
 * measurement at boot time. (for iSeries, we calibrate the timebase
 * against the Titan chip's clock.)
 * - for astronomical applications: add a new function to get
 * non ambiguous timestamps even around leap seconds. This needs
 * a new timestamp format and a good name.
 *
 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 *
 *      This program is free software; you can redistribute it and/or
 *      modify it under the terms of the GNU General Public License
 *      as published by the Free Software Foundation; either version
 *      2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/param.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/timex.h>
#include <linux/kernel_stat.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/profile.h>
#include <linux/cpu.h>
#include <linux/security.h>
50 51
#include <linux/percpu.h>
#include <linux/rtc.h>
52
#include <linux/jiffies.h>
53
#include <linux/posix-timers.h>
L
Linus Torvalds 已提交
54 55 56 57 58 59 60 61 62

#include <asm/io.h>
#include <asm/processor.h>
#include <asm/nvram.h>
#include <asm/cache.h>
#include <asm/machdep.h>
#include <asm/uaccess.h>
#include <asm/time.h>
#include <asm/prom.h>
63 64
#include <asm/irq.h>
#include <asm/div64.h>
P
Paul Mackerras 已提交
65
#include <asm/smp.h>
66
#include <asm/vdso_datapage.h>
67
#ifdef CONFIG_PPC64
68
#include <asm/firmware.h>
69 70
#endif
#ifdef CONFIG_PPC_ISERIES
71
#include <asm/iseries/it_lp_queue.h>
72
#include <asm/iseries/hv_call_xm.h>
73
#endif
74
#include <asm/smp.h>
L
Linus Torvalds 已提交
75 76 77 78 79 80 81 82 83

/* keep track of when we need to update the rtc */
time_t last_rtc_update;
#ifdef CONFIG_PPC_ISERIES
unsigned long iSeries_recal_titan = 0;
unsigned long iSeries_recal_tb = 0; 
static unsigned long first_settimeofday = 1;
#endif

84 85 86
/* The decrementer counts down by 128 every 128ns on a 601. */
#define DECREMENTER_COUNT_601	(1000000000 / HZ)

L
Linus Torvalds 已提交
87 88
#define XSEC_PER_SEC (1024*1024)

89 90 91 92 93 94 95
#ifdef CONFIG_PPC64
#define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
#else
/* compute ((xsec << 12) * max) >> 32 */
#define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
#endif

L
Linus Torvalds 已提交
96 97 98 99
unsigned long tb_ticks_per_jiffy;
unsigned long tb_ticks_per_usec = 100; /* sane default */
EXPORT_SYMBOL(tb_ticks_per_usec);
unsigned long tb_ticks_per_sec;
100
EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
101 102
u64 tb_to_xs;
unsigned tb_to_us;
103

104
#define TICKLEN_SCALE	TICK_LENGTH_SHIFT
105 106 107 108 109 110 111
u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
u64 ticklen_to_xs;	/* 0.64 fraction */

/* If last_tick_len corresponds to about 1/HZ seconds, then
   last_tick_len << TICKLEN_SHIFT will be about 2^63. */
#define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)

L
Linus Torvalds 已提交
112
DEFINE_SPINLOCK(rtc_lock);
113
EXPORT_SYMBOL_GPL(rtc_lock);
L
Linus Torvalds 已提交
114

115 116
u64 tb_to_ns_scale;
unsigned tb_to_ns_shift;
L
Linus Torvalds 已提交
117 118 119 120 121 122

struct gettimeofday_struct do_gtod;

extern unsigned long wall_jiffies;

extern struct timezone sys_tz;
123
static long timezone_offset;
L
Linus Torvalds 已提交
124

125 126 127
unsigned long ppc_proc_freq;
unsigned long ppc_tb_freq;

128 129 130 131 132 133 134 135 136 137
u64 tb_last_jiffy __cacheline_aligned_in_smp;
unsigned long tb_last_stamp;

/*
 * Note that on ppc32 this only stores the bottom 32 bits of
 * the timebase value, but that's enough to tell when a jiffy
 * has passed.
 */
DEFINE_PER_CPU(unsigned long, last_jiffy);

138 139 140 141 142 143 144
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
/*
 * Factors for converting from cputime_t (timebase ticks) to
 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 * These are all stored as 0.64 fixed-point binary fractions.
 */
u64 __cputime_jiffies_factor;
145
EXPORT_SYMBOL(__cputime_jiffies_factor);
146
u64 __cputime_msec_factor;
147
EXPORT_SYMBOL(__cputime_msec_factor);
148
u64 __cputime_sec_factor;
149
EXPORT_SYMBOL(__cputime_sec_factor);
150
u64 __cputime_clockt_factor;
151
EXPORT_SYMBOL(__cputime_clockt_factor);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

static void calc_cputime_factors(void)
{
	struct div_result res;

