intel_rdt_rdtgroup.c 62.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * User interface for Resource Alloction in Resource Director Technology(RDT)
 *
 * Copyright (C) 2016 Intel Corporation
 *
 * Author: Fenghua Yu <fenghua.yu@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * More information about RDT be found in the Intel (R) x86 Architecture
 * Software Developer Manual.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

23
#include <linux/cacheinfo.h>
T
Tony Luck 已提交
24
#include <linux/cpu.h>
25 26 27
#include <linux/fs.h>
#include <linux/sysfs.h>
#include <linux/kernfs.h>
28
#include <linux/seq_buf.h>
29
#include <linux/seq_file.h>
30
#include <linux/sched/signal.h>
31
#include <linux/sched/task.h>
32
#include <linux/slab.h>
F
Fenghua Yu 已提交
33
#include <linux/task_work.h>
34 35 36

#include <uapi/linux/magic.h>

37 38
#include <asm/intel_rdt_sched.h>
#include "intel_rdt.h"
39

40 41
DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
42
DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
43
static struct kernfs_root *rdt_root;
44 45 46
struct rdtgroup rdtgroup_default;
LIST_HEAD(rdt_all_groups);

47 48 49
/* Kernel fs node for "info" directory under root */
static struct kernfs_node *kn_info;

50 51 52 53 54 55
/* Kernel fs node for "mon_groups" directory under root */
static struct kernfs_node *kn_mongrp;

/* Kernel fs node for "mon_data" directory under root */
static struct kernfs_node *kn_mondata;

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
static struct seq_buf last_cmd_status;
static char last_cmd_status_buf[512];

void rdt_last_cmd_clear(void)
{
	lockdep_assert_held(&rdtgroup_mutex);
	seq_buf_clear(&last_cmd_status);
}

void rdt_last_cmd_puts(const char *s)
{
	lockdep_assert_held(&rdtgroup_mutex);
	seq_buf_puts(&last_cmd_status, s);
}

void rdt_last_cmd_printf(const char *fmt, ...)
{
	va_list ap;

	va_start(ap, fmt);
	lockdep_assert_held(&rdtgroup_mutex);
	seq_buf_vprintf(&last_cmd_status, fmt, ap);
	va_end(ap);
}

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
/*
 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
 * we can keep a bitmap of free CLOSIDs in a single integer.
 *
 * Using a global CLOSID across all resources has some advantages and
 * some drawbacks:
 * + We can simply set "current->closid" to assign a task to a resource
 *   group.
 * + Context switch code can avoid extra memory references deciding which
 *   CLOSID to load into the PQR_ASSOC MSR
 * - We give up some options in configuring resource groups across multi-socket
 *   systems.
 * - Our choices on how to configure each resource become progressively more
 *   limited as the number of resources grows.
 */
static int closid_free_map;

static void closid_init(void)
{
	struct rdt_resource *r;
	int rdt_min_closid = 32;

	/* Compute rdt_min_closid across all resources */
104
	for_each_alloc_enabled_rdt_resource(r)
105 106 107 108 109 110 111 112
		rdt_min_closid = min(rdt_min_closid, r->num_closid);

	closid_free_map = BIT_MASK(rdt_min_closid) - 1;

	/* CLOSID 0 is always reserved for the default group */
	closid_free_map &= ~1;
}

113
static int closid_alloc(void)
114
{
115
	u32 closid = ffs(closid_free_map);
116 117 118 119 120 121 122 123 124

	if (closid == 0)
		return -ENOSPC;
	closid--;
	closid_free_map &= ~(1 << closid);

	return closid;
}

125
void closid_free(int closid)
126 127 128 129
{
	closid_free_map |= 1 << closid;
}

130 131 132 133 134 135 136
/**
 * closid_allocated - test if provided closid is in use
 * @closid: closid to be tested
 *
 * Return: true if @closid is currently associated with a resource group,
 * false if @closid is free
 */
137
static bool closid_allocated(unsigned int closid)
138 139 140 141
{
	return (closid_free_map & (1 << closid)) == 0;
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
/**
 * rdtgroup_mode_by_closid - Return mode of resource group with closid
 * @closid: closid if the resource group
 *
 * Each resource group is associated with a @closid. Here the mode
 * of a resource group can be queried by searching for it using its closid.
 *
 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
 */
enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
{
	struct rdtgroup *rdtgrp;

	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
		if (rdtgrp->closid == closid)
			return rdtgrp->mode;
	}

	return RDT_NUM_MODES;
}

163 164
static const char * const rdt_mode_str[] = {
	[RDT_MODE_SHAREABLE]	= "shareable",
165
	[RDT_MODE_EXCLUSIVE]	= "exclusive",
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
};

/**
 * rdtgroup_mode_str - Return the string representation of mode
 * @mode: the resource group mode as &enum rdtgroup_mode
 *
 * Return: string representation of valid mode, "unknown" otherwise
 */
static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
{
	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
		return "unknown";

	return rdt_mode_str[mode];
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
/* set uid and gid of rdtgroup dirs and files to that of the creator */
static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
{
	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
				.ia_uid = current_fsuid(),
				.ia_gid = current_fsgid(), };

	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
		return 0;

	return kernfs_setattr(kn, &iattr);
}

static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
{
	struct kernfs_node *kn;
	int ret;

	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
				  0, rft->kf_ops, rft, NULL, NULL);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	ret = rdtgroup_kn_set_ugid(kn);
	if (ret) {
		kernfs_remove(kn);
		return ret;
	}

	return 0;
}

static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct kernfs_open_file *of = m->private;
	struct rftype *rft = of->kn->priv;

	if (rft->seq_show)
		return rft->seq_show(of, m, arg);
	return 0;
}

static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
				   size_t nbytes, loff_t off)
{
	struct rftype *rft = of->kn->priv;

	if (rft->write)
		return rft->write(of, buf, nbytes, off);

	return -EINVAL;
}

static struct kernfs_ops rdtgroup_kf_single_ops = {
	.atomic_write_len	= PAGE_SIZE,
	.write			= rdtgroup_file_write,
	.seq_show		= rdtgroup_seqfile_show,
};

V
Vikas Shivappa 已提交
242 243 244 245 246
static struct kernfs_ops kf_mondata_ops = {
	.atomic_write_len	= PAGE_SIZE,
	.seq_show		= rdtgroup_mondata_show,
};

247 248 249 250 251 252 253
static bool is_cpu_list(struct kernfs_open_file *of)
{
	struct rftype *rft = of->kn->priv;

	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
}

T
Tony Luck 已提交
254 255 256 257 258 259 260 261
static int rdtgroup_cpus_show(struct kernfs_open_file *of,
			      struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;
	int ret = 0;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);

262 263 264 265
	if (rdtgrp) {
		seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
			   cpumask_pr_args(&rdtgrp->cpu_mask));
	} else {
T
Tony Luck 已提交
266
		ret = -ENOENT;
267
	}
T
Tony Luck 已提交
268 269 270 271 272
	rdtgroup_kn_unlock(of->kn);

	return ret;
}

273 274 275
/*
 * This is safe against intel_rdt_sched_in() called from __switch_to()
 * because __switch_to() is executed with interrupts disabled. A local call
276
 * from update_closid_rmid() is proteced against __switch_to() because
277 278
 * preemption is disabled.
 */
279
static void update_cpu_closid_rmid(void *info)
280
{
281 282
	struct rdtgroup *r = info;

283
	if (r) {
284 285
		this_cpu_write(pqr_state.default_closid, r->closid);
		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
286
	}
287

288 289 290 291 292 293 294 295
	/*
	 * We cannot unconditionally write the MSR because the current
	 * executing task might have its own closid selected. Just reuse
	 * the context switch code.
	 */
	intel_rdt_sched_in();
}

296 297 298
/*
 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
 *
299
 * Per task closids/rmids must have been set up before calling this function.
300 301
 */
static void
302
update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
303 304 305 306
{
	int cpu = get_cpu();

	if (cpumask_test_cpu(cpu, cpu_mask))
307 308
		update_cpu_closid_rmid(r);
	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
309 310 311
	put_cpu();
}

312 313 314 315 316 317 318 319
static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
			  cpumask_var_t tmpmask)
{
	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
	struct list_head *head;

	/* Check whether cpus belong to parent ctrl group */
	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
320 321
	if (cpumask_weight(tmpmask)) {
		rdt_last_cmd_puts("can only add CPUs to mongroup that belong to parent\n");
322
		return -EINVAL;
323
	}
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364

	/* Check whether cpus are dropped from this group */
	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
	if (cpumask_weight(tmpmask)) {
		/* Give any dropped cpus to parent rdtgroup */
		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
		update_closid_rmid(tmpmask, prgrp);
	}

