cgroup.c 144.6 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/cred.h>
31
#include <linux/ctype.h>
32 33
#include <linux/errno.h>
#include <linux/fs.h>
34
#include <linux/init_task.h>
35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
41
#include <linux/proc_fs.h>
42 43
#include <linux/rcupdate.h>
#include <linux/sched.h>
44
#include <linux/backing-dev.h>
45 46 47 48 49
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
50
#include <linux/sort.h>
51
#include <linux/kmod.h>
52
#include <linux/module.h>
B
Balbir Singh 已提交
53 54
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
55
#include <linux/hash.h>
56
#include <linux/namei.h>
L
Li Zefan 已提交
57
#include <linux/pid_namespace.h>
58
#include <linux/idr.h>
59
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 61
#include <linux/eventfd.h>
#include <linux/poll.h>
62
#include <linux/flex_array.h> /* used in cgroup_attach_proc */
63
#include <linux/kthread.h>
B
Balbir Singh 已提交
64

A
Arun Sharma 已提交
65
#include <linux/atomic.h>
66

67 68 69
/* css deactivation bias, makes css->refcnt negative to deny new trygets */
#define CSS_DEACT_BIAS		INT_MIN

T
Tejun Heo 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * cgroup_mutex is the master lock.  Any modification to cgroup or its
 * hierarchy must be performed while holding it.
 *
 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
 * release_agent_path and so on.  Modifying requires both cgroup_mutex and
 * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
 * break the following locking order cycle.
 *
 *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
 *  B. namespace_sem -> cgroup_mutex
 *
 * B happens only through cgroup_show_options() and using cgroup_root_mutex
 * breaks it.
 */
86
static DEFINE_MUTEX(cgroup_mutex);
T
Tejun Heo 已提交
87
static DEFINE_MUTEX(cgroup_root_mutex);
88

B
Ben Blum 已提交
89 90 91 92 93 94
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
95
#define SUBSYS(_x) &_x ## _subsys,
B
Ben Blum 已提交
96
static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
97 98 99
#include <linux/cgroup_subsys.h>
};

100 101
#define MAX_CGROUP_ROOT_NAMELEN 64

102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

116 117 118
	/* Unique id for this hierarchy. */
	int hierarchy_id;

119 120 121 122 123 124 125 126 127 128 129 130
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

131
	/* A list running through the active hierarchies */
132 133
	struct list_head root_list;

134 135 136
	/* All cgroups on this root, cgroup_mutex protected */
	struct list_head allcg_list;

137 138
	/* Hierarchy-specific flags */
	unsigned long flags;
139

140
	/* The path to use for release notifications. */
141
	char release_agent_path[PATH_MAX];
142 143 144

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
145 146 147 148 149 150 151 152 153
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

T
Tejun Heo 已提交
154 155 156 157 158 159 160 161 162
/*
 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
 */
struct cfent {
	struct list_head		node;
	struct dentry			*dentry;
	struct cftype			*type;
};

K
KAMEZAWA Hiroyuki 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
A
Arnd Bergmann 已提交
176
	struct cgroup_subsys_state __rcu *css;
K
KAMEZAWA Hiroyuki 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};

195
/*
L
Lucas De Marchi 已提交
196
 * cgroup_event represents events which userspace want to receive.
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
 */
struct cgroup_event {
	/*
	 * Cgroup which the event belongs to.
	 */
	struct cgroup *cgrp;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};
K
KAMEZAWA Hiroyuki 已提交
224

225 226 227
/* The list of hierarchy roots */

static LIST_HEAD(roots);
228
static int root_count;
229

230 231 232 233
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

234 235 236 237
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
238 239 240
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
241
 */
242
static int need_forkexit_callback __read_mostly;
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257
#ifdef CONFIG_PROVE_LOCKING
int cgroup_lock_is_held(void)
{
	return lockdep_is_held(&cgroup_mutex);
}
#else /* #ifdef CONFIG_PROVE_LOCKING */
int cgroup_lock_is_held(void)
{
	return mutex_is_locked(&cgroup_mutex);
}
#endif /* #else #ifdef CONFIG_PROVE_LOCKING */

EXPORT_SYMBOL_GPL(cgroup_lock_is_held);

258 259 260 261 262 263 264 265
/* the current nr of refs, always >= 0 whether @css is deactivated or not */
static int css_refcnt(struct cgroup_subsys_state *css)
{
	int v = atomic_read(&css->refcnt);

	return v >= 0 ? v : v - CSS_DEACT_BIAS;
}

266
/* convenient tests for these bits */
267
inline int cgroup_is_removed(const struct cgroup *cgrp)
268
{
269
	return test_bit(CGRP_REMOVED, &cgrp->flags);
270 271 272 273 274 275 276
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

277
static int cgroup_is_releasable(const struct cgroup *cgrp)
278 279
{
	const int bits =
280 281 282
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
283 284
}

285
static int notify_on_release(const struct cgroup *cgrp)
286
{
287
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
288 289
}

290 291 292 293 294
static int clone_children(const struct cgroup *cgrp)
{
	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
}

295 296 297 298 299 300 301
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

302 303
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
304 305
list_for_each_entry(_root, &roots, root_list)

306 307 308 309 310
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
311
static inline struct cfent *__d_cfe(struct dentry *dentry)
312 313 314 315
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
316 317 318 319 320
static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return __d_cfe(dentry)->type;
}

321 322 323
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
324
static DEFINE_RAW_SPINLOCK(release_list_lock);
325 326
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
327
static void check_for_release(struct cgroup *cgrp);
328

329 330 331 332 333 334
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
335
	struct list_head cgrp_link_list;
336
	struct cgroup *cgrp;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

355 356
static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);
K
KAMEZAWA Hiroyuki 已提交
357

358 359 360 361 362 363
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

364 365 366 367 368
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

388 389 390 391
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
392
static int use_task_css_set_links __read_mostly;
393

394
static void __put_css_set(struct css_set *cg, int taskexit)
395
{
K
KOSAKI Motohiro 已提交
396 397
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
398 399 400 401 402 403 404 405 406 407 408 409
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
410

411 412 413 414 415 416 417 418 419
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
420 421
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
422
			if (taskexit)
423 424
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
425
		}
426 427

		kfree(link);
428
	}
429 430

	write_unlock(&css_set_lock);
431
	kfree_rcu(cg, rcu_head);
432 433
}

434 435 436 437 438
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
439
	atomic_inc(&cg->refcount);
440 441 442 443
}

static inline void put_css_set(struct css_set *cg)
{
444
	__put_css_set(cg, 0);
445 446
}

447 448
static inline void put_css_set_taskexit(struct css_set *cg)
{
449
	__put_css_set(cg, 1);
450 451
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

524 525 526
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
527
 * css_set is suitable.
528 529 530 531
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
532
 * cgrp: the cgroup that we're moving into
533 534 535 536 537 538
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
539
	struct cgroup *cgrp,
540
	struct cgroup_subsys_state *template[])
541 542
{
	int i;
543
	struct cgroupfs_root *root = cgrp->root;
544 545 546
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
547

B
Ben Blum 已提交
548 549 550 551 552
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
553
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
554
		if (root->subsys_bits & (1UL << i)) {
555 556 557
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
558
			template[i] = cgrp->subsys[i];
559 560 561 562 563 564 565
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

566 567
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
568 569 570 571 572
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
573
	}
574 575 576 577 578

	/* No existing cgroup group matched */
	return NULL;
}

579 580 581 582 583 584 585 586 587 588 589
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

590 591
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
592
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
593 594 595 596 597 598 599 600 601 602
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
603
			free_cg_links(tmp);
604 605
			return -ENOMEM;
		}
606
		list_add(&link->cgrp_link_list, tmp);
607 608 609 610
	}
	return 0;
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
626
	link->cgrp = cgrp;
627
	atomic_inc(&cgrp->count);
628
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
629 630 631 632 633
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
634 635
}

636 637 638 639 640 641 642 643
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
644
	struct css_set *oldcg, struct cgroup *cgrp)
645 646 647 648 649 650
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

651
	struct hlist_head *hhead;
652
	struct cg_cgroup_link *link;
653

654 655
	/* First see if we already have a cgroup group that matches
	 * the desired set */
656
	read_lock(&css_set_lock);
657
	res = find_existing_css_set(oldcg, cgrp, template);
658 659
	if (res)
		get_css_set(res);
660
	read_unlock(&css_set_lock);
661 662 663 664 665 666 667 668 669 670 671 672 673 674

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

675
	atomic_set(&res->refcount, 1);
676 677
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
678
	INIT_HLIST_NODE(&res->hlist);
679 680 681 682 683 684 685

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
686 687 688 689 690 691
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
692 693 694 695

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
696 697 698 699 700

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

701 702 703
	write_unlock(&css_set_lock);

	return res;
704 705
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

741 742 743 744 745 746 747 748 749 750
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
751
 * cgroup_attach_task() can increment it again.  Because a count of zero
752 753 754 755 756 757 758 759 760 761 762 763 764
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
765 766
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
767 768 769 770 771 772 773 774 775 776 777
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
778
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
779
 * another.  It does so using cgroup_mutex, however there are
780 781 782
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
783
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
784 785 786 787
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
788
 * update of a tasks cgroup pointer by cgroup_attach_task()
789 790 791 792 793 794 795 796 797 798
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}
B
Ben Blum 已提交
799
EXPORT_SYMBOL_GPL(cgroup_lock);
800 801 802 803 804 805 806 807 808 809

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}
B
Ben Blum 已提交
810
EXPORT_SYMBOL_GPL(cgroup_unlock);
811 812 813 814 815 816 817 818

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

819
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
820
static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
821
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
822
static int cgroup_populate_dir(struct cgroup *cgrp);
823
static const struct inode_operations cgroup_dir_inode_operations;
824
static const struct file_operations proc_cgroupstats_operations;
825 826

static struct backing_dev_info cgroup_backing_dev_info = {
827
	.name		= "cgroup",
828
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
829
};
830

K
KAMEZAWA Hiroyuki 已提交
831 832 833
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

A
Al Viro 已提交
834
static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
835 836 837 838
{
	struct inode *inode = new_inode(sb);

	if (inode) {
839
		inode->i_ino = get_next_ino();
840
		inode->i_mode = mode;
841 842
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
843 844 845 846 847 848
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

849 850 851 852
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
853
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
854 855
{
	struct cgroup_subsys *ss;
856 857
	int ret = 0;

858 859 860 861 862 863 864 865 866
	for_each_subsys(cgrp->root, ss) {
		if (!ss->pre_destroy)
			continue;

		ret = ss->pre_destroy(cgrp);
		if (ret) {
			/* ->pre_destroy() failure is being deprecated */
			WARN_ON_ONCE(!ss->__DEPRECATED_clear_css_refs);
			break;
867
		}
868
	}
869

870
	return ret;
871 872
}

873 874 875 876
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
877
		struct cgroup *cgrp = dentry->d_fsdata;
878
		struct cgroup_subsys *ss;
879
		BUG_ON(!(cgroup_is_removed(cgrp)));
880 881 882 883 884 885 886
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
887 888 889 890 891

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
892
		for_each_subsys(cgrp->root, ss)
893
			ss->destroy(cgrp);
894 895 896 897

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

898
		/*
899 900 901 902 903
		 * We want to drop the active superblock reference from the
		 * cgroup creation after all the dentry refs are gone -
		 * kill_sb gets mighty unhappy otherwise.  Mark
		 * dentry->d_fsdata with cgroup_diput() to tell
		 * cgroup_d_release() to call deactivate_super().
904
		 */
905
		dentry->d_fsdata = cgroup_diput;
906

907 908 909 910 911 912
		/*
		 * if we're getting rid of the cgroup, refcount should ensure
		 * that there are no pidlists left.
		 */
		BUG_ON(!list_empty(&cgrp->pidlists));

