cgroup.c 80.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46 47
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>

48 49
#include <asm/atomic.h>

50 51
static DEFINE_MUTEX(cgroup_mutex);

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

	/* A list running through the mounted hierarchies */
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
90 91 92 93 94 95 96

	/* The path to use for release notifications. No locking
	 * between setting and use - so if userspace updates this
	 * while child cgroups exist, you could miss a
	 * notification. We ensure that it's always a valid
	 * NUL-terminated string */
	char release_agent_path[PATH_MAX];
97 98 99 100 101 102 103 104 105 106 107 108 109
};


/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

/* The list of hierarchy roots */

static LIST_HEAD(roots);
110
static int root_count;
111 112 113 114 115

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
116 117 118
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
119 120 121 122
 */
static int need_forkexit_callback;

/* convenient tests for these bits */
123
inline int cgroup_is_removed(const struct cgroup *cgrp)
124
{
125
	return test_bit(CGRP_REMOVED, &cgrp->flags);
126 127 128 129 130 131 132
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

133
static int cgroup_is_releasable(const struct cgroup *cgrp)
134 135
{
	const int bits =
136 137 138
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
139 140
}

141
static int notify_on_release(const struct cgroup *cgrp)
142
{
143
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
144 145
}

146 147 148 149 150 151 152 153 154 155 156
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

/* for_each_root() allows you to iterate across the active hierarchies */
#define for_each_root(_root) \
list_for_each_entry(_root, &roots, root_list)

157 158 159 160 161 162
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
163
static void check_for_release(struct cgroup *cgrp);
164

165 166 167 168 169 170
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
171
	struct list_head cgrp_link_list;
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
static int use_task_css_set_links;

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
208 209 210 211 212 213 214
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
215 216 217 218

/*
 * unlink a css_set from the list and free it
 */
219
static void unlink_css_set(struct css_set *cg)
220
{
221 222 223 224 225 226 227 228
	write_lock(&css_set_lock);
	list_del(&cg->list);
	css_set_count--;
	while (!list_empty(&cg->cg_links)) {
		struct cg_cgroup_link *link;
		link = list_entry(cg->cg_links.next,
				  struct cg_cgroup_link, cg_link_list);
		list_del(&link->cg_link_list);
229
		list_del(&link->cgrp_link_list);
230 231 232
		kfree(link);
	}
	write_unlock(&css_set_lock);
233 234 235 236 237 238 239 240 241 242 243
}

static void __release_css_set(struct kref *k, int taskexit)
{
	int i;
	struct css_set *cg = container_of(k, struct css_set, ref);

	unlink_css_set(cg);

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
244 245 246
		struct cgroup *cgrp = cg->subsys[i]->cgroup;
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
247
			if (taskexit)
248 249
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
250 251 252
		}
	}
	rcu_read_unlock();
253
	kfree(cg);
254 255
}

256 257 258 259 260 261 262 263 264 265
static void release_css_set(struct kref *k)
{
	__release_css_set(k, 0);
}

static void release_css_set_taskexit(struct kref *k)
{
	__release_css_set(k, 1);
}

266 267 268 269 270 271 272 273 274 275 276 277 278
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
	kref_get(&cg->ref);
}

static inline void put_css_set(struct css_set *cg)
{
	kref_put(&cg->ref, release_css_set);
}

279 280 281 282 283
static inline void put_css_set_taskexit(struct css_set *cg)
{
	kref_put(&cg->ref, release_css_set_taskexit);
}

284 285 286 287 288 289 290 291 292 293
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
 * css_set is suitable. This currently walks a linked-list for
 * simplicity; a later patch will use a hash table for better
 * performance
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
294
 * cgrp: the cgroup that we're moving into
295 296 297 298 299 300
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
301
	struct cgroup *cgrp,
302
	struct cgroup_subsys_state *template[])
303 304
{
	int i;
305
	struct cgroupfs_root *root = cgrp->root;
306 307 308 309 310
	struct list_head *l = &init_css_set.list;

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
311
		if (root->subsys_bits & (1UL << i)) {
312 313 314
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
315
			template[i] = cgrp->subsys[i];
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

	/* Look through existing cgroup groups to find one to reuse */
	do {
		struct css_set *cg =
			list_entry(l, struct css_set, list);

		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
		/* Try the next cgroup group */
		l = l->next;
	} while (l != &init_css_set.list);

	/* No existing cgroup group matched */
	return NULL;
}

/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
342
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
343 344 345 346 347 348 349 350 351 352 353 354 355
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
			while (!list_empty(tmp)) {
				link = list_entry(tmp->next,
						  struct cg_cgroup_link,
356 357
						  cgrp_link_list);
				list_del(&link->cgrp_link_list);
358 359 360 361
				kfree(link);
			}
			return -ENOMEM;
		}
362
		list_add(&link->cgrp_link_list, tmp);
363 364 365 366 367 368 369 370 371 372
	}
	return 0;
}

static void free_cg_links(struct list_head *tmp)
{
	while (!list_empty(tmp)) {
		struct cg_cgroup_link *link;
		link = list_entry(tmp->next,
				  struct cg_cgroup_link,
373 374
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
375 376 377 378 379 380 381 382 383 384 385 386
		kfree(link);
	}
}

