intel_rdt_rdtgroup.c 70.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * User interface for Resource Alloction in Resource Director Technology(RDT)
 *
 * Copyright (C) 2016 Intel Corporation
 *
 * Author: Fenghua Yu <fenghua.yu@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * More information about RDT be found in the Intel (R) x86 Architecture
 * Software Developer Manual.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

23
#include <linux/cacheinfo.h>
T
Tony Luck 已提交
24
#include <linux/cpu.h>
25
#include <linux/debugfs.h>
26 27 28
#include <linux/fs.h>
#include <linux/sysfs.h>
#include <linux/kernfs.h>
29
#include <linux/seq_buf.h>
30
#include <linux/seq_file.h>
31
#include <linux/sched/signal.h>
32
#include <linux/sched/task.h>
33
#include <linux/slab.h>
F
Fenghua Yu 已提交
34
#include <linux/task_work.h>
35 36 37

#include <uapi/linux/magic.h>

38 39
#include <asm/intel_rdt_sched.h>
#include "intel_rdt.h"
40

41 42
DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
43
DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
44
static struct kernfs_root *rdt_root;
45 46 47
struct rdtgroup rdtgroup_default;
LIST_HEAD(rdt_all_groups);

48 49 50
/* Kernel fs node for "info" directory under root */
static struct kernfs_node *kn_info;

51 52 53 54 55 56
/* Kernel fs node for "mon_groups" directory under root */
static struct kernfs_node *kn_mongrp;

/* Kernel fs node for "mon_data" directory under root */
static struct kernfs_node *kn_mondata;

57 58 59
static struct seq_buf last_cmd_status;
static char last_cmd_status_buf[512];

60 61
struct dentry *debugfs_resctrl;

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
void rdt_last_cmd_clear(void)
{
	lockdep_assert_held(&rdtgroup_mutex);
	seq_buf_clear(&last_cmd_status);
}

void rdt_last_cmd_puts(const char *s)
{
	lockdep_assert_held(&rdtgroup_mutex);
	seq_buf_puts(&last_cmd_status, s);
}

void rdt_last_cmd_printf(const char *fmt, ...)
{
	va_list ap;

	va_start(ap, fmt);
	lockdep_assert_held(&rdtgroup_mutex);
	seq_buf_vprintf(&last_cmd_status, fmt, ap);
	va_end(ap);
}

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
 * we can keep a bitmap of free CLOSIDs in a single integer.
 *
 * Using a global CLOSID across all resources has some advantages and
 * some drawbacks:
 * + We can simply set "current->closid" to assign a task to a resource
 *   group.
 * + Context switch code can avoid extra memory references deciding which
 *   CLOSID to load into the PQR_ASSOC MSR
 * - We give up some options in configuring resource groups across multi-socket
 *   systems.
 * - Our choices on how to configure each resource become progressively more
 *   limited as the number of resources grows.
 */
static int closid_free_map;
100 101 102 103 104 105
static int closid_free_map_len;

int closids_supported(void)
{
	return closid_free_map_len;
}
106 107 108 109 110 111 112

static void closid_init(void)
{
	struct rdt_resource *r;
	int rdt_min_closid = 32;

	/* Compute rdt_min_closid across all resources */
113
	for_each_alloc_enabled_rdt_resource(r)
114 115 116 117 118 119
		rdt_min_closid = min(rdt_min_closid, r->num_closid);

	closid_free_map = BIT_MASK(rdt_min_closid) - 1;

	/* CLOSID 0 is always reserved for the default group */
	closid_free_map &= ~1;
120
	closid_free_map_len = rdt_min_closid;
121 122
}

123
static int closid_alloc(void)
124
{
125
	u32 closid = ffs(closid_free_map);
126 127 128 129 130 131 132 133 134

	if (closid == 0)
		return -ENOSPC;
	closid--;
	closid_free_map &= ~(1 << closid);

	return closid;
}

135
void closid_free(int closid)
136 137 138 139
{
	closid_free_map |= 1 << closid;
}

140 141 142 143 144 145 146
/**
 * closid_allocated - test if provided closid is in use
 * @closid: closid to be tested
 *
 * Return: true if @closid is currently associated with a resource group,
 * false if @closid is free
 */
147
static bool closid_allocated(unsigned int closid)
148 149 150 151
{
	return (closid_free_map & (1 << closid)) == 0;
}

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/**
 * rdtgroup_mode_by_closid - Return mode of resource group with closid
 * @closid: closid if the resource group
 *
 * Each resource group is associated with a @closid. Here the mode
 * of a resource group can be queried by searching for it using its closid.
 *
 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
 */
enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
{
	struct rdtgroup *rdtgrp;

	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
		if (rdtgrp->closid == closid)
			return rdtgrp->mode;
	}

	return RDT_NUM_MODES;
}

173
static const char * const rdt_mode_str[] = {
174 175 176 177
	[RDT_MODE_SHAREABLE]		= "shareable",
	[RDT_MODE_EXCLUSIVE]		= "exclusive",
	[RDT_MODE_PSEUDO_LOCKSETUP]	= "pseudo-locksetup",
	[RDT_MODE_PSEUDO_LOCKED]	= "pseudo-locked",
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
};

/**
 * rdtgroup_mode_str - Return the string representation of mode
 * @mode: the resource group mode as &enum rdtgroup_mode
 *
 * Return: string representation of valid mode, "unknown" otherwise
 */
static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
{
	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
		return "unknown";

	return rdt_mode_str[mode];
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
/* set uid and gid of rdtgroup dirs and files to that of the creator */
static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
{
	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
				.ia_uid = current_fsuid(),
				.ia_gid = current_fsgid(), };

	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
		return 0;

	return kernfs_setattr(kn, &iattr);
}

static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
{
	struct kernfs_node *kn;
	int ret;

	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
214
				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
				  0, rft->kf_ops, rft, NULL, NULL);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	ret = rdtgroup_kn_set_ugid(kn);
	if (ret) {
		kernfs_remove(kn);
		return ret;
	}

	return 0;
}

static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct kernfs_open_file *of = m->private;
	struct rftype *rft = of->kn->priv;

	if (rft->seq_show)
		return rft->seq_show(of, m, arg);
	return 0;
}

static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
				   size_t nbytes, loff_t off)
{
	struct rftype *rft = of->kn->priv;

	if (rft->write)
		return rft->write(of, buf, nbytes, off);

	return -EINVAL;
}

static struct kernfs_ops rdtgroup_kf_single_ops = {
	.atomic_write_len	= PAGE_SIZE,
	.write			= rdtgroup_file_write,
	.seq_show		= rdtgroup_seqfile_show,
};

V
Vikas Shivappa 已提交
255 256 257 258 259
static struct kernfs_ops kf_mondata_ops = {
	.atomic_write_len	= PAGE_SIZE,
	.seq_show		= rdtgroup_mondata_show,
};

260 261 262 263 264 265 266
static bool is_cpu_list(struct kernfs_open_file *of)
{
	struct rftype *rft = of->kn->priv;

	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
}

T
Tony Luck 已提交
267 268 269 270 271 272 273 274
static int rdtgroup_cpus_show(struct kernfs_open_file *of,
			      struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;
	int ret = 0;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);

275
	if (rdtgrp) {
276 277 278 279 280 281
		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
				   cpumask_pr_args(&rdtgrp->plr->d->cpu_mask));
		else
			seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
				   cpumask_pr_args(&rdtgrp->cpu_mask));
282
	} else {
T
Tony Luck 已提交
283
		ret = -ENOENT;
284
	}
T
Tony Luck 已提交
285 286 287 288 289
	rdtgroup_kn_unlock(of->kn);

	return ret;
}

290 291 292
/*
 * This is safe against intel_rdt_sched_in() called from __switch_to()
 * because __switch_to() is executed with interrupts disabled. A local call
293
 * from update_closid_rmid() is proteced against __switch_to() because
294 295
 * preemption is disabled.
 */
296
static void update_cpu_closid_rmid(void *info)
297
{
298 299
	struct rdtgroup *r = info;

300
	if (r) {
301 302
		this_cpu_write(pqr_state.default_closid, r->closid);
		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
303
	}
304

305 306 307 308 309 310 311 312
	/*
	 * We cannot unconditionally write the MSR because the current
	 * executing task might have its own closid selected. Just reuse
	 * the context switch code.
	 */
	intel_rdt_sched_in();
}

313 314 315
/*
 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
 *
316
 * Per task closids/rmids must have been set up before calling this function.
317 318
 */
static void
319
update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
320 321 322 323
{
	int cpu = get_cpu();

	if (cpumask_test_cpu(cpu, cpu_mask))
324 325
		update_cpu_closid_rmid(r);
	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
326 327 328
	put_cpu();
}

329 330 331 332 333 334 335 336
static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
			  cpumask_var_t tmpmask)
{
	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
	struct list_head *head;

	/* Check whether cpus belong to parent ctrl group */
	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
337 338
	if (cpumask_weight(tmpmask)) {
		rdt_last_cmd_puts("can only add CPUs to mongroup that belong to parent\n");
339
		return -EINVAL;
340
	}
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

	/* Check whether cpus are dropped from this group */
	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
	if (cpumask_weight(tmpmask)) {
		/* Give any dropped cpus to parent rdtgroup */
		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
		update_closid_rmid(tmpmask, prgrp);
	}

	/*
	 * If we added cpus, remove them from previous group that owned them
	 * and update per-cpu rmid
	 */
	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
	if (cpumask_weight(tmpmask)) {
		head = &prgrp->mon.crdtgrp_list;
		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
			if (crgrp == rdtgrp)
				continue;
			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
				       tmpmask);
		}
		update_closid_rmid(tmpmask, rdtgrp);
	}

	/* Done pushing/pulling - update this group with new mask */
	cpumask_copy(&rdtgrp->cpu_mask, newmask);

	return 0;
}

static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
{
	struct rdtgroup *crgrp;

	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
	/* update the child mon group masks as well*/
	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
}

382
static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
383
			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
384
{
385 386
	struct rdtgroup *r, *crgrp;
	struct list_head *head;
387 388 389 390 391