913
		kfree_rcu(cgrp, rcu_head);
T
Tejun Heo 已提交
914 915 916 917 918 919 920 921
	} else {
		struct cfent *cfe = __d_cfe(dentry);
		struct cgroup *cgrp = dentry->d_parent->d_fsdata;

		WARN_ONCE(!list_empty(&cfe->node) &&
			  cgrp != &cgrp->root->top_cgroup,
			  "cfe still linked for %s\n", cfe->type->name);
		kfree(cfe);
922 923 924 925
	}
	iput(inode);
}

926 927 928 929 930
static int cgroup_delete(const struct dentry *d)
{
	return 1;
}

931 932 933 934 935 936 937
static void cgroup_d_release(struct dentry *dentry)
{
	/* did cgroup_diput() tell me to deactivate super? */
	if (dentry->d_fsdata == cgroup_diput)
		deactivate_super(dentry->d_sb);
}

938 939 940 941 942 943 944 945 946
static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

T
Tejun Heo 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
{
	struct cfent *cfe;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

	list_for_each_entry(cfe, &cgrp->files, node) {
		struct dentry *d = cfe->dentry;

		if (cft && cfe->type != cft)
			continue;

		dget(d);
		d_delete(d);
		simple_unlink(d->d_inode, d);
		list_del_init(&cfe->node);
		dput(d);

		return 0;
967
	}
T
Tejun Heo 已提交
968 969 970 971 972 973 974 975 976
	return -ENOENT;
}

static void cgroup_clear_directory(struct dentry *dir)
{
	struct cgroup *cgrp = __d_cgrp(dir);

	while (!list_empty(&cgrp->files))
		cgroup_rm_file(cgrp, NULL);
977 978 979 980 981 982 983
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
984 985
	struct dentry *parent;

986 987
	cgroup_clear_directory(dentry);

N
Nick Piggin 已提交
988 989
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
990
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
991
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
992 993
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
994 995 996
	remove_dir(dentry);
}

997 998 999 1000 1001 1002
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
1003
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
1004
 */
1005
static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
1006

1007
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
1008
{
1009
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
1010 1011 1012
		wake_up_all(&cgroup_rmdir_waitq);
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}

B
Ben Blum 已提交
1024
/*
B
Ben Blum 已提交
1025 1026 1027
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
1028
 */
1029 1030 1031 1032
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
1033
	struct cgroup *cgrp = &root->top_cgroup;
1034 1035
	int i;

B
Ben Blum 已提交
1036
	BUG_ON(!mutex_is_locked(&cgroup_mutex));
T
Tejun Heo 已提交
1037
	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
B
Ben Blum 已提交
1038

1039 1040 1041 1042
	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
1043
		unsigned long bit = 1UL << i;
1044 1045 1046
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
B
Ben Blum 已提交
1047 1048 1049 1050 1051 1052
		/*
		 * Nobody should tell us to do a subsys that doesn't exist:
		 * parse_cgroupfs_options should catch that case and refcounts
		 * ensure that subsystems won't disappear once selected.
		 */
		BUG_ON(ss == NULL);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
1063
	if (root->number_of_cgroups > 1)
1064 1065 1066 1067 1068 1069 1070 1071
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
B
Ben Blum 已提交
1072
			BUG_ON(ss == NULL);
1073
			BUG_ON(cgrp->subsys[i]);
1074 1075
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1076 1077
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
1078
			list_move(&ss->sibling, &root->subsys_list);
1079
			ss->root = root;
1080
			if (ss->bind)
1081
				ss->bind(cgrp);
B
Ben Blum 已提交
1082
			/* refcount was already taken, and we're keeping it */
1083 1084
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
B
Ben Blum 已提交
1085
			BUG_ON(ss == NULL);
1086 1087
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1088
			if (ss->bind)
1089
				ss->bind(dummytop);
1090
			dummytop->subsys[i]->cgroup = dummytop;
1091
			cgrp->subsys[i] = NULL;
1092
			subsys[i]->root = &rootnode;
1093
			list_move(&ss->sibling, &rootnode.subsys_list);
B
Ben Blum 已提交
1094 1095
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1096 1097
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
B
Ben Blum 已提交
1098
			BUG_ON(ss == NULL);
1099
			BUG_ON(!cgrp->subsys[i]);
B
Ben Blum 已提交
1100 1101 1102 1103 1104 1105 1106 1107
			/*
			 * a refcount was taken, but we already had one, so
			 * drop the extra reference.
			 */
			module_put(ss->module);
#ifdef CONFIG_MODULE_UNLOAD
			BUG_ON(ss->module && !module_refcount(ss->module));
#endif
1108 1109
		} else {
			/* Subsystem state shouldn't exist */
1110
			BUG_ON(cgrp->subsys[i]);
1111 1112 1113 1114 1115 1116 1117 1118
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

1119
static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1120
{
1121
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1122 1123
	struct cgroup_subsys *ss;

T
Tejun Heo 已提交
1124
	mutex_lock(&cgroup_root_mutex);
1125 1126 1127 1128
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
1129 1130
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1131 1132
	if (clone_children(&root->top_cgroup))
		seq_puts(seq, ",clone_children");
1133 1134
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
T
Tejun Heo 已提交
1135
	mutex_unlock(&cgroup_root_mutex);
1136 1137 1138 1139 1140 1141
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
1142
	char *release_agent;
1143
	bool clone_children;
1144
	char *name;
1145 1146
	/* User explicitly requested empty subsystem */
	bool none;
1147 1148

	struct cgroupfs_root *new_root;
1149

1150 1151
};

B
Ben Blum 已提交
1152 1153
/*
 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
B
Ben Blum 已提交
1154 1155 1156
 * with cgroup_mutex held to protect the subsys[] array. This function takes
 * refcounts on subsystems to be used, unless it returns error, in which case
 * no refcounts are taken.
B
Ben Blum 已提交
1157
 */
B
Ben Blum 已提交
1158
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1159
{
1160 1161
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1162
	unsigned long mask = (unsigned long)-1;
B
Ben Blum 已提交
1163 1164
	int i;
	bool module_pin_failed = false;
1165

B
Ben Blum 已提交
1166 1167
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1168 1169 1170
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1171

1172
	memset(opts, 0, sizeof(*opts));
1173 1174 1175 1176

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1177
		if (!strcmp(token, "none")) {
1178 1179
			/* Explicitly have no subsystems */
			opts->none = true;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
		if (!strcmp(token, "noprefix")) {
1190
			set_bit(ROOT_NOPREFIX, &opts->flags);
1191 1192 1193
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1194
			opts->clone_children = true;
1195 1196 1197
			continue;
		}
		if (!strncmp(token, "release_agent=", 14)) {
1198 1199 1200
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1201
			opts->release_agent =
1202
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1203 1204
			if (!opts->release_agent)
				return -ENOMEM;
1205 1206 1207
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1225
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1226 1227 1228
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255

			continue;
		}

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
			set_bit(i, &opts->subsys_bits);
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
1256 1257
	 * otherwise if 'none', 'name=' and a subsystem name options
	 * were not specified, let's default to 'all'
1258
	 */
1259
	if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1260 1261 1262 1263 1264 1265 1266
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (ss->disabled)
				continue;
			set_bit(i, &opts->subsys_bits);
1267 1268 1269
		}
	}

1270 1271
	/* Consistency checks */

1272 1273 1274 1275 1276 1277 1278 1279 1280
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1281 1282 1283 1284 1285 1286 1287 1288 1289

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1290
	if (!opts->subsys_bits && !opts->name)
1291 1292
		return -EINVAL;

B
Ben Blum 已提交
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	/*
	 * Grab references on all the modules we'll need, so the subsystems
	 * don't dance around before rebind_subsystems attaches them. This may
	 * take duplicate reference counts on a subsystem that's already used,
	 * but rebind_subsystems handles this case.
	 */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & opts->subsys_bits))
			continue;
		if (!try_module_get(subsys[i]->module)) {
			module_pin_failed = true;
			break;
		}
	}
	if (module_pin_failed) {
		/*
		 * oops, one of the modules was going away. this means that we
		 * raced with a module_delete call, and to the user this is
		 * essentially a "subsystem doesn't exist" case.
		 */
		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
			/* drop refcounts only on the ones we took */
			unsigned long bit = 1UL << i;

			if (!(bit & opts->subsys_bits))
				continue;
			module_put(subsys[i]->module);
		}
		return -ENOENT;
	}

1326 1327 1328
	return 0;
}

B
Ben Blum 已提交
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
static void drop_parsed_module_refcounts(unsigned long subsys_bits)
{
	int i;
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & subsys_bits))
			continue;
		module_put(subsys[i]->module);
	}
}

1341 1342 1343 1344
static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1345
	struct cgroup *cgrp = &root->top_cgroup;
1346 1347
	struct cgroup_sb_opts opts;

1348
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1349
	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1350
	mutex_lock(&cgroup_root_mutex);
1351 1352 1353 1354 1355 1356

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

1357 1358 1359 1360 1361
	/* See feature-removal-schedule.txt */
	if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
		pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
			   task_tgid_nr(current), current->comm);

B
Ben Blum 已提交
1362 1363 1364
	/* Don't allow flags or name to change at remount */
	if (opts.flags != root->flags ||
	    (opts.name && strcmp(opts.name, root->name))) {
1365
		ret = -EINVAL;
B
Ben Blum 已提交
1366
		drop_parsed_module_refcounts(opts.subsys_bits);
1367 1368 1369
		goto out_unlock;
	}

1370
	ret = rebind_subsystems(root, opts.subsys_bits);
B
Ben Blum 已提交
1371 1372
	if (ret) {
		drop_parsed_module_refcounts(opts.subsys_bits);
1373
		goto out_unlock;
B
Ben Blum 已提交
1374
	}
1375

1376 1377
	/* clear out any existing files and repopulate subsystem files */
	cgroup_clear_directory(cgrp->dentry);
1378
	cgroup_populate_dir(cgrp);
1379

1380 1381
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1382
 out_unlock:
1383
	kfree(opts.release_agent);
1384
	kfree(opts.name);
T
Tejun Heo 已提交
1385
	mutex_unlock(&cgroup_root_mutex);
1386
	mutex_unlock(&cgroup_mutex);
1387
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1388 1389 1390
	return ret;
}

1391
static const struct super_operations cgroup_ops = {
1392 1393 1394 1395 1396 1397
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1398 1399 1400 1401
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
T
Tejun Heo 已提交
1402
	INIT_LIST_HEAD(&cgrp->files);
1403 1404
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
1405 1406
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1407 1408
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
1409
}
1410

1411 1412
static void init_cgroup_root(struct cgroupfs_root *root)
{
1413
	struct cgroup *cgrp = &root->top_cgroup;
1414

1415 1416
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
1417
	INIT_LIST_HEAD(&root->allcg_list);
1418
	root->number_of_cgroups = 1;
1419 1420
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1421
	list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1422
	init_cgroup_housekeeping(cgrp);
1423 1424
}

1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1450 1451
static int cgroup_test_super(struct super_block *sb, void *data)
{
1452
	struct cgroup_sb_opts *opts = data;
1453 1454
	struct cgroupfs_root *root = sb->s_fs_info;

1455 1456 1457
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1458

1459 1460 1461 1462 1463 1464
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1465 1466 1467 1468 1469
		return 0;

	return 1;
}

1470 1471 1472 1473
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1474
	if (!opts->subsys_bits && !opts->none)
1475 1476 1477 1478 1479 1480
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1481 1482 1483 1484
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1485
	init_cgroup_root(root);
1486

1487 1488 1489 1490 1491 1492
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1493 1494
	if (opts->clone_children)
		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1495 1496 1497
	return root;
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1510 1511 1512
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1513 1514 1515 1516 1517 1518
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1519
	BUG_ON(!opts->subsys_bits && !opts->none);
1520 1521 1522 1523 1524

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1525 1526
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1538 1539
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1540
		.d_delete = cgroup_delete,
1541
		.d_release = cgroup_d_release,
A
Al Viro 已提交
1542 1543
	};