/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
387
	struct css_set *oldcg, struct cgroup *cgrp)
388 389 390 391 392 393 394 395 396 397 398
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;
	struct cg_cgroup_link *link;

	/* First see if we already have a cgroup group that matches
	 * the desired set */
	write_lock(&css_set_lock);
399
	res = find_existing_css_set(oldcg, cgrp, template);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
	if (res)
		get_css_set(res);
	write_unlock(&css_set_lock);

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

	kref_init(&res->ref);
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
428
		struct cgroup *cgrp = res->subsys[i]->cgroup;
429
		struct cgroup_subsys *ss = subsys[i];
430
		atomic_inc(&cgrp->count);
431 432 433 434 435 436 437 438 439
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
		if (ss->root->subsys_list.next == &ss->sibling) {
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
440 441 442
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
			list_add(&link->cgrp_link_list, &cgrp->css_sets);
443 444 445 446 447 448 449
			link->cg = res;
			list_add(&link->cg_link_list, &res->cg_links);
		}
	}
	if (list_empty(&rootnode.subsys_list)) {
		link = list_entry(tmp_cg_links.next,
				  struct cg_cgroup_link,
450 451 452
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
		list_add(&link->cgrp_link_list, &dummytop->css_sets);
453 454 455 456 457 458 459 460 461 462 463 464
		link->cg = res;
		list_add(&link->cg_link_list, &res->cg_links);
	}

	BUG_ON(!list_empty(&tmp_cg_links));

	/* Link this cgroup group into the list */
	list_add(&res->list, &init_css_set.list);
	css_set_count++;
	write_unlock(&css_set_lock);

	return res;
465 466
}

467 468 469 470 471 472 473 474 475 476
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
477
 * cgroup_attach_task() can increment it again.  Because a count of zero
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The cgroup_common_file_write handler for operations that modify
 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
 * single threading all such cgroup modifications across the system.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
495 496
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
497 498 499 500 501 502 503 504 505 506 507
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
508
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
509
 * another.  It does so using cgroup_mutex, however there are
510 511 512
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
513
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
514 515 516 517
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
518
 * update of a tasks cgroup pointer by cgroup_attach_task()
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
549
static int cgroup_populate_dir(struct cgroup *cgrp);
550
static struct inode_operations cgroup_dir_inode_operations;
551 552 553 554 555
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
	.capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
};
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

572 573 574 575 576 577 578 579 580 581 582 583 584
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
static void cgroup_call_pre_destroy(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	for_each_subsys(cgrp->root, ss)
		if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
			ss->pre_destroy(ss, cgrp);
	return;
}

585 586 587 588
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
589
		struct cgroup *cgrp = dentry->d_fsdata;
590
		struct cgroup_subsys *ss;
591
		BUG_ON(!(cgroup_is_removed(cgrp)));
592 593 594 595 596 597 598
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
		for_each_subsys(cgrp->root, ss) {
			if (cgrp->subsys[ss->subsys_id])
				ss->destroy(ss, cgrp);
		}

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

		/* Drop the active superblock reference that we took when we
		 * created the cgroup */
		deactivate_super(cgrp->root->sb);

616
		kfree(cgrp);
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
673
	struct cgroup *cgrp = &root->top_cgroup;
674 675 676 677 678 679
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
680
		unsigned long bit = 1UL << i;
681 682 683 684 685 686 687 688 689 690 691 692 693
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
694
	if (!list_empty(&cgrp->children))
695 696 697 698 699 700 701 702
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
703
			BUG_ON(cgrp->subsys[i]);
704 705
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
706 707
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
708 709 710
			list_add(&ss->sibling, &root->subsys_list);
			rcu_assign_pointer(ss->root, root);
			if (ss->bind)
711
				ss->bind(ss, cgrp);
712 713 714

		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
715 716
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
717 718 719
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
720
			cgrp->subsys[i] = NULL;
721 722 723 724
			rcu_assign_pointer(subsys[i]->root, &rootnode);
			list_del(&ss->sibling);
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
725
			BUG_ON(!cgrp->subsys[i]);
726 727
		} else {
			/* Subsystem state shouldn't exist */
728
			BUG_ON(cgrp->subsys[i]);
729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
747 748
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
749 750 751 752 753 754 755
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
756
	char *release_agent;
757 758 759 760 761 762 763 764 765 766 767
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
768
	opts->release_agent = NULL;
769 770 771 772 773