	/* Check whether cpus are dropped from this group */
	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
	if (cpumask_weight(tmpmask)) {
		/* Can't drop from default group */
392 393
		if (rdtgrp == &rdtgroup_default) {
			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
394
			return -EINVAL;
395
		}
396 397 398 399

		/* Give any dropped cpus to rdtgroup_default */
		cpumask_or(&rdtgroup_default.cpu_mask,
			   &rdtgroup_default.cpu_mask, tmpmask);
400
		update_closid_rmid(tmpmask, &rdtgroup_default);
401 402 403
	}

	/*
404 405 406
	 * If we added cpus, remove them from previous group and
	 * the prev group's child groups that owned them
	 * and update per-cpu closid/rmid.
407 408 409 410 411 412
	 */
	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
	if (cpumask_weight(tmpmask)) {
		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
			if (r == rdtgrp)
				continue;
413 414 415
			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
			if (cpumask_weight(tmpmask1))
				cpumask_rdtgrp_clear(r, tmpmask1);
416
		}
417
		update_closid_rmid(tmpmask, rdtgrp);
418 419 420 421 422
	}

	/* Done pushing/pulling - update this group with new mask */
	cpumask_copy(&rdtgrp->cpu_mask, newmask);

423 424 425 426 427 428 429 430 431 432 433
	/*
	 * Clear child mon group masks since there is a new parent mask
	 * now and update the rmid for the cpus the child lost.
	 */
	head = &rdtgrp->mon.crdtgrp_list;
	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
		update_closid_rmid(tmpmask, rdtgrp);
		cpumask_clear(&crgrp->cpu_mask);
	}

434 435 436
	return 0;
}

T
Tony Luck 已提交
437 438 439
static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
				   char *buf, size_t nbytes, loff_t off)
{
440
	cpumask_var_t tmpmask, newmask, tmpmask1;
441
	struct rdtgroup *rdtgrp;
442
	int ret;
T
Tony Luck 已提交
443 444 445 446 447 448 449 450 451 452

	if (!buf)
		return -EINVAL;

	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
		return -ENOMEM;
	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
		free_cpumask_var(tmpmask);
		return -ENOMEM;
	}
453 454 455 456 457
	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
		free_cpumask_var(tmpmask);
		free_cpumask_var(newmask);
		return -ENOMEM;
	}
458

T
Tony Luck 已提交
459
	rdtgrp = rdtgroup_kn_lock_live(of->kn);
460
	rdt_last_cmd_clear();
T
Tony Luck 已提交
461 462
	if (!rdtgrp) {
		ret = -ENOENT;
463
		rdt_last_cmd_puts("directory was removed\n");
T
Tony Luck 已提交
464 465 466
		goto unlock;
	}

467 468 469 470 471 472 473
	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
		ret = -EINVAL;
		rdt_last_cmd_puts("pseudo-locking in progress\n");
		goto unlock;
	}

474 475 476 477 478
	if (is_cpu_list(of))
		ret = cpulist_parse(buf, newmask);
	else
		ret = cpumask_parse(buf, newmask);

479 480
	if (ret) {
		rdt_last_cmd_puts("bad cpu list/mask\n");
T
Tony Luck 已提交
481
		goto unlock;
482
	}
T
Tony Luck 已提交
483 484 485 486 487

	/* check that user didn't specify any offline cpus */
	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
	if (cpumask_weight(tmpmask)) {
		ret = -EINVAL;
488
		rdt_last_cmd_puts("can only assign online cpus\n");
489
		goto unlock;
T
Tony Luck 已提交
490 491
	}

492
	if (rdtgrp->type == RDTCTRL_GROUP)
493 494 495
		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
	else if (rdtgrp->type == RDTMON_GROUP)
		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
496 497
	else
		ret = -EINVAL;
T
Tony Luck 已提交
498 499 500 501 502

unlock:
	rdtgroup_kn_unlock(of->kn);
	free_cpumask_var(tmpmask);
	free_cpumask_var(newmask);
503
	free_cpumask_var(tmpmask1);
T
Tony Luck 已提交
504 505 506 507

	return ret ?: nbytes;
}

F
Fenghua Yu 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
struct task_move_callback {
	struct callback_head	work;
	struct rdtgroup		*rdtgrp;
};

static void move_myself(struct callback_head *head)
{
	struct task_move_callback *callback;
	struct rdtgroup *rdtgrp;

	callback = container_of(head, struct task_move_callback, work);
	rdtgrp = callback->rdtgrp;

	/*
	 * If resource group was deleted before this task work callback
	 * was invoked, then assign the task to root group and free the
	 * resource group.
	 */
	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
	    (rdtgrp->flags & RDT_DELETED)) {
		current->closid = 0;
529
		current->rmid = 0;
F
Fenghua Yu 已提交
530 531 532
		kfree(rdtgrp);
	}

533
	preempt_disable();
F
Fenghua Yu 已提交
534 535
	/* update PQR_ASSOC MSR to make resource group go into effect */
	intel_rdt_sched_in();
536
	preempt_enable();
F
Fenghua Yu 已提交
537

F
Fenghua Yu 已提交
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	kfree(callback);
}

static int __rdtgroup_move_task(struct task_struct *tsk,
				struct rdtgroup *rdtgrp)
{
	struct task_move_callback *callback;
	int ret;

	callback = kzalloc(sizeof(*callback), GFP_KERNEL);
	if (!callback)
		return -ENOMEM;
	callback->work.func = move_myself;
	callback->rdtgrp = rdtgrp;

	/*
	 * Take a refcount, so rdtgrp cannot be freed before the
	 * callback has been invoked.
	 */
	atomic_inc(&rdtgrp->waitcount);
	ret = task_work_add(tsk, &callback->work, true);
	if (ret) {
		/*
		 * Task is exiting. Drop the refcount and free the callback.
		 * No need to check the refcount as the group cannot be
		 * deleted before the write function unlocks rdtgroup_mutex.
		 */
		atomic_dec(&rdtgrp->waitcount);
		kfree(callback);
567
		rdt_last_cmd_puts("task exited\n");
F
Fenghua Yu 已提交
568
	} else {
569 570 571 572 573 574 575 576 577
		/*
		 * For ctrl_mon groups move both closid and rmid.
		 * For monitor groups, can move the tasks only from
		 * their parent CTRL group.
		 */
		if (rdtgrp->type == RDTCTRL_GROUP) {
			tsk->closid = rdtgrp->closid;
			tsk->rmid = rdtgrp->mon.rmid;
		} else if (rdtgrp->type == RDTMON_GROUP) {
578
			if (rdtgrp->mon.parent->closid == tsk->closid) {
579
				tsk->rmid = rdtgrp->mon.rmid;
580 581
			} else {
				rdt_last_cmd_puts("Can't move task to different control group\n");
582
				ret = -EINVAL;
583
			}
584
		}
F
Fenghua Yu 已提交
585 586 587 588
	}
	return ret;
}

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
/**
 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
 * @r: Resource group
 *
 * Return: 1 if tasks have been assigned to @r, 0 otherwise
 */
int rdtgroup_tasks_assigned(struct rdtgroup *r)
{
	struct task_struct *p, *t;
	int ret = 0;

	lockdep_assert_held(&rdtgroup_mutex);

	rcu_read_lock();
	for_each_process_thread(p, t) {
		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
			ret = 1;
			break;
		}
	}
	rcu_read_unlock();

	return ret;
}

F
Fenghua Yu 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627
static int rdtgroup_task_write_permission(struct task_struct *task,
					  struct kernfs_open_file *of)
{
	const struct cred *tcred = get_task_cred(task);
	const struct cred *cred = current_cred();
	int ret = 0;

	/*
	 * Even if we're attaching all tasks in the thread group, we only
	 * need to check permissions on one of them.
	 */
	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
	    !uid_eq(cred->euid, tcred->uid) &&
628 629
	    !uid_eq(cred->euid, tcred->suid)) {
		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
F
Fenghua Yu 已提交
630
		ret = -EPERM;
631
	}
F
Fenghua Yu 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647

	put_cred(tcred);
	return ret;
}

static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
			      struct kernfs_open_file *of)
{
	struct task_struct *tsk;
	int ret;

	rcu_read_lock();
	if (pid) {
		tsk = find_task_by_vpid(pid);
		if (!tsk) {
			rcu_read_unlock();
648
			rdt_last_cmd_printf("No task %d\n", pid);
F
Fenghua Yu 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
			return -ESRCH;
		}
	} else {
		tsk = current;
	}

	get_task_struct(tsk);
	rcu_read_unlock();

	ret = rdtgroup_task_write_permission(tsk, of);
	if (!ret)
		ret = __rdtgroup_move_task(tsk, rdtgrp);

	put_task_struct(tsk);
	return ret;
}

static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
{
	struct rdtgroup *rdtgrp;
	int ret = 0;
	pid_t pid;

	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
		return -EINVAL;
	rdtgrp = rdtgroup_kn_lock_live(of->kn);
676 677 678 679
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}
680
	rdt_last_cmd_clear();
F
Fenghua Yu 已提交
681

682 683 684 685 686 687 688 689
	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
	    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
		ret = -EINVAL;
		rdt_last_cmd_puts("pseudo-locking in progress\n");
		goto unlock;
	}

	ret = rdtgroup_move_task(pid, rdtgrp, of);
F
Fenghua Yu 已提交
690

691
unlock:
F
Fenghua Yu 已提交
692 693 694 695 696 697 698 699 700 701 702
	rdtgroup_kn_unlock(of->kn);

	return ret ?: nbytes;
}

static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
{
	struct task_struct *p, *t;

	rcu_read_lock();
	for_each_process_thread(p, t) {
703 704
		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
F
Fenghua Yu 已提交
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
			seq_printf(s, "%d\n", t->pid);
	}
	rcu_read_unlock();
}

static int rdtgroup_tasks_show(struct kernfs_open_file *of,
			       struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;
	int ret = 0;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (rdtgrp)
		show_rdt_tasks(rdtgrp, s);
	else
		ret = -ENOENT;
	rdtgroup_kn_unlock(of->kn);

	return ret;
}

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
				    struct seq_file *seq, void *v)
{
	int len;

	mutex_lock(&rdtgroup_mutex);
	len = seq_buf_used(&last_cmd_status);
	if (len)
		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
	else
		seq_puts(seq, "ok\n");
	mutex_unlock(&rdtgroup_mutex);
	return 0;
}