	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
	__cputime_jiffies_factor = res.result_low;
	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
	__cputime_msec_factor = res.result_low;
	div128_by_32(1, 0, tb_ticks_per_sec, &res);
	__cputime_sec_factor = res.result_low;
	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
	__cputime_clockt_factor = res.result_low;
}

/*
 * Read the PURR on systems that have it, otherwise the timebase.
 */
static u64 read_purr(void)
{
	if (cpu_has_feature(CPU_FTR_PURR))
		return mfspr(SPRN_PURR);
	return mftb();
}

/*
 * Account time for a transition between system, hard irq
 * or soft irq state.
 */
void account_system_vtime(struct task_struct *tsk)
{
	u64 now, delta;
	unsigned long flags;

	local_irq_save(flags);
	now = read_purr();
	delta = now - get_paca()->startpurr;
	get_paca()->startpurr = now;
	if (!in_interrupt()) {
		delta += get_paca()->system_time;
		get_paca()->system_time = 0;
	}
	account_system_time(tsk, 0, delta);
	local_irq_restore(flags);
}

/*
 * Transfer the user and system times accumulated in the paca
 * by the exception entry and exit code to the generic process
 * user and system time records.
 * Must be called with interrupts disabled.
 */
void account_process_vtime(struct task_struct *tsk)
{
	cputime_t utime;

	utime = get_paca()->user_time;
	get_paca()->user_time = 0;
	account_user_time(tsk, utime);
}

static void account_process_time(struct pt_regs *regs)
{
	int cpu = smp_processor_id();

	account_process_vtime(current);
	run_local_timers();
	if (rcu_pending(cpu))
		rcu_check_callbacks(cpu, user_mode(regs));
	scheduler_tick();
 	run_posix_cpu_timers(current);
}

#ifdef CONFIG_PPC_SPLPAR
/*
 * Stuff for accounting stolen time.
 */
struct cpu_purr_data {
	int	initialized;			/* thread is running */
	u64	tb0;			/* timebase at origin time */
	u64	purr0;			/* PURR at origin time */
	u64	tb;			/* last TB value read */
	u64	purr;			/* last PURR value read */
	u64	stolen;			/* stolen time so far */
	spinlock_t lock;
};

static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);

static void snapshot_tb_and_purr(void *data)
{
	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);

	p->tb0 = mftb();
	p->purr0 = mfspr(SPRN_PURR);
	p->tb = p->tb0;
	p->purr = 0;
	wmb();
	p->initialized = 1;
}

/*
 * Called during boot when all cpus have come up.
 */
void snapshot_timebases(void)
{
	int cpu;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
262
	for_each_possible_cpu(cpu)
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
		spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
	on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
}

void calculate_steal_time(void)
{
	u64 tb, purr, t0;
	s64 stolen;
	struct cpu_purr_data *p0, *pme, *phim;
	int cpu;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
	cpu = smp_processor_id();
	pme = &per_cpu(cpu_purr_data, cpu);
	if (!pme->initialized)
		return;		/* this can happen in early boot */
	p0 = &per_cpu(cpu_purr_data, cpu & ~1);
	phim = &per_cpu(cpu_purr_data, cpu ^ 1);
	spin_lock(&p0->lock);
	tb = mftb();
	purr = mfspr(SPRN_PURR) - pme->purr0;
	if (!phim->initialized || !cpu_online(cpu ^ 1)) {
		stolen = (tb - pme->tb) - (purr - pme->purr);
	} else {
		t0 = pme->tb0;
		if (phim->tb0 < t0)
			t0 = phim->tb0;
		stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
	}
	if (stolen > 0) {
		account_steal_time(current, stolen);
		p0->stolen += stolen;
	}
	pme->tb = tb;
	pme->purr = purr;
	spin_unlock(&p0->lock);
}

/*
 * Must be called before the cpu is added to the online map when
 * a cpu is being brought up at runtime.
 */
static void snapshot_purr(void)
{
	int cpu;
	u64 purr;
	struct cpu_purr_data *p0, *pme, *phim;
	unsigned long flags;

	if (!cpu_has_feature(CPU_FTR_PURR))
		return;
	cpu = smp_processor_id();
	pme = &per_cpu(cpu_purr_data, cpu);
	p0 = &per_cpu(cpu_purr_data, cpu & ~1);
	phim = &per_cpu(cpu_purr_data, cpu ^ 1);
	spin_lock_irqsave(&p0->lock, flags);
	pme->tb = pme->tb0 = mftb();
	purr = mfspr(SPRN_PURR);
	if (!phim->initialized) {
		pme->purr = 0;
		pme->purr0 = purr;
	} else {
		/* set p->purr and p->purr0 for no change in p0->stolen */
		pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
		pme->purr0 = purr - pme->purr;
	}
	pme->initialized = 1;
	spin_unlock_irqrestore(&p0->lock, flags);
}