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
1554 1555
	sb->s_root = d_make_root(inode);
	if (!sb->s_root)
1556
		return -ENOMEM;
A
Al Viro 已提交
1557 1558
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1559 1560 1561
	return 0;
}

A
Al Viro 已提交
1562
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1563
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1564
			 void *data)
1565 1566
{
	struct cgroup_sb_opts opts;
1567
	struct cgroupfs_root *root;
1568 1569
	int ret = 0;
	struct super_block *sb;
1570
	struct cgroupfs_root *new_root;
T
Tejun Heo 已提交
1571
	struct inode *inode;
1572 1573

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1574
	mutex_lock(&cgroup_mutex);
1575
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1576
	mutex_unlock(&cgroup_mutex);
1577 1578
	if (ret)
		goto out_err;
1579

1580 1581 1582 1583 1584 1585 1586
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
B
Ben Blum 已提交
1587
		goto drop_modules;
1588
	}
1589
	opts.new_root = new_root;
1590

1591 1592
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1593
	if (IS_ERR(sb)) {
1594
		ret = PTR_ERR(sb);
1595
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1596
		goto drop_modules;
1597 1598
	}

1599 1600 1601 1602 1603
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1604
		struct cgroup *root_cgrp = &root->top_cgroup;
1605
		struct cgroupfs_root *existing_root;
1606
		const struct cred *cred;
1607
		int i;
1608 1609 1610 1611 1612 1613

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1614
		inode = sb->s_root->d_inode;
1615

1616
		mutex_lock(&inode->i_mutex);
1617
		mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1618
		mutex_lock(&cgroup_root_mutex);
1619

T
Tejun Heo 已提交
1620 1621 1622 1623 1624 1625
		/* Check for name clashes with existing mounts */
		ret = -EBUSY;
		if (strlen(root->name))
			for_each_active_root(existing_root)
				if (!strcmp(existing_root->name, root->name))
					goto unlock_drop;
1626

1627 1628 1629 1630 1631 1632 1633 1634
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
T
Tejun Heo 已提交
1635 1636
		if (ret)
			goto unlock_drop;
1637

1638 1639
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
1640
			free_cg_links(&tmp_cg_links);
T
Tejun Heo 已提交
1641
			goto unlock_drop;
1642
		}
B
Ben Blum 已提交
1643 1644 1645 1646 1647
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1648 1649 1650 1651 1652

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1653
		root_count++;
1654

1655
		sb->s_root->d_fsdata = root_cgrp;
1656 1657
		root->top_cgroup.dentry = sb->s_root;

1658 1659 1660
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1661 1662 1663
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1664
			struct css_set *cg;
1665

1666 1667
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1668
		}
1669 1670 1671 1672
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1673 1674
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1675 1676
		BUG_ON(root->number_of_cgroups != 1);

1677
		cred = override_creds(&init_cred);
1678
		cgroup_populate_dir(root_cgrp);
1679
		revert_creds(cred);
T
Tejun Heo 已提交
1680
		mutex_unlock(&cgroup_root_mutex);
1681
		mutex_unlock(&cgroup_mutex);
1682
		mutex_unlock(&inode->i_mutex);
1683 1684 1685 1686 1687
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1688
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1689 1690
		/* no subsys rebinding, so refcounts don't change */
		drop_parsed_module_refcounts(opts.subsys_bits);
1691 1692
	}

1693 1694
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1695
	return dget(sb->s_root);
1696

T
Tejun Heo 已提交
1697 1698 1699 1700
 unlock_drop:
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);
1701
 drop_new_super:
1702
	deactivate_locked_super(sb);
B
Ben Blum 已提交
1703 1704
 drop_modules:
	drop_parsed_module_refcounts(opts.subsys_bits);
1705 1706 1707
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1708
	return ERR_PTR(ret);
1709 1710 1711 1712
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1713
	struct cgroup *cgrp = &root->top_cgroup;
1714
	int ret;
K
KOSAKI Motohiro 已提交
1715 1716
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1717 1718 1719 1720

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1721 1722
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1723 1724

	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1725
	mutex_lock(&cgroup_root_mutex);
1726 1727 1728 1729 1730 1731

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1732 1733 1734 1735 1736
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1737 1738 1739

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1740
		list_del(&link->cg_link_list);
1741
		list_del(&link->cgrp_link_list);
1742 1743 1744 1745
		kfree(link);
	}
	write_unlock(&css_set_lock);

1746 1747 1748 1749
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1750

T
Tejun Heo 已提交
1751
	mutex_unlock(&cgroup_root_mutex);
1752 1753 1754
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1755
	cgroup_drop_root(root);
1756 1757 1758 1759
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1760
	.mount = cgroup_mount,
1761 1762 1763
	.kill_sb = cgroup_kill_sb,
};

1764 1765
static struct kobject *cgroup_kobj;

L
Li Zefan 已提交
1766 1767 1768 1769 1770 1771
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1772 1773 1774
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1775
 */
1776
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1777 1778
{
	char *start;
1779 1780
	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
						      cgroup_lock_is_held());
1781

1782
	if (!dentry || cgrp == dummytop) {
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1795
		int len = dentry->d_name.len;
1796

1797 1798
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1799
		memcpy(start, dentry->d_name.name, len);
1800 1801
		cgrp = cgrp->parent;
		if (!cgrp)
1802
			break;
1803 1804 1805

		dentry = rcu_dereference_check(cgrp->dentry,
					       cgroup_lock_is_held());
1806
		if (!cgrp->parent)
1807 1808 1809 1810 1811 1812 1813 1814
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}
B
Ben Blum 已提交
1815
EXPORT_SYMBOL_GPL(cgroup_path);
1816

1817 1818 1819
/*
 * Control Group taskset
 */
1820 1821 1822
struct task_and_cgroup {
	struct task_struct	*task;
	struct cgroup		*cgrp;
1823
	struct css_set		*cg;
1824 1825
};

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
struct cgroup_taskset {
	struct task_and_cgroup	single;
	struct flex_array	*tc_array;
	int			tc_array_len;
	int			idx;
	struct cgroup		*cur_cgrp;
};

/**
 * cgroup_taskset_first - reset taskset and return the first task
 * @tset: taskset of interest
 *
 * @tset iteration is initialized and the first task is returned.
 */
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
	if (tset->tc_array) {
		tset->idx = 0;
		return cgroup_taskset_next(tset);
	} else {
		tset->cur_cgrp = tset->single.cgrp;
		return tset->single.task;
	}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);

/**
 * cgroup_taskset_next - iterate to the next task in taskset
 * @tset: taskset of interest
 *
 * Return the next task in @tset.  Iteration must have been initialized
 * with cgroup_taskset_first().
 */
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
	struct task_and_cgroup *tc;

	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
		return NULL;

	tc = flex_array_get(tset->tc_array, tset->idx++);
	tset->cur_cgrp = tc->cgrp;
	return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);

/**
 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
 * @tset: taskset of interest
 *
 * Return the cgroup for the current (last returned) task of @tset.  This
 * function must be preceded by either cgroup_taskset_first() or
 * cgroup_taskset_next().
 */
struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
{
	return tset->cur_cgrp;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);

/**
 * cgroup_taskset_size - return the number of tasks in taskset
 * @tset: taskset of interest
 */
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
	return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);


B
Ben Blum 已提交
1897 1898 1899 1900 1901
/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
 * 'guarantee' is set if the caller promises that a new css_set for the task
 * will already exist. If not set, this function might sleep, and can fail with
1902
 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
B
Ben Blum 已提交
1903
 */
1904 1905
static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
				struct task_struct *tsk, struct css_set *newcg)
B
Ben Blum 已提交
1906 1907 1908 1909
{
	struct css_set *oldcg;

	/*
1910 1911 1912
	 * We are synchronized through threadgroup_lock() against PF_EXITING
	 * setting such that we can't race against cgroup_exit() changing the
	 * css_set to init_css_set and dropping the old one.
B
Ben Blum 已提交
1913
	 */
1914
	WARN_ON_ONCE(tsk->flags & PF_EXITING);
B
Ben Blum 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
	oldcg = tsk->cgroups;

	task_lock(tsk);
	rcu_assign_pointer(tsk->cgroups, newcg);
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
		list_move(&tsk->cg_list, &newcg->tasks);
	write_unlock(&css_set_lock);

	/*
	 * We just gained a reference on oldcg by taking it from the task. As
	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
	 * it here; it will be freed under RCU.
	 */
	put_css_set(oldcg);

	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
}

L
Li Zefan 已提交
1937 1938 1939 1940
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1941
 *
1942 1943
 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
 * @tsk during call.
1944
 */
1945
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1946
{
1947
	int retval = 0;
1948
	struct cgroup_subsys *ss, *failed_ss = NULL;
1949 1950
	struct cgroup *oldcgrp;
	struct cgroupfs_root *root = cgrp->root;
1951
	struct cgroup_taskset tset = { };
1952
	struct css_set *newcg;
1953

1954 1955 1956
	/* @tsk either already exited or can't exit until the end */
	if (tsk->flags & PF_EXITING)
		return -ESRCH;
1957 1958

	/* Nothing to do if the task is already in that cgroup */
1959
	oldcgrp = task_cgroup_from_root(tsk, root);
1960
	if (cgrp == oldcgrp)
1961 1962
		return 0;

1963 1964 1965
	tset.single.task = tsk;
	tset.single.cgrp = oldcgrp;

1966 1967
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1968
			retval = ss->can_attach(cgrp, &tset);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
			if (retval) {
				/*
				 * Remember on which subsystem the can_attach()
				 * failed, so that we only call cancel_attach()
				 * against the subsystems whose can_attach()
				 * succeeded. (See below)
				 */
				failed_ss = ss;
				goto out;
			}
1979 1980 1981
		}
	}

1982 1983 1984
	newcg = find_css_set(tsk->cgroups, cgrp);
	if (!newcg) {
		retval = -ENOMEM;
1985
		goto out;
1986 1987 1988
	}

	cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1989

1990
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1991
		if (ss->attach)
1992
			ss->attach(cgrp, &tset);
1993
	}
B
Ben Blum 已提交
1994

1995
	synchronize_rcu();
1996 1997 1998 1999 2000

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
2001
	cgroup_wakeup_rmdir_waiter(cgrp);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
out:
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss)
				/*
				 * This subsystem was the one that failed the
				 * can_attach() check earlier, so we don't need
				 * to call cancel_attach() against it or any
				 * remaining subsystems.
				 */
				break;
			if (ss->cancel_attach)
2014
				ss->cancel_attach(cgrp, &tset);
2015 2016 2017
		}
	}
	return retval;
2018 2019
}

2020
/**
M
Michael S. Tsirkin 已提交
2021 2022
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
2023 2024
 * @tsk: the task to be attached
 */
M
Michael S. Tsirkin 已提交
2025
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2026 2027 2028 2029 2030 2031
{
	struct cgroupfs_root *root;
	int retval = 0;

	cgroup_lock();
	for_each_active_root(root) {
M
Michael S. Tsirkin 已提交
2032 2033 2034
		struct cgroup *from_cg = task_cgroup_from_root(from, root);

		retval = cgroup_attach_task(from_cg, tsk);
2035 2036 2037 2038 2039 2040 2041
		if (retval)
			break;
	}
	cgroup_unlock();

	return retval;
}
M
Michael S. Tsirkin 已提交
2042
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2043

B
Ben Blum 已提交
2044 2045 2046 2047 2048
/**
 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
 * @cgrp: the cgroup to attach to
 * @leader: the threadgroup leader task_struct of the group to be attached
 *
2049 2050
 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
 * task_lock of each thread in leader's threadgroup individually in turn.
B
Ben Blum 已提交
2051
 */
2052
static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
B
Ben Blum 已提交
2053 2054 2055 2056 2057 2058 2059
{
	int retval, i, group_size;
	struct cgroup_subsys *ss, *failed_ss = NULL;
	/* guaranteed to be initialized later, but the compiler needs this */
	struct cgroupfs_root *root = cgrp->root;
	/* threadgroup list cursor and array */
	struct task_struct *tsk;
2060
	struct task_and_cgroup *tc;
2061
	struct flex_array *group;
2062
	struct cgroup_taskset tset = { };
B
Ben Blum 已提交
2063 2064 2065 2066 2067