741 742 743 744 745 746 747 748 749
static int rdt_num_closids_show(struct kernfs_open_file *of,
				struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%d\n", r->num_closid);
	return 0;
}

750
static int rdt_default_ctrl_show(struct kernfs_open_file *of,
751 752 753 754
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

755
	seq_printf(seq, "%x\n", r->default_ctrl);
756 757 758
	return 0;
}

759 760 761 762 763
static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

764
	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
765 766 767
	return 0;
}

768 769 770 771 772 773 774 775 776
static int rdt_shareable_bits_show(struct kernfs_open_file *of,
				   struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%x\n", r->cache.shareable_bits);
	return 0;
}

777 778 779 780 781 782 783 784 785 786 787 788
/**
 * rdt_bit_usage_show - Display current usage of resources
 *
 * A domain is a shared resource that can now be allocated differently. Here
 * we display the current regions of the domain as an annotated bitmask.
 * For each domain of this resource its allocation bitmask
 * is annotated as below to indicate the current usage of the corresponding bit:
 *   0 - currently unused
 *   X - currently available for sharing and used by software and hardware
 *   H - currently used by hardware only but available for software use
 *   S - currently used and shareable by software only
 *   E - currently used exclusively by one resource group
789
 *   P - currently pseudo-locked by one resource group
790 791 792 793 794
 */
static int rdt_bit_usage_show(struct kernfs_open_file *of,
			      struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;
795 796
	u32 sw_shareable = 0, hw_shareable = 0;
	u32 exclusive = 0, pseudo_locked = 0;
797
	struct rdt_domain *dom;
798
	int i, hwb, swb, excl, psl;
799 800 801 802 803 804 805 806 807 808 809 810 811
	enum rdtgrp_mode mode;
	bool sep = false;
	u32 *ctrl;

	mutex_lock(&rdtgroup_mutex);
	hw_shareable = r->cache.shareable_bits;
	list_for_each_entry(dom, &r->domains, list) {
		if (sep)
			seq_putc(seq, ';');
		ctrl = dom->ctrl_val;
		sw_shareable = 0;
		exclusive = 0;
		seq_printf(seq, "%d=", dom->id);
812
		for (i = 0; i < closids_supported(); i++, ctrl++) {
813 814 815 816 817 818 819 820 821 822
			if (!closid_allocated(i))
				continue;
			mode = rdtgroup_mode_by_closid(i);
			switch (mode) {
			case RDT_MODE_SHAREABLE:
				sw_shareable |= *ctrl;
				break;
			case RDT_MODE_EXCLUSIVE:
				exclusive |= *ctrl;
				break;
823
			case RDT_MODE_PSEUDO_LOCKSETUP:
824
			/*
825 826 827 828 829
			 * RDT_MODE_PSEUDO_LOCKSETUP is possible
			 * here but not included since the CBM
			 * associated with this CLOSID in this mode
			 * is not initialized and no task or cpu can be
			 * assigned this CLOSID.
830
			 */
831
				break;
832
			case RDT_MODE_PSEUDO_LOCKED:
833 834 835 836 837 838 839
			case RDT_NUM_MODES:
				WARN(1,
				     "invalid mode for closid %d\n", i);
				break;
			}
		}
		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
840
			pseudo_locked = dom->plr ? dom->plr->cbm : 0;
841 842 843
			hwb = test_bit(i, (unsigned long *)&hw_shareable);
			swb = test_bit(i, (unsigned long *)&sw_shareable);
			excl = test_bit(i, (unsigned long *)&exclusive);
844
			psl = test_bit(i, (unsigned long *)&pseudo_locked);
845 846 847 848 849 850 851 852
			if (hwb && swb)
				seq_putc(seq, 'X');
			else if (hwb && !swb)
				seq_putc(seq, 'H');
			else if (!hwb && swb)
				seq_putc(seq, 'S');
			else if (excl)
				seq_putc(seq, 'E');
853 854
			else if (psl)
				seq_putc(seq, 'P');
855 856 857 858 859 860 861 862 863 864
			else /* Unused bits remain */
				seq_putc(seq, '0');
		}
		sep = true;
	}
	seq_putc(seq, '\n');
	mutex_unlock(&rdtgroup_mutex);
	return 0;
}

865 866 867 868
static int rdt_min_bw_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;
869

870 871 872 873
	seq_printf(seq, "%u\n", r->membw.min_bw);
	return 0;
}

874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static int rdt_num_rmids_show(struct kernfs_open_file *of,
			      struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%d\n", r->num_rmid);

	return 0;
}

static int rdt_mon_features_show(struct kernfs_open_file *of,
				 struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;
	struct mon_evt *mevt;

	list_for_each_entry(mevt, &r->evt_list, list)
		seq_printf(seq, "%s\n", mevt->name);

	return 0;
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910
static int rdt_bw_gran_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%u\n", r->membw.bw_gran);
	return 0;
}

static int rdt_delay_linear_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%u\n", r->membw.delay_linear);
911 912 913
	return 0;
}

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
static int max_threshold_occ_show(struct kernfs_open_file *of,
				  struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale);

	return 0;
}

static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
				       char *buf, size_t nbytes, loff_t off)
{
	struct rdt_resource *r = of->kn->parent->priv;
	unsigned int bytes;
	int ret;

	ret = kstrtouint(buf, 0, &bytes);
	if (ret)
		return ret;

	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
		return -EINVAL;

	intel_cqm_threshold = bytes / r->mon_scale;

940
	return nbytes;
941 942
}

943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
/*
 * rdtgroup_mode_show - Display mode of this resource group
 */
static int rdtgroup_mode_show(struct kernfs_open_file *of,
			      struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}

	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));

	rdtgroup_kn_unlock(of->kn);
	return 0;
}

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
/**
 * rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
 * @r: Resource to which domain instance @d belongs.
 * @d: The domain instance for which @closid is being tested.
 * @cbm: Capacity bitmask being tested.
 * @closid: Intended closid for @cbm.
 * @exclusive: Only check if overlaps with exclusive resource groups
 *
 * Checks if provided @cbm intended to be used for @closid on domain
 * @d overlaps with any other closids or other hardware usage associated
 * with this domain. If @exclusive is true then only overlaps with
 * resource groups in exclusive mode will be considered. If @exclusive
 * is false then overlaps with any resource group or hardware entities
 * will be considered.
 *
 * Return: false if CBM does not overlap, true if it does.
 */
980 981
bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
			   u32 _cbm, int closid, bool exclusive)
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
{
	unsigned long *cbm = (unsigned long *)&_cbm;
	unsigned long *ctrl_b;
	enum rdtgrp_mode mode;
	u32 *ctrl;
	int i;

	/* Check for any overlap with regions used by hardware directly */
	if (!exclusive) {
		if (bitmap_intersects(cbm,
				      (unsigned long *)&r->cache.shareable_bits,
				      r->cache.cbm_len))
			return true;
	}

	/* Check for overlap with other resource groups */
	ctrl = d->ctrl_val;
	for (i = 0; i < r->num_closid; i++, ctrl++) {
		ctrl_b = (unsigned long *)ctrl;
1001 1002 1003
		mode = rdtgroup_mode_by_closid(i);
		if (closid_allocated(i) && i != closid &&
		    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
			if (bitmap_intersects(cbm, ctrl_b, r->cache.cbm_len)) {
				if (exclusive) {
					if (mode == RDT_MODE_EXCLUSIVE)
						return true;
					continue;
				}
				return true;
			}
		}
	}

	return false;
}

/**
 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
 *
 * An exclusive resource group implies that there should be no sharing of
 * its allocated resources. At the time this group is considered to be
 * exclusive this test can determine if its current schemata supports this
 * setting by testing for overlap with all other resource groups.
 *
 * Return: true if resource group can be exclusive, false if there is overlap
 * with allocations of other resource groups and thus this resource group
 * cannot be exclusive.
 */
static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
{
	int closid = rdtgrp->closid;
	struct rdt_resource *r;
	struct rdt_domain *d;

	for_each_alloc_enabled_rdt_resource(r) {
		list_for_each_entry(d, &r->domains, list) {
			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
						  rdtgrp->closid, false))
				return false;
		}
	}

	return true;
}

/**
 * rdtgroup_mode_write - Modify the resource group's mode
 *
 */
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
				   char *buf, size_t nbytes, loff_t off)
{
	struct rdtgroup *rdtgrp;
	enum rdtgrp_mode mode;
	int ret = 0;

	/* Valid input requires a trailing newline */
	if (nbytes == 0 || buf[nbytes - 1] != '\n')
		return -EINVAL;
	buf[nbytes - 1] = '\0';

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}

	rdt_last_cmd_clear();

	mode = rdtgrp->mode;

1073
	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1074 1075 1076 1077
	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
	    (!strcmp(buf, "pseudo-locksetup") &&
	     mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
	    (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1078 1079
		goto out;

1080 1081 1082 1083 1084 1085
	if (mode == RDT_MODE_PSEUDO_LOCKED) {
		rdt_last_cmd_printf("cannot change pseudo-locked group\n");
		ret = -EINVAL;
		goto out;
	}