#endif /* CONFIG_PPC_SPLPAR */

#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
#define calc_cputime_factors()
#define account_process_time(regs)	update_process_times(user_mode(regs))
#define calculate_steal_time()		do { } while (0)
#endif

#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
#define snapshot_purr()			do { } while (0)
#endif

/*
 * Called when a cpu comes up after the system has finished booting,
 * i.e. as a result of a hotplug cpu action.
 */
void snapshot_timebase(void)
{
	__get_cpu_var(last_jiffy) = get_tb();
	snapshot_purr();
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
void __delay(unsigned long loops)
{
	unsigned long start;
	int diff;

	if (__USE_RTC()) {
		start = get_rtcl();
		do {
			/* the RTCL register wraps at 1000000000 */
			diff = get_rtcl() - start;
			if (diff < 0)
				diff += 1000000000;
		} while (diff < loops);
	} else {
		start = get_tbl();
		while (get_tbl() - start < loops)
			HMT_low();
		HMT_medium();
	}
}
EXPORT_SYMBOL(__delay);

void udelay(unsigned long usecs)
{
	__delay(tb_ticks_per_usec * usecs);
}
EXPORT_SYMBOL(udelay);

L
Linus Torvalds 已提交
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
static __inline__ void timer_check_rtc(void)
{
        /*
         * update the rtc when needed, this should be performed on the
         * right fraction of a second. Half or full second ?
         * Full second works on mk48t59 clocks, others need testing.
         * Note that this update is basically only used through 
         * the adjtimex system calls. Setting the HW clock in
         * any other way is a /dev/rtc and userland business.
         * This is still wrong by -0.5/+1.5 jiffies because of the
         * timer interrupt resolution and possible delay, but here we 
         * hit a quantization limit which can only be solved by higher
         * resolution timers and decoupling time management from timer
         * interrupts. This is also wrong on the clocks
         * which require being written at the half second boundary.
         * We should have an rtc call that only sets the minutes and
         * seconds like on Intel to avoid problems with non UTC clocks.
         */
402
        if (ppc_md.set_rtc_time && ntp_synced() &&
403
	    xtime.tv_sec - last_rtc_update >= 659 &&
404
	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
405 406 407 408 409 410 411 412 413
		struct rtc_time tm;
		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
		tm.tm_year -= 1900;
		tm.tm_mon -= 1;
		if (ppc_md.set_rtc_time(&tm) == 0)
			last_rtc_update = xtime.tv_sec + 1;
		else
			/* Try again one minute later */
			last_rtc_update += 60;
L
Linus Torvalds 已提交
414 415 416 417 418 419
        }
}

/*
 * This version of gettimeofday has microsecond resolution.
 */
420
static inline void __do_gettimeofday(struct timeval *tv)
L
Linus Torvalds 已提交
421
{
422 423 424 425
	unsigned long sec, usec;
	u64 tb_ticks, xsec;
	struct gettimeofday_vars *temp_varp;
	u64 temp_tb_to_xs, temp_stamp_xsec;
L
Linus Torvalds 已提交
426 427 428 429 430 431 432 433

	/*
	 * These calculations are faster (gets rid of divides)
	 * if done in units of 1/2^20 rather than microseconds.
	 * The conversion to microseconds at the end is done
	 * without a divide (and in fact, without a multiply)
	 */
	temp_varp = do_gtod.varp;
434 435 436 437 438 439

	/* Sampling the time base must be done after loading
	 * do_gtod.varp in order to avoid racing with update_gtod.
	 */
	data_barrier(temp_varp);
	tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
L
Linus Torvalds 已提交
440 441
	temp_tb_to_xs = temp_varp->tb_to_xs;
	temp_stamp_xsec = temp_varp->stamp_xsec;
442
	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
L
Linus Torvalds 已提交
443
	sec = xsec / XSEC_PER_SEC;
444 445
	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
	usec = SCALE_XSEC(usec, 1000000);
L
Linus Torvalds 已提交
446 447 448 449 450 451 452

	tv->tv_sec = sec;
	tv->tv_usec = usec;
}

void do_gettimeofday(struct timeval *tv)
{
453 454 455
	if (__USE_RTC()) {
		/* do this the old way */
		unsigned long flags, seq;
456
		unsigned int sec, nsec, usec;
457 458 459 460 461 462

		do {
			seq = read_seqbegin_irqsave(&xtime_lock, flags);
			sec = xtime.tv_sec;
			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
463
		usec = nsec / 1000;
464 465 466 467 468 469 470 471
		while (usec >= 1000000) {
			usec -= 1000000;
			++sec;
		}
		tv->tv_sec = sec;
		tv->tv_usec = usec;
		return;
	}
472
	__do_gettimeofday(tv);
L
Linus Torvalds 已提交
473 474 475 476 477
}