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
774 775 776 777 778 779 780 781
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
782 783
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
784 785 786 787 788 789 790 791 792
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
793 794 795 796 797 798
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
799 800
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
820
	struct cgroup *cgrp = &root->top_cgroup;
821 822
	struct cgroup_sb_opts opts;

823
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);

	/* (re)populate subsystem files */
	if (!ret)
841
		cgroup_populate_dir(cgrp);
842

843 844
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
845
 out_unlock:
846 847
	if (opts.release_agent)
		kfree(opts.release_agent);
848
	mutex_unlock(&cgroup_mutex);
849
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
850 851 852 853 854 855 856 857 858 859 860 861
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

static void init_cgroup_root(struct cgroupfs_root *root)
{
862
	struct cgroup *cgrp = &root->top_cgroup;
863 864 865
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
866 867 868 869 870 871
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
940 941
	struct list_head tmp_cg_links, *l;
	INIT_LIST_HEAD(&tmp_cg_links);
942 943 944

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
945 946 947
	if (ret) {
		if (opts.release_agent)
			kfree(opts.release_agent);
948
		return ret;
949
	}
950 951

	root = kzalloc(sizeof(*root), GFP_KERNEL);
952 953 954
	if (!root) {
		if (opts.release_agent)
			kfree(opts.release_agent);
955
		return -ENOMEM;
956
	}
957 958 959 960

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
961 962 963 964
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
980
		struct cgroup *cgrp = &root->top_cgroup;
981
		struct inode *inode;
982 983 984 985 986 987

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
988
		inode = sb->s_root->d_inode;
989

990
		mutex_lock(&inode->i_mutex);
991 992
		mutex_lock(&cgroup_mutex);

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1007 1008 1009
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1010
			mutex_unlock(&inode->i_mutex);
1011 1012 1013 1014 1015 1016 1017
			goto drop_new_super;
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1018
		root_count++;
1019 1020 1021 1022

		sb->s_root->d_fsdata = &root->top_cgroup;
		root->top_cgroup.dentry = sb->s_root;

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
		l = &init_css_set.list;
		do {
			struct css_set *cg;
			struct cg_cgroup_link *link;
			cg = list_entry(l, struct css_set, list);
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
1034 1035
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
1036
			link->cg = cg;
1037
			list_add(&link->cgrp_link_list,
1038 1039 1040 1041 1042 1043 1044 1045
				 &root->top_cgroup.css_sets);
			list_add(&link->cg_link_list, &cg->cg_links);
			l = l->next;
		} while (l != &init_css_set.list);
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1046 1047
		BUG_ON(!list_empty(&cgrp->sibling));
		BUG_ON(!list_empty(&cgrp->children));
1048 1049
		BUG_ON(root->number_of_cgroups != 1);

1050
		cgroup_populate_dir(cgrp);
1051
		mutex_unlock(&inode->i_mutex);
1052 1053 1054 1055 1056 1057 1058 1059
		mutex_unlock(&cgroup_mutex);
	}

	return simple_set_mnt(mnt, sb);

 drop_new_super:
	up_write(&sb->s_umount);
	deactivate_super(sb);
1060
	free_cg_links(&tmp_cg_links);
1061 1062 1063 1064 1065
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1066
	struct cgroup *cgrp = &root->top_cgroup;
1067 1068 1069 1070 1071
	int ret;

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1072 1073
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1074 1075 1076 1077 1078 1079 1080 1081

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1082 1083 1084 1085 1086
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
1087
	while (!list_empty(&cgrp->css_sets)) {
1088
		struct cg_cgroup_link *link;
1089 1090
		link = list_entry(cgrp->css_sets.next,
				  struct cg_cgroup_link, cgrp_link_list);
1091
		list_del(&link->cg_link_list);
1092
		list_del(&link->cgrp_link_list);
1093 1094 1095 1096 1097
		kfree(link);
	}
	write_unlock(&css_set_lock);

	if (!list_empty(&root->root_list)) {
1098
		list_del(&root->root_list);
1099 1100
		root_count--;
	}
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	mutex_unlock(&cgroup_mutex);

	kfree(root);
	kill_litter_super(sb);
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1113
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1114 1115 1116 1117 1118 1119 1120 1121 1122
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1123 1124 1125 1126 1127 1128 1129
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1130 1131
 * Returns 0 on success, -errno on error.
 */
1132
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1133 1134 1135
{
	char *start;

1136
	if (cgrp == dummytop) {
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1149
		int len = cgrp->dentry->d_name.len;
1150 1151
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1152 1153 1154
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1155
			break;
1156
		if (!cgrp->parent)
1157 1158 1159 1160 1161 1162 1163 1164 1165
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1166 1167 1168 1169 1170
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1171
static void get_first_subsys(const struct cgroup *cgrp,
1172 1173
			struct cgroup_subsys_state **css, int *subsys_id)
{
1174
	const struct cgroupfs_root *root = cgrp->root;
1175 1176 1177 1178 1179
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1180
		*css = cgrp->subsys[test_ss->subsys_id];
1181 1182 1183 1184 1185 1186
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1187 1188 1189 1190
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1191
 *
L
Li Zefan 已提交
1192 1193
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1194
 */
1195
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1196 1197 1198
{
	int retval = 0;
	struct cgroup_subsys *ss;
1199
	struct cgroup *oldcgrp;
1200 1201
	struct css_set *cg = tsk->cgroups;
	struct css_set *newcg;
1202
	struct cgroupfs_root *root = cgrp->root;
1203 1204
	int subsys_id;