1086
	if (!strcmp(buf, "shareable")) {
1087 1088 1089 1090 1091
		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
			ret = rdtgroup_locksetup_exit(rdtgrp);
			if (ret)
				goto out;
		}
1092
		rdtgrp->mode = RDT_MODE_SHAREABLE;
1093 1094 1095 1096 1097 1098
	} else if (!strcmp(buf, "exclusive")) {
		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
			rdt_last_cmd_printf("schemata overlaps\n");
			ret = -EINVAL;
			goto out;
		}
1099 1100 1101 1102 1103
		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
			ret = rdtgroup_locksetup_exit(rdtgrp);
			if (ret)
				goto out;
		}
1104
		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1105 1106 1107 1108 1109
	} else if (!strcmp(buf, "pseudo-locksetup")) {
		ret = rdtgroup_locksetup_enter(rdtgrp);
		if (ret)
			goto out;
		rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
	} else {
		rdt_last_cmd_printf("unknown/unsupported mode\n");
		ret = -EINVAL;
	}

out:
	rdtgroup_kn_unlock(of->kn);
	return ret ?: nbytes;
}

1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/**
 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
 * @r: RDT resource to which @d belongs.
 * @d: RDT domain instance.
 * @cbm: bitmask for which the size should be computed.
 *
 * The bitmask provided associated with the RDT domain instance @d will be
 * translated into how many bytes it represents. The size in bytes is
 * computed by first dividing the total cache size by the CBM length to
 * determine how many bytes each bit in the bitmask represents. The result
 * is multiplied with the number of bits set in the bitmask.
 */
unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
				  struct rdt_domain *d, u32 cbm)
{
	struct cpu_cacheinfo *ci;
	unsigned int size = 0;
	int num_b, i;

	num_b = bitmap_weight((unsigned long *)&cbm, r->cache.cbm_len);
	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
	for (i = 0; i < ci->num_leaves; i++) {
		if (ci->info_list[i].level == r->cache_level) {
			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
			break;
		}
	}

	return size;
}

/**
 * rdtgroup_size_show - Display size in bytes of allocated regions
 *
 * The "size" file mirrors the layout of the "schemata" file, printing the
 * size in bytes of each region instead of the capacity bitmask.
 *
 */
static int rdtgroup_size_show(struct kernfs_open_file *of,
			      struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;
	struct rdt_resource *r;
	struct rdt_domain *d;
	unsigned int size;
1165 1166
	bool sep;
	u32 ctrl;
1167 1168 1169 1170 1171 1172 1173

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}

1174 1175 1176 1177 1178 1179 1180 1181 1182
	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
		seq_printf(s, "%*s:", max_name_width, rdtgrp->plr->r->name);
		size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
					    rdtgrp->plr->d,
					    rdtgrp->plr->cbm);
		seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
		goto out;
	}

1183
	for_each_alloc_enabled_rdt_resource(r) {
1184
		sep = false;
1185 1186 1187 1188
		seq_printf(s, "%*s:", max_name_width, r->name);
		list_for_each_entry(d, &r->domains, list) {
			if (sep)
				seq_putc(s, ';');
1189 1190 1191
			if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
				size = 0;
			} else {
1192 1193 1194 1195 1196 1197 1198
				ctrl = (!is_mba_sc(r) ?
						d->ctrl_val[rdtgrp->closid] :
						d->mbps_val[rdtgrp->closid]);
				if (r->rid == RDT_RESOURCE_MBA)
					size = ctrl;
				else
					size = rdtgroup_cbm_to_size(r, d, ctrl);
1199
			}
1200 1201 1202 1203 1204 1205
			seq_printf(s, "%d=%u", d->id, size);
			sep = true;
		}
		seq_putc(s, '\n');
	}

1206
out:
1207 1208 1209 1210 1211
	rdtgroup_kn_unlock(of->kn);

	return 0;
}

1212
/* rdtgroup information files for one cache resource. */
1213
static struct rftype res_common_files[] = {
1214 1215 1216 1217 1218 1219 1220
	{
		.name		= "last_cmd_status",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_last_cmd_status_show,
		.fflags		= RF_TOP_INFO,
	},
1221 1222 1223 1224 1225
	{
		.name		= "num_closids",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_num_closids_show,
1226
		.fflags		= RF_CTRL_INFO,
1227
	},
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
	{
		.name		= "mon_features",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_mon_features_show,
		.fflags		= RF_MON_INFO,
	},
	{
		.name		= "num_rmids",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_num_rmids_show,
		.fflags		= RF_MON_INFO,
	},
1242 1243 1244 1245
	{
		.name		= "cbm_mask",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
1246
		.seq_show	= rdt_default_ctrl_show,
1247
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1248
	},
1249 1250 1251 1252 1253
	{
		.name		= "min_cbm_bits",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_min_cbm_bits_show,
1254
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1255
	},
1256 1257 1258 1259 1260 1261 1262
	{
		.name		= "shareable_bits",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_shareable_bits_show,
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
	},
1263 1264 1265 1266 1267 1268 1269
	{
		.name		= "bit_usage",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_bit_usage_show,
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
	},
1270 1271 1272 1273 1274
	{
		.name		= "min_bandwidth",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_min_bw_show,
1275
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1276 1277 1278 1279 1280 1281
	},
	{
		.name		= "bandwidth_gran",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_bw_gran_show,
1282
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1283 1284 1285 1286 1287 1288
	},
	{
		.name		= "delay_linear",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_delay_linear_show,
1289 1290
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
	},
1291 1292 1293 1294 1295 1296 1297 1298
	{
		.name		= "max_threshold_occupancy",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= max_threshold_occ_write,
		.seq_show	= max_threshold_occ_show,
		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
	},
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
	{
		.name		= "cpus",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_cpus_write,
		.seq_show	= rdtgroup_cpus_show,
		.fflags		= RFTYPE_BASE,
	},
	{
		.name		= "cpus_list",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_cpus_write,
		.seq_show	= rdtgroup_cpus_show,
		.flags		= RFTYPE_FLAGS_CPUS_LIST,
		.fflags		= RFTYPE_BASE,
	},
	{
		.name		= "tasks",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_tasks_write,
		.seq_show	= rdtgroup_tasks_show,
		.fflags		= RFTYPE_BASE,
	},
	{
		.name		= "schemata",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_schemata_write,
		.seq_show	= rdtgroup_schemata_show,
		.fflags		= RF_CTRL_BASE,
1331
	},
1332 1333 1334 1335 1336 1337 1338 1339
	{
		.name		= "mode",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_mode_write,
		.seq_show	= rdtgroup_mode_show,
		.fflags		= RF_CTRL_BASE,
	},
1340 1341 1342 1343 1344 1345 1346 1347
	{
		.name		= "size",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdtgroup_size_show,
		.fflags		= RF_CTRL_BASE,
	},

1348 1349
};

1350
static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1351
{
1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	struct rftype *rfts, *rft;
	int ret, len;

	rfts = res_common_files;
	len = ARRAY_SIZE(res_common_files);

	lockdep_assert_held(&rdtgroup_mutex);

	for (rft = rfts; rft < rfts + len; rft++) {
		if ((fflags & rft->fflags) == rft->fflags) {
			ret = rdtgroup_add_file(kn, rft);
			if (ret)
				goto error;
		}
	}

	return 0;
error:
	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
	while (--rft >= rfts) {
		if ((fflags & rft->fflags) == rft->fflags)
			kernfs_remove_by_name(kn, rft->name);
	}
	return ret;
1376 1377
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
/**
 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
 * @r: The resource group with which the file is associated.
 * @name: Name of the file
 *
 * The permissions of named resctrl file, directory, or link are modified
 * to not allow read, write, or execute by any user.
 *
 * WARNING: This function is intended to communicate to the user that the
 * resctrl file has been locked down - that it is not relevant to the
 * particular state the system finds itself in. It should not be relied
 * on to protect from user access because after the file's permissions
 * are restricted the user can still change the permissions using chmod
 * from the command line.
 *
 * Return: 0 on success, <0 on failure.
 */
int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
{
	struct iattr iattr = {.ia_valid = ATTR_MODE,};
	struct kernfs_node *kn;
	int ret = 0;

	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
	if (!kn)
		return -ENOENT;

	switch (kernfs_type(kn)) {
	case KERNFS_DIR:
		iattr.ia_mode = S_IFDIR;
		break;
	case KERNFS_FILE:
		iattr.ia_mode = S_IFREG;
		break;
	case KERNFS_LINK:
		iattr.ia_mode = S_IFLNK;
		break;
	}

	ret = kernfs_setattr(kn, &iattr);
	kernfs_put(kn);
	return ret;
}

/**
 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
 * @r: The resource group with which the file is associated.
 * @name: Name of the file
1426
 * @mask: Mask of permissions that should be restored
1427 1428 1429 1430 1431 1432
 *
 * Restore the permissions of the named file. If @name is a directory the
 * permissions of its parent will be used.
 *
 * Return: 0 on success, <0 on failure.
 */
1433 1434
int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
			     umode_t mask)
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
{
	struct iattr iattr = {.ia_valid = ATTR_MODE,};
	struct kernfs_node *kn, *parent;
	struct rftype *rfts, *rft;
	int ret, len;

	rfts = res_common_files;
	len = ARRAY_SIZE(res_common_files);

	for (rft = rfts; rft < rfts + len; rft++) {
		if (!strcmp(rft->name, name))
1446
			iattr.ia_mode = rft->mode & mask;
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
	}

	kn = kernfs_find_and_get_ns(r->kn, name, NULL);
	if (!kn)
		return -ENOENT;

	switch (kernfs_type(kn)) {
	case KERNFS_DIR:
		parent = kernfs_get_parent(kn);
		if (parent) {
			iattr.ia_mode |= parent->mode;
			kernfs_put(parent);
		}
		iattr.ia_mode |= S_IFDIR;
		break;
	case KERNFS_FILE:
		iattr.ia_mode |= S_IFREG;
		break;
	case KERNFS_LINK:
		iattr.ia_mode |= S_IFLNK;
		break;
	}

	ret = kernfs_setattr(kn, &iattr);
	kernfs_put(kn);
	return ret;
}

1475 1476
static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
				      unsigned long fflags)
1477
{
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
	struct kernfs_node *kn_subdir;
	int ret;

	kn_subdir = kernfs_create_dir(kn_info, name,
				      kn_info->mode, r);
	if (IS_ERR(kn_subdir))
		return PTR_ERR(kn_subdir);

	kernfs_get(kn_subdir);
	ret = rdtgroup_kn_set_ugid(kn_subdir);
	if (ret)
		return ret;

	ret = rdtgroup_add_files(kn_subdir, fflags);
	if (!ret)
		kernfs_activate(kn_subdir);

	return ret;
1496 1497
}

1498 1499 1500
static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
{
	struct rdt_resource *r;
1501
	unsigned long fflags;
1502
	char name[32];
1503
	int ret;
1504 1505 1506 1507 1508 1509 1510