EXPORT_SYMBOL(do_gettimeofday);

/*
478 479 480 481 482 483
 * There are two copies of tb_to_xs and stamp_xsec so that no
 * lock is needed to access and use these values in
 * do_gettimeofday.  We alternate the copies and as long as a
 * reasonable time elapses between changes, there will never
 * be inconsistent values.  ntpd has a minimum of one minute
 * between updates.
L
Linus Torvalds 已提交
484
 */
485
static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
486
			       u64 new_tb_to_xs)
L
Linus Torvalds 已提交
487 488
{
	unsigned temp_idx;
489
	struct gettimeofday_vars *temp_varp;
L
Linus Torvalds 已提交
490 491 492 493

	temp_idx = (do_gtod.var_idx == 0);
	temp_varp = &do_gtod.vars[temp_idx];

494 495
	temp_varp->tb_to_xs = new_tb_to_xs;
	temp_varp->tb_orig_stamp = new_tb_stamp;
L
Linus Torvalds 已提交
496
	temp_varp->stamp_xsec = new_stamp_xsec;
497
	smp_mb();
L
Linus Torvalds 已提交
498 499 500
	do_gtod.varp = temp_varp;
	do_gtod.var_idx = temp_idx;

501 502 503 504 505 506 507 508
	/*
	 * tb_update_count is used to allow the userspace gettimeofday code
	 * to assure itself that it sees a consistent view of the tb_to_xs and
	 * stamp_xsec variables.  It reads the tb_update_count, then reads
	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
	 * the two values of tb_update_count match and are even then the
	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
	 * loops back and reads them again until this criteria is met.
509 510
	 * We expect the caller to have done the first increment of
	 * vdso_data->tb_update_count already.
511
	 */
512 513 514 515 516
	vdso_data->tb_orig_stamp = new_tb_stamp;
	vdso_data->stamp_xsec = new_stamp_xsec;
	vdso_data->tb_to_xs = new_tb_to_xs;
	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
517
	smp_wmb();
518
	++(vdso_data->tb_update_count);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
}

/*
 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
 * difference tb - tb_orig_stamp small enough to always fit inside a
 * 32 bits number. This is a requirement of our fast 32 bits userland
 * implementation in the vdso. If we "miss" a call to this function
 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
 * with a too big difference, then the vdso will fallback to calling
 * the syscall
 */
static __inline__ void timer_recalc_offset(u64 cur_tb)
{
	unsigned long offset;
	u64 new_stamp_xsec;
535
	u64 tlen, t2x;
536 537
	u64 tb, xsec_old, xsec_new;
	struct gettimeofday_vars *varp;
538

539 540
	if (__USE_RTC())
		return;
541
	tlen = current_tick_length();
542
	offset = cur_tb - do_gtod.varp->tb_orig_stamp;
543 544
	if (tlen == last_tick_len && offset < 0x80000000u)
		return;
545 546 547 548 549 550 551 552
	if (tlen != last_tick_len) {
		t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
		last_tick_len = tlen;
	} else
		t2x = do_gtod.varp->tb_to_xs;
	new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
	do_div(new_stamp_xsec, 1000000000);
	new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

	++vdso_data->tb_update_count;
	smp_mb();

	/*
	 * Make sure time doesn't go backwards for userspace gettimeofday.
	 */
	tb = get_tb();
	varp = do_gtod.varp;
	xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
		+ varp->stamp_xsec;
	xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
	if (xsec_new < xsec_old)
		new_stamp_xsec += xsec_old - xsec_new;

568
	update_gtod(cur_tb, new_stamp_xsec, t2x);
L
Linus Torvalds 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
}

#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
	unsigned long pc = instruction_pointer(regs);

	if (in_lock_functions(pc))
		return regs->link;

	return pc;
}
EXPORT_SYMBOL(profile_pc);
#endif

#ifdef CONFIG_PPC_ISERIES

/* 
 * This function recalibrates the timebase based on the 49-bit time-of-day
 * value in the Titan chip.  The Titan is much more accurate than the value
 * returned by the service processor for the timebase frequency.  
 */

static void iSeries_tb_recal(void)
{
	struct div_result divres;
	unsigned long titan, tb;
	tb = get_tb();
	titan = HvCallXm_loadTod();
	if ( iSeries_recal_titan ) {
		unsigned long tb_ticks = tb - iSeries_recal_tb;
		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
		char sign = '+';		
		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;

		if ( tick_diff < 0 ) {
			tick_diff = -tick_diff;
			sign = '-';
		}
		if ( tick_diff ) {
			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
						new_tb_ticks_per_jiffy, sign, tick_diff );
				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
				tb_ticks_per_sec   = new_tb_ticks_per_sec;
618
				calc_cputime_factors();
L
Linus Torvalds 已提交
619 620 621 622
				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
				tb_to_xs = divres.result_low;
				do_gtod.varp->tb_to_xs = tb_to_xs;
623 624
				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
				vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
			}
			else {
				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
					"                   new tb_ticks_per_jiffy = %lu\n"
					"                   old tb_ticks_per_jiffy = %lu\n",
					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
			}
		}
	}
	iSeries_recal_titan = titan;
	iSeries_recal_tb = tb;
}
#endif