1205
	get_first_subsys(cgrp, NULL, &subsys_id);
1206 1207

	/* Nothing to do if the task is already in that cgroup */
1208 1209
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1210 1211 1212 1213
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1214
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1215
			if (retval)
1216 1217 1218 1219
				return retval;
		}
	}

1220 1221 1222 1223
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1224
	newcg = find_css_set(cg, cgrp);
P
Paul Jackson 已提交
1225
	if (!newcg)
1226 1227
		return -ENOMEM;

1228 1229 1230
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1231
		put_css_set(newcg);
1232 1233
		return -ESRCH;
	}
1234
	rcu_assign_pointer(tsk->cgroups, newcg);
1235 1236
	task_unlock(tsk);

1237 1238 1239 1240 1241 1242 1243 1244
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1245
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1246
		if (ss->attach)
1247
			ss->attach(ss, cgrp, oldcgrp, tsk);
1248
	}
1249
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1250
	synchronize_rcu();
1251
	put_css_set(cg);
1252 1253 1254 1255
	return 0;
}

/*
1256
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1257 1258
 * cgroup_mutex, may take task_lock of task
 */
1259
static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
{
	pid_t pid;
	struct task_struct *tsk;
	int ret;

	if (sscanf(pidbuf, "%d", &pid) != 1)
		return -EIO;

	if (pid) {
		rcu_read_lock();
1270
		tsk = find_task_by_vpid(pid);
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}
		get_task_struct(tsk);
		rcu_read_unlock();

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1288
	ret = cgroup_attach_task(cgrp, tsk);
1289 1290 1291 1292
	put_task_struct(tsk);
	return ret;
}

1293 1294 1295 1296 1297
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1298 1299
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1300 1301
};

1302
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1303 1304 1305
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
{
	char buffer[64];
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1319
	strstrip(buffer);
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1331 1332 1333 1334 1335
	if (!retval)
		retval = nbytes;
	return retval;
}

1336
static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
					   struct cftype *cft,
					   struct file *file,
					   const char __user *userbuf,
					   size_t nbytes, loff_t *unused_ppos)
{
	enum cgroup_filetype type = cft->private;
	char *buffer;
	int retval = 0;

	if (nbytes >= PATH_MAX)
		return -E2BIG;

	/* +1 for nul-terminator */
	buffer = kmalloc(nbytes + 1, GFP_KERNEL);
	if (buffer == NULL)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */
P
Paul Jackson 已提交
1359
	strstrip(buffer);	/* strip -just- trailing whitespace */
1360 1361 1362

	mutex_lock(&cgroup_mutex);

1363 1364 1365 1366
	/*
	 * This was already checked for in cgroup_file_write(), but
	 * check again now we're holding cgroup_mutex.
	 */
1367
	if (cgroup_is_removed(cgrp)) {
1368 1369 1370 1371 1372 1373
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_TASKLIST:
1374
		retval = attach_task_by_pid(cgrp, buffer);
1375
		break;
1376
	case FILE_NOTIFY_ON_RELEASE:
1377
		clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1378
		if (simple_strtoul(buffer, NULL, 10) != 0)
1379
			set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1380
		else
1381
			clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1382 1383
		break;
	case FILE_RELEASE_AGENT:
P
Paul Jackson 已提交
1384 1385
		BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
		strcpy(cgrp->root->release_agent_path, buffer);
1386
		break;
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
	mutex_unlock(&cgroup_mutex);
out1:
	kfree(buffer);
	return retval;
}

1401 1402 1403 1404
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1405
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1406

1407
	if (!cft || cgroup_is_removed(cgrp))
1408
		return -ENODEV;
1409
	if (cft->write)
1410
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1411 1412
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1413 1414 1415 1416
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1417
	return -EINVAL;
1418 1419
}

