cgroup.c 145.8 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/cred.h>
31
#include <linux/ctype.h>
32 33
#include <linux/errno.h>
#include <linux/fs.h>
34
#include <linux/init_task.h>
35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
41
#include <linux/proc_fs.h>
42 43
#include <linux/rcupdate.h>
#include <linux/sched.h>
44
#include <linux/backing-dev.h>
45 46 47 48 49
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
50
#include <linux/sort.h>
51
#include <linux/kmod.h>
52
#include <linux/module.h>
B
Balbir Singh 已提交
53 54
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
55
#include <linux/hash.h>
56
#include <linux/namei.h>
L
Li Zefan 已提交
57
#include <linux/pid_namespace.h>
58
#include <linux/idr.h>
59
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 61
#include <linux/eventfd.h>
#include <linux/poll.h>
62
#include <linux/flex_array.h> /* used in cgroup_attach_proc */
63
#include <linux/kthread.h>
B
Balbir Singh 已提交
64

A
Arun Sharma 已提交
65
#include <linux/atomic.h>
66

67 68 69
/* css deactivation bias, makes css->refcnt negative to deny new trygets */
#define CSS_DEACT_BIAS		INT_MIN

T
Tejun Heo 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * cgroup_mutex is the master lock.  Any modification to cgroup or its
 * hierarchy must be performed while holding it.
 *
 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
 * release_agent_path and so on.  Modifying requires both cgroup_mutex and
 * cgroup_root_mutex.  Readers can acquire either of the two.  This is to
 * break the following locking order cycle.
 *
 *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
 *  B. namespace_sem -> cgroup_mutex
 *
 * B happens only through cgroup_show_options() and using cgroup_root_mutex
 * breaks it.
 */
86
static DEFINE_MUTEX(cgroup_mutex);
T
Tejun Heo 已提交
87
static DEFINE_MUTEX(cgroup_root_mutex);
88

B
Ben Blum 已提交
89 90 91 92 93 94
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
95
#define SUBSYS(_x) &_x ## _subsys,
B
Ben Blum 已提交
96
static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
97 98 99
#include <linux/cgroup_subsys.h>
};

100 101
#define MAX_CGROUP_ROOT_NAMELEN 64

102 103 104 105 106 107 108 109 110 111 112 113 114 115
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

116 117 118
	/* Unique id for this hierarchy. */
	int hierarchy_id;

119 120 121 122 123 124 125 126 127 128 129 130
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

131
	/* A list running through the active hierarchies */
132 133
	struct list_head root_list;

134 135 136
	/* All cgroups on this root, cgroup_mutex protected */
	struct list_head allcg_list;

137 138
	/* Hierarchy-specific flags */
	unsigned long flags;
139

140
	/* The path to use for release notifications. */
141
	char release_agent_path[PATH_MAX];
142 143 144

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
145 146 147 148 149 150 151 152 153
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

T
Tejun Heo 已提交
154 155 156 157 158 159 160 161 162
/*
 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
 */
struct cfent {
	struct list_head		node;
	struct dentry			*dentry;
	struct cftype			*type;
};

K
KAMEZAWA Hiroyuki 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
A
Arnd Bergmann 已提交
176
	struct cgroup_subsys_state __rcu *css;
K
KAMEZAWA Hiroyuki 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};

195
/*
L
Lucas De Marchi 已提交
196
 * cgroup_event represents events which userspace want to receive.
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
 */
struct cgroup_event {
	/*
	 * Cgroup which the event belongs to.
	 */
	struct cgroup *cgrp;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};
K
KAMEZAWA Hiroyuki 已提交
224

225 226 227
/* The list of hierarchy roots */

static LIST_HEAD(roots);
228
static int root_count;
229

230 231 232 233
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

234 235 236 237
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
238 239 240
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
241
 */
242
static int need_forkexit_callback __read_mostly;
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257
#ifdef CONFIG_PROVE_LOCKING
int cgroup_lock_is_held(void)
{
	return lockdep_is_held(&cgroup_mutex);
}
#else /* #ifdef CONFIG_PROVE_LOCKING */
int cgroup_lock_is_held(void)
{
	return mutex_is_locked(&cgroup_mutex);
}
#endif /* #else #ifdef CONFIG_PROVE_LOCKING */

EXPORT_SYMBOL_GPL(cgroup_lock_is_held);

258 259 260 261 262 263 264 265
/* the current nr of refs, always >= 0 whether @css is deactivated or not */
static int css_refcnt(struct cgroup_subsys_state *css)
{
	int v = atomic_read(&css->refcnt);

	return v >= 0 ? v : v - CSS_DEACT_BIAS;
}

266
/* convenient tests for these bits */
267
inline int cgroup_is_removed(const struct cgroup *cgrp)
268
{
269
	return test_bit(CGRP_REMOVED, &cgrp->flags);
270 271 272 273 274 275 276
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

277
static int cgroup_is_releasable(const struct cgroup *cgrp)
278 279
{
	const int bits =
280 281 282
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
283 284
}

285
static int notify_on_release(const struct cgroup *cgrp)
286
{
287
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
288 289
}

290 291 292 293 294
static int clone_children(const struct cgroup *cgrp)
{
	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
}

295 296 297 298 299 300 301
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

302 303
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
304 305
list_for_each_entry(_root, &roots, root_list)

306 307 308 309 310
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
311
static inline struct cfent *__d_cfe(struct dentry *dentry)
312 313 314 315
{
	return dentry->d_fsdata;
}

T
Tejun Heo 已提交
316 317 318 319 320
static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return __d_cfe(dentry)->type;
}

321 322 323
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
324
static DEFINE_RAW_SPINLOCK(release_list_lock);
325 326
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
327
static void check_for_release(struct cgroup *cgrp);
328

329 330 331 332 333 334
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
335
	struct list_head cgrp_link_list;
336
	struct cgroup *cgrp;
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

355 356
static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);
K
KAMEZAWA Hiroyuki 已提交
357

358 359 360 361 362 363
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

364 365 366 367 368
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

388 389 390 391
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
392
static int use_task_css_set_links __read_mostly;
393

394
static void __put_css_set(struct css_set *cg, int taskexit)
395
{
K
KOSAKI Motohiro 已提交
396 397
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
398 399 400 401 402 403 404 405 406 407 408 409
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
410

411 412 413 414 415 416 417 418 419
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
420 421
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
422
			if (taskexit)
423 424
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
425
		}
426 427

		kfree(link);
428
	}
429 430

	write_unlock(&css_set_lock);
431
	kfree_rcu(cg, rcu_head);
432 433
}

434 435 436 437 438
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
439
	atomic_inc(&cg->refcount);
440 441 442 443
}

static inline void put_css_set(struct css_set *cg)
{
444
	__put_css_set(cg, 0);
445 446
}

447 448
static inline void put_css_set_taskexit(struct css_set *cg)
{
449
	__put_css_set(cg, 1);
450 451
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

524 525 526
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
527
 * css_set is suitable.
528 529 530 531
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
532
 * cgrp: the cgroup that we're moving into
533 534 535 536 537 538
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
539
	struct cgroup *cgrp,
540
	struct cgroup_subsys_state *template[])
541 542
{
	int i;
543
	struct cgroupfs_root *root = cgrp->root;
544 545 546
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
547

B
Ben Blum 已提交
548 549 550 551 552
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
553
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
554
		if (root->subsys_bits & (1UL << i)) {
555 556 557
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
558
			template[i] = cgrp->subsys[i];
559 560 561 562 563 564 565
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

566 567
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
568 569 570 571 572
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
573
	}
574 575 576 577 578

	/* No existing cgroup group matched */
	return NULL;
}

579 580 581 582 583 584 585 586 587 588 589
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

590 591
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
592
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
593 594 595 596 597 598 599 600 601 602
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
603
			free_cg_links(tmp);
604 605
			return -ENOMEM;
		}
606
		list_add(&link->cgrp_link_list, tmp);
607 608 609 610
	}
	return 0;
}

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
626
	link->cgrp = cgrp;
627
	atomic_inc(&cgrp->count);
628
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
629 630 631 632 633
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
634 635
}

636 637 638 639 640 641 642 643
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
644
	struct css_set *oldcg, struct cgroup *cgrp)
645 646 647 648 649 650
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

651
	struct hlist_head *hhead;
652
	struct cg_cgroup_link *link;
653

654 655
	/* First see if we already have a cgroup group that matches
	 * the desired set */
656
	read_lock(&css_set_lock);
657
	res = find_existing_css_set(oldcg, cgrp, template);
658 659
	if (res)
		get_css_set(res);
660
	read_unlock(&css_set_lock);
661 662 663 664 665 666 667 668 669 670 671 672 673 674

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

675
	atomic_set(&res->refcount, 1);
676 677
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
678
	INIT_HLIST_NODE(&res->hlist);
679 680 681 682 683 684 685

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
686 687 688 689 690 691
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
692 693 694 695

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
696 697 698 699 700

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

701 702 703
	write_unlock(&css_set_lock);

	return res;
704 705
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

741 742 743 744 745 746 747 748 749 750
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
751
 * cgroup_attach_task() can increment it again.  Because a count of zero
752 753 754 755 756 757 758 759 760 761 762 763 764
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
765 766
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
767 768 769 770 771 772 773 774 775 776 777
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
778
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
779
 * another.  It does so using cgroup_mutex, however there are
780 781 782
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
783
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
784 785 786 787
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
788
 * update of a tasks cgroup pointer by cgroup_attach_task()
789 790 791 792 793 794 795 796 797 798
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}
B
Ben Blum 已提交
799
EXPORT_SYMBOL_GPL(cgroup_lock);
800 801 802 803 804 805 806 807 808 809

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}
B
Ben Blum 已提交
810
EXPORT_SYMBOL_GPL(cgroup_unlock);
811 812 813 814 815 816 817 818

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

819
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
820
static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
821
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
822
static int cgroup_populate_dir(struct cgroup *cgrp);
823
static const struct inode_operations cgroup_dir_inode_operations;
824
static const struct file_operations proc_cgroupstats_operations;
825 826

static struct backing_dev_info cgroup_backing_dev_info = {
827
	.name		= "cgroup",
828
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
829
};
830

K
KAMEZAWA Hiroyuki 已提交
831 832 833
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

A
Al Viro 已提交
834
static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
835 836 837 838
{
	struct inode *inode = new_inode(sb);

	if (inode) {
839
		inode->i_ino = get_next_ino();
840
		inode->i_mode = mode;
841 842
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
843 844 845 846 847 848
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

849 850 851 852
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
853
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
854 855
{
	struct cgroup_subsys *ss;
856 857
	int ret = 0;

858 859 860 861 862 863 864 865 866
	for_each_subsys(cgrp->root, ss) {
		if (!ss->pre_destroy)
			continue;

		ret = ss->pre_destroy(cgrp);
		if (ret) {
			/* ->pre_destroy() failure is being deprecated */
			WARN_ON_ONCE(!ss->__DEPRECATED_clear_css_refs);
			break;
867
		}
868
	}
869

870
	return ret;
871 872
}

873 874 875 876
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
877
		struct cgroup *cgrp = dentry->d_fsdata;
878
		struct cgroup_subsys *ss;
879
		BUG_ON(!(cgroup_is_removed(cgrp)));
880 881 882 883 884 885 886
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
887 888 889 890 891

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
892
		for_each_subsys(cgrp->root, ss)
893
			ss->destroy(cgrp);
894 895 896 897

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

898
		/*
899 900 901 902 903
		 * We want to drop the active superblock reference from the
		 * cgroup creation after all the dentry refs are gone -
		 * kill_sb gets mighty unhappy otherwise.  Mark
		 * dentry->d_fsdata with cgroup_diput() to tell
		 * cgroup_d_release() to call deactivate_super().
904
		 */
905
		dentry->d_fsdata = cgroup_diput;
906

907 908 909 910 911 912
		/*
		 * if we're getting rid of the cgroup, refcount should ensure
		 * that there are no pidlists left.
		 */
		BUG_ON(!list_empty(&cgrp->pidlists));

913
		kfree_rcu(cgrp, rcu_head);
T
Tejun Heo 已提交
914 915 916 917 918 919 920 921
	} else {
		struct cfent *cfe = __d_cfe(dentry);
		struct cgroup *cgrp = dentry->d_parent->d_fsdata;