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
2068 2069
	 * group - group_rwsem prevents new threads from appearing, and if
	 * threads exit, this will just be an over-estimate.
B
Ben Blum 已提交
2070 2071
	 */
	group_size = get_nr_threads(leader);
2072
	/* flex_array supports very large thread-groups better than kmalloc. */
2073
	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
B
Ben Blum 已提交
2074 2075
	if (!group)
		return -ENOMEM;
2076 2077 2078 2079
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
	retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
	if (retval)
		goto out_free_group_list;
B
Ben Blum 已提交
2080 2081 2082

	tsk = leader;
	i = 0;
2083 2084 2085 2086 2087 2088
	/*
	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
	 * already PF_EXITING could be freed from underneath us unless we
	 * take an rcu_read_lock.
	 */
	rcu_read_lock();
B
Ben Blum 已提交
2089
	do {
2090 2091
		struct task_and_cgroup ent;

2092 2093 2094 2095
		/* @tsk either already exited or can't exit until the end */
		if (tsk->flags & PF_EXITING)
			continue;

B
Ben Blum 已提交
2096 2097
		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
2098 2099
		ent.task = tsk;
		ent.cgrp = task_cgroup_from_root(tsk, root);
2100 2101 2102
		/* nothing to do if this task is already in the cgroup */
		if (ent.cgrp == cgrp)
			continue;
2103 2104 2105 2106
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
2107
		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2108
		BUG_ON(retval != 0);
B
Ben Blum 已提交
2109 2110
		i++;
	} while_each_thread(leader, tsk);
2111
	rcu_read_unlock();
B
Ben Blum 已提交
2112 2113
	/* remember the number of threads in the array for later. */
	group_size = i;
2114 2115
	tset.tc_array = group;
	tset.tc_array_len = group_size;
B
Ben Blum 已提交
2116

2117 2118
	/* methods shouldn't be called if no task is actually migrating */
	retval = 0;
2119
	if (!group_size)
2120
		goto out_free_group_list;
2121

B
Ben Blum 已提交
2122 2123 2124 2125 2126
	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
2127
			retval = ss->can_attach(cgrp, &tset);
B
Ben Blum 已提交
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
			if (retval) {
				failed_ss = ss;
				goto out_cancel_attach;
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	for (i = 0; i < group_size; i++) {
2140
		tc = flex_array_get(group, i);
2141 2142 2143 2144
		tc->cg = find_css_set(tc->task->cgroups, cgrp);
		if (!tc->cg) {
			retval = -ENOMEM;
			goto out_put_css_set_refs;
B
Ben Blum 已提交
2145 2146 2147 2148
		}
	}

	/*
2149 2150 2151
	 * step 3: now that we're guaranteed success wrt the css_sets,
	 * proceed to move all tasks to the new cgroup.  There are no
	 * failure cases after here, so this is the commit point.
B
Ben Blum 已提交
2152 2153
	 */
	for (i = 0; i < group_size; i++) {
2154
		tc = flex_array_get(group, i);
2155
		cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
B
Ben Blum 已提交
2156 2157 2158 2159
	}
	/* nothing is sensitive to fork() after this point. */

	/*
2160
	 * step 4: do subsystem attach callbacks.
B
Ben Blum 已提交
2161 2162 2163
	 */
	for_each_subsys(root, ss) {
		if (ss->attach)
2164
			ss->attach(cgrp, &tset);
B
Ben Blum 已提交
2165 2166 2167 2168 2169 2170 2171 2172
	}

	/*
	 * step 5: success! and cleanup
	 */
	synchronize_rcu();
	cgroup_wakeup_rmdir_waiter(cgrp);
	retval = 0;
2173 2174 2175 2176 2177 2178 2179 2180
out_put_css_set_refs:
	if (retval) {
		for (i = 0; i < group_size; i++) {
			tc = flex_array_get(group, i);
			if (!tc->cg)
				break;
			put_css_set(tc->cg);
		}
B
Ben Blum 已提交
2181 2182 2183 2184
	}
out_cancel_attach:
	if (retval) {
		for_each_subsys(root, ss) {
2185
			if (ss == failed_ss)
B
Ben Blum 已提交
2186 2187
				break;
			if (ss->cancel_attach)
2188
				ss->cancel_attach(cgrp, &tset);
B
Ben Blum 已提交
2189 2190 2191
		}
	}
out_free_group_list:
2192
	flex_array_free(group);
B
Ben Blum 已提交
2193 2194 2195 2196 2197
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
2198 2199
 * function to attach either it or all tasks in its threadgroup. Will lock
 * cgroup_mutex and threadgroup; may take task_lock of task.
2200
 */
B
Ben Blum 已提交
2201
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2202 2203
{
	struct task_struct *tsk;
2204
	const struct cred *cred = current_cred(), *tcred;
2205 2206
	int ret;

B
Ben Blum 已提交
2207 2208 2209
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

2210 2211
retry_find_task:
	rcu_read_lock();
2212
	if (pid) {
2213
		tsk = find_task_by_vpid(pid);
B
Ben Blum 已提交
2214 2215
		if (!tsk) {
			rcu_read_unlock();
2216 2217
			ret= -ESRCH;
			goto out_unlock_cgroup;
2218
		}
B
Ben Blum 已提交
2219 2220 2221 2222
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
2223
		tcred = __task_cred(tsk);
2224 2225 2226
		if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
		    !uid_eq(cred->euid, tcred->uid) &&
		    !uid_eq(cred->euid, tcred->suid)) {
2227
			rcu_read_unlock();
2228 2229
			ret = -EACCES;
			goto out_unlock_cgroup;
2230
		}
2231 2232
	} else
		tsk = current;
2233 2234

	if (threadgroup)
2235
		tsk = tsk->group_leader;
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

	/*
	 * Workqueue threads may acquire PF_THREAD_BOUND and become
	 * trapped in a cpuset, or RT worker may be born in a cgroup
	 * with no rt_runtime allocated.  Just say no.
	 */
	if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
		ret = -EINVAL;
		rcu_read_unlock();
		goto out_unlock_cgroup;
	}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	get_task_struct(tsk);
	rcu_read_unlock();

	threadgroup_lock(tsk);
	if (threadgroup) {
		if (!thread_group_leader(tsk)) {
			/*
			 * a race with de_thread from another thread's exec()
			 * may strip us of our leadership, if this happens,
			 * there is no choice but to throw this task away and
			 * try again; this is
			 * "double-double-toil-and-trouble-check locking".
			 */
			threadgroup_unlock(tsk);
			put_task_struct(tsk);
			goto retry_find_task;
		}
B
Ben Blum 已提交
2265
		ret = cgroup_attach_proc(cgrp, tsk);
2266
	} else
B
Ben Blum 已提交
2267
		ret = cgroup_attach_task(cgrp, tsk);
2268 2269
	threadgroup_unlock(tsk);

2270
	put_task_struct(tsk);
2271
out_unlock_cgroup:
B
Ben Blum 已提交
2272
	cgroup_unlock();
2273 2274 2275
	return ret;
}

2276
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
B
Ben Blum 已提交
2277 2278 2279 2280 2281
{
	return attach_task_by_pid(cgrp, pid, false);
}

static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2282
{
2283
	return attach_task_by_pid(cgrp, tgid, true);
2284 2285
}

2286 2287 2288 2289
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
2290 2291
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
2292
 */
2293
bool cgroup_lock_live_group(struct cgroup *cgrp)
2294 2295 2296 2297 2298 2299 2300 2301
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}
B
Ben Blum 已提交
2302
EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2303 2304 2305 2306 2307

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2308 2309
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
2310 2311
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
T
Tejun Heo 已提交
2312
	mutex_lock(&cgroup_root_mutex);
2313
	strcpy(cgrp->root->release_agent_path, buffer);
T
Tejun Heo 已提交
2314
	mutex_unlock(&cgroup_root_mutex);
2315
	cgroup_unlock();
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
2326
	cgroup_unlock();
2327 2328 2329
	return 0;
}

2330 2331 2332
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

2333
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2334 2335 2336
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
2337
{
2338
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
2350
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
2351
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2352 2353 2354 2355
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
2356
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2357 2358 2359 2360
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
2361 2362 2363 2364 2365
	if (!retval)
		retval = nbytes;
	return retval;
}

2366 2367 2368 2369 2370
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
2371
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
2386 2387 2388 2389
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
2390 2391

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
2392
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2393 2394
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
2395
out:
2396 2397 2398 2399 2400
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

2401 2402 2403 2404
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2405
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2406

2407
	if (cgroup_is_removed(cgrp))
2408
		return -ENODEV;
2409
	if (cft->write)
2410
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2411 2412
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2413 2414
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2415 2416 2417 2418
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
2419
	return -EINVAL;
2420 2421
}

2422 2423 2424 2425
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
2426
{
2427
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2428
	u64 val = cft->read_u64(cgrp, cft);
2429 2430 2431 2432 2433
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2434 2435 2436 2437 2438
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
2439
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2440 2441 2442 2443 2444 2445
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2446 2447 2448 2449
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2450
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2451

2452
	if (cgroup_is_removed(cgrp))
2453 2454 2455
		return -ENODEV;

	if (cft->read)
2456
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2457 2458
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2459 2460
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2461 2462 2463
	return -EINVAL;
}

2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
2484 2485 2486 2487 2488 2489 2490 2491
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
2492 2493
}

2494
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2495 2496 2497 2498 2499 2500
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

2501
static const struct file_operations cgroup_seqfile_operations = {
2502
	.read = seq_read,
2503
	.write = cgroup_file_write,
2504 2505 2506 2507
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

2508 2509 2510 2511 2512 2513 2514 2515 2516
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
2517

2518
	if (cft->read_map || cft->read_seq_string) {
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

2560
static const struct file_operations cgroup_file_operations = {
2561 2562 2563 2564 2565 2566 2567
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

2568
static const struct inode_operations cgroup_dir_inode_operations = {
2569
	.lookup = cgroup_lookup,
2570 2571 2572 2573 2574
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

2575 2576 2577 2578 2579 2580 2581 2582
static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
{
	if (dentry->d_name.len > NAME_MAX)
		return ERR_PTR(-ENAMETOOLONG);
	d_add(dentry, NULL);
	return NULL;
}

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

A
Al Viro 已提交
2593
static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2594 2595
				struct super_block *sb)
{
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
2616
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
2627 2628 2629 2630 2631
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
2632
 */
2633
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
A
Al Viro 已提交
2634
				umode_t mode)
2635 2636 2637 2638
{
	struct dentry *parent;
	int error = 0;

2639 2640
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2641
	if (!error) {
2642
		dentry->d_fsdata = cgrp;
2643
		inc_nlink(parent->d_inode);
2644
		rcu_assign_pointer(cgrp->dentry, dentry);
2645 2646 2647 2648 2649 2650 2651
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
2652 2653 2654 2655 2656 2657 2658 2659 2660
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
A
Al Viro 已提交
2661
static umode_t cgroup_file_mode(const struct cftype *cft)
L
Li Zefan 已提交
2662
{
A
Al Viro 已提交
2663
	umode_t mode = 0;
L
Li Zefan 已提交
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

T
Tejun Heo 已提交
2679 2680
static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
			   const struct cftype *cft)
2681
{
2682
	struct dentry *dir = cgrp->dentry;
T
Tejun Heo 已提交
2683
	struct cgroup *parent = __d_cgrp(dir);
2684
	struct dentry *dentry;
T
Tejun Heo 已提交
2685
	struct cfent *cfe;
2686
	int error;
A
Al Viro 已提交
2687
	umode_t mode;
2688
	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2689 2690 2691 2692 2693 2694 2695