	/*
	 * If we added cpus, remove them from previous group that owned them
	 * and update per-cpu rmid
	 */
	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
	if (cpumask_weight(tmpmask)) {
		head = &prgrp->mon.crdtgrp_list;
		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
			if (crgrp == rdtgrp)
				continue;
			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
				       tmpmask);
		}
		update_closid_rmid(tmpmask, rdtgrp);
	}

	/* Done pushing/pulling - update this group with new mask */
	cpumask_copy(&rdtgrp->cpu_mask, newmask);

	return 0;
}

static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
{
	struct rdtgroup *crgrp;

	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
	/* update the child mon group masks as well*/
	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
}

365
static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
366
			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
367
{
368 369
	struct rdtgroup *r, *crgrp;
	struct list_head *head;
370 371 372 373 374

	/* Check whether cpus are dropped from this group */
	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
	if (cpumask_weight(tmpmask)) {
		/* Can't drop from default group */
375 376
		if (rdtgrp == &rdtgroup_default) {
			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
377
			return -EINVAL;
378
		}
379 380 381 382

		/* Give any dropped cpus to rdtgroup_default */
		cpumask_or(&rdtgroup_default.cpu_mask,
			   &rdtgroup_default.cpu_mask, tmpmask);
383
		update_closid_rmid(tmpmask, &rdtgroup_default);
384 385 386
	}

	/*
387 388 389
	 * If we added cpus, remove them from previous group and
	 * the prev group's child groups that owned them
	 * and update per-cpu closid/rmid.
390 391 392 393 394 395
	 */
	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
	if (cpumask_weight(tmpmask)) {
		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
			if (r == rdtgrp)
				continue;
396 397 398
			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
			if (cpumask_weight(tmpmask1))
				cpumask_rdtgrp_clear(r, tmpmask1);
399
		}
400
		update_closid_rmid(tmpmask, rdtgrp);
401 402 403 404 405
	}

	/* Done pushing/pulling - update this group with new mask */
	cpumask_copy(&rdtgrp->cpu_mask, newmask);

406 407 408 409 410 411 412 413 414 415 416
	/*
	 * Clear child mon group masks since there is a new parent mask
	 * now and update the rmid for the cpus the child lost.
	 */
	head = &rdtgrp->mon.crdtgrp_list;
	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
		update_closid_rmid(tmpmask, rdtgrp);
		cpumask_clear(&crgrp->cpu_mask);
	}

417 418 419
	return 0;
}

T
Tony Luck 已提交
420 421 422
static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
				   char *buf, size_t nbytes, loff_t off)
{
423
	cpumask_var_t tmpmask, newmask, tmpmask1;
424
	struct rdtgroup *rdtgrp;
425
	int ret;
T
Tony Luck 已提交
426 427 428 429 430 431 432 433 434 435

	if (!buf)
		return -EINVAL;

	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
		return -ENOMEM;
	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
		free_cpumask_var(tmpmask);
		return -ENOMEM;
	}
436 437 438 439 440
	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
		free_cpumask_var(tmpmask);
		free_cpumask_var(newmask);
		return -ENOMEM;
	}
441

T
Tony Luck 已提交
442
	rdtgrp = rdtgroup_kn_lock_live(of->kn);
443
	rdt_last_cmd_clear();
T
Tony Luck 已提交
444 445
	if (!rdtgrp) {
		ret = -ENOENT;
446
		rdt_last_cmd_puts("directory was removed\n");
T
Tony Luck 已提交
447 448 449
		goto unlock;
	}

450 451 452 453 454
	if (is_cpu_list(of))
		ret = cpulist_parse(buf, newmask);
	else
		ret = cpumask_parse(buf, newmask);

455 456
	if (ret) {
		rdt_last_cmd_puts("bad cpu list/mask\n");
T
Tony Luck 已提交
457
		goto unlock;
458
	}
T
Tony Luck 已提交
459 460 461 462 463

	/* check that user didn't specify any offline cpus */
	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
	if (cpumask_weight(tmpmask)) {
		ret = -EINVAL;
464
		rdt_last_cmd_puts("can only assign online cpus\n");
465
		goto unlock;
T
Tony Luck 已提交
466 467
	}

468
	if (rdtgrp->type == RDTCTRL_GROUP)
469 470 471
		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
	else if (rdtgrp->type == RDTMON_GROUP)
		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
472 473
	else
		ret = -EINVAL;
T
Tony Luck 已提交
474 475 476 477 478

unlock:
	rdtgroup_kn_unlock(of->kn);
	free_cpumask_var(tmpmask);
	free_cpumask_var(newmask);
479
	free_cpumask_var(tmpmask1);
T
Tony Luck 已提交
480 481 482 483

	return ret ?: nbytes;
}

F
Fenghua Yu 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
struct task_move_callback {
	struct callback_head	work;
	struct rdtgroup		*rdtgrp;
};

static void move_myself(struct callback_head *head)
{
	struct task_move_callback *callback;
	struct rdtgroup *rdtgrp;

	callback = container_of(head, struct task_move_callback, work);
	rdtgrp = callback->rdtgrp;

	/*
	 * If resource group was deleted before this task work callback
	 * was invoked, then assign the task to root group and free the
	 * resource group.
	 */
	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
	    (rdtgrp->flags & RDT_DELETED)) {
		current->closid = 0;
505
		current->rmid = 0;
F
Fenghua Yu 已提交
506 507 508
		kfree(rdtgrp);
	}

509
	preempt_disable();
F
Fenghua Yu 已提交
510 511
	/* update PQR_ASSOC MSR to make resource group go into effect */
	intel_rdt_sched_in();
512
	preempt_enable();
F
Fenghua Yu 已提交
513

F
Fenghua Yu 已提交
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	kfree(callback);
}

static int __rdtgroup_move_task(struct task_struct *tsk,
				struct rdtgroup *rdtgrp)
{
	struct task_move_callback *callback;
	int ret;

	callback = kzalloc(sizeof(*callback), GFP_KERNEL);
	if (!callback)
		return -ENOMEM;
	callback->work.func = move_myself;
	callback->rdtgrp = rdtgrp;

	/*
	 * Take a refcount, so rdtgrp cannot be freed before the
	 * callback has been invoked.
	 */
	atomic_inc(&rdtgrp->waitcount);
	ret = task_work_add(tsk, &callback->work, true);
	if (ret) {
		/*
		 * Task is exiting. Drop the refcount and free the callback.
		 * No need to check the refcount as the group cannot be
		 * deleted before the write function unlocks rdtgroup_mutex.
		 */
		atomic_dec(&rdtgrp->waitcount);
		kfree(callback);
543
		rdt_last_cmd_puts("task exited\n");
F
Fenghua Yu 已提交
544
	} else {
545 546 547 548 549 550 551 552 553
		/*
		 * For ctrl_mon groups move both closid and rmid.
		 * For monitor groups, can move the tasks only from
		 * their parent CTRL group.
		 */
		if (rdtgrp->type == RDTCTRL_GROUP) {
			tsk->closid = rdtgrp->closid;
			tsk->rmid = rdtgrp->mon.rmid;
		} else if (rdtgrp->type == RDTMON_GROUP) {
554
			if (rdtgrp->mon.parent->closid == tsk->closid) {
555
				tsk->rmid = rdtgrp->mon.rmid;
556 557
			} else {
				rdt_last_cmd_puts("Can't move task to different control group\n");
558
				ret = -EINVAL;
559
			}
560
		}
F
Fenghua Yu 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
	}
	return ret;
}

static int rdtgroup_task_write_permission(struct task_struct *task,
					  struct kernfs_open_file *of)
{
	const struct cred *tcred = get_task_cred(task);
	const struct cred *cred = current_cred();
	int ret = 0;

	/*
	 * Even if we're attaching all tasks in the thread group, we only
	 * need to check permissions on one of them.
	 */
	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
	    !uid_eq(cred->euid, tcred->uid) &&
578 579
	    !uid_eq(cred->euid, tcred->suid)) {
		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
F
Fenghua Yu 已提交
580
		ret = -EPERM;
581
	}
F
Fenghua Yu 已提交
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

	put_cred(tcred);
	return ret;
}

static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
			      struct kernfs_open_file *of)
{
	struct task_struct *tsk;
	int ret;

	rcu_read_lock();
	if (pid) {
		tsk = find_task_by_vpid(pid);
		if (!tsk) {
			rcu_read_unlock();
598
			rdt_last_cmd_printf("No task %d\n", pid);
F
Fenghua Yu 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
			return -ESRCH;
		}
	} else {
		tsk = current;
	}

	get_task_struct(tsk);
	rcu_read_unlock();

	ret = rdtgroup_task_write_permission(tsk, of);
	if (!ret)
		ret = __rdtgroup_move_task(tsk, rdtgrp);

	put_task_struct(tsk);
	return ret;
}

static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
{
	struct rdtgroup *rdtgrp;
	int ret = 0;
	pid_t pid;