		WARN_ONCE(!list_empty(&cfe->node) &&
			  cgrp != &cgrp->root->top_cgroup,
			  "cfe still linked for %s\n", cfe->type->name);
		kfree(cfe);
922 923 924 925
	}
	iput(inode);
}

926 927 928 929 930
static int cgroup_delete(const struct dentry *d)
{
	return 1;
}

931 932 933 934 935 936 937
static void cgroup_d_release(struct dentry *dentry)
{
	/* did cgroup_diput() tell me to deactivate super? */
	if (dentry->d_fsdata == cgroup_diput)
		deactivate_super(dentry->d_sb);
}

938 939 940 941 942 943 944 945 946
static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

T
Tejun Heo 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
{
	struct cfent *cfe;

	lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
	lockdep_assert_held(&cgroup_mutex);

	list_for_each_entry(cfe, &cgrp->files, node) {
		struct dentry *d = cfe->dentry;

		if (cft && cfe->type != cft)
			continue;

		dget(d);
		d_delete(d);
		simple_unlink(d->d_inode, d);
		list_del_init(&cfe->node);
		dput(d);

		return 0;
967
	}
T
Tejun Heo 已提交
968 969 970 971 972 973 974 975 976
	return -ENOENT;
}

static void cgroup_clear_directory(struct dentry *dir)
{
	struct cgroup *cgrp = __d_cgrp(dir);

	while (!list_empty(&cgrp->files))
		cgroup_rm_file(cgrp, NULL);
977 978 979 980 981 982 983
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
984 985
	struct dentry *parent;

986 987
	cgroup_clear_directory(dentry);

N
Nick Piggin 已提交
988 989
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
990
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
991
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
992 993
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
994 995 996
	remove_dir(dentry);
}

997 998 999 1000 1001 1002
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
1003
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
1004
 */
1005
static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
1006

1007
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
1008
{
1009
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
1010 1011 1012
		wake_up_all(&cgroup_rmdir_waitq);
}

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}

B
Ben Blum 已提交
1024
/*
B
Ben Blum 已提交
1025 1026 1027
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
1028
 */
1029 1030 1031 1032
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
1033
	struct cgroup *cgrp = &root->top_cgroup;
1034 1035
	int i;

B
Ben Blum 已提交
1036
	BUG_ON(!mutex_is_locked(&cgroup_mutex));
T
Tejun Heo 已提交
1037
	BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
B
Ben Blum 已提交
1038

1039 1040 1041 1042
	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
1043
		unsigned long bit = 1UL << i;
1044 1045 1046
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
B
Ben Blum 已提交
1047 1048 1049 1050 1051 1052
		/*
		 * Nobody should tell us to do a subsys that doesn't exist:
		 * parse_cgroupfs_options should catch that case and refcounts
		 * ensure that subsystems won't disappear once selected.
		 */
		BUG_ON(ss == NULL);
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
1063
	if (root->number_of_cgroups > 1)
1064 1065 1066 1067 1068 1069 1070 1071
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
B
Ben Blum 已提交
1072
			BUG_ON(ss == NULL);
1073
			BUG_ON(cgrp->subsys[i]);
1074 1075
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1076
			mutex_lock(&ss->hierarchy_mutex);
1077 1078
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
1079
			list_move(&ss->sibling, &root->subsys_list);
1080
			ss->root = root;
1081
			if (ss->bind)
1082
				ss->bind(cgrp);
1083
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1084
			/* refcount was already taken, and we're keeping it */
1085 1086
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
B
Ben Blum 已提交
1087
			BUG_ON(ss == NULL);
1088 1089
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1090
			mutex_lock(&ss->hierarchy_mutex);
1091
			if (ss->bind)
1092
				ss->bind(dummytop);
1093
			dummytop->subsys[i]->cgroup = dummytop;
1094
			cgrp->subsys[i] = NULL;
1095
			subsys[i]->root = &rootnode;
1096
			list_move(&ss->sibling, &rootnode.subsys_list);
1097
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1098 1099
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1100 1101
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
B
Ben Blum 已提交
1102
			BUG_ON(ss == NULL);
1103
			BUG_ON(!cgrp->subsys[i]);
B
Ben Blum 已提交
1104 1105 1106 1107 1108 1109 1110 1111
			/*
			 * a refcount was taken, but we already had one, so
			 * drop the extra reference.
			 */
			module_put(ss->module);
#ifdef CONFIG_MODULE_UNLOAD
			BUG_ON(ss->module && !module_refcount(ss->module));
#endif
1112 1113
		} else {
			/* Subsystem state shouldn't exist */
1114
			BUG_ON(cgrp->subsys[i]);
1115 1116 1117 1118 1119 1120 1121 1122
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

1123
static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1124
{
1125
	struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1126 1127
	struct cgroup_subsys *ss;

T
Tejun Heo 已提交
1128
	mutex_lock(&cgroup_root_mutex);
1129 1130 1131 1132
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
1133 1134
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1135 1136
	if (clone_children(&root->top_cgroup))
		seq_puts(seq, ",clone_children");
1137 1138
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
T
Tejun Heo 已提交
1139
	mutex_unlock(&cgroup_root_mutex);
1140 1141 1142 1143 1144 1145
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
1146
	char *release_agent;
1147
	bool clone_children;
1148
	char *name;
1149 1150
	/* User explicitly requested empty subsystem */
	bool none;
1151 1152

	struct cgroupfs_root *new_root;
1153

1154 1155
};

B
Ben Blum 已提交
1156 1157
/*
 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
B
Ben Blum 已提交
1158 1159 1160
 * with cgroup_mutex held to protect the subsys[] array. This function takes
 * refcounts on subsystems to be used, unless it returns error, in which case
 * no refcounts are taken.
B
Ben Blum 已提交
1161
 */
B
Ben Blum 已提交
1162
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1163
{
1164 1165
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1166
	unsigned long mask = (unsigned long)-1;
B
Ben Blum 已提交
1167 1168
	int i;
	bool module_pin_failed = false;
1169

B
Ben Blum 已提交
1170 1171
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1172 1173 1174
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1175

1176
	memset(opts, 0, sizeof(*opts));
1177 1178 1179 1180

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1181
		if (!strcmp(token, "none")) {
1182 1183
			/* Explicitly have no subsystems */
			opts->none = true;
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
		if (!strcmp(token, "noprefix")) {
1194
			set_bit(ROOT_NOPREFIX, &opts->flags);
1195 1196 1197
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1198
			opts->clone_children = true;
1199 1200 1201
			continue;
		}
		if (!strncmp(token, "release_agent=", 14)) {
1202 1203 1204
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1205
			opts->release_agent =
1206
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1207 1208
			if (!opts->release_agent)
				return -ENOMEM;
1209 1210 1211
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1229
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1230 1231 1232
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

			continue;
		}

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
			set_bit(i, &opts->subsys_bits);
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
1260 1261
	 * otherwise if 'none', 'name=' and a subsystem name options
	 * were not specified, let's default to 'all'
1262
	 */
1263
	if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1264 1265 1266 1267 1268 1269 1270
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (ss->disabled)
				continue;
			set_bit(i, &opts->subsys_bits);
1271 1272 1273
		}
	}

1274 1275
	/* Consistency checks */

1276 1277 1278 1279 1280 1281 1282 1283 1284
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1285 1286 1287 1288 1289 1290 1291 1292 1293

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1294
	if (!opts->subsys_bits && !opts->name)
1295 1296
		return -EINVAL;

B
Ben Blum 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
	/*
	 * Grab references on all the modules we'll need, so the subsystems
	 * don't dance around before rebind_subsystems attaches them. This may
	 * take duplicate reference counts on a subsystem that's already used,
	 * but rebind_subsystems handles this case.
	 */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & opts->subsys_bits))
			continue;
		if (!try_module_get(subsys[i]->module)) {
			module_pin_failed = true;
			break;
		}
	}
	if (module_pin_failed) {
		/*
		 * oops, one of the modules was going away. this means that we
		 * raced with a module_delete call, and to the user this is
		 * essentially a "subsystem doesn't exist" case.
		 */
		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
			/* drop refcounts only on the ones we took */
			unsigned long bit = 1UL << i;

			if (!(bit & opts->subsys_bits))
				continue;
			module_put(subsys[i]->module);
		}
		return -ENOENT;
	}

1330 1331 1332
	return 0;
}

B
Ben Blum 已提交
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
static void drop_parsed_module_refcounts(unsigned long subsys_bits)
{
	int i;
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & subsys_bits))
			continue;
		module_put(subsys[i]->module);
	}
}

1345 1346 1347 1348
static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1349
	struct cgroup *cgrp = &root->top_cgroup;
1350 1351
	struct cgroup_sb_opts opts;

1352
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1353
	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1354
	mutex_lock(&cgroup_root_mutex);
1355 1356 1357 1358 1359 1360

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

1361 1362 1363 1364 1365
	/* See feature-removal-schedule.txt */
	if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
		pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
			   task_tgid_nr(current), current->comm);

B
Ben Blum 已提交
1366 1367 1368
	/* Don't allow flags or name to change at remount */
	if (opts.flags != root->flags ||
	    (opts.name && strcmp(opts.name, root->name))) {
1369
		ret = -EINVAL;
B
Ben Blum 已提交
1370
		drop_parsed_module_refcounts(opts.subsys_bits);
1371 1372 1373
		goto out_unlock;
	}

1374
	ret = rebind_subsystems(root, opts.subsys_bits);
B
Ben Blum 已提交
1375 1376
	if (ret) {
		drop_parsed_module_refcounts(opts.subsys_bits);
1377
		goto out_unlock;
B
Ben Blum 已提交
1378
	}
1379

1380 1381
	/* clear out any existing files and repopulate subsystem files */
	cgroup_clear_directory(cgrp->dentry);
1382
	cgroup_populate_dir(cgrp);
1383

1384 1385
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1386
 out_unlock:
1387
	kfree(opts.release_agent);
1388
	kfree(opts.name);
T
Tejun Heo 已提交
1389
	mutex_unlock(&cgroup_root_mutex);
1390
	mutex_unlock(&cgroup_mutex);
1391
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1392 1393 1394
	return ret;
}

1395
static const struct super_operations cgroup_ops = {
1396 1397 1398 1399 1400 1401
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1402 1403 1404 1405
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
T
Tejun Heo 已提交
1406
	INIT_LIST_HEAD(&cgrp->files);
1407 1408
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
1409 1410
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1411 1412
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
1413
}
1414

1415 1416
static void init_cgroup_root(struct cgroupfs_root *root)
{
1417
	struct cgroup *cgrp = &root->top_cgroup;
1418

1419 1420
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
1421
	INIT_LIST_HEAD(&root->allcg_list);
1422
	root->number_of_cgroups = 1;
1423 1424
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1425
	list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1426
	init_cgroup_housekeeping(cgrp);
1427 1428
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1454 1455
static int cgroup_test_super(struct super_block *sb, void *data)
{
1456
	struct cgroup_sb_opts *opts = data;
1457 1458
	struct cgroupfs_root *root = sb->s_fs_info;

1459 1460 1461
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1462

1463 1464 1465 1466 1467 1468
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1469 1470 1471 1472 1473
		return 0;

	return 1;
}

1474 1475 1476 1477
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1478
	if (!opts->subsys_bits && !opts->none)
1479 1480 1481 1482 1483 1484
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1485 1486 1487 1488
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1489
	init_cgroup_root(root);
1490

1491 1492 1493 1494 1495 1496
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1497 1498
	if (opts->clone_children)
		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1499 1500 1501
	return root;
}

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1514 1515 1516
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1517 1518 1519 1520 1521 1522
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1523
	BUG_ON(!opts->subsys_bits && !opts->none);
1524 1525 1526 1527 1528

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1529 1530
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1542 1543
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1544
		.d_delete = cgroup_delete,
1545
		.d_release = cgroup_d_release,
A
Al Viro 已提交
1546 1547
	};

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
1558 1559
	sb->s_root = d_make_root(inode);
	if (!sb->s_root)
1560
		return -ENOMEM;
A
Al Viro 已提交
1561 1562
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1563 1564 1565
	return 0;
}