/*
 * For iSeries shared processors, we have to let the hypervisor
 * set the hardware decrementer.  We set a virtual decrementer
 * in the lppaca and call the hypervisor if the virtual
 * decrementer is less than the current value in the hardware
 * decrementer. (almost always the new decrementer value will
 * be greater than the current hardware decementer so the hypervisor
 * call will not be needed)
 */

/*
 * timer_interrupt - gets called when the decrementer overflows,
 * with interrupts disabled.
 */
653
void timer_interrupt(struct pt_regs * regs)
L
Linus Torvalds 已提交
654 655
{
	int next_dec;
656 657
	int cpu = smp_processor_id();
	unsigned long ticks;
658
	u64 tb_next_jiffy;
659 660 661 662 663

#ifdef CONFIG_PPC32
	if (atomic_read(&ppc_n_lost_interrupts) != 0)
		do_IRQ(regs);
#endif
L
Linus Torvalds 已提交
664 665 666 667

	irq_enter();

	profile_tick(CPU_PROFILING, regs);
668
	calculate_steal_time();
L
Linus Torvalds 已提交
669

670
#ifdef CONFIG_PPC_ISERIES
671
	get_lppaca()->int_dword.fields.decr_int = 0;
672 673 674 675 676 677 678 679 680
#endif

	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
	       >= tb_ticks_per_jiffy) {
		/* Update last_jiffy */
		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
		/* Handle RTCL overflow on 601 */
		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
			per_cpu(last_jiffy, cpu) -= 1000000000;
L
Linus Torvalds 已提交
681 682 683 684 685 686 687 688 689

		/*
		 * We cannot disable the decrementer, so in the period
		 * between this cpu's being marked offline in cpu_online_map
		 * and calling stop-self, it is taking timer interrupts.
		 * Avoid calling into the scheduler rebalancing code if this
		 * is the case.
		 */
		if (!cpu_is_offline(cpu))
690
			account_process_time(regs);
691

L
Linus Torvalds 已提交
692 693 694 695
		/*
		 * No need to check whether cpu is offline here; boot_cpuid
		 * should have been fixed up by now.
		 */
696 697 698 699
		if (cpu != boot_cpuid)
			continue;

		write_seqlock(&xtime_lock);
700 701 702 703 704 705 706 707
		tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
		if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
			tb_last_jiffy = tb_next_jiffy;
			tb_last_stamp = per_cpu(last_jiffy, cpu);
			do_timer(regs);
			timer_recalc_offset(tb_last_jiffy);
			timer_check_rtc();
		}
708
		write_sequnlock(&xtime_lock);
L
Linus Torvalds 已提交
709 710
	}
	
711
	next_dec = tb_ticks_per_jiffy - ticks;
L
Linus Torvalds 已提交
712 713 714
	set_dec(next_dec);

#ifdef CONFIG_PPC_ISERIES
715
	if (hvlpevent_is_pending())
716
		process_hvlpevents(regs);
L
Linus Torvalds 已提交
717 718
#endif

719
#ifdef CONFIG_PPC64
720
	/* collect purr register values often, for accurate calculations */
721
	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
L
Linus Torvalds 已提交
722 723 724
		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
		cu->current_tb = mfspr(SPRN_PURR);
	}
725
#endif
L
Linus Torvalds 已提交
726 727 728 729

	irq_exit();
}

730 731
void wakeup_decrementer(void)
{
732
	unsigned long ticks;
733 734

	/*
735 736
	 * The timebase gets saved on sleep and restored on wakeup,
	 * so all we need to do is to reset the decrementer.
737
	 */
738 739 740 741 742 743
	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
	if (ticks < tb_ticks_per_jiffy)
		ticks = tb_ticks_per_jiffy - ticks;
	else
		ticks = 1;
	set_dec(ticks);
744 745
}

746
#ifdef CONFIG_SMP
747 748 749
void __init smp_space_timers(unsigned int max_cpus)
{
	int i;
750
	unsigned long half = tb_ticks_per_jiffy / 2;
751 752 753
	unsigned long offset = tb_ticks_per_jiffy / max_cpus;
	unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);