	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
		return -EINVAL;
	rdtgrp = rdtgroup_kn_lock_live(of->kn);
626
	rdt_last_cmd_clear();
F
Fenghua Yu 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

	if (rdtgrp)
		ret = rdtgroup_move_task(pid, rdtgrp, of);
	else
		ret = -ENOENT;

	rdtgroup_kn_unlock(of->kn);

	return ret ?: nbytes;
}

static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
{
	struct task_struct *p, *t;

	rcu_read_lock();
	for_each_process_thread(p, t) {
644 645
		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
F
Fenghua Yu 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
			seq_printf(s, "%d\n", t->pid);
	}
	rcu_read_unlock();
}

static int rdtgroup_tasks_show(struct kernfs_open_file *of,
			       struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;
	int ret = 0;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (rdtgrp)
		show_rdt_tasks(rdtgrp, s);
	else
		ret = -ENOENT;
	rdtgroup_kn_unlock(of->kn);

	return ret;
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
				    struct seq_file *seq, void *v)
{
	int len;

	mutex_lock(&rdtgroup_mutex);
	len = seq_buf_used(&last_cmd_status);
	if (len)
		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
	else
		seq_puts(seq, "ok\n");
	mutex_unlock(&rdtgroup_mutex);
	return 0;
}

682 683 684 685 686 687 688 689 690
static int rdt_num_closids_show(struct kernfs_open_file *of,
				struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%d\n", r->num_closid);
	return 0;
}

691
static int rdt_default_ctrl_show(struct kernfs_open_file *of,
692 693 694 695
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

696
	seq_printf(seq, "%x\n", r->default_ctrl);
697 698 699
	return 0;
}

700 701 702 703 704
static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

705
	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
706 707 708
	return 0;
}

709 710 711 712 713 714 715 716 717
static int rdt_shareable_bits_show(struct kernfs_open_file *of,
				   struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%x\n", r->cache.shareable_bits);
	return 0;
}

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
/**
 * rdt_bit_usage_show - Display current usage of resources
 *
 * A domain is a shared resource that can now be allocated differently. Here
 * we display the current regions of the domain as an annotated bitmask.
 * For each domain of this resource its allocation bitmask
 * is annotated as below to indicate the current usage of the corresponding bit:
 *   0 - currently unused
 *   X - currently available for sharing and used by software and hardware
 *   H - currently used by hardware only but available for software use
 *   S - currently used and shareable by software only
 *   E - currently used exclusively by one resource group
 */
static int rdt_bit_usage_show(struct kernfs_open_file *of,
			      struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;
	u32 sw_shareable, hw_shareable, exclusive;
	struct rdt_domain *dom;
	int i, hwb, swb, excl;
	enum rdtgrp_mode mode;
	bool sep = false;
	u32 *ctrl;

	mutex_lock(&rdtgroup_mutex);
	hw_shareable = r->cache.shareable_bits;
	list_for_each_entry(dom, &r->domains, list) {
		if (sep)
			seq_putc(seq, ';');
		ctrl = dom->ctrl_val;
		sw_shareable = 0;
		exclusive = 0;
		seq_printf(seq, "%d=", dom->id);
		for (i = 0; i < r->num_closid; i++, ctrl++) {
			if (!closid_allocated(i))
				continue;
			mode = rdtgroup_mode_by_closid(i);
			switch (mode) {
			case RDT_MODE_SHAREABLE:
				sw_shareable |= *ctrl;
				break;
			case RDT_MODE_EXCLUSIVE:
				exclusive |= *ctrl;
				break;
			case RDT_NUM_MODES:
				WARN(1,
				     "invalid mode for closid %d\n", i);
				break;
			}
		}
		for (i = r->cache.cbm_len - 1; i >= 0; i--) {
			hwb = test_bit(i, (unsigned long *)&hw_shareable);
			swb = test_bit(i, (unsigned long *)&sw_shareable);
			excl = test_bit(i, (unsigned long *)&exclusive);
			if (hwb && swb)
				seq_putc(seq, 'X');
			else if (hwb && !swb)
				seq_putc(seq, 'H');
			else if (!hwb && swb)
				seq_putc(seq, 'S');
			else if (excl)
				seq_putc(seq, 'E');
			else /* Unused bits remain */
				seq_putc(seq, '0');
		}
		sep = true;
	}
	seq_putc(seq, '\n');
	mutex_unlock(&rdtgroup_mutex);
	return 0;
}

790 791 792 793
static int rdt_min_bw_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;
794

795 796 797 798
	seq_printf(seq, "%u\n", r->membw.min_bw);
	return 0;
}

799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
static int rdt_num_rmids_show(struct kernfs_open_file *of,
			      struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%d\n", r->num_rmid);

	return 0;
}

static int rdt_mon_features_show(struct kernfs_open_file *of,
				 struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;
	struct mon_evt *mevt;

	list_for_each_entry(mevt, &r->evt_list, list)
		seq_printf(seq, "%s\n", mevt->name);

	return 0;
}

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
static int rdt_bw_gran_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%u\n", r->membw.bw_gran);
	return 0;
}

static int rdt_delay_linear_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%u\n", r->membw.delay_linear);
836 837 838
	return 0;
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
static int max_threshold_occ_show(struct kernfs_open_file *of,
				  struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale);

	return 0;
}

static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
				       char *buf, size_t nbytes, loff_t off)
{
	struct rdt_resource *r = of->kn->parent->priv;
	unsigned int bytes;
	int ret;

	ret = kstrtouint(buf, 0, &bytes);
	if (ret)
		return ret;

	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
		return -EINVAL;

	intel_cqm_threshold = bytes / r->mon_scale;

865
	return nbytes;
866 867
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/*
 * rdtgroup_mode_show - Display mode of this resource group
 */
static int rdtgroup_mode_show(struct kernfs_open_file *of,
			      struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}

	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));

	rdtgroup_kn_unlock(of->kn);
	return 0;
}

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
/**
 * rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
 * @r: Resource to which domain instance @d belongs.
 * @d: The domain instance for which @closid is being tested.
 * @cbm: Capacity bitmask being tested.
 * @closid: Intended closid for @cbm.
 * @exclusive: Only check if overlaps with exclusive resource groups
 *
 * Checks if provided @cbm intended to be used for @closid on domain
 * @d overlaps with any other closids or other hardware usage associated
 * with this domain. If @exclusive is true then only overlaps with
 * resource groups in exclusive mode will be considered. If @exclusive
 * is false then overlaps with any resource group or hardware entities
 * will be considered.
 *
 * Return: false if CBM does not overlap, true if it does.
 */
905 906
bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
			   u32 _cbm, int closid, bool exclusive)
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
{
	unsigned long *cbm = (unsigned long *)&_cbm;
	unsigned long *ctrl_b;
	enum rdtgrp_mode mode;
	u32 *ctrl;
	int i;

	/* Check for any overlap with regions used by hardware directly */
	if (!exclusive) {
		if (bitmap_intersects(cbm,
				      (unsigned long *)&r->cache.shareable_bits,
				      r->cache.cbm_len))
			return true;
	}

	/* Check for overlap with other resource groups */
	ctrl = d->ctrl_val;
	for (i = 0; i < r->num_closid; i++, ctrl++) {
		ctrl_b = (unsigned long *)ctrl;
		if (closid_allocated(i) && i != closid) {
			if (bitmap_intersects(cbm, ctrl_b, r->cache.cbm_len)) {
				mode = rdtgroup_mode_by_closid(i);
				if (exclusive) {
					if (mode == RDT_MODE_EXCLUSIVE)
						return true;
					continue;
				}
				return true;
			}
		}
	}

	return false;
}

/**
 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
 *
 * An exclusive resource group implies that there should be no sharing of
 * its allocated resources. At the time this group is considered to be
 * exclusive this test can determine if its current schemata supports this
 * setting by testing for overlap with all other resource groups.
 *
 * Return: true if resource group can be exclusive, false if there is overlap
 * with allocations of other resource groups and thus this resource group
 * cannot be exclusive.
 */
static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
{
	int closid = rdtgrp->closid;
	struct rdt_resource *r;
	struct rdt_domain *d;

	for_each_alloc_enabled_rdt_resource(r) {
		list_for_each_entry(d, &r->domains, list) {
			if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
						  rdtgrp->closid, false))
				return false;
		}
	}

	return true;
}

/**
 * rdtgroup_mode_write - Modify the resource group's mode
 *
 */
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
				   char *buf, size_t nbytes, loff_t off)
{
	struct rdtgroup *rdtgrp;
	enum rdtgrp_mode mode;
	int ret = 0;

	/* Valid input requires a trailing newline */
	if (nbytes == 0 || buf[nbytes - 1] != '\n')
		return -EINVAL;
	buf[nbytes - 1] = '\0';

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}

	rdt_last_cmd_clear();

	mode = rdtgrp->mode;