	/* create the directory */
	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
	if (IS_ERR(kn_info))
		return PTR_ERR(kn_info);
	kernfs_get(kn_info);

1511 1512 1513 1514
	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
	if (ret)
		goto out_destroy;

1515
	for_each_alloc_enabled_rdt_resource(r) {
1516 1517
		fflags =  r->fflags | RF_CTRL_INFO;
		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1518 1519 1520
		if (ret)
			goto out_destroy;
	}
1521 1522 1523 1524 1525 1526 1527 1528 1529

	for_each_mon_enabled_rdt_resource(r) {
		fflags =  r->fflags | RF_MON_INFO;
		sprintf(name, "%s_MON", r->name);
		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
		if (ret)
			goto out_destroy;
	}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	/*
	 * This extra ref will be put in kernfs_remove() and guarantees
	 * that @rdtgrp->kn is always accessible.
	 */
	kernfs_get(kn_info);

	ret = rdtgroup_kn_set_ugid(kn_info);
	if (ret)
		goto out_destroy;

	kernfs_activate(kn_info);

	return 0;

out_destroy:
	kernfs_remove(kn_info);
	return ret;
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
static int
mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
		    char *name, struct kernfs_node **dest_kn)
{
	struct kernfs_node *kn;
	int ret;

	/* create the directory */
	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	if (dest_kn)
		*dest_kn = kn;

	/*
	 * This extra ref will be put in kernfs_remove() and guarantees
	 * that @rdtgrp->kn is always accessible.
	 */
	kernfs_get(kn);

	ret = rdtgroup_kn_set_ugid(kn);
	if (ret)
		goto out_destroy;

	kernfs_activate(kn);

	return 0;

out_destroy:
	kernfs_remove(kn);
	return ret;
}
1582

1583 1584 1585 1586 1587 1588 1589
static void l3_qos_cfg_update(void *arg)
{
	bool *enable = arg;

	wrmsrl(IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
}

1590
static void l2_qos_cfg_update(void *arg)
1591
{
1592 1593 1594 1595 1596
	bool *enable = arg;

	wrmsrl(IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
}

1597 1598 1599 1600 1601
static inline bool is_mba_linear(void)
{
	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
}

1602 1603 1604 1605
static int set_cache_qos_cfg(int level, bool enable)
{
	void (*update)(void *arg);
	struct rdt_resource *r_l;
1606 1607 1608 1609 1610 1611 1612
	cpumask_var_t cpu_mask;
	struct rdt_domain *d;
	int cpu;

	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
		return -ENOMEM;

1613 1614 1615 1616 1617 1618 1619 1620 1621
	if (level == RDT_RESOURCE_L3)
		update = l3_qos_cfg_update;
	else if (level == RDT_RESOURCE_L2)
		update = l2_qos_cfg_update;
	else
		return -EINVAL;

	r_l = &rdt_resources_all[level];
	list_for_each_entry(d, &r_l->domains, list) {
1622 1623 1624 1625 1626 1627
		/* Pick one CPU from each domain instance to update MSR */
		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
	}
	cpu = get_cpu();
	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
	if (cpumask_test_cpu(cpu, cpu_mask))
1628
		update(&enable);
1629
	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1630
	smp_call_function_many(cpu_mask, update, &enable, 1);
1631 1632 1633 1634 1635 1636 1637
	put_cpu();

	free_cpumask_var(cpu_mask);

	return 0;
}

1638 1639 1640 1641 1642 1643 1644 1645 1646
/*
 * Enable or disable the MBA software controller
 * which helps user specify bandwidth in MBps.
 * MBA software controller is supported only if
 * MBM is supported and MBA is in linear scale.
 */
static int set_mba_sc(bool mba_sc)
{
	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1647
	struct rdt_domain *d;
1648 1649 1650 1651 1652 1653

	if (!is_mbm_enabled() || !is_mba_linear() ||
	    mba_sc == is_mba_sc(r))
		return -EINVAL;

	r->membw.mba_sc = mba_sc;
1654 1655
	list_for_each_entry(d, &r->domains, list)
		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1656 1657 1658 1659

	return 0;
}

1660
static int cdp_enable(int level, int data_type, int code_type)
1661
{
1662 1663 1664
	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
	struct rdt_resource *r_l = &rdt_resources_all[level];
1665 1666
	int ret;

1667 1668
	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
	    !r_lcode->alloc_capable)
1669 1670
		return -EINVAL;

1671
	ret = set_cache_qos_cfg(level, true);
1672
	if (!ret) {
1673 1674 1675
		r_l->alloc_enabled = false;
		r_ldata->alloc_enabled = true;
		r_lcode->alloc_enabled = true;
1676 1677 1678 1679
	}
	return ret;
}

1680 1681 1682 1683 1684 1685 1686
static int cdpl3_enable(void)
{
	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
			  RDT_RESOURCE_L3CODE);
}

static int cdpl2_enable(void)
1687
{
1688 1689 1690 1691 1692 1693 1694
	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
			  RDT_RESOURCE_L2CODE);
}

static void cdp_disable(int level, int data_type, int code_type)
{
	struct rdt_resource *r = &rdt_resources_all[level];
1695

1696
	r->alloc_enabled = r->alloc_capable;
1697

1698 1699 1700 1701
	if (rdt_resources_all[data_type].alloc_enabled) {
		rdt_resources_all[data_type].alloc_enabled = false;
		rdt_resources_all[code_type].alloc_enabled = false;
		set_cache_qos_cfg(level, false);
1702 1703 1704
	}
}

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
static void cdpl3_disable(void)
{
	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
}

static void cdpl2_disable(void)
{
	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
}

static void cdp_disable_all(void)
{
	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
		cdpl3_disable();
	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
		cdpl2_disable();
}

1723 1724 1725 1726 1727 1728
static int parse_rdtgroupfs_options(char *data)
{
	char *token, *o = data;
	int ret = 0;

	while ((token = strsep(&o, ",")) != NULL) {
1729 1730 1731 1732
		if (!*token) {
			ret = -EINVAL;
			goto out;
		}
1733

1734 1735 1736 1737 1738 1739 1740 1741
		if (!strcmp(token, "cdp")) {
			ret = cdpl3_enable();
			if (ret)
				goto out;
		} else if (!strcmp(token, "cdpl2")) {
			ret = cdpl2_enable();
			if (ret)
				goto out;
1742 1743 1744 1745
		} else if (!strcmp(token, "mba_MBps")) {
			ret = set_mba_sc(true);
			if (ret)
				goto out;
1746 1747 1748 1749
		} else {
			ret = -EINVAL;
			goto out;
		}
1750 1751
	}

1752 1753 1754 1755 1756
	return 0;

out:
	pr_err("Invalid mount option \"%s\"\n", token);

1757 1758 1759
	return ret;
}

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
/*
 * We don't allow rdtgroup directories to be created anywhere
 * except the root directory. Thus when looking for the rdtgroup
 * structure for a kernfs node we are either looking at a directory,
 * in which case the rdtgroup structure is pointed at by the "priv"
 * field, otherwise we have a file, and need only look to the parent
 * to find the rdtgroup.
 */
static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
{
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	if (kernfs_type(kn) == KERNFS_DIR) {
		/*
		 * All the resource directories use "kn->priv"
		 * to point to the "struct rdtgroup" for the
		 * resource. "info" and its subdirectories don't
		 * have rdtgroup structures, so return NULL here.
		 */
		if (kn == kn_info || kn->parent == kn_info)
			return NULL;
		else
			return kn->priv;
	} else {
1782
		return kn->parent->priv;
1783
	}
1784 1785 1786 1787 1788 1789
}

struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
{
	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);

1790 1791 1792
	if (!rdtgrp)
		return NULL;

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
	atomic_inc(&rdtgrp->waitcount);
	kernfs_break_active_protection(kn);

	mutex_lock(&rdtgroup_mutex);

	/* Was this group deleted while we waited? */
	if (rdtgrp->flags & RDT_DELETED)
		return NULL;

	return rdtgrp;
}

void rdtgroup_kn_unlock(struct kernfs_node *kn)
{
	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);

1809 1810 1811
	if (!rdtgrp)
		return;

1812 1813 1814 1815
	mutex_unlock(&rdtgroup_mutex);

	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
	    (rdtgrp->flags & RDT_DELETED)) {
1816 1817 1818
		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
			rdtgroup_pseudo_lock_remove(rdtgrp);
1819
		kernfs_unbreak_active_protection(kn);
1820
		kernfs_put(rdtgrp->kn);
1821 1822 1823 1824 1825 1826
		kfree(rdtgrp);
	} else {
		kernfs_unbreak_active_protection(kn);
	}
}

1827 1828 1829 1830
static int mkdir_mondata_all(struct kernfs_node *parent_kn,
			     struct rdtgroup *prgrp,
			     struct kernfs_node **mon_data_kn);

1831 1832 1833 1834
static struct dentry *rdt_mount(struct file_system_type *fs_type,
				int flags, const char *unused_dev_name,
				void *data)
{
1835 1836
	struct rdt_domain *dom;
	struct rdt_resource *r;
1837 1838 1839
	struct dentry *dentry;
	int ret;

1840
	cpus_read_lock();
1841 1842 1843 1844
	mutex_lock(&rdtgroup_mutex);
	/*
	 * resctrl file system can only be mounted once.
	 */
1845
	if (static_branch_unlikely(&rdt_enable_key)) {
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
		dentry = ERR_PTR(-EBUSY);
		goto out;
	}

	ret = parse_rdtgroupfs_options(data);
	if (ret) {
		dentry = ERR_PTR(ret);
		goto out_cdp;
	}

1856 1857
	closid_init();

1858
	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1859 1860
	if (ret) {
		dentry = ERR_PTR(ret);
1861
		goto out_cdp;
1862
	}
1863

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
	if (rdt_mon_capable) {
		ret = mongroup_create_dir(rdtgroup_default.kn,
					  NULL, "mon_groups",
					  &kn_mongrp);
		if (ret) {
			dentry = ERR_PTR(ret);
			goto out_info;
		}
		kernfs_get(kn_mongrp);

		ret = mkdir_mondata_all(rdtgroup_default.kn,
					&rdtgroup_default, &kn_mondata);
		if (ret) {
			dentry = ERR_PTR(ret);
			goto out_mongrp;
		}
		kernfs_get(kn_mondata);
		rdtgroup_default.mon.mon_data_kn = kn_mondata;
	}