	/* does @cft->flags tell us to skip creation on @cgrp? */
	if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
		return 0;
	if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
		return 0;

2696
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2697 2698 2699 2700
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
T
Tejun Heo 已提交
2701

2702
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
T
Tejun Heo 已提交
2703 2704 2705 2706 2707

	cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
	if (!cfe)
		return -ENOMEM;

2708
	dentry = lookup_one_len(name, dir, strlen(name));
T
Tejun Heo 已提交
2709
	if (IS_ERR(dentry)) {
2710
		error = PTR_ERR(dentry);
T
Tejun Heo 已提交
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
		goto out;
	}

	mode = cgroup_file_mode(cft);
	error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
	if (!error) {
		cfe->type = (void *)cft;
		cfe->dentry = dentry;
		dentry->d_fsdata = cfe;
		list_add_tail(&cfe->node, &parent->files);
		cfe = NULL;
	}
	dput(dentry);
out:
	kfree(cfe);
2726 2727 2728
	return error;
}

2729 2730
static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
			      const struct cftype cfts[], bool is_add)
2731
{
T
Tejun Heo 已提交
2732 2733 2734 2735
	const struct cftype *cft;
	int err, ret = 0;

	for (cft = cfts; cft->name[0] != '\0'; cft++) {
2736 2737 2738 2739
		if (is_add)
			err = cgroup_add_file(cgrp, subsys, cft);
		else
			err = cgroup_rm_file(cgrp, cft);
T
Tejun Heo 已提交
2740
		if (err) {
2741 2742
			pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
				   is_add ? "add" : "remove", cft->name, err);
T
Tejun Heo 已提交
2743 2744
			ret = err;
		}
2745
	}
T
Tejun Heo 已提交
2746
	return ret;
2747 2748
}

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765
static DEFINE_MUTEX(cgroup_cft_mutex);

static void cgroup_cfts_prepare(void)
	__acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
{
	/*
	 * Thanks to the entanglement with vfs inode locking, we can't walk
	 * the existing cgroups under cgroup_mutex and create files.
	 * Instead, we increment reference on all cgroups and build list of
	 * them using @cgrp->cft_q_node.  Grab cgroup_cft_mutex to ensure
	 * exclusive access to the field.
	 */
	mutex_lock(&cgroup_cft_mutex);
	mutex_lock(&cgroup_mutex);
}

static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2766
			       const struct cftype *cfts, bool is_add)
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
	__releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
{
	LIST_HEAD(pending);
	struct cgroup *cgrp, *n;

	/* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
	if (cfts && ss->root != &rootnode) {
		list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
			dget(cgrp->dentry);
			list_add_tail(&cgrp->cft_q_node, &pending);
		}
	}

	mutex_unlock(&cgroup_mutex);

	/*
	 * All new cgroups will see @cfts update on @ss->cftsets.  Add/rm
	 * files for all cgroups which were created before.
	 */
	list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
		struct inode *inode = cgrp->dentry->d_inode;

		mutex_lock(&inode->i_mutex);
		mutex_lock(&cgroup_mutex);
		if (!cgroup_is_removed(cgrp))
2792
			cgroup_addrm_files(cgrp, ss, cfts, is_add);
2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
		mutex_unlock(&cgroup_mutex);
		mutex_unlock(&inode->i_mutex);

		list_del_init(&cgrp->cft_q_node);
		dput(cgrp->dentry);
	}

	mutex_unlock(&cgroup_cft_mutex);
}

/**
 * cgroup_add_cftypes - add an array of cftypes to a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Register @cfts to @ss.  Files described by @cfts are created for all
 * existing cgroups to which @ss is attached and all future cgroups will
 * have them too.  This function can be called anytime whether @ss is
 * attached or not.
 *
 * Returns 0 on successful registration, -errno on failure.  Note that this
 * function currently returns 0 as long as @cfts registration is successful
 * even if some file creation attempts on existing cgroups fail.
 */
int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
{
	struct cftype_set *set;

	set = kzalloc(sizeof(*set), GFP_KERNEL);
	if (!set)
		return -ENOMEM;

	cgroup_cfts_prepare();
	set->cfts = cfts;
	list_add_tail(&set->node, &ss->cftsets);
2828
	cgroup_cfts_commit(ss, cfts, true);
2829 2830 2831 2832 2833

	return 0;
}
EXPORT_SYMBOL_GPL(cgroup_add_cftypes);

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
/**
 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Unregister @cfts from @ss.  Files described by @cfts are removed from
 * all existing cgroups to which @ss is attached and all future cgroups
 * won't have them either.  This function can be called anytime whether @ss
 * is attached or not.
 *
 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
 * registered with @ss.
 */
int cgroup_rm_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
{
	struct cftype_set *set;

	cgroup_cfts_prepare();

	list_for_each_entry(set, &ss->cftsets, node) {
		if (set->cfts == cfts) {
			list_del_init(&set->node);
			cgroup_cfts_commit(ss, cfts, false);
			return 0;
		}
	}

	cgroup_cfts_commit(ss, NULL, false);
	return -ENOENT;
}

L
Li Zefan 已提交
2865 2866 2867 2868 2869 2870
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2871
int cgroup_task_count(const struct cgroup *cgrp)
2872 2873
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2874
	struct cg_cgroup_link *link;
2875 2876

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2877
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2878
		count += atomic_read(&link->cg->refcount);
2879 2880
	}
	read_unlock(&css_set_lock);
2881 2882 2883
	return count;
}

2884 2885 2886 2887
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2888
static void cgroup_advance_iter(struct cgroup *cgrp,
2889
				struct cgroup_iter *it)
2890 2891 2892 2893 2894 2895 2896 2897
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2898
		if (l == &cgrp->css_sets) {
2899 2900 2901
			it->cg_link = NULL;
			return;
		}
2902
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2903 2904 2905 2906 2907 2908
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2909 2910 2911 2912 2913 2914
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 */
2915
static void cgroup_enable_task_cg_lists(void)
2916 2917 2918 2919
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
2920 2921 2922 2923 2924 2925 2926 2927
	/*
	 * We need tasklist_lock because RCU is not safe against
	 * while_each_thread(). Besides, a forking task that has passed
	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
	 * is not guaranteed to have its child immediately visible in the
	 * tasklist if we walk through it with RCU.
	 */
	read_lock(&tasklist_lock);
2928 2929
	do_each_thread(g, p) {
		task_lock(p);
2930 2931 2932 2933 2934 2935
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2936 2937 2938
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
2939
	read_unlock(&tasklist_lock);
2940 2941 2942
	write_unlock(&css_set_lock);
}

2943
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2944
	__acquires(css_set_lock)
2945 2946 2947 2948 2949 2950
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2951 2952 2953
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2954
	read_lock(&css_set_lock);
2955 2956
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2957 2958
}

2959
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2960 2961 2962 2963
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2964
	struct cg_cgroup_link *link;
2965 2966 2967 2968 2969 2970 2971

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2972 2973
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2974 2975
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2976
		cgroup_advance_iter(cgrp, it);
2977 2978 2979 2980 2981 2982
	} else {
		it->task = l;
	}
	return res;
}

2983
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2984
	__releases(css_set_lock)
2985 2986 2987 2988
{
	read_unlock(&css_set_lock);
}

2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
3126
			struct task_struct *q = heap->ptrs[i];
3127
			if (i == 0) {
3128 3129
				latest_time = q->start_time;
				latest_task = q;
3130 3131
			}
			/* Process the task per the caller's callback */
3132 3133
			scan->process_task(q, scan);
			put_task_struct(q);
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

3149
/*
3150
 * Stuff for reading the 'tasks'/'procs' files.
3151 3152 3153 3154 3155 3156 3157 3158
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
/* which pidlist file are we talking about? */
enum cgroup_filetype {
	CGROUP_FILE_PROCS,
	CGROUP_FILE_TASKS,
};

/*
 * A pidlist is a list of pids that virtually represents the contents of one
 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 * to the cgroup.
 */
struct cgroup_pidlist {
	/*
	 * used to find which pidlist is wanted. doesn't change as long as
	 * this particular list stays in the list.
	*/
	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
	/* array of xids */
	pid_t *list;
	/* how many elements the above list has */
	int length;
	/* how many files are using the current array */
	int use_count;
	/* each of these stored in a list by its cgroup */
	struct list_head links;
	/* pointer to the cgroup we belong to, for list removal purposes */
	struct cgroup *owner;
	/* protects the other fields */
	struct rw_semaphore mutex;
};

3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}
static void *pidlist_resize(void *p, int newcount)
{
	void *newlist;
	/* note: if new alloc fails, old p will still be valid either way */
	if (is_vmalloc_addr(p)) {
		newlist = vmalloc(newcount * sizeof(pid_t));
		if (!newlist)
			return NULL;
		memcpy(newlist, p, newcount * sizeof(pid_t));
		vfree(p);
	} else {
		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
	}
	return newlist;
}

3227
/*
3228 3229 3230 3231
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * If the new stripped list is sufficiently smaller and there's enough memory
 * to allocate a new buffer, will let go of the unneeded memory. Returns the
 * number of unique elements.
3232
 */
3233 3234 3235
/* is the size difference enough that we should re-allocate the array? */
#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
static int pidlist_uniq(pid_t **p, int length)
3236
{
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265
	int src, dest = 1;
	pid_t *list = *p;
	pid_t *newlist;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	/*
	 * if the length difference is large enough, we want to allocate a
	 * smaller buffer to save memory. if this fails due to out of memory,
	 * we'll just stay with what we've got.
	 */
	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3266
		newlist = pidlist_resize(list, dest);
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
		if (newlist)
			*p = newlist;
	}
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
3289 3290
	struct pid_namespace *ns = current->nsproxy->pid_ns;

3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
3315
	l->key.ns = get_pid_ns(ns);
3316 3317 3318 3319 3320 3321 3322 3323
	l->use_count = 0; /* don't increment here */
	l->list = NULL;
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

3324 3325 3326
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
3327 3328
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
3329 3330 3331 3332
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
3333 3334
	struct cgroup_iter it;
	struct task_struct *tsk;
3335 3336 3337 3338 3339 3340 3341 3342 3343
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
3344
	array = pidlist_allocate(length);
3345 3346 3347
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
3348 3349
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3350
		if (unlikely(n == length))
3351
			break;
3352
		/* get tgid or pid for procs or tasks file respectively */
3353 3354 3355 3356
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
3357 3358
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
3359
	}
3360
	cgroup_iter_end(cgrp, &it);
3361 3362 3363
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
3364
	if (type == CGROUP_FILE_PROCS)
3365
		length = pidlist_uniq(&array, length);
3366 3367
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
3368
		pidlist_free(array);
3369
		return -ENOMEM;
3370
	}
3371
	/* store array, freeing old if necessary - lock already held */
3372
	pidlist_free(l->list);
3373 3374 3375 3376
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
3377
	*lp = l;
3378
	return 0;
3379 3380
}

B
Balbir Singh 已提交
3381
/**
L
Li Zefan 已提交
3382
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
3383 3384 3385
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
3386 3387 3388
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
3389 3390 3391 3392
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
3393
	struct cgroup *cgrp;
B
Balbir Singh 已提交
3394 3395
	struct cgroup_iter it;
	struct task_struct *tsk;
3396

B
Balbir Singh 已提交
3397
	/*
3398 3399
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
3400
	 */
3401 3402
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
3403 3404 3405
		 goto err;

	ret = 0;
3406
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
3407

3408 3409
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
3429
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
3430 3431 3432 3433 3434

err:
	return ret;
}

3435

3436
/*
3437
 * seq_file methods for the tasks/procs files. The seq_file position is the
3438
 * next pid to display; the seq_file iterator is a pointer to the pid
3439
 * in the cgroup->l->list array.
3440
 */
3441

3442
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3443
{
3444 3445 3446 3447 3448 3449
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
3450
	struct cgroup_pidlist *l = s->private;
3451 3452 3453
	int index = 0, pid = *pos;
	int *iter;