997 998
	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
	    (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE))
999 1000 1001 1002
		goto out;

	if (!strcmp(buf, "shareable")) {
		rdtgrp->mode = RDT_MODE_SHAREABLE;
1003 1004 1005 1006 1007 1008 1009
	} else if (!strcmp(buf, "exclusive")) {
		if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
			rdt_last_cmd_printf("schemata overlaps\n");
			ret = -EINVAL;
			goto out;
		}
		rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	} else {
		rdt_last_cmd_printf("unknown/unsupported mode\n");
		ret = -EINVAL;
	}

out:
	rdtgroup_kn_unlock(of->kn);
	return ret ?: nbytes;
}

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
/**
 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
 * @r: RDT resource to which @d belongs.
 * @d: RDT domain instance.
 * @cbm: bitmask for which the size should be computed.
 *
 * The bitmask provided associated with the RDT domain instance @d will be
 * translated into how many bytes it represents. The size in bytes is
 * computed by first dividing the total cache size by the CBM length to
 * determine how many bytes each bit in the bitmask represents. The result
 * is multiplied with the number of bits set in the bitmask.
 */
unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
				  struct rdt_domain *d, u32 cbm)
{
	struct cpu_cacheinfo *ci;
	unsigned int size = 0;
	int num_b, i;

	num_b = bitmap_weight((unsigned long *)&cbm, r->cache.cbm_len);
	ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
	for (i = 0; i < ci->num_leaves; i++) {
		if (ci->info_list[i].level == r->cache_level) {
			size = ci->info_list[i].size / r->cache.cbm_len * num_b;
			break;
		}
	}

	return size;
}

/**
 * rdtgroup_size_show - Display size in bytes of allocated regions
 *
 * The "size" file mirrors the layout of the "schemata" file, printing the
 * size in bytes of each region instead of the capacity bitmask.
 *
 */
static int rdtgroup_size_show(struct kernfs_open_file *of,
			      struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;
	struct rdt_resource *r;
	struct rdt_domain *d;
	unsigned int size;
	bool sep = false;
	u32 cbm;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}

	for_each_alloc_enabled_rdt_resource(r) {
		seq_printf(s, "%*s:", max_name_width, r->name);
		list_for_each_entry(d, &r->domains, list) {
			if (sep)
				seq_putc(s, ';');
			cbm = d->ctrl_val[rdtgrp->closid];
			size = rdtgroup_cbm_to_size(r, d, cbm);
			seq_printf(s, "%d=%u", d->id, size);
			sep = true;
		}
		seq_putc(s, '\n');
	}

	rdtgroup_kn_unlock(of->kn);

	return 0;
}

1092
/* rdtgroup information files for one cache resource. */
1093
static struct rftype res_common_files[] = {
1094 1095 1096 1097 1098 1099 1100
	{
		.name		= "last_cmd_status",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_last_cmd_status_show,
		.fflags		= RF_TOP_INFO,
	},
1101 1102 1103 1104 1105
	{
		.name		= "num_closids",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_num_closids_show,
1106
		.fflags		= RF_CTRL_INFO,
1107
	},
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	{
		.name		= "mon_features",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_mon_features_show,
		.fflags		= RF_MON_INFO,
	},
	{
		.name		= "num_rmids",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_num_rmids_show,
		.fflags		= RF_MON_INFO,
	},
1122 1123 1124 1125
	{
		.name		= "cbm_mask",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
1126
		.seq_show	= rdt_default_ctrl_show,
1127
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1128
	},
1129 1130 1131 1132 1133
	{
		.name		= "min_cbm_bits",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_min_cbm_bits_show,
1134
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
1135
	},
1136 1137 1138 1139 1140 1141 1142
	{
		.name		= "shareable_bits",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_shareable_bits_show,
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
	},
1143 1144 1145 1146 1147 1148 1149
	{
		.name		= "bit_usage",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_bit_usage_show,
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
	},
1150 1151 1152 1153 1154
	{
		.name		= "min_bandwidth",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_min_bw_show,
1155
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1156 1157 1158 1159 1160 1161
	},
	{
		.name		= "bandwidth_gran",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_bw_gran_show,
1162
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
1163 1164 1165 1166 1167 1168
	},
	{
		.name		= "delay_linear",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_delay_linear_show,
1169 1170
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
	},
1171 1172 1173 1174 1175 1176 1177 1178
	{
		.name		= "max_threshold_occupancy",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= max_threshold_occ_write,
		.seq_show	= max_threshold_occ_show,
		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
	},
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	{
		.name		= "cpus",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_cpus_write,
		.seq_show	= rdtgroup_cpus_show,
		.fflags		= RFTYPE_BASE,
	},
	{
		.name		= "cpus_list",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_cpus_write,
		.seq_show	= rdtgroup_cpus_show,
		.flags		= RFTYPE_FLAGS_CPUS_LIST,
		.fflags		= RFTYPE_BASE,
	},
	{
		.name		= "tasks",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_tasks_write,
		.seq_show	= rdtgroup_tasks_show,
		.fflags		= RFTYPE_BASE,
	},
	{
		.name		= "schemata",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_schemata_write,
		.seq_show	= rdtgroup_schemata_show,
		.fflags		= RF_CTRL_BASE,
1211
	},
1212 1213 1214 1215 1216 1217 1218 1219
	{
		.name		= "mode",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_mode_write,
		.seq_show	= rdtgroup_mode_show,
		.fflags		= RF_CTRL_BASE,
	},
1220 1221 1222 1223 1224 1225 1226 1227
	{
		.name		= "size",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdtgroup_size_show,
		.fflags		= RF_CTRL_BASE,
	},

1228 1229
};

1230
static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1231
{
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	struct rftype *rfts, *rft;
	int ret, len;

	rfts = res_common_files;
	len = ARRAY_SIZE(res_common_files);

	lockdep_assert_held(&rdtgroup_mutex);

	for (rft = rfts; rft < rfts + len; rft++) {
		if ((fflags & rft->fflags) == rft->fflags) {
			ret = rdtgroup_add_file(kn, rft);
			if (ret)
				goto error;
		}
	}

	return 0;
error:
	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
	while (--rft >= rfts) {
		if ((fflags & rft->fflags) == rft->fflags)
			kernfs_remove_by_name(kn, rft->name);
	}
	return ret;
1256 1257
}

1258 1259
static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
				      unsigned long fflags)
1260
{
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	struct kernfs_node *kn_subdir;
	int ret;

	kn_subdir = kernfs_create_dir(kn_info, name,
				      kn_info->mode, r);
	if (IS_ERR(kn_subdir))
		return PTR_ERR(kn_subdir);

	kernfs_get(kn_subdir);
	ret = rdtgroup_kn_set_ugid(kn_subdir);
	if (ret)
		return ret;

	ret = rdtgroup_add_files(kn_subdir, fflags);
	if (!ret)
		kernfs_activate(kn_subdir);

	return ret;
1279 1280
}

1281 1282 1283
static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
{
	struct rdt_resource *r;
1284
	unsigned long fflags;
1285
	char name[32];
1286
	int ret;
1287 1288 1289 1290 1291 1292 1293

	/* create the directory */
	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
	if (IS_ERR(kn_info))
		return PTR_ERR(kn_info);
	kernfs_get(kn_info);

1294 1295 1296 1297
	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
	if (ret)
		goto out_destroy;

1298
	for_each_alloc_enabled_rdt_resource(r) {
1299 1300
		fflags =  r->fflags | RF_CTRL_INFO;
		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1301 1302 1303
		if (ret)
			goto out_destroy;
	}
1304 1305 1306 1307 1308 1309 1310 1311 1312

	for_each_mon_enabled_rdt_resource(r) {
		fflags =  r->fflags | RF_MON_INFO;
		sprintf(name, "%s_MON", r->name);
		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
		if (ret)
			goto out_destroy;
	}

1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
	/*
	 * This extra ref will be put in kernfs_remove() and guarantees
	 * that @rdtgrp->kn is always accessible.
	 */
	kernfs_get(kn_info);

	ret = rdtgroup_kn_set_ugid(kn_info);
	if (ret)
		goto out_destroy;

	kernfs_activate(kn_info);

	return 0;

out_destroy:
	kernfs_remove(kn_info);
	return ret;
}

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
static int
mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
		    char *name, struct kernfs_node **dest_kn)
{
	struct kernfs_node *kn;
	int ret;

	/* create the directory */
	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	if (dest_kn)
		*dest_kn = kn;

	/*
	 * This extra ref will be put in kernfs_remove() and guarantees
	 * that @rdtgrp->kn is always accessible.
	 */
	kernfs_get(kn);

	ret = rdtgroup_kn_set_ugid(kn);
	if (ret)
		goto out_destroy;

	kernfs_activate(kn);

	return 0;

out_destroy:
	kernfs_remove(kn);
	return ret;
}
1365

1366 1367 1368 1369 1370 1371 1372
static void l3_qos_cfg_update(void *arg)
{
	bool *enable = arg;

	wrmsrl(IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
}

1373
static void l2_qos_cfg_update(void *arg)
1374
{
1375 1376 1377 1378 1379
	bool *enable = arg;

	wrmsrl(IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
}

1380 1381 1382 1383 1384
static inline bool is_mba_linear(void)
{
	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
}