A
Al Viro 已提交
1566
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1567
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1568
			 void *data)
1569 1570
{
	struct cgroup_sb_opts opts;
1571
	struct cgroupfs_root *root;
1572 1573
	int ret = 0;
	struct super_block *sb;
1574
	struct cgroupfs_root *new_root;
T
Tejun Heo 已提交
1575
	struct inode *inode;
1576 1577

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1578
	mutex_lock(&cgroup_mutex);
1579
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1580
	mutex_unlock(&cgroup_mutex);
1581 1582
	if (ret)
		goto out_err;
1583

1584 1585 1586 1587 1588 1589 1590
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
B
Ben Blum 已提交
1591
		goto drop_modules;
1592
	}
1593
	opts.new_root = new_root;
1594

1595 1596
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1597
	if (IS_ERR(sb)) {
1598
		ret = PTR_ERR(sb);
1599
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1600
		goto drop_modules;
1601 1602
	}

1603 1604 1605 1606 1607
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1608
		struct cgroup *root_cgrp = &root->top_cgroup;
1609
		struct cgroupfs_root *existing_root;
1610
		const struct cred *cred;
1611
		int i;
1612 1613 1614 1615 1616 1617

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1618
		inode = sb->s_root->d_inode;
1619

1620
		mutex_lock(&inode->i_mutex);
1621
		mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1622
		mutex_lock(&cgroup_root_mutex);
1623

T
Tejun Heo 已提交
1624 1625 1626 1627 1628 1629
		/* Check for name clashes with existing mounts */
		ret = -EBUSY;
		if (strlen(root->name))
			for_each_active_root(existing_root)
				if (!strcmp(existing_root->name, root->name))
					goto unlock_drop;
1630

1631 1632 1633 1634 1635 1636 1637 1638
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
T
Tejun Heo 已提交
1639 1640
		if (ret)
			goto unlock_drop;
1641

1642 1643
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
1644
			free_cg_links(&tmp_cg_links);
T
Tejun Heo 已提交
1645
			goto unlock_drop;
1646
		}
B
Ben Blum 已提交
1647 1648 1649 1650 1651
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1652 1653 1654 1655 1656

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1657
		root_count++;
1658

1659
		sb->s_root->d_fsdata = root_cgrp;
1660 1661
		root->top_cgroup.dentry = sb->s_root;

1662 1663 1664
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1665 1666 1667
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1668
			struct css_set *cg;
1669

1670 1671
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1672
		}
1673 1674 1675 1676
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1677 1678
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1679 1680
		BUG_ON(root->number_of_cgroups != 1);

1681
		cred = override_creds(&init_cred);
1682
		cgroup_populate_dir(root_cgrp);
1683
		revert_creds(cred);
T
Tejun Heo 已提交
1684
		mutex_unlock(&cgroup_root_mutex);
1685
		mutex_unlock(&cgroup_mutex);
1686
		mutex_unlock(&inode->i_mutex);
1687 1688 1689 1690 1691
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1692
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1693 1694
		/* no subsys rebinding, so refcounts don't change */
		drop_parsed_module_refcounts(opts.subsys_bits);
1695 1696
	}

1697 1698
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1699
	return dget(sb->s_root);
1700

T
Tejun Heo 已提交
1701 1702 1703 1704
 unlock_drop:
	mutex_unlock(&cgroup_root_mutex);
	mutex_unlock(&cgroup_mutex);
	mutex_unlock(&inode->i_mutex);
1705
 drop_new_super:
1706
	deactivate_locked_super(sb);
B
Ben Blum 已提交
1707 1708
 drop_modules:
	drop_parsed_module_refcounts(opts.subsys_bits);
1709 1710 1711
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1712
	return ERR_PTR(ret);
1713 1714 1715 1716
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1717
	struct cgroup *cgrp = &root->top_cgroup;
1718
	int ret;
K
KOSAKI Motohiro 已提交
1719 1720
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1721 1722 1723 1724

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1725 1726
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1727 1728

	mutex_lock(&cgroup_mutex);
T
Tejun Heo 已提交
1729
	mutex_lock(&cgroup_root_mutex);
1730 1731 1732 1733 1734 1735

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1736 1737 1738 1739 1740
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1741 1742 1743

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1744
		list_del(&link->cg_link_list);
1745
		list_del(&link->cgrp_link_list);
1746 1747 1748 1749
		kfree(link);
	}
	write_unlock(&css_set_lock);

1750 1751 1752 1753
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1754

T
Tejun Heo 已提交
1755
	mutex_unlock(&cgroup_root_mutex);
1756 1757 1758
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1759
	cgroup_drop_root(root);
1760 1761 1762 1763
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1764
	.mount = cgroup_mount,
1765 1766 1767
	.kill_sb = cgroup_kill_sb,
};

1768 1769
static struct kobject *cgroup_kobj;

L
Li Zefan 已提交
1770 1771 1772 1773 1774 1775
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1776 1777 1778
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1779
 */
1780
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1781 1782
{
	char *start;
1783 1784
	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
						      cgroup_lock_is_held());
1785

1786
	if (!dentry || cgrp == dummytop) {
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1799
		int len = dentry->d_name.len;
1800

1801 1802
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1803
		memcpy(start, dentry->d_name.name, len);
1804 1805
		cgrp = cgrp->parent;
		if (!cgrp)
1806
			break;
1807 1808 1809

		dentry = rcu_dereference_check(cgrp->dentry,
					       cgroup_lock_is_held());
1810
		if (!cgrp->parent)
1811 1812 1813 1814 1815 1816 1817 1818
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}
B
Ben Blum 已提交
1819
EXPORT_SYMBOL_GPL(cgroup_path);
1820

1821 1822 1823
/*
 * Control Group taskset
 */
1824 1825 1826
struct task_and_cgroup {
	struct task_struct	*task;
	struct cgroup		*cgrp;
1827
	struct css_set		*cg;
1828 1829
};

1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
struct cgroup_taskset {
	struct task_and_cgroup	single;
	struct flex_array	*tc_array;
	int			tc_array_len;
	int			idx;
	struct cgroup		*cur_cgrp;
};

/**
 * cgroup_taskset_first - reset taskset and return the first task
 * @tset: taskset of interest
 *
 * @tset iteration is initialized and the first task is returned.
 */
struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
{
	if (tset->tc_array) {
		tset->idx = 0;
		return cgroup_taskset_next(tset);
	} else {
		tset->cur_cgrp = tset->single.cgrp;
		return tset->single.task;
	}
}
EXPORT_SYMBOL_GPL(cgroup_taskset_first);

/**
 * cgroup_taskset_next - iterate to the next task in taskset
 * @tset: taskset of interest
 *
 * Return the next task in @tset.  Iteration must have been initialized
 * with cgroup_taskset_first().
 */
struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
{
	struct task_and_cgroup *tc;

	if (!tset->tc_array || tset->idx >= tset->tc_array_len)
		return NULL;

	tc = flex_array_get(tset->tc_array, tset->idx++);
	tset->cur_cgrp = tc->cgrp;
	return tc->task;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_next);

/**
 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
 * @tset: taskset of interest
 *
 * Return the cgroup for the current (last returned) task of @tset.  This
 * function must be preceded by either cgroup_taskset_first() or
 * cgroup_taskset_next().
 */
struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
{
	return tset->cur_cgrp;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);

/**
 * cgroup_taskset_size - return the number of tasks in taskset
 * @tset: taskset of interest
 */
int cgroup_taskset_size(struct cgroup_taskset *tset)
{
	return tset->tc_array ? tset->tc_array_len : 1;
}
EXPORT_SYMBOL_GPL(cgroup_taskset_size);


B
Ben Blum 已提交
1901 1902 1903 1904 1905
/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
 * 'guarantee' is set if the caller promises that a new css_set for the task
 * will already exist. If not set, this function might sleep, and can fail with
1906
 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
B
Ben Blum 已提交
1907
 */
1908 1909
static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
				struct task_struct *tsk, struct css_set *newcg)
B
Ben Blum 已提交
1910 1911 1912 1913
{
	struct css_set *oldcg;

	/*
1914 1915 1916
	 * We are synchronized through threadgroup_lock() against PF_EXITING
	 * setting such that we can't race against cgroup_exit() changing the
	 * css_set to init_css_set and dropping the old one.
B
Ben Blum 已提交
1917
	 */
1918
	WARN_ON_ONCE(tsk->flags & PF_EXITING);
B
Ben Blum 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
	oldcg = tsk->cgroups;

	task_lock(tsk);
	rcu_assign_pointer(tsk->cgroups, newcg);
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
		list_move(&tsk->cg_list, &newcg->tasks);
	write_unlock(&css_set_lock);

	/*
	 * We just gained a reference on oldcg by taking it from the task. As
	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
	 * it here; it will be freed under RCU.
	 */
	put_css_set(oldcg);

	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
}

L
Li Zefan 已提交
1941 1942 1943 1944
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1945
 *
1946 1947
 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
 * @tsk during call.
1948
 */
1949
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1950
{
1951
	int retval = 0;
1952
	struct cgroup_subsys *ss, *failed_ss = NULL;
1953 1954
	struct cgroup *oldcgrp;
	struct cgroupfs_root *root = cgrp->root;
1955
	struct cgroup_taskset tset = { };
1956
	struct css_set *newcg;
1957

1958 1959 1960
	/* @tsk either already exited or can't exit until the end */
	if (tsk->flags & PF_EXITING)
		return -ESRCH;
1961 1962

	/* Nothing to do if the task is already in that cgroup */
1963
	oldcgrp = task_cgroup_from_root(tsk, root);
1964
	if (cgrp == oldcgrp)
1965 1966
		return 0;

1967 1968 1969
	tset.single.task = tsk;
	tset.single.cgrp = oldcgrp;

1970 1971
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1972
			retval = ss->can_attach(cgrp, &tset);
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
			if (retval) {
				/*
				 * Remember on which subsystem the can_attach()
				 * failed, so that we only call cancel_attach()
				 * against the subsystems whose can_attach()
				 * succeeded. (See below)
				 */
				failed_ss = ss;
				goto out;
			}
1983 1984 1985
		}
	}

1986 1987 1988
	newcg = find_css_set(tsk->cgroups, cgrp);
	if (!newcg) {
		retval = -ENOMEM;
1989
		goto out;
1990 1991 1992
	}

	cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
1993

1994
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1995
		if (ss->attach)
1996
			ss->attach(cgrp, &tset);
1997
	}
B
Ben Blum 已提交
1998

1999
	synchronize_rcu();
2000 2001 2002 2003 2004

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
2005
	cgroup_wakeup_rmdir_waiter(cgrp);
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
out:
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss)
				/*
				 * This subsystem was the one that failed the
				 * can_attach() check earlier, so we don't need
				 * to call cancel_attach() against it or any
				 * remaining subsystems.
				 */
				break;
			if (ss->cancel_attach)
2018
				ss->cancel_attach(cgrp, &tset);
2019 2020 2021
		}
	}
	return retval;
2022 2023
}

2024
/**
M
Michael S. Tsirkin 已提交
2025 2026
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
2027 2028
 * @tsk: the task to be attached
 */
M
Michael S. Tsirkin 已提交
2029
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2030 2031 2032 2033 2034 2035
{
	struct cgroupfs_root *root;
	int retval = 0;

	cgroup_lock();
	for_each_active_root(root) {
M
Michael S. Tsirkin 已提交
2036 2037 2038
		struct cgroup *from_cg = task_cgroup_from_root(from, root);

		retval = cgroup_attach_task(from_cg, tsk);
2039 2040 2041 2042 2043 2044 2045
		if (retval)
			break;
	}
	cgroup_unlock();

	return retval;
}
M
Michael S. Tsirkin 已提交
2046
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2047

B
Ben Blum 已提交
2048 2049 2050 2051 2052
/**
 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
 * @cgrp: the cgroup to attach to
 * @leader: the threadgroup leader task_struct of the group to be attached
 *
2053 2054
 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
 * task_lock of each thread in leader's threadgroup individually in turn.
B
Ben Blum 已提交
2055
 */
2056
static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
B
Ben Blum 已提交
2057 2058 2059 2060 2061 2062 2063
{
	int retval, i, group_size;
	struct cgroup_subsys *ss, *failed_ss = NULL;
	/* guaranteed to be initialized later, but the compiler needs this */
	struct cgroupfs_root *root = cgrp->root;
	/* threadgroup list cursor and array */
	struct task_struct *tsk;
2064
	struct task_and_cgroup *tc;
2065
	struct flex_array *group;
2066
	struct cgroup_taskset tset = { };
B
Ben Blum 已提交
2067 2068 2069 2070 2071