1884 1885 1886 1887 1888 1889
	ret = rdt_pseudo_lock_init();
	if (ret) {
		dentry = ERR_PTR(ret);
		goto out_mondata;
	}

1890 1891 1892
	dentry = kernfs_mount(fs_type, flags, rdt_root,
			      RDTGROUP_SUPER_MAGIC, NULL);
	if (IS_ERR(dentry))
1893
		goto out_psl;
1894 1895

	if (rdt_alloc_capable)
1896
		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
1897
	if (rdt_mon_capable)
1898
		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
1899

1900
	if (rdt_alloc_capable || rdt_mon_capable)
1901
		static_branch_enable_cpuslocked(&rdt_enable_key);
1902 1903 1904 1905

	if (is_mbm_enabled()) {
		r = &rdt_resources_all[RDT_RESOURCE_L3];
		list_for_each_entry(dom, &r->domains, list)
1906
			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
1907 1908
	}

1909 1910
	goto out;

1911 1912
out_psl:
	rdt_pseudo_lock_release();
1913 1914 1915 1916 1917 1918 1919
out_mondata:
	if (rdt_mon_capable)
		kernfs_remove(kn_mondata);
out_mongrp:
	if (rdt_mon_capable)
		kernfs_remove(kn_mongrp);
out_info:
1920
	kernfs_remove(kn_info);
1921
out_cdp:
1922
	cdp_disable_all();
1923
out:
1924
	rdt_last_cmd_clear();
1925
	mutex_unlock(&rdtgroup_mutex);
1926
	cpus_read_unlock();
1927 1928 1929 1930

	return dentry;
}

1931
static int reset_all_ctrls(struct rdt_resource *r)
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
{
	struct msr_param msr_param;
	cpumask_var_t cpu_mask;
	struct rdt_domain *d;
	int i, cpu;

	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
		return -ENOMEM;

	msr_param.res = r;
	msr_param.low = 0;
	msr_param.high = r->num_closid;

	/*
	 * Disable resource control for this resource by setting all
	 * CBMs in all domains to the maximum mask value. Pick one CPU
	 * from each domain to update the MSRs below.
	 */
	list_for_each_entry(d, &r->domains, list) {
		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);

		for (i = 0; i < r->num_closid; i++)
1954
			d->ctrl_val[i] = r->default_ctrl;
1955 1956 1957 1958
	}
	cpu = get_cpu();
	/* Update CBM on this cpu if it's in cpu_mask. */
	if (cpumask_test_cpu(cpu, cpu_mask))
1959
		rdt_ctrl_update(&msr_param);
1960
	/* Update CBM on all other cpus in cpu_mask. */
1961
	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
1962 1963 1964 1965 1966 1967 1968
	put_cpu();

	free_cpumask_var(cpu_mask);

	return 0;
}

1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
{
	return (rdt_alloc_capable &&
		(r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
}

static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
{
	return (rdt_mon_capable &&
		(r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
}

1981
/*
1982 1983 1984 1985 1986 1987
 * Move tasks from one to the other group. If @from is NULL, then all tasks
 * in the systems are moved unconditionally (used for teardown).
 *
 * If @mask is not NULL the cpus on which moved tasks are running are set
 * in that mask so the update smp function call is restricted to affected
 * cpus.
1988
 */
1989 1990
static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
				 struct cpumask *mask)
1991
{
F
Fenghua Yu 已提交
1992 1993 1994
	struct task_struct *p, *t;

	read_lock(&tasklist_lock);
1995
	for_each_process_thread(p, t) {
1996 1997
		if (!from || is_closid_match(t, from) ||
		    is_rmid_match(t, from)) {
1998
			t->closid = to->closid;
1999 2000
			t->rmid = to->mon.rmid;

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
#ifdef CONFIG_SMP
			/*
			 * This is safe on x86 w/o barriers as the ordering
			 * of writing to task_cpu() and t->on_cpu is
			 * reverse to the reading here. The detection is
			 * inaccurate as tasks might move or schedule
			 * before the smp function call takes place. In
			 * such a case the function call is pointless, but
			 * there is no other side effect.
			 */
			if (mask && t->on_cpu)
				cpumask_set_cpu(task_cpu(t), mask);
#endif
		}
	}
F
Fenghua Yu 已提交
2016
	read_unlock(&tasklist_lock);
2017 2018
}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
{
	struct rdtgroup *sentry, *stmp;
	struct list_head *head;

	head = &rdtgrp->mon.crdtgrp_list;
	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
		free_rmid(sentry->mon.rmid);
		list_del(&sentry->mon.crdtgrp_list);
		kfree(sentry);
	}
}

2032 2033 2034 2035 2036 2037 2038 2039 2040
/*
 * Forcibly remove all of subdirectories under root.
 */
static void rmdir_all_sub(void)
{
	struct rdtgroup *rdtgrp, *tmp;

	/* Move all tasks to the default resource group */
	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2041 2042

	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2043 2044 2045
		/* Free any child rmids */
		free_all_child_rdtgrp(rdtgrp);

2046 2047 2048
		/* Remove each rdtgroup other than root */
		if (rdtgrp == &rdtgroup_default)
			continue;
2049

2050 2051 2052 2053
		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
			rdtgroup_pseudo_lock_remove(rdtgrp);

2054 2055 2056 2057 2058 2059 2060 2061
		/*
		 * Give any CPUs back to the default group. We cannot copy
		 * cpu_online_mask because a CPU might have executed the
		 * offline callback already, but is still marked online.
		 */
		cpumask_or(&rdtgroup_default.cpu_mask,
			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);

2062 2063
		free_rmid(rdtgrp->mon.rmid);

2064 2065 2066 2067
		kernfs_remove(rdtgrp->kn);
		list_del(&rdtgrp->rdtgroup_list);
		kfree(rdtgrp);
	}
2068
	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2069
	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2070

2071
	kernfs_remove(kn_info);
2072 2073
	kernfs_remove(kn_mongrp);
	kernfs_remove(kn_mondata);
2074 2075
}

2076 2077 2078 2079
static void rdt_kill_sb(struct super_block *sb)
{
	struct rdt_resource *r;

2080
	cpus_read_lock();
2081 2082
	mutex_lock(&rdtgroup_mutex);

2083 2084
	set_mba_sc(false);

2085
	/*Put everything back to default values. */
2086
	for_each_alloc_enabled_rdt_resource(r)
2087
		reset_all_ctrls(r);
2088
	cdp_disable_all();
2089
	rmdir_all_sub();
2090
	rdt_pseudo_lock_release();
2091
	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2092 2093 2094
	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
	static_branch_disable_cpuslocked(&rdt_enable_key);
2095 2096
	kernfs_kill_sb(sb);
	mutex_unlock(&rdtgroup_mutex);
2097
	cpus_read_unlock();
2098 2099 2100 2101 2102 2103 2104 2105
}

static struct file_system_type rdt_fs_type = {
	.name    = "resctrl",
	.mount   = rdt_mount,
	.kill_sb = rdt_kill_sb,
};

V
Vikas Shivappa 已提交
2106 2107 2108 2109 2110 2111
static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
		       void *priv)
{
	struct kernfs_node *kn;
	int ret = 0;

2112 2113
	kn = __kernfs_create_file(parent_kn, name, 0444,
				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
V
Vikas Shivappa 已提交
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
				  &kf_mondata_ops, priv, NULL, NULL);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	ret = rdtgroup_kn_set_ugid(kn);
	if (ret) {
		kernfs_remove(kn);
		return ret;
	}

	return ret;
}

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
/*
 * Remove all subdirectories of mon_data of ctrl_mon groups
 * and monitor groups with given domain id.
 */
void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
{
	struct rdtgroup *prgrp, *crgrp;
	char name[32];

	if (!r->mon_enabled)
		return;

	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
		sprintf(name, "mon_%s_%02d", r->name, dom_id);
		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);

		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
	}
}

V
Vikas Shivappa 已提交
2148 2149 2150 2151 2152 2153 2154
static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
				struct rdt_domain *d,
				struct rdt_resource *r, struct rdtgroup *prgrp)
{
	union mon_data_bits priv;
	struct kernfs_node *kn;
	struct mon_evt *mevt;
2155
	struct rmid_read rr;
V
Vikas Shivappa 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
	char name[32];
	int ret;

	sprintf(name, "mon_%s_%02d", r->name, d->id);
	/* create the directory */
	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	/*
	 * This extra ref will be put in kernfs_remove() and guarantees
	 * that kn is always accessible.
	 */
	kernfs_get(kn);
	ret = rdtgroup_kn_set_ugid(kn);
	if (ret)
		goto out_destroy;

	if (WARN_ON(list_empty(&r->evt_list))) {
		ret = -EPERM;
		goto out_destroy;
	}

	priv.u.rid = r->rid;
	priv.u.domid = d->id;
	list_for_each_entry(mevt, &r->evt_list, list) {
		priv.u.evtid = mevt->evtid;
		ret = mon_addfile(kn, mevt->name, priv.priv);
		if (ret)
			goto out_destroy;
2186 2187 2188

		if (is_mbm_event(mevt->evtid))
			mon_event_read(&rr, d, prgrp, mevt->evtid, true);
V
Vikas Shivappa 已提交
2189 2190 2191 2192 2193 2194 2195 2196 2197
	}
	kernfs_activate(kn);
	return 0;

out_destroy:
	kernfs_remove(kn);
	return ret;
}

2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
/*
 * Add all subdirectories of mon_data for "ctrl_mon" groups
 * and "monitor" groups with given domain id.
 */
void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
				    struct rdt_domain *d)
{
	struct kernfs_node *parent_kn;
	struct rdtgroup *prgrp, *crgrp;
	struct list_head *head;

	if (!r->mon_enabled)
		return;

	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
		parent_kn = prgrp->mon.mon_data_kn;
		mkdir_mondata_subdir(parent_kn, d, r, prgrp);

		head = &prgrp->mon.crdtgrp_list;
		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
			parent_kn = crgrp->mon.mon_data_kn;
			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
		}
	}
}