1385 1386 1387 1388
static int set_cache_qos_cfg(int level, bool enable)
{
	void (*update)(void *arg);
	struct rdt_resource *r_l;
1389 1390 1391 1392 1393 1394 1395
	cpumask_var_t cpu_mask;
	struct rdt_domain *d;
	int cpu;

	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
		return -ENOMEM;

1396 1397 1398 1399 1400 1401 1402 1403 1404
	if (level == RDT_RESOURCE_L3)
		update = l3_qos_cfg_update;
	else if (level == RDT_RESOURCE_L2)
		update = l2_qos_cfg_update;
	else
		return -EINVAL;

	r_l = &rdt_resources_all[level];
	list_for_each_entry(d, &r_l->domains, list) {
1405 1406 1407 1408 1409 1410
		/* Pick one CPU from each domain instance to update MSR */
		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
	}
	cpu = get_cpu();
	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
	if (cpumask_test_cpu(cpu, cpu_mask))
1411
		update(&enable);
1412
	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1413
	smp_call_function_many(cpu_mask, update, &enable, 1);
1414 1415 1416 1417 1418 1419 1420
	put_cpu();

	free_cpumask_var(cpu_mask);

	return 0;
}

1421 1422 1423 1424 1425 1426 1427 1428 1429
/*
 * Enable or disable the MBA software controller
 * which helps user specify bandwidth in MBps.
 * MBA software controller is supported only if
 * MBM is supported and MBA is in linear scale.
 */
static int set_mba_sc(bool mba_sc)
{
	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1430
	struct rdt_domain *d;
1431 1432 1433 1434 1435 1436

	if (!is_mbm_enabled() || !is_mba_linear() ||
	    mba_sc == is_mba_sc(r))
		return -EINVAL;

	r->membw.mba_sc = mba_sc;
1437 1438
	list_for_each_entry(d, &r->domains, list)
		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1439 1440 1441 1442

	return 0;
}

1443
static int cdp_enable(int level, int data_type, int code_type)
1444
{
1445 1446 1447
	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
	struct rdt_resource *r_l = &rdt_resources_all[level];
1448 1449
	int ret;

1450 1451
	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
	    !r_lcode->alloc_capable)
1452 1453
		return -EINVAL;

1454
	ret = set_cache_qos_cfg(level, true);
1455
	if (!ret) {
1456 1457 1458
		r_l->alloc_enabled = false;
		r_ldata->alloc_enabled = true;
		r_lcode->alloc_enabled = true;
1459 1460 1461 1462
	}
	return ret;
}

1463 1464 1465 1466 1467 1468 1469
static int cdpl3_enable(void)
{
	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
			  RDT_RESOURCE_L3CODE);
}

static int cdpl2_enable(void)
1470
{
1471 1472 1473 1474 1475 1476 1477
	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
			  RDT_RESOURCE_L2CODE);
}

static void cdp_disable(int level, int data_type, int code_type)
{
	struct rdt_resource *r = &rdt_resources_all[level];
1478

1479
	r->alloc_enabled = r->alloc_capable;
1480

1481 1482 1483 1484
	if (rdt_resources_all[data_type].alloc_enabled) {
		rdt_resources_all[data_type].alloc_enabled = false;
		rdt_resources_all[code_type].alloc_enabled = false;
		set_cache_qos_cfg(level, false);
1485 1486 1487
	}
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
static void cdpl3_disable(void)
{
	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
}

static void cdpl2_disable(void)
{
	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
}

static void cdp_disable_all(void)
{
	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
		cdpl3_disable();
	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
		cdpl2_disable();
}

1506 1507 1508 1509 1510 1511
static int parse_rdtgroupfs_options(char *data)
{
	char *token, *o = data;
	int ret = 0;

	while ((token = strsep(&o, ",")) != NULL) {
1512 1513 1514 1515
		if (!*token) {
			ret = -EINVAL;
			goto out;
		}
1516

1517 1518 1519 1520 1521 1522 1523 1524
		if (!strcmp(token, "cdp")) {
			ret = cdpl3_enable();
			if (ret)
				goto out;
		} else if (!strcmp(token, "cdpl2")) {
			ret = cdpl2_enable();
			if (ret)
				goto out;
1525 1526 1527 1528
		} else if (!strcmp(token, "mba_MBps")) {
			ret = set_mba_sc(true);
			if (ret)
				goto out;
1529 1530 1531 1532
		} else {
			ret = -EINVAL;
			goto out;
		}
1533 1534
	}

1535 1536 1537 1538 1539
	return 0;

out:
	pr_err("Invalid mount option \"%s\"\n", token);

1540 1541 1542
	return ret;
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
/*
 * We don't allow rdtgroup directories to be created anywhere
 * except the root directory. Thus when looking for the rdtgroup
 * structure for a kernfs node we are either looking at a directory,
 * in which case the rdtgroup structure is pointed at by the "priv"
 * field, otherwise we have a file, and need only look to the parent
 * to find the rdtgroup.
 */
static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
{
1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
	if (kernfs_type(kn) == KERNFS_DIR) {
		/*
		 * All the resource directories use "kn->priv"
		 * to point to the "struct rdtgroup" for the
		 * resource. "info" and its subdirectories don't
		 * have rdtgroup structures, so return NULL here.
		 */
		if (kn == kn_info || kn->parent == kn_info)
			return NULL;
		else
			return kn->priv;
	} else {
1565
		return kn->parent->priv;
1566
	}
1567 1568 1569 1570 1571 1572
}

struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
{
	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);

1573 1574 1575
	if (!rdtgrp)
		return NULL;

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	atomic_inc(&rdtgrp->waitcount);
	kernfs_break_active_protection(kn);

	mutex_lock(&rdtgroup_mutex);

	/* Was this group deleted while we waited? */
	if (rdtgrp->flags & RDT_DELETED)
		return NULL;

	return rdtgrp;
}

void rdtgroup_kn_unlock(struct kernfs_node *kn)
{
	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);

1592 1593 1594
	if (!rdtgrp)
		return;

1595 1596 1597 1598 1599
	mutex_unlock(&rdtgroup_mutex);

	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
	    (rdtgrp->flags & RDT_DELETED)) {
		kernfs_unbreak_active_protection(kn);
1600
		kernfs_put(rdtgrp->kn);
1601 1602 1603 1604 1605 1606
		kfree(rdtgrp);
	} else {
		kernfs_unbreak_active_protection(kn);
	}
}

1607 1608 1609 1610
static int mkdir_mondata_all(struct kernfs_node *parent_kn,
			     struct rdtgroup *prgrp,
			     struct kernfs_node **mon_data_kn);

1611 1612 1613 1614
static struct dentry *rdt_mount(struct file_system_type *fs_type,
				int flags, const char *unused_dev_name,
				void *data)
{
1615 1616
	struct rdt_domain *dom;
	struct rdt_resource *r;
1617 1618 1619
	struct dentry *dentry;
	int ret;

1620
	cpus_read_lock();
1621 1622 1623 1624
	mutex_lock(&rdtgroup_mutex);
	/*
	 * resctrl file system can only be mounted once.
	 */
1625
	if (static_branch_unlikely(&rdt_enable_key)) {
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		dentry = ERR_PTR(-EBUSY);
		goto out;
	}

	ret = parse_rdtgroupfs_options(data);
	if (ret) {
		dentry = ERR_PTR(ret);
		goto out_cdp;
	}

1636 1637
	closid_init();

1638
	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1639 1640
	if (ret) {
		dentry = ERR_PTR(ret);
1641
		goto out_cdp;
1642
	}
1643

1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	if (rdt_mon_capable) {
		ret = mongroup_create_dir(rdtgroup_default.kn,
					  NULL, "mon_groups",
					  &kn_mongrp);
		if (ret) {
			dentry = ERR_PTR(ret);
			goto out_info;
		}
		kernfs_get(kn_mongrp);

		ret = mkdir_mondata_all(rdtgroup_default.kn,
					&rdtgroup_default, &kn_mondata);
		if (ret) {
			dentry = ERR_PTR(ret);
			goto out_mongrp;
		}
		kernfs_get(kn_mondata);
		rdtgroup_default.mon.mon_data_kn = kn_mondata;
	}

1664 1665 1666 1667 1668 1669
	ret = rdt_pseudo_lock_init();
	if (ret) {
		dentry = ERR_PTR(ret);
		goto out_mondata;
	}