754 755
	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
	previous_tb -= tb_ticks_per_jiffy;
756 757 758 759 760
	/*
	 * The stolen time calculation for POWER5 shared-processor LPAR
	 * systems works better if the two threads' timebase interrupts
	 * are staggered by half a jiffy with respect to each other.
	 */
761
	for_each_possible_cpu(i) {
762 763 764 765 766 767 768 769 770
		if (i == boot_cpuid)
			continue;
		if (i == (boot_cpuid ^ 1))
			per_cpu(last_jiffy, i) =
				per_cpu(last_jiffy, boot_cpuid) - half;
		else if (i & 1)
			per_cpu(last_jiffy, i) =
				per_cpu(last_jiffy, i ^ 1) + half;
		else {
771 772 773 774 775 776 777
			previous_tb += offset;
			per_cpu(last_jiffy, i) = previous_tb;
		}
	}
}
#endif

L
Linus Torvalds 已提交
778 779 780 781 782 783 784 785 786
/*
 * Scheduler clock - returns current time in nanosec units.
 *
 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 * are 64-bit unsigned numbers.
 */
unsigned long long sched_clock(void)
{
787 788
	if (__USE_RTC())
		return get_rtc();
L
Linus Torvalds 已提交
789 790 791 792 793 794 795 796
	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
}

int do_settimeofday(struct timespec *tv)
{
	time_t wtm_sec, new_sec = tv->tv_sec;
	long wtm_nsec, new_nsec = tv->tv_nsec;
	unsigned long flags;
797 798
	u64 new_xsec;
	unsigned long tb_delta;
L
Linus Torvalds 已提交
799 800 801 802 803

	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

	write_seqlock_irqsave(&xtime_lock, flags);
804 805 806 807 808

	/*
	 * Updating the RTC is not the job of this code. If the time is
	 * stepped under NTP, the RTC will be updated after STA_UNSYNC
	 * is cleared.  Tools like clock/hwclock either copy the RTC
L
Linus Torvalds 已提交
809 810 811 812 813
	 * to the system time, in which case there is no point in writing
	 * to the RTC again, or write to the RTC but then they don't call
	 * settimeofday to perform this operation.
	 */
#ifdef CONFIG_PPC_ISERIES
814
	if (first_settimeofday) {
L
Linus Torvalds 已提交
815 816 817 818
		iSeries_tb_recal();
		first_settimeofday = 0;
	}
#endif
819

820 821 822 823
	/* Make userspace gettimeofday spin until we're done. */
	++vdso_data->tb_update_count;
	smp_mb();

824 825 826 827 828 829 830 831 832
	/*
	 * Subtract off the number of nanoseconds since the
	 * beginning of the last tick.
	 * Note that since we don't increment jiffies_64 anywhere other
	 * than in do_timer (since we don't have a lost tick problem),
	 * wall_jiffies will always be the same as jiffies,
	 * and therefore the (jiffies - wall_jiffies) computation
	 * has been removed.
	 */
L
Linus Torvalds 已提交
833
	tb_delta = tb_ticks_since(tb_last_stamp);
834 835
	tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
	new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
L
Linus Torvalds 已提交
836 837 838 839 840 841 842 843 844 845 846 847

	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);

 	set_normalized_timespec(&xtime, new_sec, new_nsec);
	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);

	/* In case of a large backwards jump in time with NTP, we want the 
	 * clock to be updated as soon as the PLL is again in lock.
	 */
	last_rtc_update = new_sec - 658;

J
john stultz 已提交
848
	ntp_clear();
L
Linus Torvalds 已提交
849

850 851 852
	new_xsec = xtime.tv_nsec;
	if (new_xsec != 0) {
		new_xsec *= XSEC_PER_SEC;
853 854
		do_div(new_xsec, NSEC_PER_SEC);
	}
855
	new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
856
	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
L
Linus Torvalds 已提交
857

858 859
	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
L
Linus Torvalds 已提交
860 861 862 863 864 865 866 867

	write_sequnlock_irqrestore(&xtime_lock, flags);
	clock_was_set();
	return 0;
}

EXPORT_SYMBOL(do_settimeofday);

868
static int __init get_freq(char *name, int cells, unsigned long *val)
869 870 871
{
	struct device_node *cpu;
	unsigned int *fp;
872
	int found = 0;
873

874
	/* The cpu node should have timebase and clock frequency properties */
875 876
	cpu = of_find_node_by_type(NULL, "cpu");

877
	if (cpu) {
878
		fp = (unsigned int *)get_property(cpu, name, NULL);
879
		if (fp) {
880 881 882 883
			found = 1;
			*val = 0;
			while (cells--)
				*val = (*val << 32) | *fp++;
884
		}
885 886

		of_node_put(cpu);
887
	}
888 889 890 891 892 893 894 895 896 897 898

	return found;
}

void __init generic_calibrate_decr(void)
{
	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */

	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {

899 900
		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
				"(not found)\n");
901
	}
902

903 904 905 906 907 908 909
	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */

	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {

		printk(KERN_ERR "WARNING: Estimating processor frequency "
				"(not found)\n");
910
	}
911

912 913 914 915 916 917 918 919 920 921 922
#ifdef CONFIG_BOOKE
	/* Set the time base to zero */
	mtspr(SPRN_TBWL, 0);
	mtspr(SPRN_TBWU, 0);

	/* Clear any pending timer interrupts */
	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);

	/* Enable decrementer interrupt */
	mtspr(SPRN_TCR, TCR_DIE);
#endif
923 924
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938
unsigned long get_boot_time(void)
{
	struct rtc_time tm;

	if (ppc_md.get_boot_time)
		return ppc_md.get_boot_time();
	if (!ppc_md.get_rtc_time)
		return 0;
	ppc_md.get_rtc_time(&tm);
	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
		      tm.tm_hour, tm.tm_min, tm.tm_sec);
}

/* This function is only called on the boot processor */
L
Linus Torvalds 已提交
939 940 941
void __init time_init(void)
{
	unsigned long flags;
942
	unsigned long tm = 0;
L
Linus Torvalds 已提交
943
	struct div_result res;
944
	u64 scale, x;
945 946 947 948
	unsigned shift;

        if (ppc_md.time_init != NULL)
                timezone_offset = ppc_md.time_init();
L
Linus Torvalds 已提交
949

950 951 952 953 954 955 956 957
	if (__USE_RTC()) {
		/* 601 processor: dec counts down by 128 every 128ns */
		ppc_tb_freq = 1000000000;
		tb_last_stamp = get_rtcl();
		tb_last_jiffy = tb_last_stamp;
	} else {
		/* Normal PowerPC with timebase register */
		ppc_md.calibrate_decr();
958
		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
959
		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
960
		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
961 962 963
		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
		tb_last_stamp = tb_last_jiffy = get_tb();
	}
964 965

	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
966
	tb_ticks_per_sec = ppc_tb_freq;
967 968
	tb_ticks_per_usec = ppc_tb_freq / 1000000;
	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
969
	calc_cputime_factors();
970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987

	/*
	 * Calculate the length of each tick in ns.  It will not be
	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
	 * rounded up.
	 */
	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
	do_div(x, ppc_tb_freq);
	tick_nsec = x;
	last_tick_len = x << TICKLEN_SCALE;

	/*
	 * Compute ticklen_to_xs, which is a factor which gets multiplied
	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
	 * It is computed as:
	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
988 989 990 991 992 993 994
	 * which turns out to be N = 51 - SHIFT_HZ.
	 * This gives the result as a 0.64 fixed-point fraction.
	 * That value is reduced by an offset amounting to 1 xsec per
	 * 2^31 timebase ticks to avoid problems with time going backwards
	 * by 1 xsec when we do timer_recalc_offset due to losing the
	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
	 * since there are 2^20 xsec in a second.
995
	 */
996 997
	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
998 999 1000 1001 1002
	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
	ticklen_to_xs = res.result_low;

	/* Compute tb_to_xs from tick_nsec */
	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
1003

L
Linus Torvalds 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	/*
	 * Compute scale factor for sched_clock.
	 * The calibrate_decr() function has set tb_ticks_per_sec,
	 * which is the timebase frequency.
	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
	 * the 128-bit result as a 64.64 fixed-point number.
	 * We then shift that number right until it is less than 1.0,
	 * giving us the scale factor and shift count to use in
	 * sched_clock().
	 */
	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
	scale = res.result_low;
	for (shift = 0; res.result_high != 0; ++shift) {
		scale = (scale >> 1) | (res.result_high << 63);
		res.result_high >>= 1;
	}
	tb_to_ns_scale = scale;
	tb_to_ns_shift = shift;

1023
	tm = get_boot_time();
L
Linus Torvalds 已提交
1024 1025

	write_seqlock_irqsave(&xtime_lock, flags);
1026 1027 1028 1029 1030 1031 1032 1033

	/* If platform provided a timezone (pmac), we correct the time */
        if (timezone_offset) {
		sys_tz.tz_minuteswest = -timezone_offset / 60;
		sys_tz.tz_dsttime = 0;
		tm -= timezone_offset;
        }