1420 1421 1422 1423
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1424 1425
{
	char tmp[64];
1426
	u64 val = cft->read_u64(cgrp, cft);
1427 1428 1429 1430 1431
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
	char tmp[64];
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1444
static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
					  struct cftype *cft,
					  struct file *file,
					  char __user *buf,
					  size_t nbytes, loff_t *ppos)
{
	enum cgroup_filetype type = cft->private;
	char *page;
	ssize_t retval = 0;
	char *s;

	if (!(page = (char *)__get_free_page(GFP_KERNEL)))
		return -ENOMEM;

	s = page;

	switch (type) {
	case FILE_RELEASE_AGENT:
	{
		struct cgroupfs_root *root;
		size_t n;
		mutex_lock(&cgroup_mutex);
1466
		root = cgrp->root;
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		n = strnlen(root->release_agent_path,
			    sizeof(root->release_agent_path));
		n = min(n, (size_t) PAGE_SIZE);
		strncpy(s, root->release_agent_path, n);
		mutex_unlock(&cgroup_mutex);
		s += n;
		break;
	}
	default:
		retval = -EINVAL;
		goto out;
	}
	*s++ = '\n';

	retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
out:
	free_page((unsigned long)page);
	return retval;
}

1487 1488 1489 1490
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1491
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1492

1493
	if (!cft || cgroup_is_removed(cgrp))
1494 1495 1496
		return -ENODEV;

	if (cft->read)
1497
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1498 1499
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1500 1501
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1502 1503 1504
	return -EINVAL;
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
	struct cgroup_map_cb cb = {
		.fill = cgroup_map_add,
		.state = m,
	};
	return cft->read_map(state->cgroup, cft, &cb);
}

int cgroup_seqfile_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	if (cft->read_map) {
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

static int cgroup_create_file(struct dentry *dentry, int mode,
				struct super_block *sb)
{
	static struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1641
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1653 1654 1655 1656 1657
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1658
 */
1659
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1660 1661 1662 1663 1664
				int mode)
{
	struct dentry *parent;
	int error = 0;

1665 1666
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1667
	if (!error) {
1668
		dentry->d_fsdata = cgrp;
1669
		inc_nlink(parent->d_inode);
1670
		cgrp->dentry = dentry;
1671 1672 1673 1674 1675 1676 1677
		dget(dentry);
	}
	dput(dentry);

	return error;
}

1678
int cgroup_add_file(struct cgroup *cgrp,
1679 1680 1681
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1682
	struct dentry *dir = cgrp->dentry;
1683 1684 1685 1686
	struct dentry *dentry;
	int error;

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1687
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1688 1689 1690 1691 1692 1693 1694 1695
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
		error = cgroup_create_file(dentry, 0644 | S_IFREG,
1696
						cgrp->root->sb);
1697 1698 1699 1700 1701 1702 1703 1704
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1705
int cgroup_add_files(struct cgroup *cgrp,
1706 1707 1708 1709 1710 1711
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1712
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1713 1714 1715 1716 1717 1718
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1719 1720 1721 1722 1723 1724
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1725
int cgroup_task_count(const struct cgroup *cgrp)
1726 1727
{
	int count = 0;
1728 1729 1730
	struct list_head *l;

	read_lock(&css_set_lock);
1731 1732
	l = cgrp->css_sets.next;
	while (l != &cgrp->css_sets) {
1733
		struct cg_cgroup_link *link =
1734
			list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1735 1736 1737 1738
		count += atomic_read(&link->cg->ref.refcount);
		l = l->next;
	}
	read_unlock(&css_set_lock);
1739 1740 1741
	return count;
}

1742 1743 1744 1745
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1746
static void cgroup_advance_iter(struct cgroup *cgrp,
1747 1748 1749 1750 1751 1752 1753 1754 1755
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1756
		if (l == &cgrp->css_sets) {
1757 1758 1759
			it->cg_link = NULL;
			return;
		}
1760
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1761 1762 1763 1764 1765 1766
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1767 1768 1769 1770 1771 1772 1773 1774 1775
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1776
static void cgroup_enable_task_cg_lists(void)
1777 1778 1779 1780 1781 1782
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1783 1784 1785 1786 1787 1788
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1789 1790 1791 1792 1793 1794
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1795
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1796 1797 1798 1799 1800 1801
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1802 1803 1804
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1805
	read_lock(&css_set_lock);
1806 1807
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1808 1809
}

1810
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
	if (l == &res->cgroups->tasks) {
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1825
		cgroup_advance_iter(cgrp, it);
1826 1827 1828 1829 1830 1831
	} else {
		it->task = l;
	}
	return res;
}

1832
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1833 1834 1835 1836
{
	read_unlock(&css_set_lock);
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
1974
			struct task_struct *q = heap->ptrs[i];
1975
			if (i == 0) {
1976 1977
				latest_time = q->start_time;
				latest_task = q;
1978 1979
			}
			/* Process the task per the caller's callback */
1980 1981
			scan->process_task(q, scan);
			put_task_struct(q);
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 * Upon tasks file open(), a struct ctr_struct is allocated, that
 * will have a pointer to an array (also allocated here).  The struct
 * ctr_struct * is stored in file->private_data.  Its resources will
 * be freed by release() when the file is closed.  The array is used
 * to sprintf the PIDs and then used by read().
 */
struct ctr_struct {
	char *buf;
	int bufsz;
};