V
Vikas Shivappa 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
				       struct rdt_resource *r,
				       struct rdtgroup *prgrp)
{
	struct rdt_domain *dom;
	int ret;

	list_for_each_entry(dom, &r->domains, list) {
		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
		if (ret)
			return ret;
	}

	return 0;
}

/*
 * This creates a directory mon_data which contains the monitored data.
 *
 * mon_data has one directory for each domain whic are named
 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
 * with L3 domain looks as below:
 * ./mon_data:
 * mon_L3_00
 * mon_L3_01
 * mon_L3_02
 * ...
 *
 * Each domain directory has one file per event:
 * ./mon_L3_00/:
 * llc_occupancy
 *
 */
static int mkdir_mondata_all(struct kernfs_node *parent_kn,
			     struct rdtgroup *prgrp,
			     struct kernfs_node **dest_kn)
{
	struct rdt_resource *r;
	struct kernfs_node *kn;
	int ret;

	/*
	 * Create the mon_data directory first.
	 */
	ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
	if (ret)
		return ret;

	if (dest_kn)
		*dest_kn = kn;

	/*
	 * Create the subdirectories for each domain. Note that all events
	 * in a domain like L3 are grouped into a resource whose domain is L3
	 */
	for_each_mon_enabled_rdt_resource(r) {
		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
		if (ret)
			goto out_destroy;
	}

	return 0;

out_destroy:
	kernfs_remove(kn);
	return ret;
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
/**
 * cbm_ensure_valid - Enforce validity on provided CBM
 * @_val:	Candidate CBM
 * @r:		RDT resource to which the CBM belongs
 *
 * The provided CBM represents all cache portions available for use. This
 * may be represented by a bitmap that does not consist of contiguous ones
 * and thus be an invalid CBM.
 * Here the provided CBM is forced to be a valid CBM by only considering
 * the first set of contiguous bits as valid and clearing all bits.
 * The intention here is to provide a valid default CBM with which a new
 * resource group is initialized. The user can follow this with a
 * modification to the CBM if the default does not satisfy the
 * requirements.
 */
static void cbm_ensure_valid(u32 *_val, struct rdt_resource *r)
{
	/*
	 * Convert the u32 _val to an unsigned long required by all the bit
	 * operations within this function. No more than 32 bits of this
	 * converted value can be accessed because all bit operations are
	 * additionally provided with cbm_len that is initialized during
	 * hardware enumeration using five bits from the EAX register and
	 * thus never can exceed 32 bits.
	 */
	unsigned long *val = (unsigned long *)_val;
	unsigned int cbm_len = r->cache.cbm_len;
	unsigned long first_bit, zero_bit;

	if (*val == 0)
		return;

	first_bit = find_first_bit(val, cbm_len);
	zero_bit = find_next_zero_bit(val, cbm_len, first_bit);

	/* Clear any remaining bits to ensure contiguous region */
	bitmap_clear(val, zero_bit, cbm_len - zero_bit);
}

/**
 * rdtgroup_init_alloc - Initialize the new RDT group's allocations
 *
 * A new RDT group is being created on an allocation capable (CAT)
 * supporting system. Set this group up to start off with all usable
 * allocations. That is, all shareable and unused bits.
 *
 * All-zero CBM is invalid. If there are no more shareable bits available
 * on any domain then the entire allocation will fail.
 */
static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
{
	u32 used_b = 0, unused_b = 0;
	u32 closid = rdtgrp->closid;
	struct rdt_resource *r;
	enum rdtgrp_mode mode;
	struct rdt_domain *d;
	int i, ret;
	u32 *ctrl;

	for_each_alloc_enabled_rdt_resource(r) {
		list_for_each_entry(d, &r->domains, list) {
			d->have_new_ctrl = false;
			d->new_ctrl = r->cache.shareable_bits;
			used_b = r->cache.shareable_bits;
			ctrl = d->ctrl_val;
			for (i = 0; i < r->num_closid; i++, ctrl++) {
				if (closid_allocated(i) && i != closid) {
					mode = rdtgroup_mode_by_closid(i);
2360 2361
					if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
						break;
2362 2363 2364 2365 2366
					used_b |= *ctrl;
					if (mode == RDT_MODE_SHAREABLE)
						d->new_ctrl |= *ctrl;
				}
			}
2367 2368
			if (d->plr && d->plr->cbm > 0)
				used_b |= d->plr->cbm;
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
			unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
			unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
			d->new_ctrl |= unused_b;
			/*
			 * Force the initial CBM to be valid, user can
			 * modify the CBM based on system availability.
			 */
			cbm_ensure_valid(&d->new_ctrl, r);
			if (bitmap_weight((unsigned long *) &d->new_ctrl,
					  r->cache.cbm_len) <
					r->cache.min_cbm_bits) {
				rdt_last_cmd_printf("no space on %s:%d\n",
						    r->name, d->id);
				return -ENOSPC;
			}
			d->have_new_ctrl = true;
		}
	}

	for_each_alloc_enabled_rdt_resource(r) {
		ret = update_domains(r, rdtgrp->closid);
		if (ret < 0) {
			rdt_last_cmd_puts("failed to initialize allocations\n");
			return ret;
		}
		rdtgrp->mode = RDT_MODE_SHAREABLE;
	}

	return 0;
}

2400 2401 2402
static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
			     struct kernfs_node *prgrp_kn,
			     const char *name, umode_t mode,
2403
			     enum rdt_group_type rtype, struct rdtgroup **r)
2404
{
2405
	struct rdtgroup *prdtgrp, *rdtgrp;
2406
	struct kernfs_node *kn;
2407 2408
	uint files = 0;
	int ret;
2409

2410
	prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
2411
	rdt_last_cmd_clear();
2412
	if (!prdtgrp) {
2413
		ret = -ENODEV;
2414
		rdt_last_cmd_puts("directory was removed\n");
2415 2416 2417
		goto out_unlock;
	}

2418 2419 2420 2421 2422 2423 2424 2425
	if (rtype == RDTMON_GROUP &&
	    (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
	     prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
		ret = -EINVAL;
		rdt_last_cmd_puts("pseudo-locking in progress\n");
		goto out_unlock;
	}

2426 2427 2428 2429
	/* allocate the rdtgroup. */
	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
	if (!rdtgrp) {
		ret = -ENOSPC;
2430
		rdt_last_cmd_puts("kernel out of memory\n");
2431
		goto out_unlock;
2432
	}
2433
	*r = rdtgrp;
2434 2435 2436
	rdtgrp->mon.parent = prdtgrp;
	rdtgrp->type = rtype;
	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2437 2438

	/* kernfs creates the directory for rdtgrp */
2439
	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2440 2441
	if (IS_ERR(kn)) {
		ret = PTR_ERR(kn);
2442
		rdt_last_cmd_puts("kernfs create error\n");
2443
		goto out_free_rgrp;
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	}
	rdtgrp->kn = kn;

	/*
	 * kernfs_remove() will drop the reference count on "kn" which
	 * will free it. But we still need it to stick around for the
	 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
	 * here, which will be dropped inside rdtgroup_kn_unlock().
	 */
	kernfs_get(kn);

	ret = rdtgroup_kn_set_ugid(kn);
2456 2457
	if (ret) {
		rdt_last_cmd_puts("kernfs perm error\n");
2458
		goto out_destroy;
2459
	}
2460

2461
	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2462
	ret = rdtgroup_add_files(kn, files);
2463 2464
	if (ret) {
		rdt_last_cmd_puts("kernfs fill error\n");
T
Tony Luck 已提交
2465
		goto out_destroy;
2466
	}
T
Tony Luck 已提交
2467

2468 2469
	if (rdt_mon_capable) {
		ret = alloc_rmid();
2470 2471
		if (ret < 0) {
			rdt_last_cmd_puts("out of RMIDs\n");
2472
			goto out_destroy;
2473
		}
2474
		rdtgrp->mon.rmid = ret;
V
Vikas Shivappa 已提交
2475 2476

		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2477 2478
		if (ret) {
			rdt_last_cmd_puts("kernfs subdir error\n");
V
Vikas Shivappa 已提交
2479
			goto out_idfree;
2480
		}
2481
	}
2482 2483
	kernfs_activate(kn);

2484 2485 2486 2487
	/*
	 * The caller unlocks the prgrp_kn upon success.
	 */
	return 0;
2488

V
Vikas Shivappa 已提交
2489 2490
out_idfree:
	free_rmid(rdtgrp->mon.rmid);
2491 2492
out_destroy:
	kernfs_remove(rdtgrp->kn);
2493
out_free_rgrp:
2494 2495
	kfree(rdtgrp);
out_unlock:
2496 2497 2498 2499 2500 2501 2502
	rdtgroup_kn_unlock(prgrp_kn);
	return ret;
}

static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
{
	kernfs_remove(rgrp->kn);
2503
	free_rmid(rgrp->mon.rmid);
2504 2505 2506
	kfree(rgrp);
}

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
/*
 * Create a monitor group under "mon_groups" directory of a control
 * and monitor group(ctrl_mon). This is a resource group
 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
 */
static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
			      struct kernfs_node *prgrp_kn,
			      const char *name,
			      umode_t mode)
{
	struct rdtgroup *rdtgrp, *prgrp;
	int ret;

	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
				&rdtgrp);
	if (ret)
		return ret;

	prgrp = rdtgrp->mon.parent;
	rdtgrp->closid = prgrp->closid;

	/*
	 * Add the rdtgrp to the list of rdtgrps the parent
	 * ctrl_mon group has to track.
	 */
	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);

	rdtgroup_kn_unlock(prgrp_kn);
	return ret;
}

2538 2539
/*
 * These are rdtgroups created under the root directory. Can be used
2540
 * to allocate and monitor resources.
2541
 */
2542 2543 2544
static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
				   struct kernfs_node *prgrp_kn,
				   const char *name, umode_t mode)
2545 2546 2547 2548 2549 2550
{
	struct rdtgroup *rdtgrp;
	struct kernfs_node *kn;
	u32 closid;
	int ret;