1670 1671 1672
	dentry = kernfs_mount(fs_type, flags, rdt_root,
			      RDTGROUP_SUPER_MAGIC, NULL);
	if (IS_ERR(dentry))
1673
		goto out_psl;
1674 1675

	if (rdt_alloc_capable)
1676
		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
1677
	if (rdt_mon_capable)
1678
		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
1679

1680
	if (rdt_alloc_capable || rdt_mon_capable)
1681
		static_branch_enable_cpuslocked(&rdt_enable_key);
1682 1683 1684 1685

	if (is_mbm_enabled()) {
		r = &rdt_resources_all[RDT_RESOURCE_L3];
		list_for_each_entry(dom, &r->domains, list)
1686
			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
1687 1688
	}

1689 1690
	goto out;

1691 1692
out_psl:
	rdt_pseudo_lock_release();
1693 1694 1695 1696 1697 1698 1699
out_mondata:
	if (rdt_mon_capable)
		kernfs_remove(kn_mondata);
out_mongrp:
	if (rdt_mon_capable)
		kernfs_remove(kn_mongrp);
out_info:
1700
	kernfs_remove(kn_info);
1701
out_cdp:
1702
	cdp_disable_all();
1703
out:
1704
	rdt_last_cmd_clear();
1705
	mutex_unlock(&rdtgroup_mutex);
1706
	cpus_read_unlock();
1707 1708 1709 1710

	return dentry;
}

1711
static int reset_all_ctrls(struct rdt_resource *r)
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
{
	struct msr_param msr_param;
	cpumask_var_t cpu_mask;
	struct rdt_domain *d;
	int i, cpu;

	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
		return -ENOMEM;

	msr_param.res = r;
	msr_param.low = 0;
	msr_param.high = r->num_closid;

	/*
	 * Disable resource control for this resource by setting all
	 * CBMs in all domains to the maximum mask value. Pick one CPU
	 * from each domain to update the MSRs below.
	 */
	list_for_each_entry(d, &r->domains, list) {
		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);

		for (i = 0; i < r->num_closid; i++)
1734
			d->ctrl_val[i] = r->default_ctrl;
1735 1736 1737 1738
	}
	cpu = get_cpu();
	/* Update CBM on this cpu if it's in cpu_mask. */
	if (cpumask_test_cpu(cpu, cpu_mask))
1739
		rdt_ctrl_update(&msr_param);
1740
	/* Update CBM on all other cpus in cpu_mask. */
1741
	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
1742 1743 1744 1745 1746 1747 1748
	put_cpu();

	free_cpumask_var(cpu_mask);

	return 0;
}

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
{
	return (rdt_alloc_capable &&
		(r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
}

static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
{
	return (rdt_mon_capable &&
		(r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
}

1761
/*
1762 1763 1764 1765 1766 1767
 * Move tasks from one to the other group. If @from is NULL, then all tasks
 * in the systems are moved unconditionally (used for teardown).
 *
 * If @mask is not NULL the cpus on which moved tasks are running are set
 * in that mask so the update smp function call is restricted to affected
 * cpus.
1768
 */
1769 1770
static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
				 struct cpumask *mask)
1771
{
F
Fenghua Yu 已提交
1772 1773 1774
	struct task_struct *p, *t;

	read_lock(&tasklist_lock);
1775
	for_each_process_thread(p, t) {
1776 1777
		if (!from || is_closid_match(t, from) ||
		    is_rmid_match(t, from)) {
1778
			t->closid = to->closid;
1779 1780
			t->rmid = to->mon.rmid;

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795
#ifdef CONFIG_SMP
			/*
			 * This is safe on x86 w/o barriers as the ordering
			 * of writing to task_cpu() and t->on_cpu is
			 * reverse to the reading here. The detection is
			 * inaccurate as tasks might move or schedule
			 * before the smp function call takes place. In
			 * such a case the function call is pointless, but
			 * there is no other side effect.
			 */
			if (mask && t->on_cpu)
				cpumask_set_cpu(task_cpu(t), mask);
#endif
		}
	}
F
Fenghua Yu 已提交
1796
	read_unlock(&tasklist_lock);
1797 1798
}

1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
{
	struct rdtgroup *sentry, *stmp;
	struct list_head *head;

	head = &rdtgrp->mon.crdtgrp_list;
	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
		free_rmid(sentry->mon.rmid);
		list_del(&sentry->mon.crdtgrp_list);
		kfree(sentry);
	}
}

1812 1813 1814 1815 1816 1817 1818 1819 1820
/*
 * Forcibly remove all of subdirectories under root.
 */
static void rmdir_all_sub(void)
{
	struct rdtgroup *rdtgrp, *tmp;

	/* Move all tasks to the default resource group */
	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
1821 1822

	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
1823 1824 1825
		/* Free any child rmids */
		free_all_child_rdtgrp(rdtgrp);

1826 1827 1828
		/* Remove each rdtgroup other than root */
		if (rdtgrp == &rdtgroup_default)
			continue;
1829 1830 1831 1832 1833 1834 1835 1836 1837

		/*
		 * Give any CPUs back to the default group. We cannot copy
		 * cpu_online_mask because a CPU might have executed the
		 * offline callback already, but is still marked online.
		 */
		cpumask_or(&rdtgroup_default.cpu_mask,
			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);

1838 1839
		free_rmid(rdtgrp->mon.rmid);

1840 1841 1842 1843
		kernfs_remove(rdtgrp->kn);
		list_del(&rdtgrp->rdtgroup_list);
		kfree(rdtgrp);
	}
1844
	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
1845
	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
1846

1847
	kernfs_remove(kn_info);
1848 1849
	kernfs_remove(kn_mongrp);
	kernfs_remove(kn_mondata);
1850 1851
}

1852 1853 1854 1855
static void rdt_kill_sb(struct super_block *sb)
{
	struct rdt_resource *r;

1856
	cpus_read_lock();
1857 1858
	mutex_lock(&rdtgroup_mutex);

1859 1860
	set_mba_sc(false);

1861
	/*Put everything back to default values. */
1862
	for_each_alloc_enabled_rdt_resource(r)
1863
		reset_all_ctrls(r);
1864
	cdp_disable_all();
1865
	rmdir_all_sub();
1866
	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
1867 1868 1869
	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
	static_branch_disable_cpuslocked(&rdt_enable_key);
1870 1871
	kernfs_kill_sb(sb);
	mutex_unlock(&rdtgroup_mutex);
1872
	cpus_read_unlock();
1873 1874 1875 1876 1877 1878 1879 1880
}

static struct file_system_type rdt_fs_type = {
	.name    = "resctrl",
	.mount   = rdt_mount,
	.kill_sb = rdt_kill_sb,
};

V
Vikas Shivappa 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
		       void *priv)
{
	struct kernfs_node *kn;
	int ret = 0;

	kn = __kernfs_create_file(parent_kn, name, 0444, 0,
				  &kf_mondata_ops, priv, NULL, NULL);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	ret = rdtgroup_kn_set_ugid(kn);
	if (ret) {
		kernfs_remove(kn);
		return ret;
	}

	return ret;
}

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
/*
 * Remove all subdirectories of mon_data of ctrl_mon groups
 * and monitor groups with given domain id.
 */
void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
{
	struct rdtgroup *prgrp, *crgrp;
	char name[32];

	if (!r->mon_enabled)
		return;

	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
		sprintf(name, "mon_%s_%02d", r->name, dom_id);
		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);

		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
	}
}

V
Vikas Shivappa 已提交
1922 1923 1924 1925 1926 1927 1928
static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
				struct rdt_domain *d,
				struct rdt_resource *r, struct rdtgroup *prgrp)
{
	union mon_data_bits priv;
	struct kernfs_node *kn;
	struct mon_evt *mevt;
1929
	struct rmid_read rr;
V
Vikas Shivappa 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
	char name[32];
	int ret;

	sprintf(name, "mon_%s_%02d", r->name, d->id);
	/* create the directory */
	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	/*
	 * This extra ref will be put in kernfs_remove() and guarantees
	 * that kn is always accessible.
	 */
	kernfs_get(kn);
	ret = rdtgroup_kn_set_ugid(kn);
	if (ret)
		goto out_destroy;

	if (WARN_ON(list_empty(&r->evt_list))) {
		ret = -EPERM;
		goto out_destroy;
	}

	priv.u.rid = r->rid;
	priv.u.domid = d->id;
	list_for_each_entry(mevt, &r->evt_list, list) {
		priv.u.evtid = mevt->evtid;
		ret = mon_addfile(kn, mevt->name, priv.priv);
		if (ret)
			goto out_destroy;
1960 1961 1962

		if (is_mbm_event(mevt->evtid))
			mon_event_read(&rr, d, prgrp, mevt->evtid, true);
V
Vikas Shivappa 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971
	}
	kernfs_activate(kn);
	return 0;

out_destroy:
	kernfs_remove(kn);
	return ret;
}

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
/*
 * Add all subdirectories of mon_data for "ctrl_mon" groups
 * and "monitor" groups with given domain id.
 */
void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
				    struct rdt_domain *d)
{
	struct kernfs_node *parent_kn;
	struct rdtgroup *prgrp, *crgrp;
	struct list_head *head;

	if (!r->mon_enabled)
		return;