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2018
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2019 2020 2021 2022
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2023
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2024 2025
{
	int n = 0;
2026 2027
	struct cgroup_iter it;
	struct task_struct *tsk;
2028 2029
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2030 2031
		if (unlikely(n == npids))
			break;
2032
		pidarray[n++] = task_pid_vnr(tsk);
2033
	}
2034
	cgroup_iter_end(cgrp, &it);
2035 2036 2037
	return n;
}

B
Balbir Singh 已提交
2038
/**
L
Li Zefan 已提交
2039
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2040 2041 2042
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2043 2044 2045
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2046 2047 2048 2049
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2050
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059
	struct cgroup_iter it;
	struct task_struct *tsk;
	/*
	 * Validate dentry by checking the superblock operations
	 */
	if (dentry->d_sb->s_op != &cgroup_ops)
		 goto err;

	ret = 0;
2060
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2061 2062
	rcu_read_lock();

2063 2064
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2084
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2085 2086 2087 2088 2089 2090

	rcu_read_unlock();
err:
	return ret;
}

2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
 * count 'cnt' of how many chars would be written if buf were large enough.
 */
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
	int cnt = 0;
	int i;

	for (i = 0; i < npids; i++)
		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
	return cnt;
}

/*
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
 * process id's of tasks currently attached to the cgroup being opened.
 *
 * Does not require any specific cgroup mutexes, and does not take any.
 */
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2119
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
	struct ctr_struct *ctr;
	pid_t *pidarray;
	int npids;
	char c;

	if (!(file->f_mode & FMODE_READ))
		return 0;

	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
	if (!ctr)
		goto err0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2138
	npids = cgroup_task_count(cgrp);
2139 2140 2141 2142 2143
	if (npids) {
		pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
		if (!pidarray)
			goto err1;

2144
		npids = pid_array_load(pidarray, npids, cgrp);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
		sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

		/* Call pid_array_to_buf() twice, first just to get bufsz */
		ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
		ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
		if (!ctr->buf)
			goto err2;
		ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);

		kfree(pidarray);
	} else {
A
Al Viro 已提交
2156
		ctr->buf = NULL;
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
		ctr->bufsz = 0;
	}
	file->private_data = ctr;
	return 0;

err2:
	kfree(pidarray);
err1:
	kfree(ctr);
err0:
	return -ENOMEM;
}

2170
static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
				    struct cftype *cft,
				    struct file *file, char __user *buf,
				    size_t nbytes, loff_t *ppos)
{
	struct ctr_struct *ctr = file->private_data;

	return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
}

static int cgroup_tasks_release(struct inode *unused_inode,
					struct file *file)
{
	struct ctr_struct *ctr;

	if (file->f_mode & FMODE_READ) {
		ctr = file->private_data;
		kfree(ctr->buf);
		kfree(ctr);
	}
	return 0;
}

2193
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2194 2195
					    struct cftype *cft)
{
2196
	return notify_on_release(cgrp);
2197 2198
}

2199 2200 2201
/*
 * for the common functions, 'private' gives the type of file
 */
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
		.read = cgroup_tasks_read,
		.write = cgroup_common_file_write,
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
	},

	{
		.name = "notify_on_release",
2214
		.read_u64 = cgroup_read_notify_on_release,
2215 2216 2217 2218 2219 2220 2221 2222
		.write = cgroup_common_file_write,
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
	.read = cgroup_common_file_read,
2223
	.write = cgroup_common_file_write,
2224
	.private = FILE_RELEASE_AGENT,
2225 2226
};

2227
static int cgroup_populate_dir(struct cgroup *cgrp)
2228 2229 2230 2231 2232
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2233
	cgroup_clear_directory(cgrp->dentry);
2234

2235
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2236 2237 2238
	if (err < 0)
		return err;

2239 2240
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2241 2242 2243
			return err;
	}

2244 2245
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2246 2247 2248 2249 2250 2251 2252 2253
			return err;
	}

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2254
			       struct cgroup *cgrp)
2255
{
2256
	css->cgroup = cgrp;
2257 2258
	atomic_set(&css->refcnt, 0);
	css->flags = 0;
2259
	if (cgrp == dummytop)
2260
		set_bit(CSS_ROOT, &css->flags);
2261 2262
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2263 2264 2265
}

/*
L
Li Zefan 已提交
2266 2267 2268 2269
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2270
 *
L
Li Zefan 已提交
2271
 * Must be called with the mutex on the parent inode held
2272 2273 2274 2275
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     int mode)
{
2276
	struct cgroup *cgrp;
2277 2278 2279 2280 2281
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2282 2283
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2295 2296 2297 2298
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
2299

2300 2301 2302
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2303

2304 2305 2306
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2307
	for_each_subsys(root, ss) {
2308
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2309 2310 2311 2312
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2313
		init_cgroup_css(css, ss, cgrp);
2314 2315
	}

2316
	list_add(&cgrp->sibling, &cgrp->parent->children);
2317 2318
	root->number_of_cgroups++;