3454
	down_read(&l->mutex);
3455
	if (pid) {
3456
		int end = l->length;
S
Stephen Rothwell 已提交
3457

3458 3459
		while (index < end) {
			int mid = (index + end) / 2;
3460
			if (l->list[mid] == pid) {
3461 3462
				index = mid;
				break;
3463
			} else if (l->list[mid] <= pid)
3464 3465 3466 3467 3468 3469
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
3470
	if (index >= l->length)
3471 3472
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
3473
	iter = l->list + index;
3474 3475 3476 3477
	*pos = *iter;
	return iter;
}

3478
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3479
{
3480 3481
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
3482 3483
}

3484
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3485
{
3486 3487 3488
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

3502
static int cgroup_pidlist_show(struct seq_file *s, void *v)
3503 3504 3505
{
	return seq_printf(s, "%d\n", *(int *)v);
}
3506

3507 3508 3509 3510 3511 3512 3513 3514 3515
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
3516 3517
};

3518
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3519
{
3520 3521 3522 3523 3524 3525 3526
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
3527 3528 3529
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
3530 3531 3532
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
3533
		pidlist_free(l->list);
3534 3535 3536 3537
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
3538
	}
3539
	mutex_unlock(&l->owner->pidlist_mutex);
3540
	up_write(&l->mutex);
3541 3542
}

3543
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3544
{
3545
	struct cgroup_pidlist *l;
3546 3547
	if (!(file->f_mode & FMODE_READ))
		return 0;
3548 3549 3550 3551 3552 3553
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
3554 3555 3556
	return seq_release(inode, file);
}

3557
static const struct file_operations cgroup_pidlist_operations = {
3558 3559 3560
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
3561
	.release = cgroup_pidlist_release,
3562 3563
};

3564
/*
3565 3566 3567
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
3568
 */
3569
/* helper function for the two below it */
3570
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3571
{
3572
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3573
	struct cgroup_pidlist *l;
3574
	int retval;
3575

3576
	/* Nothing to do for write-only files */
3577 3578 3579
	if (!(file->f_mode & FMODE_READ))
		return 0;

3580
	/* have the array populated */
3581
	retval = pidlist_array_load(cgrp, type, &l);
3582 3583 3584 3585
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
3586

3587
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3588
	if (retval) {
3589
		cgroup_release_pid_array(l);
3590
		return retval;
3591
	}
3592
	((struct seq_file *)file->private_data)->private = l;
3593 3594
	return 0;
}
3595 3596
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
3597
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3598 3599 3600
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
3601
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3602
}
3603

3604
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3605 3606
					    struct cftype *cft)
{
3607
	return notify_on_release(cgrp);
3608 3609
}

3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup *cgrp = event->cgrp;

	event->cft->unregister_event(cgrp, event->cft, event->eventfd);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3637
	dput(cgrp->dentry);
3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->cgrp;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
C
Changli Gao 已提交
3654
		__remove_wait_queue(event->wqh, &event->wait);
3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
		spin_lock(&cgrp->event_list_lock);
		list_del(&event->list);
		spin_unlock(&cgrp->event_list_lock);
		/*
		 * We are in atomic context, but cgroup_event_remove() may
		 * sleep, so we have to call it in workqueue.
		 */
		schedule_work(&event->remove);
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	struct cgroup_event *event = NULL;
	unsigned int efd, cfd;
	struct file *efile = NULL;
	struct file *cfile = NULL;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
	event->cgrp = cgrp;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = eventfd_fget(efd);
	if (IS_ERR(efile)) {
		ret = PTR_ERR(efile);
		goto fail;
	}

	event->eventfd = eventfd_ctx_fileget(efile);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto fail;
	}

	cfile = fget(cfd);
	if (!cfile) {
		ret = -EBADF;
		goto fail;
	}

	/* the process need read permission on control file */
A
Al Viro 已提交
3732 3733
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758
	if (ret < 0)
		goto fail;

	event->cft = __file_cft(cfile);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto fail;
	}

	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto fail;
	}

	ret = event->cft->register_event(cgrp, event->cft,
			event->eventfd, buffer);
	if (ret)
		goto fail;

	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
		ret = 0;
		goto fail;
	}

3759 3760 3761 3762 3763 3764 3765
	/*
	 * Events should be removed after rmdir of cgroup directory, but before
	 * destroying subsystem state objects. Let's take reference to cgroup
	 * directory dentry to do that.
	 */
	dget(cgrp->dentry);

3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fput(cfile);
	fput(efile);

	return 0;

fail:
	if (cfile)
		fput(cfile);

	if (event && event->eventfd && !IS_ERR(event->eventfd))
		eventfd_ctx_put(event->eventfd);

	if (!IS_ERR_OR_NULL(efile))
		fput(efile);

	kfree(event);

	return ret;
}

3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806
static u64 cgroup_clone_children_read(struct cgroup *cgrp,
				    struct cftype *cft)
{
	return clone_children(cgrp);
}

static int cgroup_clone_children_write(struct cgroup *cgrp,
				     struct cftype *cft,
				     u64 val)
{
	if (val)
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	else
		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	return 0;
}

3807 3808 3809
/*
 * for the common functions, 'private' gives the type of file
 */
3810 3811
/* for hysterical raisins, we can't put this on the older files */
#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3812 3813 3814 3815
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
3816
		.write_u64 = cgroup_tasks_write,
3817
		.release = cgroup_pidlist_release,
L
Li Zefan 已提交
3818
		.mode = S_IRUGO | S_IWUSR,
3819
	},
3820 3821 3822
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
		.open = cgroup_procs_open,
B
Ben Blum 已提交
3823
		.write_u64 = cgroup_procs_write,
3824
		.release = cgroup_pidlist_release,
B
Ben Blum 已提交
3825
		.mode = S_IRUGO | S_IWUSR,
3826
	},
3827 3828
	{
		.name = "notify_on_release",
3829
		.read_u64 = cgroup_read_notify_on_release,
3830
		.write_u64 = cgroup_write_notify_on_release,
3831
	},
3832 3833 3834 3835 3836
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
3837 3838 3839 3840 3841
	{
		.name = "cgroup.clone_children",
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
3842 3843 3844 3845 3846 3847 3848
	{
		.name = "release_agent",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_seq_string = cgroup_release_agent_show,
		.write_string = cgroup_release_agent_write,
		.max_write_len = PATH_MAX,
	},
T
Tejun Heo 已提交
3849
	{ }	/* terminate */
3850 3851
};

3852
static int cgroup_populate_dir(struct cgroup *cgrp)
3853 3854 3855 3856
{
	int err;
	struct cgroup_subsys *ss;

3857
	err = cgroup_addrm_files(cgrp, NULL, files, true);
3858 3859 3860
	if (err < 0)
		return err;

3861
	/* process cftsets of each subsystem */
3862
	for_each_subsys(cgrp->root, ss) {
3863 3864
		struct cftype_set *set;

T
Tejun Heo 已提交
3865
		list_for_each_entry(set, &ss->cftsets, node)
3866
			cgroup_addrm_files(cgrp, ss, set->cfts, true);
3867
	}
3868

K
KAMEZAWA Hiroyuki 已提交
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
3880 3881 3882 3883

	return 0;
}

3884 3885 3886 3887 3888 3889 3890 3891
static void css_dput_fn(struct work_struct *work)
{
	struct cgroup_subsys_state *css =
		container_of(work, struct cgroup_subsys_state, dput_work);

	dput(css->cgroup->dentry);
}

3892 3893
static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
3894
			       struct cgroup *cgrp)
3895
{
3896
	css->cgroup = cgrp;
P
Paul Menage 已提交
3897
	atomic_set(&css->refcnt, 1);
3898
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
3899
	css->id = NULL;
3900
	if (cgrp == dummytop)
3901
		set_bit(CSS_ROOT, &css->flags);
3902 3903
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
3904 3905 3906 3907 3908 3909 3910 3911 3912 3913

	/*
	 * If !clear_css_refs, css holds an extra ref to @cgrp->dentry
	 * which is put on the last css_put().  dput() requires process
	 * context, which css_put() may be called without.  @css->dput_work
	 * will be used to invoke dput() asynchronously from css_put().
	 */
	INIT_WORK(&css->dput_work, css_dput_fn);
	if (ss->__DEPRECATED_clear_css_refs)
		set_bit(CSS_CLEAR_CSS_REFS, &css->flags);
3914 3915 3916
}

/*
L
Li Zefan 已提交
3917 3918 3919 3920
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
3921
 *
L
Li Zefan 已提交
3922
 * Must be called with the mutex on the parent inode held
3923 3924
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
A
Al Viro 已提交
3925
			     umode_t mode)
3926
{
3927
	struct cgroup *cgrp;
3928 3929 3930 3931 3932
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

3933 3934
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

3946
	init_cgroup_housekeeping(cgrp);
3947

3948 3949 3950
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
3951

3952 3953 3954
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

3955 3956 3957
	if (clone_children(parent))
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);

3958
	for_each_subsys(root, ss) {
3959
		struct cgroup_subsys_state *css = ss->create(cgrp);
3960

3961 3962 3963 3964
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
3965
		init_cgroup_css(css, ss, cgrp);
3966 3967 3968
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
K
KAMEZAWA Hiroyuki 已提交
3969
				goto err_destroy;
3970
		}
K
KAMEZAWA Hiroyuki 已提交
3971
		/* At error, ->destroy() callback has to free assigned ID. */
3972
		if (clone_children(parent) && ss->post_clone)
3973
			ss->post_clone(cgrp);
3974 3975
	}

3976
	list_add(&cgrp->sibling, &cgrp->parent->children);
3977 3978
	root->number_of_cgroups++;

3979
	err = cgroup_create_dir(cgrp, dentry, mode);
3980 3981 3982
	if (err < 0)
		goto err_remove;

3983 3984 3985 3986 3987
	/* If !clear_css_refs, each css holds a ref to the cgroup's dentry */
	for_each_subsys(root, ss)
		if (!ss->__DEPRECATED_clear_css_refs)
			dget(dentry);

3988
	/* The cgroup directory was pre-locked for us */
3989
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3990

3991 3992
	list_add_tail(&cgrp->allcg_node, &root->allcg_list);

3993
	err = cgroup_populate_dir(cgrp);
3994 3995 3996
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
3997
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3998 3999 4000 4001 4002

	return 0;

 err_remove:

4003
	list_del(&cgrp->sibling);
4004 4005 4006 4007 4008
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
4009
		if (cgrp->subsys[ss->subsys_id])
4010
			ss->destroy(cgrp);
4011 4012 4013 4014 4015 4016 4017
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

4018
	kfree(cgrp);
4019 4020 4021
	return err;
}

4022
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4023 4024 4025 4026 4027 4028 4029
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

4030 4031 4032 4033 4034 4035 4036 4037 4038
/*
 * Check the reference count on each subsystem. Since we already
 * established that there are no tasks in the cgroup, if the css refcount
 * is also 1, then there should be no outstanding references, so the
 * subsystem is safe to destroy. We scan across all subsystems rather than
 * using the per-hierarchy linked list of mounted subsystems since we can
 * be called via check_for_release() with no synchronization other than
 * RCU, and the subsystem linked list isn't RCU-safe.
 */
4039
static int cgroup_has_css_refs(struct cgroup *cgrp)
4040 4041
{
	int i;
4042

B
Ben Blum 已提交
4043 4044 4045 4046 4047
	/*
	 * We won't need to lock the subsys array, because the subsystems
	 * we're concerned about aren't going anywhere since our cgroup root
	 * has a reference on them.
	 */
4048 4049 4050
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
4051

B
Ben Blum 已提交
4052 4053
		/* Skip subsystems not present or not in this hierarchy */
		if (ss == NULL || ss->root != cgrp->root)
4054
			continue;
4055