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
2072 2073
	 * group - group_rwsem prevents new threads from appearing, and if
	 * threads exit, this will just be an over-estimate.
B
Ben Blum 已提交
2074 2075
	 */
	group_size = get_nr_threads(leader);
2076
	/* flex_array supports very large thread-groups better than kmalloc. */
2077
	group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
B
Ben Blum 已提交
2078 2079
	if (!group)
		return -ENOMEM;
2080 2081 2082 2083
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
	retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
	if (retval)
		goto out_free_group_list;
B
Ben Blum 已提交
2084 2085 2086

	tsk = leader;
	i = 0;
2087 2088 2089 2090 2091 2092
	/*
	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
	 * already PF_EXITING could be freed from underneath us unless we
	 * take an rcu_read_lock.
	 */
	rcu_read_lock();
B
Ben Blum 已提交
2093
	do {
2094 2095
		struct task_and_cgroup ent;

2096 2097 2098 2099
		/* @tsk either already exited or can't exit until the end */
		if (tsk->flags & PF_EXITING)
			continue;

B
Ben Blum 已提交
2100 2101
		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
2102 2103
		ent.task = tsk;
		ent.cgrp = task_cgroup_from_root(tsk, root);
2104 2105 2106
		/* nothing to do if this task is already in the cgroup */
		if (ent.cgrp == cgrp)
			continue;
2107 2108 2109 2110
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
2111
		retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2112
		BUG_ON(retval != 0);
B
Ben Blum 已提交
2113 2114
		i++;
	} while_each_thread(leader, tsk);
2115
	rcu_read_unlock();
B
Ben Blum 已提交
2116 2117
	/* remember the number of threads in the array for later. */
	group_size = i;
2118 2119
	tset.tc_array = group;
	tset.tc_array_len = group_size;
B
Ben Blum 已提交
2120

2121 2122
	/* methods shouldn't be called if no task is actually migrating */
	retval = 0;
2123
	if (!group_size)
2124
		goto out_free_group_list;
2125

B
Ben Blum 已提交
2126 2127 2128 2129 2130
	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
2131
			retval = ss->can_attach(cgrp, &tset);
B
Ben Blum 已提交
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
			if (retval) {
				failed_ss = ss;
				goto out_cancel_attach;
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	for (i = 0; i < group_size; i++) {
2144
		tc = flex_array_get(group, i);
2145 2146 2147 2148
		tc->cg = find_css_set(tc->task->cgroups, cgrp);
		if (!tc->cg) {
			retval = -ENOMEM;
			goto out_put_css_set_refs;
B
Ben Blum 已提交
2149 2150 2151 2152
		}
	}

	/*
2153 2154 2155
	 * step 3: now that we're guaranteed success wrt the css_sets,
	 * proceed to move all tasks to the new cgroup.  There are no
	 * failure cases after here, so this is the commit point.
B
Ben Blum 已提交
2156 2157
	 */
	for (i = 0; i < group_size; i++) {
2158
		tc = flex_array_get(group, i);
2159
		cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
B
Ben Blum 已提交
2160 2161 2162 2163
	}
	/* nothing is sensitive to fork() after this point. */

	/*
2164
	 * step 4: do subsystem attach callbacks.
B
Ben Blum 已提交
2165 2166 2167
	 */
	for_each_subsys(root, ss) {
		if (ss->attach)
2168
			ss->attach(cgrp, &tset);
B
Ben Blum 已提交
2169 2170 2171 2172 2173 2174 2175 2176
	}

	/*
	 * step 5: success! and cleanup
	 */
	synchronize_rcu();
	cgroup_wakeup_rmdir_waiter(cgrp);
	retval = 0;
2177 2178 2179 2180 2181 2182 2183 2184
out_put_css_set_refs:
	if (retval) {
		for (i = 0; i < group_size; i++) {
			tc = flex_array_get(group, i);
			if (!tc->cg)
				break;
			put_css_set(tc->cg);
		}
B
Ben Blum 已提交
2185 2186 2187 2188
	}
out_cancel_attach:
	if (retval) {
		for_each_subsys(root, ss) {
2189
			if (ss == failed_ss)
B
Ben Blum 已提交
2190 2191
				break;
			if (ss->cancel_attach)
2192
				ss->cancel_attach(cgrp, &tset);
B
Ben Blum 已提交
2193 2194 2195
		}
	}
out_free_group_list:
2196
	flex_array_free(group);
B
Ben Blum 已提交
2197 2198 2199 2200 2201
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
2202 2203
 * function to attach either it or all tasks in its threadgroup. Will lock
 * cgroup_mutex and threadgroup; may take task_lock of task.
2204
 */
B
Ben Blum 已提交
2205
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2206 2207
{
	struct task_struct *tsk;
2208
	const struct cred *cred = current_cred(), *tcred;
2209 2210
	int ret;

B
Ben Blum 已提交
2211 2212 2213
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

2214 2215
retry_find_task:
	rcu_read_lock();
2216
	if (pid) {
2217
		tsk = find_task_by_vpid(pid);
B
Ben Blum 已提交
2218 2219
		if (!tsk) {
			rcu_read_unlock();
2220 2221
			ret= -ESRCH;
			goto out_unlock_cgroup;
2222
		}
B
Ben Blum 已提交
2223 2224 2225 2226
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
2227
		tcred = __task_cred(tsk);
2228 2229 2230
		if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
		    !uid_eq(cred->euid, tcred->uid) &&
		    !uid_eq(cred->euid, tcred->suid)) {
2231
			rcu_read_unlock();
2232 2233
			ret = -EACCES;
			goto out_unlock_cgroup;
2234
		}
2235 2236
	} else
		tsk = current;
2237 2238

	if (threadgroup)
2239
		tsk = tsk->group_leader;
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251

	/*
	 * Workqueue threads may acquire PF_THREAD_BOUND and become
	 * trapped in a cpuset, or RT worker may be born in a cgroup
	 * with no rt_runtime allocated.  Just say no.
	 */
	if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
		ret = -EINVAL;
		rcu_read_unlock();
		goto out_unlock_cgroup;
	}

2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	get_task_struct(tsk);
	rcu_read_unlock();

	threadgroup_lock(tsk);
	if (threadgroup) {
		if (!thread_group_leader(tsk)) {
			/*
			 * a race with de_thread from another thread's exec()
			 * may strip us of our leadership, if this happens,
			 * there is no choice but to throw this task away and
			 * try again; this is
			 * "double-double-toil-and-trouble-check locking".
			 */
			threadgroup_unlock(tsk);
			put_task_struct(tsk);
			goto retry_find_task;
		}
B
Ben Blum 已提交
2269
		ret = cgroup_attach_proc(cgrp, tsk);
2270
	} else
B
Ben Blum 已提交
2271
		ret = cgroup_attach_task(cgrp, tsk);
2272 2273
	threadgroup_unlock(tsk);

2274
	put_task_struct(tsk);
2275
out_unlock_cgroup:
B
Ben Blum 已提交
2276
	cgroup_unlock();
2277 2278 2279
	return ret;
}

2280
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
B
Ben Blum 已提交
2281 2282 2283 2284 2285
{
	return attach_task_by_pid(cgrp, pid, false);
}

static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2286
{
2287
	return attach_task_by_pid(cgrp, tgid, true);
2288 2289
}

2290 2291 2292 2293
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
2294 2295
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
2296
 */
2297
bool cgroup_lock_live_group(struct cgroup *cgrp)
2298 2299 2300 2301 2302 2303 2304 2305
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}
B
Ben Blum 已提交
2306
EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2307 2308 2309 2310 2311

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2312 2313
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
2314 2315
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
T
Tejun Heo 已提交
2316
	mutex_lock(&cgroup_root_mutex);
2317
	strcpy(cgrp->root->release_agent_path, buffer);
T
Tejun Heo 已提交
2318
	mutex_unlock(&cgroup_root_mutex);
2319
	cgroup_unlock();
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
2330
	cgroup_unlock();
2331 2332 2333
	return 0;
}

2334 2335 2336
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

2337
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2338 2339 2340
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
2341
{
2342
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
2354
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
2355
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2356 2357 2358 2359
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
2360
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2361 2362 2363 2364
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
2365 2366 2367 2368 2369
	if (!retval)
		retval = nbytes;
	return retval;
}

2370 2371 2372 2373 2374
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
2375
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
2390 2391 2392 2393
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
2394 2395

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
2396
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2397 2398
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
2399
out:
2400 2401 2402 2403 2404
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

2405 2406 2407 2408
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2409
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2410

2411
	if (cgroup_is_removed(cgrp))
2412
		return -ENODEV;
2413
	if (cft->write)
2414
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2415 2416
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2417 2418
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2419 2420 2421 2422
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
2423
	return -EINVAL;
2424 2425
}

2426 2427 2428 2429
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
2430
{
2431
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2432
	u64 val = cft->read_u64(cgrp, cft);
2433 2434 2435 2436 2437
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2438 2439 2440 2441 2442
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
2443
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2444 2445 2446 2447 2448 2449
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2450 2451 2452 2453
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2454
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2455

2456
	if (cgroup_is_removed(cgrp))
2457 2458 2459
		return -ENODEV;

	if (cft->read)
2460
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2461 2462
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2463 2464
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2465 2466 2467
	return -EINVAL;
}

2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
2488 2489 2490 2491 2492 2493 2494 2495
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
2496 2497
}

2498
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2499 2500 2501 2502 2503 2504
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

2505
static const struct file_operations cgroup_seqfile_operations = {
2506
	.read = seq_read,
2507
	.write = cgroup_file_write,
2508 2509 2510 2511
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

2512 2513 2514 2515 2516 2517 2518 2519 2520
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
2521

2522
	if (cft->read_map || cft->read_seq_string) {
2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

2564
static const struct file_operations cgroup_file_operations = {
2565 2566 2567 2568 2569 2570 2571
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

2572
static const struct inode_operations cgroup_dir_inode_operations = {
2573
	.lookup = cgroup_lookup,
2574 2575 2576 2577 2578
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

2579 2580 2581 2582 2583 2584 2585 2586
static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
{
	if (dentry->d_name.len > NAME_MAX)
		return ERR_PTR(-ENAMETOOLONG);
	d_add(dentry, NULL);
	return NULL;
}

2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

A
Al Viro 已提交
2597
static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2598 2599
				struct super_block *sb)
{
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
2620
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
2631 2632 2633 2634 2635
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
2636
 */
2637
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
A
Al Viro 已提交
2638
				umode_t mode)
2639 2640 2641 2642
{
	struct dentry *parent;
	int error = 0;

2643 2644
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2645
	if (!error) {
2646
		dentry->d_fsdata = cgrp;
2647
		inc_nlink(parent->d_inode);
2648
		rcu_assign_pointer(cgrp->dentry, dentry);
2649 2650 2651 2652 2653 2654 2655
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
2656 2657 2658 2659 2660 2661 2662 2663 2664
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
A
Al Viro 已提交
2665
static umode_t cgroup_file_mode(const struct cftype *cft)
L
Li Zefan 已提交
2666
{
A
Al Viro 已提交
2667
	umode_t mode = 0;
L
Li Zefan 已提交
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

T
Tejun Heo 已提交
2683 2684
static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
			   const struct cftype *cft)
2685
{
2686
	struct dentry *dir = cgrp->dentry;
T
Tejun Heo 已提交
2687
	struct cgroup *parent = __d_cgrp(dir);
2688
	struct dentry *dentry;
T
Tejun Heo 已提交
2689
	struct cfent *cfe;
2690
	int error;
A
Al Viro 已提交
2691
	umode_t mode;
2692
	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2693 2694 2695 2696 2697 2698 2699

	/* does @cft->flags tell us to skip creation on @cgrp? */
	if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
		return 0;
	if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
		return 0;