	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
		parent_kn = prgrp->mon.mon_data_kn;
		mkdir_mondata_subdir(parent_kn, d, r, prgrp);

		head = &prgrp->mon.crdtgrp_list;
		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
			parent_kn = crgrp->mon.mon_data_kn;
			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
		}
	}
}

V
Vikas Shivappa 已提交
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
				       struct rdt_resource *r,
				       struct rdtgroup *prgrp)
{
	struct rdt_domain *dom;
	int ret;

	list_for_each_entry(dom, &r->domains, list) {
		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
		if (ret)
			return ret;
	}

	return 0;
}

/*
 * This creates a directory mon_data which contains the monitored data.
 *
 * mon_data has one directory for each domain whic are named
 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
 * with L3 domain looks as below:
 * ./mon_data:
 * mon_L3_00
 * mon_L3_01
 * mon_L3_02
 * ...
 *
 * Each domain directory has one file per event:
 * ./mon_L3_00/:
 * llc_occupancy
 *
 */
static int mkdir_mondata_all(struct kernfs_node *parent_kn,
			     struct rdtgroup *prgrp,
			     struct kernfs_node **dest_kn)
{
	struct rdt_resource *r;
	struct kernfs_node *kn;
	int ret;

	/*
	 * Create the mon_data directory first.
	 */
	ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
	if (ret)
		return ret;

	if (dest_kn)
		*dest_kn = kn;

	/*
	 * Create the subdirectories for each domain. Note that all events
	 * in a domain like L3 are grouped into a resource whose domain is L3
	 */
	for_each_mon_enabled_rdt_resource(r) {
		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
		if (ret)
			goto out_destroy;
	}

	return 0;

out_destroy:
	kernfs_remove(kn);
	return ret;
}

2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
/**
 * cbm_ensure_valid - Enforce validity on provided CBM
 * @_val:	Candidate CBM
 * @r:		RDT resource to which the CBM belongs
 *
 * The provided CBM represents all cache portions available for use. This
 * may be represented by a bitmap that does not consist of contiguous ones
 * and thus be an invalid CBM.
 * Here the provided CBM is forced to be a valid CBM by only considering
 * the first set of contiguous bits as valid and clearing all bits.
 * The intention here is to provide a valid default CBM with which a new
 * resource group is initialized. The user can follow this with a
 * modification to the CBM if the default does not satisfy the
 * requirements.
 */
static void cbm_ensure_valid(u32 *_val, struct rdt_resource *r)
{
	/*
	 * Convert the u32 _val to an unsigned long required by all the bit
	 * operations within this function. No more than 32 bits of this
	 * converted value can be accessed because all bit operations are
	 * additionally provided with cbm_len that is initialized during
	 * hardware enumeration using five bits from the EAX register and
	 * thus never can exceed 32 bits.
	 */
	unsigned long *val = (unsigned long *)_val;
	unsigned int cbm_len = r->cache.cbm_len;
	unsigned long first_bit, zero_bit;

	if (*val == 0)
		return;

	first_bit = find_first_bit(val, cbm_len);
	zero_bit = find_next_zero_bit(val, cbm_len, first_bit);

	/* Clear any remaining bits to ensure contiguous region */
	bitmap_clear(val, zero_bit, cbm_len - zero_bit);
}

/**
 * rdtgroup_init_alloc - Initialize the new RDT group's allocations
 *
 * A new RDT group is being created on an allocation capable (CAT)
 * supporting system. Set this group up to start off with all usable
 * allocations. That is, all shareable and unused bits.
 *
 * All-zero CBM is invalid. If there are no more shareable bits available
 * on any domain then the entire allocation will fail.
 */
static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
{
	u32 used_b = 0, unused_b = 0;
	u32 closid = rdtgrp->closid;
	struct rdt_resource *r;
	enum rdtgrp_mode mode;
	struct rdt_domain *d;
	int i, ret;
	u32 *ctrl;

	for_each_alloc_enabled_rdt_resource(r) {
		list_for_each_entry(d, &r->domains, list) {
			d->have_new_ctrl = false;
			d->new_ctrl = r->cache.shareable_bits;
			used_b = r->cache.shareable_bits;
			ctrl = d->ctrl_val;
			for (i = 0; i < r->num_closid; i++, ctrl++) {
				if (closid_allocated(i) && i != closid) {
					mode = rdtgroup_mode_by_closid(i);
					used_b |= *ctrl;
					if (mode == RDT_MODE_SHAREABLE)
						d->new_ctrl |= *ctrl;
				}
			}
			unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
			unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
			d->new_ctrl |= unused_b;
			/*
			 * Force the initial CBM to be valid, user can
			 * modify the CBM based on system availability.
			 */
			cbm_ensure_valid(&d->new_ctrl, r);
			if (bitmap_weight((unsigned long *) &d->new_ctrl,
					  r->cache.cbm_len) <
					r->cache.min_cbm_bits) {
				rdt_last_cmd_printf("no space on %s:%d\n",
						    r->name, d->id);
				return -ENOSPC;
			}
			d->have_new_ctrl = true;
		}
	}

	for_each_alloc_enabled_rdt_resource(r) {
		ret = update_domains(r, rdtgrp->closid);
		if (ret < 0) {
			rdt_last_cmd_puts("failed to initialize allocations\n");
			return ret;
		}
		rdtgrp->mode = RDT_MODE_SHAREABLE;
	}

	return 0;
}

2170 2171 2172
static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
			     struct kernfs_node *prgrp_kn,
			     const char *name, umode_t mode,
2173
			     enum rdt_group_type rtype, struct rdtgroup **r)
2174
{
2175
	struct rdtgroup *prdtgrp, *rdtgrp;
2176
	struct kernfs_node *kn;
2177 2178
	uint files = 0;
	int ret;
2179

2180
	prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
2181
	rdt_last_cmd_clear();
2182
	if (!prdtgrp) {
2183
		ret = -ENODEV;
2184
		rdt_last_cmd_puts("directory was removed\n");
2185 2186 2187 2188 2189 2190 2191
		goto out_unlock;
	}

	/* allocate the rdtgroup. */
	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
	if (!rdtgrp) {
		ret = -ENOSPC;
2192
		rdt_last_cmd_puts("kernel out of memory\n");
2193
		goto out_unlock;
2194
	}
2195
	*r = rdtgrp;
2196 2197 2198
	rdtgrp->mon.parent = prdtgrp;
	rdtgrp->type = rtype;
	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2199 2200

	/* kernfs creates the directory for rdtgrp */
2201
	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2202 2203
	if (IS_ERR(kn)) {
		ret = PTR_ERR(kn);
2204
		rdt_last_cmd_puts("kernfs create error\n");
2205
		goto out_free_rgrp;
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
	}
	rdtgrp->kn = kn;

	/*
	 * kernfs_remove() will drop the reference count on "kn" which
	 * will free it. But we still need it to stick around for the
	 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
	 * here, which will be dropped inside rdtgroup_kn_unlock().
	 */
	kernfs_get(kn);

	ret = rdtgroup_kn_set_ugid(kn);
2218 2219
	if (ret) {
		rdt_last_cmd_puts("kernfs perm error\n");
2220
		goto out_destroy;
2221
	}
2222

2223
	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2224
	ret = rdtgroup_add_files(kn, files);
2225 2226
	if (ret) {
		rdt_last_cmd_puts("kernfs fill error\n");
T
Tony Luck 已提交
2227
		goto out_destroy;
2228
	}
T
Tony Luck 已提交
2229

2230 2231
	if (rdt_mon_capable) {
		ret = alloc_rmid();
2232 2233
		if (ret < 0) {
			rdt_last_cmd_puts("out of RMIDs\n");
2234
			goto out_destroy;
2235
		}
2236
		rdtgrp->mon.rmid = ret;
V
Vikas Shivappa 已提交
2237 2238

		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2239 2240
		if (ret) {
			rdt_last_cmd_puts("kernfs subdir error\n");
V
Vikas Shivappa 已提交
2241
			goto out_idfree;
2242
		}
2243
	}
2244 2245
	kernfs_activate(kn);

2246 2247 2248 2249
	/*
	 * The caller unlocks the prgrp_kn upon success.
	 */
	return 0;
2250

V
Vikas Shivappa 已提交
2251 2252
out_idfree:
	free_rmid(rdtgrp->mon.rmid);
2253 2254
out_destroy:
	kernfs_remove(rdtgrp->kn);
2255
out_free_rgrp:
2256 2257
	kfree(rdtgrp);
out_unlock:
2258 2259 2260 2261 2262 2263 2264
	rdtgroup_kn_unlock(prgrp_kn);
	return ret;
}

static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
{
	kernfs_remove(rgrp->kn);
2265
	free_rmid(rgrp->mon.rmid);
2266 2267 2268
	kfree(rgrp);
}