4056
		css = cgrp->subsys[ss->subsys_id];
4057 4058
		/*
		 * When called from check_for_release() it's possible
4059 4060 4061 4062
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
4063 4064 4065
		 * release agent to be called anyway.
		 */
		if (css && css_refcnt(css) > 1)
4066 4067 4068 4069 4070
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
4071 4072 4073 4074
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091
 *
 * Depending on whether a subsys has __DEPRECATED_clear_css_refs set or
 * not, cgroup removal behaves differently.
 *
 * If clear is set, css refcnt for the subsystem should be zero before
 * cgroup removal can be committed.  This is implemented by
 * CGRP_WAIT_ON_RMDIR and retry logic around ->pre_destroy(), which may be
 * called multiple times until all css refcnts reach zero and is allowed to
 * veto removal on any invocation.  This behavior is deprecated and will be
 * removed as soon as the existing user (memcg) is updated.
 *
 * If clear is not set, each css holds an extra reference to the cgroup's
 * dentry and cgroup removal proceeds regardless of css refs.
 * ->pre_destroy() will be called at least once and is not allowed to fail.
 * On the last put of each css, whenever that may be, the extra dentry ref
 * is put so that dentry destruction happens only after all css's are
 * released.
P
Paul Menage 已提交
4092 4093 4094 4095 4096 4097
 */
static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
4098

P
Paul Menage 已提交
4099
	local_irq_save(flags);
4100 4101 4102

	/*
	 * Block new css_tryget() by deactivating refcnt.  If all refcnts
4103 4104
	 * for subsystems w/ clear_css_refs set were 1 at the moment of
	 * deactivation, we succeeded.
4105
	 */
P
Paul Menage 已提交
4106 4107
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4108 4109 4110

		WARN_ON(atomic_read(&css->refcnt) < 0);
		atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4111 4112 4113

		if (ss->__DEPRECATED_clear_css_refs)
			failed |= css_refcnt(css) != 1;
P
Paul Menage 已提交
4114
	}
4115 4116 4117 4118 4119 4120

	/*
	 * If succeeded, set REMOVED and put all the base refs; otherwise,
	 * restore refcnts to positive values.  Either way, all in-progress
	 * css_tryget() will be released.
	 */
P
Paul Menage 已提交
4121 4122
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4123 4124

		if (!failed) {
P
Paul Menage 已提交
4125
			set_bit(CSS_REMOVED, &css->flags);
4126 4127 4128
			css_put(css);
		} else {
			atomic_sub(CSS_DEACT_BIAS, &css->refcnt);
P
Paul Menage 已提交
4129 4130
		}
	}
4131

P
Paul Menage 已提交
4132 4133 4134 4135
	local_irq_restore(flags);
	return !failed;
}

4136 4137
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
4138
	struct cgroup *cgrp = dentry->d_fsdata;
4139 4140
	struct dentry *d;
	struct cgroup *parent;
4141
	DEFINE_WAIT(wait);
4142
	struct cgroup_event *event, *tmp;
4143
	int ret;
4144 4145

	/* the vfs holds both inode->i_mutex already */
4146
again:
4147
	mutex_lock(&cgroup_mutex);
4148
	if (atomic_read(&cgrp->count) != 0) {
4149 4150 4151
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
4152
	if (!list_empty(&cgrp->children)) {
4153 4154 4155
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
4156
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
4157

4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

4169
	/*
L
Li Zefan 已提交
4170 4171
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
4172
	 */
4173
	ret = cgroup_call_pre_destroy(cgrp);
4174 4175
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4176
		return ret;
4177
	}
4178

4179 4180
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
4181
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4182
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4183 4184 4185
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
4186 4187 4188
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
4189 4190 4191 4192 4193 4194
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
4195 4196 4197 4198 4199 4200 4201 4202 4203
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4204

4205
	raw_spin_lock(&release_list_lock);
4206 4207
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
4208
		list_del_init(&cgrp->release_list);
4209
	raw_spin_unlock(&release_list_lock);
4210 4211

	/* delete this cgroup from parent->children */
4212
	list_del_init(&cgrp->sibling);
4213

4214 4215
	list_del_init(&cgrp->allcg_node);

4216
	d = dget(cgrp->dentry);
4217 4218 4219 4220

	cgroup_d_remove_dir(d);
	dput(d);

4221
	set_bit(CGRP_RELEASABLE, &parent->flags);
4222 4223
	check_for_release(parent);

4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del(&event->list);
		remove_wait_queue(event->wqh, &event->wait);
		eventfd_signal(event->eventfd, 1);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

4238 4239 4240 4241
	mutex_unlock(&cgroup_mutex);
	return 0;
}

4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255
static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
{
	INIT_LIST_HEAD(&ss->cftsets);

	/*
	 * base_cftset is embedded in subsys itself, no need to worry about
	 * deregistration.
	 */
	if (ss->base_cftypes) {
		ss->base_cftset.cfts = ss->base_cftypes;
		list_add_tail(&ss->base_cftset.node, &ss->cftsets);
	}
}

4256
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4257 4258
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
4259 4260

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4261

4262 4263 4264
	/* init base cftset */
	cgroup_init_cftsets(ss);

4265
	/* Create the top cgroup state for this subsystem */
4266
	list_add(&ss->sibling, &rootnode.subsys_list);
4267
	ss->root = &rootnode;
4268
	css = ss->create(dummytop);
4269 4270 4271 4272
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
4273
	/* Update the init_css_set to contain a subsys
4274
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
4275 4276 4277
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4278 4279 4280

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
4281 4282 4283 4284 4285
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

4286
	ss->active = 1;
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297

	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
T
Thomas Weber 已提交
4298
 * subsystem is built as a module, it will be assigned a new subsys_id and set
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	int i;
	struct cgroup_subsys_state *css;

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
	    ss->create == NULL || ss->destroy == NULL)
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
		/* a few sanity checks */
		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
		BUG_ON(subsys[ss->subsys_id] != ss);
		return 0;
	}

4332 4333 4334
	/* init base cftset */
	cgroup_init_cftsets(ss);

4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
	/*
	 * need to register a subsys id before anything else - for example,
	 * init_cgroup_css needs it.
	 */
	mutex_lock(&cgroup_mutex);
	/* find the first empty slot in the array */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		if (subsys[i] == NULL)
			break;
	}
	if (i == CGROUP_SUBSYS_COUNT) {
		/* maximum number of subsystems already registered! */
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
	/* assign ourselves the subsys_id */
	ss->subsys_id = i;
	subsys[i] = ss;

	/*
	 * no ss->create seems to need anything important in the ss struct, so
	 * this can happen first (i.e. before the rootnode attachment).
	 */
4358
	css = ss->create(dummytop);
4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375
	if (IS_ERR(css)) {
		/* failure case - need to deassign the subsys[] slot. */
		subsys[i] = NULL;
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

	list_add(&ss->sibling, &rootnode.subsys_list);
	ss->root = &rootnode;

	/* our new subsystem will be attached to the dummy hierarchy. */
	init_cgroup_css(css, ss, dummytop);
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
		int ret = cgroup_init_idr(ss, css);
		if (ret) {
			dummytop->subsys[ss->subsys_id] = NULL;
4376
			ss->destroy(dummytop);
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
			subsys[i] = NULL;
			mutex_unlock(&cgroup_mutex);
			return ret;
		}
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
		struct css_set *cg;
		struct hlist_node *node, *tmp;
		struct hlist_head *bucket = &css_set_table[i], *new_bucket;

		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
			/* skip entries that we already rehashed */
			if (cg->subsys[ss->subsys_id])
				continue;
			/* remove existing entry */
			hlist_del(&cg->hlist);
			/* set new value */
			cg->subsys[ss->subsys_id] = css;
			/* recompute hash and restore entry */
			new_bucket = css_set_hash(cg->subsys);
			hlist_add_head(&cg->hlist, new_bucket);
		}
	}
	write_unlock(&css_set_lock);

	ss->active = 1;

	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
4417
}
4418
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4419

B
Ben Blum 已提交
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
	struct cg_cgroup_link *link;
	struct hlist_head *hhead;

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
	 * try_module_get in parse_cgroupfs_options should ensure that it
	 * doesn't start being used while we're killing it off.
	 */
	BUG_ON(ss->root != &rootnode);

	mutex_lock(&cgroup_mutex);
	/* deassign the subsys_id */
	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
	subsys[ss->subsys_id] = NULL;

	/* remove subsystem from rootnode's list of subsystems */
4448
	list_del_init(&ss->sibling);
B
Ben Blum 已提交
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471

	/*
	 * disentangle the css from all css_sets attached to the dummytop. as
	 * in loading, we need to pay our respects to the hashtable gods.
	 */
	write_lock(&css_set_lock);
	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;

		hlist_del(&cg->hlist);
		BUG_ON(!cg->subsys[ss->subsys_id]);
		cg->subsys[ss->subsys_id] = NULL;
		hhead = css_set_hash(cg->subsys);
		hlist_add_head(&cg->hlist, hhead);
	}
	write_unlock(&css_set_lock);

	/*
	 * remove subsystem's css from the dummytop and free it - need to free
	 * before marking as null because ss->destroy needs the cgrp->subsys
	 * pointer to find their state. note that this also takes care of
	 * freeing the css_id.
	 */
4472
	ss->destroy(dummytop);
B
Ben Blum 已提交
4473 4474 4475 4476 4477 4478
	dummytop->subsys[ss->subsys_id] = NULL;

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

4479
/**
L
Li Zefan 已提交
4480 4481 4482 4483
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
4484 4485 4486 4487
 */
int __init cgroup_init_early(void)
{
	int i;
4488
	atomic_set(&init_css_set.refcount, 1);
4489 4490
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
4491
	INIT_HLIST_NODE(&init_css_set.hlist);
4492
	css_set_count = 1;
4493
	init_cgroup_root(&rootnode);
4494 4495 4496 4497
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
4498
	init_css_set_link.cgrp = dummytop;
4499
	list_add(&init_css_set_link.cgrp_link_list,
4500 4501 4502
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
4503

4504 4505 4506
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

B
Ben Blum 已提交
4507 4508
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4509 4510 4511 4512 4513 4514 4515
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
4516
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
4528 4529 4530 4531
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
4532 4533 4534 4535 4536
 */
int __init cgroup_init(void)
{
	int err;
	int i;
4537
	struct hlist_head *hhead;
4538 4539 4540 4541

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
4542

B
Ben Blum 已提交
4543 4544
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4545 4546 4547
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
4548
		if (ss->use_id)
4549
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4550 4551
	}

4552 4553 4554
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
4555
	BUG_ON(!init_root_id(&rootnode));
4556 4557 4558 4559 4560 4561 4562

	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

4563
	err = register_filesystem(&cgroup_fs_type);
4564 4565
	if (err < 0) {
		kobject_put(cgroup_kobj);
4566
		goto out;
4567
	}
4568

L
Li Zefan 已提交
4569
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4570

4571
out:
4572 4573 4574
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

4575 4576
	return err;
}
4577

4578 4579 4580 4581 4582 4583
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
4584
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

4614
	for_each_active_root(root) {
4615
		struct cgroup_subsys *ss;
4616
		struct cgroup *cgrp;
4617 4618
		int count = 0;

4619
		seq_printf(m, "%d:", root->hierarchy_id);
4620 4621
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4622 4623 4624
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
4625
		seq_putc(m, ':');
4626
		cgrp = task_cgroup_from_root(tsk, root);
4627
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

4649
const struct file_operations proc_cgroup_operations = {
4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

4661
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
4662 4663 4664 4665 4666
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
4667 4668 4669
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
4670 4671
		if (ss == NULL)
			continue;
4672 4673
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
4674
			   ss->root->number_of_cgroups, !ss->disabled);
4675 4676 4677 4678 4679 4680 4681
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
4682
	return single_open(file, proc_cgroupstats_show, NULL);
4683 4684
}

4685
static const struct file_operations proc_cgroupstats_operations = {
4686 4687 4688 4689 4690 4691
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