2700
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2701 2702 2703 2704
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
T
Tejun Heo 已提交
2705

2706
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
T
Tejun Heo 已提交
2707 2708 2709 2710 2711

	cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
	if (!cfe)
		return -ENOMEM;

2712
	dentry = lookup_one_len(name, dir, strlen(name));
T
Tejun Heo 已提交
2713
	if (IS_ERR(dentry)) {
2714
		error = PTR_ERR(dentry);
T
Tejun Heo 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
		goto out;
	}

	mode = cgroup_file_mode(cft);
	error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
	if (!error) {
		cfe->type = (void *)cft;
		cfe->dentry = dentry;
		dentry->d_fsdata = cfe;
		list_add_tail(&cfe->node, &parent->files);
		cfe = NULL;
	}
	dput(dentry);
out:
	kfree(cfe);
2730 2731 2732
	return error;
}

2733 2734
static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
			      const struct cftype cfts[], bool is_add)
2735
{
T
Tejun Heo 已提交
2736 2737 2738 2739
	const struct cftype *cft;
	int err, ret = 0;

	for (cft = cfts; cft->name[0] != '\0'; cft++) {
2740 2741 2742 2743
		if (is_add)
			err = cgroup_add_file(cgrp, subsys, cft);
		else
			err = cgroup_rm_file(cgrp, cft);
T
Tejun Heo 已提交
2744
		if (err) {
2745 2746
			pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
				   is_add ? "add" : "remove", cft->name, err);
T
Tejun Heo 已提交
2747 2748
			ret = err;
		}
2749
	}
T
Tejun Heo 已提交
2750
	return ret;
2751 2752
}

2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
static DEFINE_MUTEX(cgroup_cft_mutex);

static void cgroup_cfts_prepare(void)
	__acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
{
	/*
	 * Thanks to the entanglement with vfs inode locking, we can't walk
	 * the existing cgroups under cgroup_mutex and create files.
	 * Instead, we increment reference on all cgroups and build list of
	 * them using @cgrp->cft_q_node.  Grab cgroup_cft_mutex to ensure
	 * exclusive access to the field.
	 */
	mutex_lock(&cgroup_cft_mutex);
	mutex_lock(&cgroup_mutex);
}

static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2770
			       const struct cftype *cfts, bool is_add)
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
	__releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
{
	LIST_HEAD(pending);
	struct cgroup *cgrp, *n;

	/* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
	if (cfts && ss->root != &rootnode) {
		list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
			dget(cgrp->dentry);
			list_add_tail(&cgrp->cft_q_node, &pending);
		}
	}

	mutex_unlock(&cgroup_mutex);

	/*
	 * All new cgroups will see @cfts update on @ss->cftsets.  Add/rm
	 * files for all cgroups which were created before.
	 */
	list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
		struct inode *inode = cgrp->dentry->d_inode;

		mutex_lock(&inode->i_mutex);
		mutex_lock(&cgroup_mutex);
		if (!cgroup_is_removed(cgrp))
2796
			cgroup_addrm_files(cgrp, ss, cfts, is_add);
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		mutex_unlock(&cgroup_mutex);
		mutex_unlock(&inode->i_mutex);

		list_del_init(&cgrp->cft_q_node);
		dput(cgrp->dentry);
	}

	mutex_unlock(&cgroup_cft_mutex);
}

/**
 * cgroup_add_cftypes - add an array of cftypes to a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Register @cfts to @ss.  Files described by @cfts are created for all
 * existing cgroups to which @ss is attached and all future cgroups will
 * have them too.  This function can be called anytime whether @ss is
 * attached or not.
 *
 * Returns 0 on successful registration, -errno on failure.  Note that this
 * function currently returns 0 as long as @cfts registration is successful
 * even if some file creation attempts on existing cgroups fail.
 */
int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
{
	struct cftype_set *set;

	set = kzalloc(sizeof(*set), GFP_KERNEL);
	if (!set)
		return -ENOMEM;

	cgroup_cfts_prepare();
	set->cfts = cfts;
	list_add_tail(&set->node, &ss->cftsets);
2832
	cgroup_cfts_commit(ss, cfts, true);
2833 2834 2835 2836 2837

	return 0;
}
EXPORT_SYMBOL_GPL(cgroup_add_cftypes);

2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868
/**
 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
 * @ss: target cgroup subsystem
 * @cfts: zero-length name terminated array of cftypes
 *
 * Unregister @cfts from @ss.  Files described by @cfts are removed from
 * all existing cgroups to which @ss is attached and all future cgroups
 * won't have them either.  This function can be called anytime whether @ss
 * is attached or not.
 *
 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
 * registered with @ss.
 */
int cgroup_rm_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
{
	struct cftype_set *set;

	cgroup_cfts_prepare();

	list_for_each_entry(set, &ss->cftsets, node) {
		if (set->cfts == cfts) {
			list_del_init(&set->node);
			cgroup_cfts_commit(ss, cfts, false);
			return 0;
		}
	}

	cgroup_cfts_commit(ss, NULL, false);
	return -ENOENT;
}

L
Li Zefan 已提交
2869 2870 2871 2872 2873 2874
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2875
int cgroup_task_count(const struct cgroup *cgrp)
2876 2877
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2878
	struct cg_cgroup_link *link;
2879 2880

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2881
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2882
		count += atomic_read(&link->cg->refcount);
2883 2884
	}
	read_unlock(&css_set_lock);
2885 2886 2887
	return count;
}

2888 2889 2890 2891
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2892
static void cgroup_advance_iter(struct cgroup *cgrp,
2893
				struct cgroup_iter *it)
2894 2895 2896 2897 2898 2899 2900 2901
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2902
		if (l == &cgrp->css_sets) {
2903 2904 2905
			it->cg_link = NULL;
			return;
		}
2906
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2907 2908 2909 2910 2911 2912
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2913 2914 2915 2916 2917 2918
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 */
2919
static void cgroup_enable_task_cg_lists(void)
2920 2921 2922 2923
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
2924 2925 2926 2927 2928 2929 2930 2931
	/*
	 * We need tasklist_lock because RCU is not safe against
	 * while_each_thread(). Besides, a forking task that has passed
	 * cgroup_post_fork() without seeing use_task_css_set_links = 1
	 * is not guaranteed to have its child immediately visible in the
	 * tasklist if we walk through it with RCU.
	 */
	read_lock(&tasklist_lock);
2932 2933
	do_each_thread(g, p) {
		task_lock(p);
2934 2935 2936 2937 2938 2939
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2940 2941 2942
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
2943
	read_unlock(&tasklist_lock);
2944 2945 2946
	write_unlock(&css_set_lock);
}

2947
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2948
	__acquires(css_set_lock)
2949 2950 2951 2952 2953 2954
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2955 2956 2957
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2958
	read_lock(&css_set_lock);
2959 2960
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2961 2962
}

2963
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2964 2965 2966 2967
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2968
	struct cg_cgroup_link *link;
2969 2970 2971 2972 2973 2974 2975

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2976 2977
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2978 2979
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2980
		cgroup_advance_iter(cgrp, it);
2981 2982 2983 2984 2985 2986
	} else {
		it->task = l;
	}
	return res;
}

2987
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2988
	__releases(css_set_lock)
2989 2990 2991 2992
{
	read_unlock(&css_set_lock);
}

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
3130
			struct task_struct *q = heap->ptrs[i];
3131
			if (i == 0) {
3132 3133
				latest_time = q->start_time;
				latest_task = q;
3134 3135
			}
			/* Process the task per the caller's callback */
3136 3137
			scan->process_task(q, scan);
			put_task_struct(q);
3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

3153
/*
3154
 * Stuff for reading the 'tasks'/'procs' files.
3155 3156 3157 3158 3159 3160 3161 3162
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
/* which pidlist file are we talking about? */
enum cgroup_filetype {
	CGROUP_FILE_PROCS,
	CGROUP_FILE_TASKS,
};

/*
 * A pidlist is a list of pids that virtually represents the contents of one
 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
 * a pair (one each for procs, tasks) for each pid namespace that's relevant
 * to the cgroup.
 */
struct cgroup_pidlist {
	/*
	 * used to find which pidlist is wanted. doesn't change as long as
	 * this particular list stays in the list.
	*/
	struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
	/* array of xids */
	pid_t *list;
	/* how many elements the above list has */
	int length;
	/* how many files are using the current array */
	int use_count;
	/* each of these stored in a list by its cgroup */
	struct list_head links;
	/* pointer to the cgroup we belong to, for list removal purposes */
	struct cgroup *owner;
	/* protects the other fields */
	struct rw_semaphore mutex;
};

3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}
static void *pidlist_resize(void *p, int newcount)
{
	void *newlist;
	/* note: if new alloc fails, old p will still be valid either way */
	if (is_vmalloc_addr(p)) {
		newlist = vmalloc(newcount * sizeof(pid_t));
		if (!newlist)
			return NULL;
		memcpy(newlist, p, newcount * sizeof(pid_t));
		vfree(p);
	} else {
		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
	}
	return newlist;
}

3231
/*
3232 3233 3234 3235
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * If the new stripped list is sufficiently smaller and there's enough memory
 * to allocate a new buffer, will let go of the unneeded memory. Returns the
 * number of unique elements.
3236
 */
3237 3238 3239
/* is the size difference enough that we should re-allocate the array? */
#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
static int pidlist_uniq(pid_t **p, int length)
3240
{
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
	int src, dest = 1;
	pid_t *list = *p;
	pid_t *newlist;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	/*
	 * if the length difference is large enough, we want to allocate a
	 * smaller buffer to save memory. if this fails due to out of memory,
	 * we'll just stay with what we've got.
	 */
	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3270
		newlist = pidlist_resize(list, dest);
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281
		if (newlist)
			*p = newlist;
	}
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
3293 3294
	struct pid_namespace *ns = current->nsproxy->pid_ns;

3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
3319
	l->key.ns = get_pid_ns(ns);
3320 3321 3322 3323 3324 3325 3326 3327
	l->use_count = 0; /* don't increment here */
	l->list = NULL;
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

3328 3329 3330
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
3331 3332
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
3333 3334 3335 3336
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
3337 3338
	struct cgroup_iter it;
	struct task_struct *tsk;
3339 3340 3341 3342 3343 3344 3345 3346 3347
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
3348
	array = pidlist_allocate(length);
3349 3350 3351
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
3352 3353
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3354
		if (unlikely(n == length))
3355
			break;
3356
		/* get tgid or pid for procs or tasks file respectively */
3357 3358 3359 3360
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
3361 3362
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
3363
	}
3364
	cgroup_iter_end(cgrp, &it);
3365 3366 3367
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
3368
	if (type == CGROUP_FILE_PROCS)
3369
		length = pidlist_uniq(&array, length);
3370 3371
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
3372
		pidlist_free(array);
3373
		return -ENOMEM;
3374
	}
3375
	/* store array, freeing old if necessary - lock already held */
3376
	pidlist_free(l->list);
3377 3378 3379 3380
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
3381
	*lp = l;
3382
	return 0;
3383 3384
}

B
Balbir Singh 已提交
3385
/**
L
Li Zefan 已提交
3386
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
3387 3388 3389
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
3390 3391 3392
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
3393 3394 3395 3396
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
3397
	struct cgroup *cgrp;
B
Balbir Singh 已提交
3398 3399
	struct cgroup_iter it;
	struct task_struct *tsk;
3400

B
Balbir Singh 已提交
3401
	/*
3402 3403
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
3404
	 */
3405 3406
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
3407 3408 3409
		 goto err;

	ret = 0;
3410
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
3411

3412 3413
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
3433
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
3434 3435 3436 3437 3438

err:
	return ret;
}

3439

3440
/*
3441
 * seq_file methods for the tasks/procs files. The seq_file position is the
3442
 * next pid to display; the seq_file iterator is a pointer to the pid
3443
 * in the cgroup->l->list array.
3444
 */
3445

3446
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3447
{
3448 3449 3450 3451 3452 3453
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
3454
	struct cgroup_pidlist *l = s->private;
3455 3456 3457
	int index = 0, pid = *pos;
	int *iter;

3458
	down_read(&l->mutex);
3459
	if (pid) {
3460
		int end = l->length;
S
Stephen Rothwell 已提交
3461