2319
	err = cgroup_create_dir(cgrp, dentry, mode);
2320 2321 2322 2323
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2324
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2325

2326
	err = cgroup_populate_dir(cgrp);
2327 2328 2329
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2330
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2331 2332 2333 2334 2335

	return 0;

 err_remove:

2336
	list_del(&cgrp->sibling);
2337 2338 2339 2340 2341
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2342 2343
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2344 2345 2346 2347 2348 2349 2350
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2351
	kfree(cgrp);
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2363
static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
	 * cgroup, if the css refcount is also 0, then there should
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2379
		if (ss->root != cgrp->root)
2380
			continue;
2381
		css = cgrp->subsys[ss->subsys_id];
2382 2383 2384 2385 2386 2387
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Jackson 已提交
2388
		if (css && atomic_read(&css->refcnt))
2389 2390 2391 2392 2393
			return 1;
	}
	return 0;
}

2394 2395
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2396
	struct cgroup *cgrp = dentry->d_fsdata;
2397 2398 2399 2400 2401 2402 2403 2404
	struct dentry *d;
	struct cgroup *parent;
	struct super_block *sb;
	struct cgroupfs_root *root;

	/* the vfs holds both inode->i_mutex already */

	mutex_lock(&cgroup_mutex);
2405
	if (atomic_read(&cgrp->count) != 0) {
2406 2407 2408
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2409
	if (!list_empty(&cgrp->children)) {
2410 2411 2412 2413
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2414 2415
	parent = cgrp->parent;
	root = cgrp->root;
2416
	sb = root->sb;
L
Li Zefan 已提交
2417

2418
	/*
L
Li Zefan 已提交
2419 2420
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2421 2422
	 */
	cgroup_call_pre_destroy(cgrp);
2423

2424
	if (cgroup_has_css_refs(cgrp)) {
2425 2426 2427 2428
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2429
	spin_lock(&release_list_lock);
2430 2431 2432
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2433
	spin_unlock(&release_list_lock);
2434
	/* delete my sibling from parent->children */
2435 2436 2437 2438
	list_del(&cgrp->sibling);
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
	cgrp->dentry = NULL;
2439 2440 2441 2442 2443
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2444
	set_bit(CGRP_RELEASABLE, &parent->flags);
2445 2446
	check_for_release(parent);

2447 2448 2449 2450
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2451
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2452 2453
{
	struct cgroup_subsys_state *css;
2454
	struct list_head *l;
D
Diego Calleja 已提交
2455 2456

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2457 2458 2459 2460 2461 2462 2463 2464

	/* Create the top cgroup state for this subsystem */
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
	/* Update all cgroup groups to contain a subsys
	 * pointer to this state - since the subsystem is
	 * newly registered, all tasks and hence all cgroup
	 * groups are in the subsystem's top cgroup. */
	write_lock(&css_set_lock);
	l = &init_css_set.list;
	do {
		struct css_set *cg =
			list_entry(l, struct css_set, list);
		cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
		l = l->next;
	} while (l != &init_css_set.list);
	write_unlock(&css_set_lock);
2478 2479 2480 2481

 	/* If this subsystem requested that it be notified with fork
 	 * events, we should send it one now for every process in the
 	 * system */
2482 2483 2484 2485 2486 2487 2488 2489 2490
	if (ss->fork) {
		struct task_struct *g, *p;

		read_lock(&tasklist_lock);
		do_each_thread(g, p) {
			ss->fork(ss, p);
		} while_each_thread(g, p);
		read_unlock(&tasklist_lock);
	}
2491 2492 2493 2494 2495 2496 2497

	need_forkexit_callback |= ss->fork || ss->exit;

	ss->active = 1;
}

/**
L
Li Zefan 已提交
2498 2499 2500 2501
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2502 2503 2504 2505
 */
int __init cgroup_init_early(void)
{
	int i;
2506 2507 2508 2509 2510 2511
	kref_init(&init_css_set.ref);
	kref_get(&init_css_set.ref);
	INIT_LIST_HEAD(&init_css_set.list);
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
	css_set_count = 1;
2512 2513
	init_cgroup_root(&rootnode);
	list_add(&rootnode.root_list, &roots);
2514 2515 2516 2517
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2518
	list_add(&init_css_set_link.cgrp_link_list,
2519 2520 2521
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2522 2523 2524 2525 2526 2527 2528 2529 2530

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2531
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2543 2544 2545 2546
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2547 2548 2549 2550 2551
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2552 2553 2554 2555

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2567
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2568

2569
out:
2570 2571 2572
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2573 2574
	return err;
}
2575

2576 2577 2578 2579 2580 2581
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2582
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

	for_each_root(root) {
		struct cgroup_subsys *ss;
2614
		struct cgroup *cgrp;
2615 2616 2617 2618 2619 2620
		int subsys_id;
		int count = 0;