4692 4693
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
4694
 * @child: pointer to task_struct of forking parent process.
4695 4696 4697 4698 4699
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710
 * it was not made under the protection of RCU, cgroup_mutex or
 * threadgroup_change_begin(), so it might no longer be a valid
 * cgroup pointer.  cgroup_attach_task() might have already changed
 * current->cgroups, allowing the previously referenced cgroup
 * group to be removed and freed.
 *
 * Outside the pointer validity we also need to process the css_set
 * inheritance between threadgoup_change_begin() and
 * threadgoup_change_end(), this way there is no leak in any process
 * wide migration performed by cgroup_attach_proc() that could otherwise
 * miss a thread because it is too early or too late in the fork stage.
4711 4712 4713 4714 4715 4716
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
4717 4718 4719 4720 4721 4722
	/*
	 * We don't need to task_lock() current because current->cgroups
	 * can't be changed concurrently here. The parent obviously hasn't
	 * exited and called cgroup_exit(), and we are synchronized against
	 * cgroup migration through threadgroup_change_begin().
	 */
4723 4724 4725
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	INIT_LIST_HEAD(&child->cg_list);
4726 4727 4728
}

/**
L
Li Zefan 已提交
4729 4730 4731 4732 4733 4734
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
4735 4736 4737 4738 4739
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
B
Ben Blum 已提交
4740 4741 4742 4743 4744 4745
		/*
		 * forkexit callbacks are only supported for builtin
		 * subsystems, and the builtin section of the subsys array is
		 * immutable, so we don't need to lock the subsys array here.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4746 4747
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
4748
				ss->fork(child);
4749 4750 4751 4752
		}
	}
}

4753
/**
L
Li Zefan 已提交
4754 4755 4756 4757 4758 4759 4760 4761
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
4762 4763
void cgroup_post_fork(struct task_struct *child)
{
4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
	/*
	 * use_task_css_set_links is set to 1 before we walk the tasklist
	 * under the tasklist_lock and we read it here after we added the child
	 * to the tasklist under the tasklist_lock as well. If the child wasn't
	 * yet in the tasklist when we walked through it from
	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
	 * should be visible now due to the paired locking and barriers implied
	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
	 * lock on fork.
	 */
4775 4776
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787
		if (list_empty(&child->cg_list)) {
			/*
			 * It's safe to use child->cgroups without task_lock()
			 * here because we are protected through
			 * threadgroup_change_begin() against concurrent
			 * css_set change in cgroup_task_migrate(). Also
			 * the task can't exit at that point until
			 * wake_up_new_task() is called, so we are protected
			 * against cgroup_exit() setting child->cgroup to
			 * init_css_set.
			 */
4788
			list_add(&child->cg_list, &child->cgroups->tasks);
4789
		}
4790 4791 4792
		write_unlock(&css_set_lock);
	}
}
4793 4794 4795
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
4796
 * @run_callback: run exit callbacks?
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4825 4826
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
4827 4828 4829
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
4830
	struct css_set *cg;
4831
	int i;
4832 4833 4834 4835 4836 4837 4838 4839 4840

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
4841
			list_del_init(&tsk->cg_list);
4842 4843 4844
		write_unlock(&css_set_lock);
	}

4845 4846
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
4847 4848
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860

	if (run_callbacks && need_forkexit_callback) {
		/*
		 * modular subsystems can't use callbacks, so no need to lock
		 * the subsys array
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit) {
				struct cgroup *old_cgrp =
					rcu_dereference_raw(cg->subsys[i])->cgroup;
				struct cgroup *cgrp = task_cgroup(tsk, i);
4861
				ss->exit(cgrp, old_cgrp, tsk);
4862 4863 4864
			}
		}
	}
4865
	task_unlock(tsk);
4866

4867
	if (cg)
4868
		put_css_set_taskexit(cg);
4869
}
4870

L
Li Zefan 已提交
4871
/**
4872
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
4873
 * @cgrp: the cgroup in question
4874
 * @task: the task in question
L
Li Zefan 已提交
4875
 *
4876 4877
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
4878 4879 4880 4881 4882 4883
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
4884
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4885 4886 4887 4888
{
	int ret;
	struct cgroup *target;

4889
	if (cgrp == dummytop)
4890 4891
		return 1;

4892
	target = task_cgroup_from_root(task, cgrp->root);
4893 4894 4895
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
4896 4897
	return ret;
}
4898

4899
static void check_for_release(struct cgroup *cgrp)
4900 4901 4902
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
4903 4904
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4905 4906 4907 4908
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
4909
		raw_spin_lock(&release_list_lock);
4910 4911 4912
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
4913 4914
			need_schedule_work = 1;
		}
4915
		raw_spin_unlock(&release_list_lock);
4916 4917 4918 4919 4920
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

4921
/* Caller must verify that the css is not for root cgroup */
4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937
bool __css_tryget(struct cgroup_subsys_state *css)
{
	do {
		int v = css_refcnt(css);

		if (atomic_cmpxchg(&css->refcnt, v, v + 1) == v)
			return true;
		cpu_relax();
	} while (!test_bit(CSS_REMOVED, &css->flags));

	return false;
}
EXPORT_SYMBOL_GPL(__css_tryget);

/* Caller must verify that the css is not for root cgroup */
void __css_put(struct cgroup_subsys_state *css)
4938
{
4939
	struct cgroup *cgrp = css->cgroup;
4940

4941
	rcu_read_lock();
4942
	switch (atomic_dec_return(&css->refcnt)) {
4943
	case 1:
4944 4945 4946 4947
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
4948
		cgroup_wakeup_rmdir_waiter(cgrp);
4949 4950 4951 4952 4953
		break;
	case 0:
		if (!test_bit(CSS_CLEAR_CSS_REFS, &css->flags))
			schedule_work(&css->dput_work);
		break;
4954 4955 4956
	}
	rcu_read_unlock();
}
B
Ben Blum 已提交
4957
EXPORT_SYMBOL_GPL(__css_put);
4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
4986
	raw_spin_lock(&release_list_lock);
4987 4988 4989
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
4990
		char *pathbuf = NULL, *agentbuf = NULL;
4991
		struct cgroup *cgrp = list_entry(release_list.next,
4992 4993
						    struct cgroup,
						    release_list);
4994
		list_del_init(&cgrp->release_list);
4995
		raw_spin_unlock(&release_list_lock);
4996
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4997 4998 4999 5000 5001 5002 5003
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
5004 5005

		i = 0;
5006 5007
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
5022 5023 5024
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
5025
		raw_spin_lock(&release_list_lock);
5026
	}
5027
	raw_spin_unlock(&release_list_lock);
5028 5029
	mutex_unlock(&cgroup_mutex);
}
5030 5031 5032 5033 5034 5035 5036 5037 5038

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
B
Ben Blum 已提交
5039 5040 5041 5042 5043
		/*
		 * cgroup_disable, being at boot time, can't know about module
		 * subsystems, so we don't worry about them.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
5067 5068 5069 5070 5071 5072 5073
	struct css_id *cssid;

	/*
	 * This css_id() can return correct value when somone has refcnt
	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
	 * it's unchanged until freed.
	 */
5074
	cssid = rcu_dereference_check(css->id, css_refcnt(css));
K
KAMEZAWA Hiroyuki 已提交
5075 5076 5077 5078 5079

	if (cssid)
		return cssid->id;
	return 0;
}
B
Ben Blum 已提交
5080
EXPORT_SYMBOL_GPL(css_id);
K
KAMEZAWA Hiroyuki 已提交
5081 5082 5083

unsigned short css_depth(struct cgroup_subsys_state *css)
{
5084 5085
	struct css_id *cssid;

5086
	cssid = rcu_dereference_check(css->id, css_refcnt(css));
K
KAMEZAWA Hiroyuki 已提交
5087 5088 5089 5090 5091

	if (cssid)
		return cssid->depth;
	return 0;
}
B
Ben Blum 已提交
5092
EXPORT_SYMBOL_GPL(css_depth);
K
KAMEZAWA Hiroyuki 已提交
5093

5094 5095 5096 5097 5098 5099
/**
 *  css_is_ancestor - test "root" css is an ancestor of "child"
 * @child: the css to be tested.
 * @root: the css supporsed to be an ancestor of the child.
 *
 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5100
 * this function reads css->id, the caller must hold rcu_read_lock().
5101 5102 5103 5104 5105 5106
 * But, considering usual usage, the csses should be valid objects after test.
 * Assuming that the caller will do some action to the child if this returns
 * returns true, the caller must take "child";s reference count.
 * If "child" is valid object and this returns true, "root" is valid, too.
 */

K
KAMEZAWA Hiroyuki 已提交
5107
bool css_is_ancestor(struct cgroup_subsys_state *child,
5108
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
5109
{
5110 5111
	struct css_id *child_id;
	struct css_id *root_id;
K
KAMEZAWA Hiroyuki 已提交
5112

5113
	child_id  = rcu_dereference(child->id);
5114 5115
	if (!child_id)
		return false;
5116
	root_id = rcu_dereference(root->id);
5117 5118 5119 5120 5121 5122 5123
	if (!root_id)
		return false;
	if (child_id->depth < root_id->depth)
		return false;
	if (child_id->stack[root_id->depth] != root_id->id)
		return false;
	return true;
K
KAMEZAWA Hiroyuki 已提交
5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
5137
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5138
	idr_remove(&ss->idr, id->id);
5139
	spin_unlock(&ss->id_lock);
5140
	kfree_rcu(id, rcu_head);
K
KAMEZAWA Hiroyuki 已提交
5141
}
B
Ben Blum 已提交
5142
EXPORT_SYMBOL_GPL(free_css_id);
K
KAMEZAWA Hiroyuki 已提交
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
5165
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5166 5167
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5168
	spin_unlock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
5183
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5184
	idr_remove(&ss->idr, myid);
5185
	spin_unlock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5186 5187 5188 5189 5190 5191
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

5192 5193
static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
K
KAMEZAWA Hiroyuki 已提交
5194 5195 5196
{
	struct css_id *newid;

5197
	spin_lock_init(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
5215
	struct css_id *child_id, *parent_id;
K
KAMEZAWA Hiroyuki 已提交
5216 5217 5218 5219 5220

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	parent_id = parent_css->id;
5221
	depth = parent_id->depth + 1;
K
KAMEZAWA Hiroyuki 已提交
5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}
B
Ben Blum 已提交
5259
EXPORT_SYMBOL_GPL(css_lookup);
K
KAMEZAWA Hiroyuki 已提交
5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
5285 5286
	WARN_ON_ONCE(!rcu_read_lock_held());

K
KAMEZAWA Hiroyuki 已提交
5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		tmp = idr_get_next(&ss->idr, &tmpid);
		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

S
Stephane Eranian 已提交
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
/*
 * get corresponding css from file open on cgroupfs directory
 */
struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
{
	struct cgroup *cgrp;
	struct inode *inode;
	struct cgroup_subsys_state *css;

	inode = f->f_dentry->d_inode;
	/* check in cgroup filesystem dir */
	if (inode->i_op != &cgroup_dir_inode_operations)
		return ERR_PTR(-EBADF);

	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
		return ERR_PTR(-EINVAL);

	/* get cgroup */
	cgrp = __d_cgrp(f->f_dentry);
	css = cgrp->subsys[id];
	return css ? css : ERR_PTR(-ENOENT);
}

5333
#ifdef CONFIG_CGROUP_DEBUG
5334
static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5335 5336 5337 5338 5339 5340 5341 5342 5343
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

5344
static void debug_destroy(struct cgroup *cont)
5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
5393 5394
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

5453 5454 5455 5456 5457 5458 5459 5460 5461 5462
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

5463 5464 5465 5466 5467
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},

5468 5469
	{ }	/* terminate */
};
5470 5471 5472 5473 5474 5475

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.subsys_id = debug_subsys_id,
5476
	.base_cftypes = debug_files,
5477 5478
};
#endif /* CONFIG_CGROUP_DEBUG */