3462 3463
		while (index < end) {
			int mid = (index + end) / 2;
3464
			if (l->list[mid] == pid) {
3465 3466
				index = mid;
				break;
3467
			} else if (l->list[mid] <= pid)
3468 3469 3470 3471 3472 3473
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
3474
	if (index >= l->length)
3475 3476
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
3477
	iter = l->list + index;
3478 3479 3480 3481
	*pos = *iter;
	return iter;
}

3482
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3483
{
3484 3485
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
3486 3487
}

3488
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3489
{
3490 3491 3492
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

3506
static int cgroup_pidlist_show(struct seq_file *s, void *v)
3507 3508 3509
{
	return seq_printf(s, "%d\n", *(int *)v);
}
3510

3511 3512 3513 3514 3515 3516 3517 3518 3519
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
3520 3521
};

3522
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3523
{
3524 3525 3526 3527 3528 3529 3530
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
3531 3532 3533
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
3534 3535 3536
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
3537
		pidlist_free(l->list);
3538 3539 3540 3541
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
3542
	}
3543
	mutex_unlock(&l->owner->pidlist_mutex);
3544
	up_write(&l->mutex);
3545 3546
}

3547
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3548
{
3549
	struct cgroup_pidlist *l;
3550 3551
	if (!(file->f_mode & FMODE_READ))
		return 0;
3552 3553 3554 3555 3556 3557
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
3558 3559 3560
	return seq_release(inode, file);
}

3561
static const struct file_operations cgroup_pidlist_operations = {
3562 3563 3564
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
3565
	.release = cgroup_pidlist_release,
3566 3567
};

3568
/*
3569 3570 3571
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
3572
 */
3573
/* helper function for the two below it */
3574
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3575
{
3576
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3577
	struct cgroup_pidlist *l;
3578
	int retval;
3579

3580
	/* Nothing to do for write-only files */
3581 3582 3583
	if (!(file->f_mode & FMODE_READ))
		return 0;

3584
	/* have the array populated */
3585
	retval = pidlist_array_load(cgrp, type, &l);
3586 3587 3588 3589
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
3590

3591
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3592
	if (retval) {
3593
		cgroup_release_pid_array(l);
3594
		return retval;
3595
	}
3596
	((struct seq_file *)file->private_data)->private = l;
3597 3598
	return 0;
}
3599 3600
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
3601
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3602 3603 3604
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
3605
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3606
}
3607

3608
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3609 3610
					    struct cftype *cft)
{
3611
	return notify_on_release(cgrp);
3612 3613
}

3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup *cgrp = event->cgrp;

	event->cft->unregister_event(cgrp, event->cft, event->eventfd);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3641
	dput(cgrp->dentry);
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->cgrp;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
C
Changli Gao 已提交
3658
		__remove_wait_queue(event->wqh, &event->wait);
3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735
		spin_lock(&cgrp->event_list_lock);
		list_del(&event->list);
		spin_unlock(&cgrp->event_list_lock);
		/*
		 * We are in atomic context, but cgroup_event_remove() may
		 * sleep, so we have to call it in workqueue.
		 */
		schedule_work(&event->remove);
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	struct cgroup_event *event = NULL;
	unsigned int efd, cfd;
	struct file *efile = NULL;
	struct file *cfile = NULL;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
	event->cgrp = cgrp;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = eventfd_fget(efd);
	if (IS_ERR(efile)) {
		ret = PTR_ERR(efile);
		goto fail;
	}

	event->eventfd = eventfd_ctx_fileget(efile);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto fail;
	}

	cfile = fget(cfd);
	if (!cfile) {
		ret = -EBADF;
		goto fail;
	}

	/* the process need read permission on control file */
A
Al Viro 已提交
3736 3737
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
	if (ret < 0)
		goto fail;

	event->cft = __file_cft(cfile);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto fail;
	}

	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto fail;
	}

	ret = event->cft->register_event(cgrp, event->cft,
			event->eventfd, buffer);
	if (ret)
		goto fail;

	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
		ret = 0;
		goto fail;
	}

3763 3764 3765 3766 3767 3768 3769
	/*
	 * Events should be removed after rmdir of cgroup directory, but before
	 * destroying subsystem state objects. Let's take reference to cgroup
	 * directory dentry to do that.
	 */
	dget(cgrp->dentry);

3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793
	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fput(cfile);
	fput(efile);

	return 0;

fail:
	if (cfile)
		fput(cfile);

	if (event && event->eventfd && !IS_ERR(event->eventfd))
		eventfd_ctx_put(event->eventfd);

	if (!IS_ERR_OR_NULL(efile))
		fput(efile);

	kfree(event);

	return ret;
}

3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810
static u64 cgroup_clone_children_read(struct cgroup *cgrp,
				    struct cftype *cft)
{
	return clone_children(cgrp);
}

static int cgroup_clone_children_write(struct cgroup *cgrp,
				     struct cftype *cft,
				     u64 val)
{
	if (val)
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	else
		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	return 0;
}

3811 3812 3813
/*
 * for the common functions, 'private' gives the type of file
 */
3814 3815
/* for hysterical raisins, we can't put this on the older files */
#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3816 3817 3818 3819
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
3820
		.write_u64 = cgroup_tasks_write,
3821
		.release = cgroup_pidlist_release,
L
Li Zefan 已提交
3822
		.mode = S_IRUGO | S_IWUSR,
3823
	},
3824 3825 3826
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
		.open = cgroup_procs_open,
B
Ben Blum 已提交
3827
		.write_u64 = cgroup_procs_write,
3828
		.release = cgroup_pidlist_release,
B
Ben Blum 已提交
3829
		.mode = S_IRUGO | S_IWUSR,
3830
	},
3831 3832
	{
		.name = "notify_on_release",
3833
		.read_u64 = cgroup_read_notify_on_release,
3834
		.write_u64 = cgroup_write_notify_on_release,
3835
	},
3836 3837 3838 3839 3840
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
3841 3842 3843 3844 3845
	{
		.name = "cgroup.clone_children",
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
3846 3847 3848 3849 3850 3851 3852
	{
		.name = "release_agent",
		.flags = CFTYPE_ONLY_ON_ROOT,
		.read_seq_string = cgroup_release_agent_show,
		.write_string = cgroup_release_agent_write,
		.max_write_len = PATH_MAX,
	},
T
Tejun Heo 已提交
3853
	{ }	/* terminate */
3854 3855
};

3856
static int cgroup_populate_dir(struct cgroup *cgrp)
3857 3858 3859 3860
{
	int err;
	struct cgroup_subsys *ss;

3861
	err = cgroup_addrm_files(cgrp, NULL, files, true);
3862 3863 3864
	if (err < 0)
		return err;

3865
	/* process cftsets of each subsystem */
3866
	for_each_subsys(cgrp->root, ss) {
3867 3868
		struct cftype_set *set;

T
Tejun Heo 已提交
3869
		list_for_each_entry(set, &ss->cftsets, node)
3870
			cgroup_addrm_files(cgrp, ss, set->cfts, true);
3871
	}
3872

K
KAMEZAWA Hiroyuki 已提交
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
3884 3885 3886 3887

	return 0;
}

3888 3889 3890 3891 3892 3893 3894 3895
static void css_dput_fn(struct work_struct *work)
{
	struct cgroup_subsys_state *css =
		container_of(work, struct cgroup_subsys_state, dput_work);

	dput(css->cgroup->dentry);
}

3896 3897
static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
3898
			       struct cgroup *cgrp)
3899
{
3900
	css->cgroup = cgrp;
P
Paul Menage 已提交
3901
	atomic_set(&css->refcnt, 1);
3902
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
3903
	css->id = NULL;
3904
	if (cgrp == dummytop)
3905
		set_bit(CSS_ROOT, &css->flags);
3906 3907
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917

	/*
	 * If !clear_css_refs, css holds an extra ref to @cgrp->dentry
	 * which is put on the last css_put().  dput() requires process
	 * context, which css_put() may be called without.  @css->dput_work
	 * will be used to invoke dput() asynchronously from css_put().
	 */
	INIT_WORK(&css->dput_work, css_dput_fn);
	if (ss->__DEPRECATED_clear_css_refs)
		set_bit(CSS_CLEAR_CSS_REFS, &css->flags);
3918 3919
}

3920 3921 3922 3923 3924
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

B
Ben Blum 已提交
3925 3926 3927 3928
	/*
	 * No worry about a race with rebind_subsystems that might mess up the
	 * locking order, since both parties are under cgroup_mutex.
	 */
3929 3930
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3931 3932
		if (ss == NULL)
			continue;
3933
		if (ss->root == root)
3934
			mutex_lock(&ss->hierarchy_mutex);
3935 3936 3937 3938 3939 3940 3941 3942 3943
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3944 3945
		if (ss == NULL)
			continue;
3946 3947 3948 3949 3950
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

3951
/*
L
Li Zefan 已提交
3952 3953 3954 3955
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
3956
 *
L
Li Zefan 已提交
3957
 * Must be called with the mutex on the parent inode held
3958 3959
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
A
Al Viro 已提交
3960
			     umode_t mode)
3961
{
3962
	struct cgroup *cgrp;
3963 3964 3965 3966 3967
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

3968 3969
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

3981
	init_cgroup_housekeeping(cgrp);
3982

3983 3984 3985
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
3986

3987 3988 3989
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

3990 3991 3992
	if (clone_children(parent))
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);

3993
	for_each_subsys(root, ss) {
3994
		struct cgroup_subsys_state *css = ss->create(cgrp);
3995

3996 3997 3998 3999
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
4000
		init_cgroup_css(css, ss, cgrp);
4001 4002 4003
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
K
KAMEZAWA Hiroyuki 已提交
4004
				goto err_destroy;
4005
		}
K
KAMEZAWA Hiroyuki 已提交
4006
		/* At error, ->destroy() callback has to free assigned ID. */
4007
		if (clone_children(parent) && ss->post_clone)
4008
			ss->post_clone(cgrp);
4009 4010
	}

4011
	cgroup_lock_hierarchy(root);
4012
	list_add(&cgrp->sibling, &cgrp->parent->children);
4013
	cgroup_unlock_hierarchy(root);
4014 4015
	root->number_of_cgroups++;

4016
	err = cgroup_create_dir(cgrp, dentry, mode);
4017 4018 4019
	if (err < 0)
		goto err_remove;

4020 4021 4022 4023 4024
	/* If !clear_css_refs, each css holds a ref to the cgroup's dentry */
	for_each_subsys(root, ss)
		if (!ss->__DEPRECATED_clear_css_refs)
			dget(dentry);

4025
	/* The cgroup directory was pre-locked for us */
4026
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
4027

4028 4029
	list_add_tail(&cgrp->allcg_node, &root->allcg_list);

4030
	err = cgroup_populate_dir(cgrp);
4031 4032 4033
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
4034
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4035 4036 4037 4038 4039

	return 0;

 err_remove:

4040
	cgroup_lock_hierarchy(root);
4041
	list_del(&cgrp->sibling);
4042
	cgroup_unlock_hierarchy(root);
4043 4044 4045 4046 4047
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
4048
		if (cgrp->subsys[ss->subsys_id])
4049
			ss->destroy(cgrp);
4050 4051 4052 4053 4054 4055 4056
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

4057
	kfree(cgrp);
4058 4059 4060
	return err;
}

4061
static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4062 4063 4064 4065 4066 4067 4068
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

4069 4070 4071 4072 4073 4074 4075 4076 4077
/*
 * Check the reference count on each subsystem. Since we already
 * established that there are no tasks in the cgroup, if the css refcount
 * is also 1, then there should be no outstanding references, so the
 * subsystem is safe to destroy. We scan across all subsystems rather than
 * using the per-hierarchy linked list of mounted subsystems since we can
 * be called via check_for_release() with no synchronization other than
 * RCU, and the subsystem linked list isn't RCU-safe.
 */
4078
static int cgroup_has_css_refs(struct cgroup *cgrp)
4079 4080
{
	int i;
4081

B
Ben Blum 已提交
4082 4083 4084 4085 4086
	/*
	 * We won't need to lock the subsys array, because the subsystems
	 * we're concerned about aren't going anywhere since our cgroup root
	 * has a reference on them.
	 */
4087 4088 4089
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
4090