2551 2552
	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
				&rdtgrp);
2553 2554 2555 2556 2557
	if (ret)
		return ret;

	kn = rdtgrp->kn;
	ret = closid_alloc();
2558 2559
	if (ret < 0) {
		rdt_last_cmd_puts("out of CLOSIDs\n");
2560
		goto out_common_fail;
2561
	}
2562
	closid = ret;
2563
	ret = 0;
2564 2565

	rdtgrp->closid = closid;
2566 2567 2568 2569
	ret = rdtgroup_init_alloc(rdtgrp);
	if (ret < 0)
		goto out_id_free;

2570 2571
	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);

2572 2573 2574 2575 2576 2577
	if (rdt_mon_capable) {
		/*
		 * Create an empty mon_groups directory to hold the subset
		 * of tasks and cpus to monitor.
		 */
		ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
2578 2579
		if (ret) {
			rdt_last_cmd_puts("kernfs subdir error\n");
2580
			goto out_del_list;
2581
		}
2582 2583
	}

2584 2585
	goto out_unlock;

2586 2587
out_del_list:
	list_del(&rdtgrp->rdtgroup_list);
2588 2589
out_id_free:
	closid_free(closid);
2590 2591 2592 2593
out_common_fail:
	mkdir_rdt_prepare_clean(rdtgrp);
out_unlock:
	rdtgroup_kn_unlock(prgrp_kn);
2594 2595 2596
	return ret;
}

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
/*
 * We allow creating mon groups only with in a directory called "mon_groups"
 * which is present in every ctrl_mon group. Check if this is a valid
 * "mon_groups" directory.
 *
 * 1. The directory should be named "mon_groups".
 * 2. The mon group itself should "not" be named "mon_groups".
 *   This makes sure "mon_groups" directory always has a ctrl_mon group
 *   as parent.
 */
static bool is_mon_groups(struct kernfs_node *kn, const char *name)
{
	return (!strcmp(kn->name, "mon_groups") &&
		strcmp(name, "mon_groups"));
}

2613 2614 2615 2616 2617 2618 2619 2620 2621
static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
			  umode_t mode)
{
	/* Do not accept '\n' to avoid unparsable situation. */
	if (strchr(name, '\n'))
		return -EINVAL;

	/*
	 * If the parent directory is the root directory and RDT
2622 2623
	 * allocation is supported, add a control and monitoring
	 * subdirectory
2624 2625
	 */
	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2626 2627 2628 2629 2630 2631 2632 2633
		return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);

	/*
	 * If RDT monitoring is supported and the parent directory is a valid
	 * "mon_groups" directory, add a monitoring subdirectory.
	 */
	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
		return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2634 2635 2636 2637

	return -EPERM;
}

2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
			      cpumask_var_t tmpmask)
{
	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
	int cpu;

	/* Give any tasks back to the parent group */
	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);

	/* Update per cpu rmid of the moved CPUs first */
	for_each_cpu(cpu, &rdtgrp->cpu_mask)
2649
		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
	/*
	 * Update the MSR on moved CPUs and CPUs which have moved
	 * task running on them.
	 */
	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
	update_closid_rmid(tmpmask, NULL);

	rdtgrp->flags = RDT_DELETED;
	free_rmid(rdtgrp->mon.rmid);

	/*
	 * Remove the rdtgrp from the parent ctrl_mon group's list
	 */
	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
	list_del(&rdtgrp->mon.crdtgrp_list);

	/*
	 * one extra hold on this, will drop when we kfree(rdtgrp)
	 * in rdtgroup_kn_unlock()
	 */
	kernfs_get(kn);
	kernfs_remove(rdtgrp->kn);

	return 0;
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
				struct rdtgroup *rdtgrp)
{
	rdtgrp->flags = RDT_DELETED;
	list_del(&rdtgrp->rdtgroup_list);

	/*
	 * one extra hold on this, will drop when we kfree(rdtgrp)
	 * in rdtgroup_kn_unlock()
	 */
	kernfs_get(kn);
	kernfs_remove(rdtgrp->kn);
	return 0;
}

2691 2692
static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
			       cpumask_var_t tmpmask)
2693
{
2694
	int cpu;
2695

F
Fenghua Yu 已提交
2696
	/* Give any tasks back to the default group */
2697
	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
F
Fenghua Yu 已提交
2698

T
Tony Luck 已提交
2699 2700 2701
	/* Give any CPUs back to the default group */
	cpumask_or(&rdtgroup_default.cpu_mask,
		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2702

2703 2704
	/* Update per cpu closid and rmid of the moved CPUs first */
	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2705 2706
		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2707 2708
	}

2709 2710 2711 2712 2713
	/*
	 * Update the MSR on moved CPUs and CPUs which have moved
	 * task running on them.
	 */
	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2714
	update_closid_rmid(tmpmask, NULL);
T
Tony Luck 已提交
2715

2716
	closid_free(rdtgrp->closid);
2717 2718 2719 2720 2721 2722 2723
	free_rmid(rdtgrp->mon.rmid);

	/*
	 * Free all the child monitor group rmids.
	 */
	free_all_child_rdtgrp(rdtgrp);

2724
	rdtgroup_ctrl_remove(kn, rdtgrp);
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746

	return 0;
}

static int rdtgroup_rmdir(struct kernfs_node *kn)
{
	struct kernfs_node *parent_kn = kn->parent;
	struct rdtgroup *rdtgrp;
	cpumask_var_t tmpmask;
	int ret = 0;

	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
		return -ENOMEM;

	rdtgrp = rdtgroup_kn_lock_live(kn);
	if (!rdtgrp) {
		ret = -EPERM;
		goto out;
	}

	/*
	 * If the rdtgroup is a ctrl_mon group and parent directory
2747 2748 2749 2750
	 * is the root directory, remove the ctrl_mon group.
	 *
	 * If the rdtgroup is a mon group and parent directory
	 * is a valid "mon_groups" directory, remove the mon group.
2751
	 */
2752 2753 2754 2755 2756 2757 2758 2759 2760
	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) {
		if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
		    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
			ret = rdtgroup_ctrl_remove(kn, rdtgrp);
		} else {
			ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
		}
	} else if (rdtgrp->type == RDTMON_GROUP &&
		 is_mon_groups(parent_kn, kn->name)) {
2761
		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
2762
	} else {
2763
		ret = -EPERM;
2764
	}
2765

2766
out:
2767
	rdtgroup_kn_unlock(kn);
2768 2769
	free_cpumask_var(tmpmask);
	return ret;
2770 2771
}

2772 2773
static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
{
2774
	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
2775 2776 2777 2778
		seq_puts(seq, ",cdp");
	return 0;
}

2779
static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
2780 2781 2782
	.mkdir		= rdtgroup_mkdir,
	.rmdir		= rdtgroup_rmdir,
	.show_options	= rdtgroup_show_options,
2783 2784 2785 2786
};

static int __init rdtgroup_setup_root(void)
{
T
Tony Luck 已提交
2787 2788
	int ret;

2789
	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
2790 2791
				      KERNFS_ROOT_CREATE_DEACTIVATED |
				      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
2792 2793 2794 2795 2796 2797 2798
				      &rdtgroup_default);
	if (IS_ERR(rdt_root))
		return PTR_ERR(rdt_root);

	mutex_lock(&rdtgroup_mutex);

	rdtgroup_default.closid = 0;
2799 2800 2801 2802
	rdtgroup_default.mon.rmid = 0;
	rdtgroup_default.type = RDTCTRL_GROUP;
	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);

2803 2804
	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);

2805
	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
T
Tony Luck 已提交
2806 2807 2808 2809 2810
	if (ret) {
		kernfs_destroy_root(rdt_root);
		goto out;
	}

2811 2812 2813
	rdtgroup_default.kn = rdt_root->kn;
	kernfs_activate(rdtgroup_default.kn);

T
Tony Luck 已提交
2814
out:
2815 2816
	mutex_unlock(&rdtgroup_mutex);

T
Tony Luck 已提交
2817
	return ret;
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
}

/*
 * rdtgroup_init - rdtgroup initialization
 *
 * Setup resctrl file system including set up root, create mount point,
 * register rdtgroup filesystem, and initialize files under root directory.
 *
 * Return: 0 on success or -errno
 */
int __init rdtgroup_init(void)
{
	int ret = 0;

2832 2833 2834
	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
		     sizeof(last_cmd_status_buf));

2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
	ret = rdtgroup_setup_root();
	if (ret)
		return ret;

	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
	if (ret)
		goto cleanup_root;

	ret = register_filesystem(&rdt_fs_type);
	if (ret)
		goto cleanup_mountpoint;

2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	/*
	 * Adding the resctrl debugfs directory here may not be ideal since
	 * it would let the resctrl debugfs directory appear on the debugfs
	 * filesystem before the resctrl filesystem is mounted.
	 * It may also be ok since that would enable debugging of RDT before
	 * resctrl is mounted.
	 * The reason why the debugfs directory is created here and not in
	 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
	 * during the debugfs directory creation also &sb->s_type->i_mutex_key
	 * (the lockdep class of inode->i_rwsem). Other filesystem
	 * interactions (eg. SyS_getdents) have the lock ordering:
	 * &sb->s_type->i_mutex_key --> &mm->mmap_sem
	 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
	 * is taken, thus creating dependency:
	 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
	 * issues considering the other two lock dependencies.
	 * By creating the debugfs directory here we avoid a dependency
	 * that may cause deadlock (even though file operations cannot
	 * occur until the filesystem is mounted, but I do not know how to
	 * tell lockdep that).
	 */
	debugfs_resctrl = debugfs_create_dir("resctrl", NULL);

2870 2871 2872 2873 2874 2875 2876 2877 2878
	return 0;

cleanup_mountpoint:
	sysfs_remove_mount_point(fs_kobj, "resctrl");
cleanup_root:
	kernfs_destroy_root(rdt_root);

	return ret;
}
2879 2880 2881

void __exit rdtgroup_exit(void)
{
2882
	debugfs_remove_recursive(debugfs_resctrl);
2883 2884 2885 2886
	unregister_filesystem(&rdt_fs_type);
	sysfs_remove_mount_point(fs_kobj, "resctrl");
	kernfs_destroy_root(rdt_root);
}