		/* Skip this hierarchy if it has no active subsystems */
		if (!root->actual_subsys_bits)
			continue;
2621
		seq_printf(m, "%lu:", root->subsys_bits);
2622 2623 2624 2625
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2626 2627
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2661
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2662 2663 2664
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2665
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
2666
			   ss->name, ss->root->subsys_bits,
2667
			   ss->root->number_of_cgroups, !ss->disabled);
2668 2669 2670 2671 2672 2673 2674
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2675
	return single_open(file, proc_cgroupstats_show, NULL);
2676 2677 2678 2679 2680 2681 2682 2683 2684
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2685 2686
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
2687
 * @child: pointer to task_struct of forking parent process.
2688 2689 2690 2691 2692 2693
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2694
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2695 2696
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2697 2698 2699 2700 2701 2702
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2703 2704 2705 2706 2707
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2708 2709 2710
}

/**
L
Li Zefan 已提交
2711 2712 2713 2714 2715 2716
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

2730
/**
L
Li Zefan 已提交
2731 2732 2733 2734 2735 2736 2737 2738
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
2739 2740 2741 2742 2743 2744 2745 2746 2747
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
		write_unlock(&css_set_lock);
	}
}
2748 2749 2750
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
2751
 * @run_callback: run exit callbacks?
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
2780 2781
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
2782 2783 2784 2785
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
2786
	struct css_set *cg;
2787 2788 2789 2790 2791 2792 2793 2794

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

2808 2809
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
2810 2811
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
2812
	task_unlock(tsk);
2813
	if (cg)
2814
		put_css_set_taskexit(cg);
2815
}
2816 2817

/**
L
Li Zefan 已提交
2818 2819 2820 2821 2822 2823 2824
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
 */
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
{
	struct dentry *dentry;
	int ret = 0;
	char nodename[MAX_CGROUP_TYPE_NAMELEN];
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		printk(KERN_INFO
		       "Not cloning cgroup for unused subsystem %s\n",
		       subsys->name);
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2852
	cg = tsk->cgroups;
2853 2854 2855 2856 2857 2858 2859
	parent = task_cgroup(tsk, subsys->subsys_id);

	snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);

	/* Pin the hierarchy */
	atomic_inc(&parent->root->sb->s_active);

2860 2861
	/* Keep the cgroup alive */
	get_css_set(cg);
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
2873
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2874 2875 2876 2877 2878 2879 2880
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
	ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2881
	child = __d_cgrp(dentry);
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	if (!child) {
		printk(KERN_INFO
		       "Couldn't find new cgroup %s\n", nodename);
		ret = -ENOMEM;
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
2905
		put_css_set(cg);
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923

		deactivate_super(parent->root->sb);
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
2924
	ret = cgroup_attach_task(child, tsk);
2925 2926 2927 2928
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
2929 2930

	mutex_lock(&cgroup_mutex);
2931
	put_css_set(cg);
2932
	mutex_unlock(&cgroup_mutex);
2933 2934 2935 2936
	deactivate_super(parent->root->sb);
	return ret;
}

L
Li Zefan 已提交
2937 2938 2939 2940 2941 2942
/**
 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
 * @cgrp: the cgroup in question
 *
 * See if @cgrp is a descendant of the current task's cgroup in
 * the appropriate hierarchy.
2943 2944 2945 2946 2947 2948
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
2949
int cgroup_is_descendant(const struct cgroup *cgrp)
2950 2951 2952 2953 2954
{
	int ret;
	struct cgroup *target;
	int subsys_id;

2955
	if (cgrp == dummytop)
2956 2957
		return 1;

2958
	get_first_subsys(cgrp, NULL, &subsys_id);
2959
	target = task_cgroup(current, subsys_id);
2960 2961 2962
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
2963 2964
	return ret;
}
2965

2966
static void check_for_release(struct cgroup *cgrp)
2967 2968 2969
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
2970 2971
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2972 2973 2974 2975 2976
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
2977 2978 2979
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
2990
	struct cgroup *cgrp = css->cgroup;
2991
	rcu_read_lock();
2992 2993 2994
	if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
		set_bit(CGRP_RELEASABLE, &cgrp->flags);
		check_for_release(cgrp);
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
		char *pathbuf;
3031
		struct cgroup *cgrp = list_entry(release_list.next,
3032 3033
						    struct cgroup,
						    release_list);
3034
		list_del_init(&cgrp->release_list);
3035 3036 3037 3038 3039 3040 3041
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
		if (!pathbuf) {
			spin_lock(&release_list_lock);
			continue;
		}

3042
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
3043 3044 3045 3046 3047 3048
			kfree(pathbuf);
			spin_lock(&release_list_lock);
			continue;
		}

		i = 0;
3049
		argv[i++] = cgrp->root->release_agent_path;
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
		argv[i++] = (char *)pathbuf;
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		kfree(pathbuf);
		mutex_lock(&cgroup_mutex);
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);