B
Ben Blum 已提交
4091 4092
		/* Skip subsystems not present or not in this hierarchy */
		if (ss == NULL || ss->root != cgrp->root)
4093
			continue;
4094

4095
		css = cgrp->subsys[ss->subsys_id];
4096 4097
		/*
		 * When called from check_for_release() it's possible
4098 4099 4100 4101
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
4102 4103 4104
		 * release agent to be called anyway.
		 */
		if (css && css_refcnt(css) > 1)
4105 4106 4107 4108 4109
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
4110 4111 4112 4113
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
 *
 * Depending on whether a subsys has __DEPRECATED_clear_css_refs set or
 * not, cgroup removal behaves differently.
 *
 * If clear is set, css refcnt for the subsystem should be zero before
 * cgroup removal can be committed.  This is implemented by
 * CGRP_WAIT_ON_RMDIR and retry logic around ->pre_destroy(), which may be
 * called multiple times until all css refcnts reach zero and is allowed to
 * veto removal on any invocation.  This behavior is deprecated and will be
 * removed as soon as the existing user (memcg) is updated.
 *
 * If clear is not set, each css holds an extra reference to the cgroup's
 * dentry and cgroup removal proceeds regardless of css refs.
 * ->pre_destroy() will be called at least once and is not allowed to fail.
 * On the last put of each css, whenever that may be, the extra dentry ref
 * is put so that dentry destruction happens only after all css's are
 * released.
P
Paul Menage 已提交
4131 4132 4133 4134 4135 4136
 */
static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
4137

P
Paul Menage 已提交
4138
	local_irq_save(flags);
4139 4140 4141

	/*
	 * Block new css_tryget() by deactivating refcnt.  If all refcnts
4142 4143
	 * for subsystems w/ clear_css_refs set were 1 at the moment of
	 * deactivation, we succeeded.
4144
	 */
P
Paul Menage 已提交
4145 4146
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4147 4148 4149

		WARN_ON(atomic_read(&css->refcnt) < 0);
		atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4150 4151 4152

		if (ss->__DEPRECATED_clear_css_refs)
			failed |= css_refcnt(css) != 1;
P
Paul Menage 已提交
4153
	}
4154 4155 4156 4157 4158 4159

	/*
	 * If succeeded, set REMOVED and put all the base refs; otherwise,
	 * restore refcnts to positive values.  Either way, all in-progress
	 * css_tryget() will be released.
	 */
P
Paul Menage 已提交
4160 4161
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4162 4163

		if (!failed) {
P
Paul Menage 已提交
4164
			set_bit(CSS_REMOVED, &css->flags);
4165 4166 4167
			css_put(css);
		} else {
			atomic_sub(CSS_DEACT_BIAS, &css->refcnt);
P
Paul Menage 已提交
4168 4169
		}
	}
4170

P
Paul Menage 已提交
4171 4172 4173 4174
	local_irq_restore(flags);
	return !failed;
}

4175 4176
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
4177
	struct cgroup *cgrp = dentry->d_fsdata;
4178 4179
	struct dentry *d;
	struct cgroup *parent;
4180
	DEFINE_WAIT(wait);
4181
	struct cgroup_event *event, *tmp;
4182
	int ret;
4183 4184

	/* the vfs holds both inode->i_mutex already */
4185
again:
4186
	mutex_lock(&cgroup_mutex);
4187
	if (atomic_read(&cgrp->count) != 0) {
4188 4189 4190
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
4191
	if (!list_empty(&cgrp->children)) {
4192 4193 4194
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
4195
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
4196

4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

4208
	/*
L
Li Zefan 已提交
4209 4210
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
4211
	 */
4212
	ret = cgroup_call_pre_destroy(cgrp);
4213 4214
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4215
		return ret;
4216
	}
4217

4218 4219
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
4220
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4221
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4222 4223 4224
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
4225 4226 4227
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
4228 4229 4230 4231 4232 4233
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
4234 4235 4236 4237 4238 4239 4240 4241 4242
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4243

4244
	raw_spin_lock(&release_list_lock);
4245 4246
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
4247
		list_del_init(&cgrp->release_list);
4248
	raw_spin_unlock(&release_list_lock);
4249 4250 4251

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
4252
	list_del_init(&cgrp->sibling);
4253 4254
	cgroup_unlock_hierarchy(cgrp->root);

4255 4256
	list_del_init(&cgrp->allcg_node);

4257
	d = dget(cgrp->dentry);
4258 4259 4260 4261

	cgroup_d_remove_dir(d);
	dput(d);

4262
	set_bit(CGRP_RELEASABLE, &parent->flags);
4263 4264
	check_for_release(parent);

4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del(&event->list);
		remove_wait_queue(event->wqh, &event->wait);
		eventfd_signal(event->eventfd, 1);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

4279 4280 4281 4282
	mutex_unlock(&cgroup_mutex);
	return 0;
}

4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296
static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
{
	INIT_LIST_HEAD(&ss->cftsets);

	/*
	 * base_cftset is embedded in subsys itself, no need to worry about
	 * deregistration.
	 */
	if (ss->base_cftypes) {
		ss->base_cftset.cfts = ss->base_cftypes;
		list_add_tail(&ss->base_cftset.node, &ss->cftsets);
	}
}

4297
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4298 4299
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
4300 4301

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4302

4303 4304 4305
	/* init base cftset */
	cgroup_init_cftsets(ss);

4306
	/* Create the top cgroup state for this subsystem */
4307
	list_add(&ss->sibling, &rootnode.subsys_list);
4308
	ss->root = &rootnode;
4309
	css = ss->create(dummytop);
4310 4311 4312 4313
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
4314
	/* Update the init_css_set to contain a subsys
4315
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
4316 4317 4318
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4319 4320 4321

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
4322 4323 4324 4325 4326
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

4327
	mutex_init(&ss->hierarchy_mutex);
4328
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4329
	ss->active = 1;
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340

	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
T
Thomas Weber 已提交
4341
 * subsystem is built as a module, it will be assigned a new subsys_id and set
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	int i;
	struct cgroup_subsys_state *css;

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
	    ss->create == NULL || ss->destroy == NULL)
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
		/* a few sanity checks */
		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
		BUG_ON(subsys[ss->subsys_id] != ss);
		return 0;
	}

4375 4376 4377
	/* init base cftset */
	cgroup_init_cftsets(ss);

4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
	/*
	 * need to register a subsys id before anything else - for example,
	 * init_cgroup_css needs it.
	 */
	mutex_lock(&cgroup_mutex);
	/* find the first empty slot in the array */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		if (subsys[i] == NULL)
			break;
	}
	if (i == CGROUP_SUBSYS_COUNT) {
		/* maximum number of subsystems already registered! */
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
	/* assign ourselves the subsys_id */
	ss->subsys_id = i;
	subsys[i] = ss;

	/*
	 * no ss->create seems to need anything important in the ss struct, so
	 * this can happen first (i.e. before the rootnode attachment).
	 */
4401
	css = ss->create(dummytop);
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
	if (IS_ERR(css)) {
		/* failure case - need to deassign the subsys[] slot. */
		subsys[i] = NULL;
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

	list_add(&ss->sibling, &rootnode.subsys_list);
	ss->root = &rootnode;

	/* our new subsystem will be attached to the dummy hierarchy. */
	init_cgroup_css(css, ss, dummytop);
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
		int ret = cgroup_init_idr(ss, css);
		if (ret) {
			dummytop->subsys[ss->subsys_id] = NULL;
4419
			ss->destroy(dummytop);
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
			subsys[i] = NULL;
			mutex_unlock(&cgroup_mutex);
			return ret;
		}
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
		struct css_set *cg;
		struct hlist_node *node, *tmp;
		struct hlist_head *bucket = &css_set_table[i], *new_bucket;

		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
			/* skip entries that we already rehashed */
			if (cg->subsys[ss->subsys_id])
				continue;
			/* remove existing entry */
			hlist_del(&cg->hlist);
			/* set new value */
			cg->subsys[ss->subsys_id] = css;
			/* recompute hash and restore entry */
			new_bucket = css_set_hash(cg->subsys);
			hlist_add_head(&cg->hlist, new_bucket);
		}
	}
	write_unlock(&css_set_lock);

	mutex_init(&ss->hierarchy_mutex);
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
	ss->active = 1;

	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
4462
}
4463
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4464

B
Ben Blum 已提交
4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
	struct cg_cgroup_link *link;
	struct hlist_head *hhead;

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
	 * try_module_get in parse_cgroupfs_options should ensure that it
	 * doesn't start being used while we're killing it off.
	 */
	BUG_ON(ss->root != &rootnode);

	mutex_lock(&cgroup_mutex);
	/* deassign the subsys_id */
	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
	subsys[ss->subsys_id] = NULL;

	/* remove subsystem from rootnode's list of subsystems */
4493
	list_del_init(&ss->sibling);
B
Ben Blum 已提交
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516

	/*
	 * disentangle the css from all css_sets attached to the dummytop. as
	 * in loading, we need to pay our respects to the hashtable gods.
	 */
	write_lock(&css_set_lock);
	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;

		hlist_del(&cg->hlist);
		BUG_ON(!cg->subsys[ss->subsys_id]);
		cg->subsys[ss->subsys_id] = NULL;
		hhead = css_set_hash(cg->subsys);
		hlist_add_head(&cg->hlist, hhead);
	}
	write_unlock(&css_set_lock);

	/*
	 * remove subsystem's css from the dummytop and free it - need to free
	 * before marking as null because ss->destroy needs the cgrp->subsys
	 * pointer to find their state. note that this also takes care of
	 * freeing the css_id.
	 */
4517
	ss->destroy(dummytop);
B
Ben Blum 已提交
4518 4519 4520 4521 4522 4523
	dummytop->subsys[ss->subsys_id] = NULL;

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

4524
/**
L
Li Zefan 已提交
4525 4526 4527 4528
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
4529 4530 4531 4532
 */
int __init cgroup_init_early(void)
{
	int i;
4533
	atomic_set(&init_css_set.refcount, 1);
4534 4535
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
4536
	INIT_HLIST_NODE(&init_css_set.hlist);
4537
	css_set_count = 1;
4538
	init_cgroup_root(&rootnode);
4539 4540 4541 4542
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
4543
	init_css_set_link.cgrp = dummytop;
4544
	list_add(&init_css_set_link.cgrp_link_list,
4545 4546 4547
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
4548

4549 4550 4551
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

B
Ben Blum 已提交
4552 4553
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4554 4555 4556 4557 4558 4559 4560
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
4561
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
4573 4574 4575 4576
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
4577 4578 4579 4580 4581
 */
int __init cgroup_init(void)
{
	int err;
	int i;
4582
	struct hlist_head *hhead;
4583 4584 4585 4586

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
4587

B
Ben Blum 已提交
4588 4589
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4590 4591 4592
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
4593
		if (ss->use_id)
4594
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4595 4596
	}

4597 4598 4599
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
4600
	BUG_ON(!init_root_id(&rootnode));
4601 4602 4603 4604 4605 4606 4607

	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

4608
	err = register_filesystem(&cgroup_fs_type);
4609 4610
	if (err < 0) {
		kobject_put(cgroup_kobj);
4611
		goto out;
4612
	}
4613

L
Li Zefan 已提交
4614
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4615

4616
out:
4617 4618 4619
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

4620 4621
	return err;
}
4622

4623 4624 4625 4626 4627 4628
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
4629
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

4659
	for_each_active_root(root) {
4660
		struct cgroup_subsys *ss;
4661
		struct cgroup *cgrp;
4662 4663
		int count = 0;

4664
		seq_printf(m, "%d:", root->hierarchy_id);
4665 4666
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4667 4668 4669
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
4670
		seq_putc(m, ':');
4671
		cgrp = task_cgroup_from_root(tsk, root);
4672
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

4694
const struct file_operations proc_cgroup_operations = {
4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

4706
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
4707 4708 4709 4710 4711
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
4712 4713 4714
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
4715 4716
		if (ss == NULL)
			continue;
4717 4718
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
4719
			   ss->root->number_of_cgroups, !ss->disabled);
4720 4721 4722 4723 4724 4725 4726
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
4727
	return single_open(file, proc_cgroupstats_show, NULL);
4728 4729
}