1034 1035
	xtime.tv_sec = tm;
	xtime.tv_nsec = 0;
L
Linus Torvalds 已提交
1036 1037
	do_gtod.varp = &do_gtod.vars[0];
	do_gtod.var_idx = 0;
1038
	do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
1039 1040
	__get_cpu_var(last_jiffy) = tb_last_stamp;
	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
L
Linus Torvalds 已提交
1041 1042 1043
	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
	do_gtod.varp->tb_to_xs = tb_to_xs;
	do_gtod.tb_to_us = tb_to_us;
1044 1045 1046 1047

	vdso_data->tb_orig_stamp = tb_last_jiffy;
	vdso_data->tb_update_count = 0;
	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1048
	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1049
	vdso_data->tb_to_xs = tb_to_xs;
L
Linus Torvalds 已提交
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

	time_freq = 0;

	last_rtc_update = xtime.tv_sec;
	set_normalized_timespec(&wall_to_monotonic,
	                        -xtime.tv_sec, -xtime.tv_nsec);
	write_sequnlock_irqrestore(&xtime_lock, flags);

	/* Not exact, but the timer interrupt takes care of this */
	set_dec(tb_ticks_per_jiffy);
}


#define FEBRUARY	2
#define	STARTOFTIME	1970
#define SECDAY		86400L
#define SECYR		(SECDAY * 365)
1067 1068
#define	leapyear(year)		((year) % 4 == 0 && \
				 ((year) % 100 != 0 || (year) % 400 == 0))
L
Linus Torvalds 已提交
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
#define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
#define	days_in_month(a) 	(month_days[(a) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

/*
 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 */
void GregorianDay(struct rtc_time * tm)
{
	int leapsToDate;
	int lastYear;
	int day;
	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };

1086
	lastYear = tm->tm_year - 1;
L
Linus Torvalds 已提交
1087 1088 1089 1090

	/*
	 * Number of leap corrections to apply up to end of last year
	 */
1091
	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
L
Linus Torvalds 已提交
1092 1093 1094 1095 1096

	/*
	 * This year is a leap year if it is divisible by 4 except when it is
	 * divisible by 100 unless it is divisible by 400
	 *
1097
	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
L
Linus Torvalds 已提交
1098
	 */
1099
	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
L
Linus Torvalds 已提交
1100 1101 1102 1103

	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
		   tm->tm_mday;

1104
	tm->tm_wday = day % 7;
L
Linus Torvalds 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
}

void to_tm(int tim, struct rtc_time * tm)
{
	register int    i;
	register long   hms, day;

	day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i;

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	GregorianDay(tm);
}

/* Auxiliary function to compute scaling factors */
/* Actually the choice of a timebase running at 1/4 the of the bus
 * frequency giving resolution of a few tens of nanoseconds is quite nice.
 * It makes this computation very precise (27-28 bits typically) which
 * is optimistic considering the stability of most processor clock
 * oscillators and the precision with which the timebase frequency
 * is measured but does not harm.
 */
1150 1151
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
{
L
Linus Torvalds 已提交
1152 1153 1154 1155 1156 1157
        unsigned mlt=0, tmp, err;
        /* No concern for performance, it's done once: use a stupid
         * but safe and compact method to find the multiplier.
         */
  
        for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1158 1159
                if (mulhwu(inscale, mlt|tmp) < outscale)
			mlt |= tmp;
L
Linus Torvalds 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168
        }
  
        /* We might still be off by 1 for the best approximation.
         * A side effect of this is that if outscale is too large
         * the returned value will be zero.
         * Many corner cases have been checked and seem to work,
         * some might have been forgotten in the test however.
         */
  
1169 1170 1171
        err = inscale * (mlt+1);
        if (err <= inscale/2)
		mlt++;
L
Linus Torvalds 已提交
1172
        return mlt;
1173
}
L
Linus Torvalds 已提交
1174 1175 1176 1177 1178

/*
 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 * result.
 */
1179 1180
void div128_by_32(u64 dividend_high, u64 dividend_low,
		  unsigned divisor, struct div_result *dr)
L
Linus Torvalds 已提交
1181
{
1182 1183 1184
	unsigned long a, b, c, d;
	unsigned long w, x, y, z;
	u64 ra, rb, rc;
L
Linus Torvalds 已提交
1185 1186 1187 1188 1189 1190

	a = dividend_high >> 32;
	b = dividend_high & 0xffffffff;
	c = dividend_low >> 32;
	d = dividend_low & 0xffffffff;

1191 1192 1193 1194 1195
	w = a / divisor;
	ra = ((u64)(a - (w * divisor)) << 32) + b;

	rb = ((u64) do_div(ra, divisor) << 32) + c;
	x = ra;
L
Linus Torvalds 已提交
1196

1197 1198 1199 1200 1201
	rc = ((u64) do_div(rb, divisor) << 32) + d;
	y = rb;

	do_div(rc, divisor);
	z = rc;
L
Linus Torvalds 已提交
1202

1203 1204
	dr->result_high = ((u64)w << 32) + x;
	dr->result_low  = ((u64)y << 32) + z;
L
Linus Torvalds 已提交
1205 1206

}