4730
static const struct file_operations proc_cgroupstats_operations = {
4731 4732 4733 4734 4735 4736
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

4737 4738
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
4739
 * @child: pointer to task_struct of forking parent process.
4740 4741 4742 4743 4744
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
 * it was not made under the protection of RCU, cgroup_mutex or
 * threadgroup_change_begin(), so it might no longer be a valid
 * cgroup pointer.  cgroup_attach_task() might have already changed
 * current->cgroups, allowing the previously referenced cgroup
 * group to be removed and freed.
 *
 * Outside the pointer validity we also need to process the css_set
 * inheritance between threadgoup_change_begin() and
 * threadgoup_change_end(), this way there is no leak in any process
 * wide migration performed by cgroup_attach_proc() that could otherwise
 * miss a thread because it is too early or too late in the fork stage.
4756 4757 4758 4759 4760 4761
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
4762 4763 4764 4765 4766 4767
	/*
	 * We don't need to task_lock() current because current->cgroups
	 * can't be changed concurrently here. The parent obviously hasn't
	 * exited and called cgroup_exit(), and we are synchronized against
	 * cgroup migration through threadgroup_change_begin().
	 */
4768 4769 4770
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	INIT_LIST_HEAD(&child->cg_list);
4771 4772 4773
}

/**
L
Li Zefan 已提交
4774 4775 4776 4777 4778 4779
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
4780 4781 4782 4783 4784
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
B
Ben Blum 已提交
4785 4786 4787 4788 4789 4790
		/*
		 * forkexit callbacks are only supported for builtin
		 * subsystems, and the builtin section of the subsys array is
		 * immutable, so we don't need to lock the subsys array here.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4791 4792
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
4793
				ss->fork(child);
4794 4795 4796 4797
		}
	}
}

4798
/**
L
Li Zefan 已提交
4799 4800 4801 4802 4803 4804 4805 4806
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
4807 4808
void cgroup_post_fork(struct task_struct *child)
{
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
	/*
	 * use_task_css_set_links is set to 1 before we walk the tasklist
	 * under the tasklist_lock and we read it here after we added the child
	 * to the tasklist under the tasklist_lock as well. If the child wasn't
	 * yet in the tasklist when we walked through it from
	 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
	 * should be visible now due to the paired locking and barriers implied
	 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
	 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
	 * lock on fork.
	 */
4820 4821
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
		if (list_empty(&child->cg_list)) {
			/*
			 * It's safe to use child->cgroups without task_lock()
			 * here because we are protected through
			 * threadgroup_change_begin() against concurrent
			 * css_set change in cgroup_task_migrate(). Also
			 * the task can't exit at that point until
			 * wake_up_new_task() is called, so we are protected
			 * against cgroup_exit() setting child->cgroup to
			 * init_css_set.
			 */
4833
			list_add(&child->cg_list, &child->cgroups->tasks);
4834
		}
4835 4836 4837
		write_unlock(&css_set_lock);
	}
}
4838 4839 4840
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
4841
 * @run_callback: run exit callbacks?
4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4870 4871
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
4872 4873 4874
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
4875
	struct css_set *cg;
4876
	int i;
4877 4878 4879 4880 4881 4882 4883 4884 4885

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
4886
			list_del_init(&tsk->cg_list);
4887 4888 4889
		write_unlock(&css_set_lock);
	}

4890 4891
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
4892 4893
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905

	if (run_callbacks && need_forkexit_callback) {
		/*
		 * modular subsystems can't use callbacks, so no need to lock
		 * the subsys array
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit) {
				struct cgroup *old_cgrp =
					rcu_dereference_raw(cg->subsys[i])->cgroup;
				struct cgroup *cgrp = task_cgroup(tsk, i);
4906
				ss->exit(cgrp, old_cgrp, tsk);
4907 4908 4909
			}
		}
	}
4910
	task_unlock(tsk);
4911

4912
	if (cg)
4913
		put_css_set_taskexit(cg);
4914
}
4915

L
Li Zefan 已提交
4916
/**
4917
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
4918
 * @cgrp: the cgroup in question
4919
 * @task: the task in question
L
Li Zefan 已提交
4920
 *
4921 4922
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
4923 4924 4925 4926 4927 4928
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
4929
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4930 4931 4932 4933
{
	int ret;
	struct cgroup *target;

4934
	if (cgrp == dummytop)
4935 4936
		return 1;

4937
	target = task_cgroup_from_root(task, cgrp->root);
4938 4939 4940
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
4941 4942
	return ret;
}
4943

4944
static void check_for_release(struct cgroup *cgrp)
4945 4946 4947
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
4948 4949
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4950 4951 4952 4953
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
4954
		raw_spin_lock(&release_list_lock);
4955 4956 4957
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
4958 4959
			need_schedule_work = 1;
		}
4960
		raw_spin_unlock(&release_list_lock);
4961 4962 4963 4964 4965
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

4966
/* Caller must verify that the css is not for root cgroup */
4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982
bool __css_tryget(struct cgroup_subsys_state *css)
{
	do {
		int v = css_refcnt(css);

		if (atomic_cmpxchg(&css->refcnt, v, v + 1) == v)
			return true;
		cpu_relax();
	} while (!test_bit(CSS_REMOVED, &css->flags));

	return false;
}
EXPORT_SYMBOL_GPL(__css_tryget);

/* Caller must verify that the css is not for root cgroup */
void __css_put(struct cgroup_subsys_state *css)
4983
{
4984
	struct cgroup *cgrp = css->cgroup;
4985

4986
	rcu_read_lock();
4987
	atomic_dec(&css->refcnt);
4988 4989
	switch (css_refcnt(css)) {
	case 1:
4990 4991 4992 4993
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
4994
		cgroup_wakeup_rmdir_waiter(cgrp);
4995 4996 4997 4998 4999
		break;
	case 0:
		if (!test_bit(CSS_CLEAR_CSS_REFS, &css->flags))
			schedule_work(&css->dput_work);
		break;
5000 5001 5002
	}
	rcu_read_unlock();
}
B
Ben Blum 已提交
5003
EXPORT_SYMBOL_GPL(__css_put);
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
5032
	raw_spin_lock(&release_list_lock);
5033 5034 5035
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
5036
		char *pathbuf = NULL, *agentbuf = NULL;
5037
		struct cgroup *cgrp = list_entry(release_list.next,
5038 5039
						    struct cgroup,
						    release_list);
5040
		list_del_init(&cgrp->release_list);
5041
		raw_spin_unlock(&release_list_lock);
5042
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5043 5044 5045 5046 5047 5048 5049
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
5050 5051

		i = 0;
5052 5053
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
5068 5069 5070
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
5071
		raw_spin_lock(&release_list_lock);
5072
	}
5073
	raw_spin_unlock(&release_list_lock);
5074 5075
	mutex_unlock(&cgroup_mutex);
}
5076 5077 5078 5079 5080 5081 5082 5083 5084

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
B
Ben Blum 已提交
5085 5086 5087 5088 5089
		/*
		 * cgroup_disable, being at boot time, can't know about module
		 * subsystems, so we don't worry about them.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
5113 5114 5115 5116 5117 5118 5119
	struct css_id *cssid;

	/*
	 * This css_id() can return correct value when somone has refcnt
	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
	 * it's unchanged until freed.
	 */
5120
	cssid = rcu_dereference_check(css->id, css_refcnt(css));
K
KAMEZAWA Hiroyuki 已提交
5121 5122 5123 5124 5125

	if (cssid)
		return cssid->id;
	return 0;
}
B
Ben Blum 已提交
5126
EXPORT_SYMBOL_GPL(css_id);
K
KAMEZAWA Hiroyuki 已提交
5127 5128 5129

unsigned short css_depth(struct cgroup_subsys_state *css)
{
5130 5131
	struct css_id *cssid;

5132
	cssid = rcu_dereference_check(css->id, css_refcnt(css));
K
KAMEZAWA Hiroyuki 已提交
5133 5134 5135 5136 5137

	if (cssid)
		return cssid->depth;
	return 0;
}
B
Ben Blum 已提交
5138
EXPORT_SYMBOL_GPL(css_depth);
K
KAMEZAWA Hiroyuki 已提交
5139

5140 5141 5142 5143 5144 5145
/**
 *  css_is_ancestor - test "root" css is an ancestor of "child"
 * @child: the css to be tested.
 * @root: the css supporsed to be an ancestor of the child.
 *
 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5146
 * this function reads css->id, the caller must hold rcu_read_lock().
5147 5148 5149 5150 5151 5152
 * But, considering usual usage, the csses should be valid objects after test.
 * Assuming that the caller will do some action to the child if this returns
 * returns true, the caller must take "child";s reference count.
 * If "child" is valid object and this returns true, "root" is valid, too.
 */

K
KAMEZAWA Hiroyuki 已提交
5153
bool css_is_ancestor(struct cgroup_subsys_state *child,
5154
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
5155
{
5156 5157
	struct css_id *child_id;
	struct css_id *root_id;
K
KAMEZAWA Hiroyuki 已提交
5158

5159
	child_id  = rcu_dereference(child->id);
5160 5161
	if (!child_id)
		return false;
5162
	root_id = rcu_dereference(root->id);
5163 5164 5165 5166 5167 5168 5169
	if (!root_id)
		return false;
	if (child_id->depth < root_id->depth)
		return false;
	if (child_id->stack[root_id->depth] != root_id->id)
		return false;
	return true;
K
KAMEZAWA Hiroyuki 已提交
5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
5183
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5184
	idr_remove(&ss->idr, id->id);
5185
	spin_unlock(&ss->id_lock);
5186
	kfree_rcu(id, rcu_head);
K
KAMEZAWA Hiroyuki 已提交
5187
}
B
Ben Blum 已提交
5188
EXPORT_SYMBOL_GPL(free_css_id);
K
KAMEZAWA Hiroyuki 已提交
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
5211
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5212 5213
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5214
	spin_unlock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
5229
	spin_lock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5230
	idr_remove(&ss->idr, myid);
5231
	spin_unlock(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5232 5233 5234 5235 5236 5237
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

5238 5239
static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
K
KAMEZAWA Hiroyuki 已提交
5240 5241 5242
{
	struct css_id *newid;

5243
	spin_lock_init(&ss->id_lock);
K
KAMEZAWA Hiroyuki 已提交
5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
5261
	struct css_id *child_id, *parent_id;
K
KAMEZAWA Hiroyuki 已提交
5262 5263 5264 5265 5266

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	parent_id = parent_css->id;
5267
	depth = parent_id->depth + 1;
K
KAMEZAWA Hiroyuki 已提交
5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}
B
Ben Blum 已提交
5305
EXPORT_SYMBOL_GPL(css_lookup);
K
KAMEZAWA Hiroyuki 已提交
5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
5331 5332
	WARN_ON_ONCE(!rcu_read_lock_held());

K
KAMEZAWA Hiroyuki 已提交
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		tmp = idr_get_next(&ss->idr, &tmpid);
		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

S
Stephane Eranian 已提交
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378
/*
 * get corresponding css from file open on cgroupfs directory
 */
struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
{
	struct cgroup *cgrp;
	struct inode *inode;
	struct cgroup_subsys_state *css;

	inode = f->f_dentry->d_inode;
	/* check in cgroup filesystem dir */
	if (inode->i_op != &cgroup_dir_inode_operations)
		return ERR_PTR(-EBADF);

	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
		return ERR_PTR(-EINVAL);

	/* get cgroup */
	cgrp = __d_cgrp(f->f_dentry);
	css = cgrp->subsys[id];
	return css ? css : ERR_PTR(-ENOENT);
}

5379
#ifdef CONFIG_CGROUP_DEBUG
5380
static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5381 5382 5383 5384 5385 5386 5387 5388 5389
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

5390
static void debug_destroy(struct cgroup *cont)
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
5439 5440
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

5509 5510 5511 5512 5513
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},

5514 5515
	{ }	/* terminate */
};
5516 5517 5518 5519 5520 5521

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.subsys_id = debug_subsys_id,
5522
	.base_cftypes = debug_files,
5523 5524
};
#endif /* CONFIG_CGROUP_DEBUG */