2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
/*
 * Create a monitor group under "mon_groups" directory of a control
 * and monitor group(ctrl_mon). This is a resource group
 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
 */
static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
			      struct kernfs_node *prgrp_kn,
			      const char *name,
			      umode_t mode)
{
	struct rdtgroup *rdtgrp, *prgrp;
	int ret;

	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
				&rdtgrp);
	if (ret)
		return ret;

	prgrp = rdtgrp->mon.parent;
	rdtgrp->closid = prgrp->closid;

	/*
	 * Add the rdtgrp to the list of rdtgrps the parent
	 * ctrl_mon group has to track.
	 */
	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);

	rdtgroup_kn_unlock(prgrp_kn);
	return ret;
}

2300 2301
/*
 * These are rdtgroups created under the root directory. Can be used
2302
 * to allocate and monitor resources.
2303
 */
2304 2305 2306
static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
				   struct kernfs_node *prgrp_kn,
				   const char *name, umode_t mode)
2307 2308 2309 2310 2311 2312
{
	struct rdtgroup *rdtgrp;
	struct kernfs_node *kn;
	u32 closid;
	int ret;

2313 2314
	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
				&rdtgrp);
2315 2316 2317 2318 2319
	if (ret)
		return ret;

	kn = rdtgrp->kn;
	ret = closid_alloc();
2320 2321
	if (ret < 0) {
		rdt_last_cmd_puts("out of CLOSIDs\n");
2322
		goto out_common_fail;
2323
	}
2324
	closid = ret;
2325
	ret = 0;
2326 2327

	rdtgrp->closid = closid;
2328 2329 2330 2331
	ret = rdtgroup_init_alloc(rdtgrp);
	if (ret < 0)
		goto out_id_free;

2332 2333
	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);

2334 2335 2336 2337 2338 2339
	if (rdt_mon_capable) {
		/*
		 * Create an empty mon_groups directory to hold the subset
		 * of tasks and cpus to monitor.
		 */
		ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
2340 2341
		if (ret) {
			rdt_last_cmd_puts("kernfs subdir error\n");
2342
			goto out_del_list;
2343
		}
2344 2345
	}

2346 2347
	goto out_unlock;

2348 2349
out_del_list:
	list_del(&rdtgrp->rdtgroup_list);
2350 2351
out_id_free:
	closid_free(closid);
2352 2353 2354 2355
out_common_fail:
	mkdir_rdt_prepare_clean(rdtgrp);
out_unlock:
	rdtgroup_kn_unlock(prgrp_kn);
2356 2357 2358
	return ret;
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
/*
 * We allow creating mon groups only with in a directory called "mon_groups"
 * which is present in every ctrl_mon group. Check if this is a valid
 * "mon_groups" directory.
 *
 * 1. The directory should be named "mon_groups".
 * 2. The mon group itself should "not" be named "mon_groups".
 *   This makes sure "mon_groups" directory always has a ctrl_mon group
 *   as parent.
 */
static bool is_mon_groups(struct kernfs_node *kn, const char *name)
{
	return (!strcmp(kn->name, "mon_groups") &&
		strcmp(name, "mon_groups"));
}

2375 2376 2377 2378 2379 2380 2381 2382 2383
static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
			  umode_t mode)
{
	/* Do not accept '\n' to avoid unparsable situation. */
	if (strchr(name, '\n'))
		return -EINVAL;

	/*
	 * If the parent directory is the root directory and RDT
2384 2385
	 * allocation is supported, add a control and monitoring
	 * subdirectory
2386 2387
	 */
	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2388 2389 2390 2391 2392 2393 2394 2395
		return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);

	/*
	 * If RDT monitoring is supported and the parent directory is a valid
	 * "mon_groups" directory, add a monitoring subdirectory.
	 */
	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
		return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2396 2397 2398 2399

	return -EPERM;
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
			      cpumask_var_t tmpmask)
{
	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
	int cpu;

	/* Give any tasks back to the parent group */
	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);

	/* Update per cpu rmid of the moved CPUs first */
	for_each_cpu(cpu, &rdtgrp->cpu_mask)
2411
		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
	/*
	 * Update the MSR on moved CPUs and CPUs which have moved
	 * task running on them.
	 */
	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
	update_closid_rmid(tmpmask, NULL);

	rdtgrp->flags = RDT_DELETED;
	free_rmid(rdtgrp->mon.rmid);

	/*
	 * Remove the rdtgrp from the parent ctrl_mon group's list
	 */
	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
	list_del(&rdtgrp->mon.crdtgrp_list);

	/*
	 * one extra hold on this, will drop when we kfree(rdtgrp)
	 * in rdtgroup_kn_unlock()
	 */
	kernfs_get(kn);
	kernfs_remove(rdtgrp->kn);

	return 0;
}

2438 2439
static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
			       cpumask_var_t tmpmask)
2440
{
2441
	int cpu;
2442

F
Fenghua Yu 已提交
2443
	/* Give any tasks back to the default group */
2444
	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
F
Fenghua Yu 已提交
2445

T
Tony Luck 已提交
2446 2447 2448
	/* Give any CPUs back to the default group */
	cpumask_or(&rdtgroup_default.cpu_mask,
		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2449

2450 2451
	/* Update per cpu closid and rmid of the moved CPUs first */
	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2452 2453
		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2454 2455
	}

2456 2457 2458 2459 2460
	/*
	 * Update the MSR on moved CPUs and CPUs which have moved
	 * task running on them.
	 */
	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2461
	update_closid_rmid(tmpmask, NULL);
T
Tony Luck 已提交
2462

2463 2464
	rdtgrp->flags = RDT_DELETED;
	closid_free(rdtgrp->closid);
2465 2466 2467 2468 2469 2470 2471
	free_rmid(rdtgrp->mon.rmid);

	/*
	 * Free all the child monitor group rmids.
	 */
	free_all_child_rdtgrp(rdtgrp);

2472 2473 2474 2475 2476 2477 2478 2479
	list_del(&rdtgrp->rdtgroup_list);

	/*
	 * one extra hold on this, will drop when we kfree(rdtgrp)
	 * in rdtgroup_kn_unlock()
	 */
	kernfs_get(kn);
	kernfs_remove(rdtgrp->kn);
2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501

	return 0;
}

static int rdtgroup_rmdir(struct kernfs_node *kn)
{
	struct kernfs_node *parent_kn = kn->parent;
	struct rdtgroup *rdtgrp;
	cpumask_var_t tmpmask;
	int ret = 0;

	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
		return -ENOMEM;

	rdtgrp = rdtgroup_kn_lock_live(kn);
	if (!rdtgrp) {
		ret = -EPERM;
		goto out;
	}

	/*
	 * If the rdtgroup is a ctrl_mon group and parent directory
2502 2503 2504 2505
	 * is the root directory, remove the ctrl_mon group.
	 *
	 * If the rdtgroup is a mon group and parent directory
	 * is a valid "mon_groups" directory, remove the mon group.
2506 2507 2508
	 */
	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn)
		ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
2509 2510 2511
	else if (rdtgrp->type == RDTMON_GROUP &&
		 is_mon_groups(parent_kn, kn->name))
		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
2512 2513 2514
	else
		ret = -EPERM;

2515
out:
2516
	rdtgroup_kn_unlock(kn);
2517 2518
	free_cpumask_var(tmpmask);
	return ret;
2519 2520
}

2521 2522
static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
{
2523
	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
2524 2525 2526 2527
		seq_puts(seq, ",cdp");
	return 0;
}

2528
static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
2529 2530 2531
	.mkdir		= rdtgroup_mkdir,
	.rmdir		= rdtgroup_rmdir,
	.show_options	= rdtgroup_show_options,
2532 2533 2534 2535
};

static int __init rdtgroup_setup_root(void)
{
T
Tony Luck 已提交
2536 2537
	int ret;

2538 2539 2540 2541 2542 2543 2544 2545 2546
	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
				      KERNFS_ROOT_CREATE_DEACTIVATED,
				      &rdtgroup_default);
	if (IS_ERR(rdt_root))
		return PTR_ERR(rdt_root);

	mutex_lock(&rdtgroup_mutex);

	rdtgroup_default.closid = 0;
2547 2548 2549 2550
	rdtgroup_default.mon.rmid = 0;
	rdtgroup_default.type = RDTCTRL_GROUP;
	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);

2551 2552
	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);

2553
	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
T
Tony Luck 已提交
2554 2555 2556 2557 2558
	if (ret) {
		kernfs_destroy_root(rdt_root);
		goto out;
	}

2559 2560 2561
	rdtgroup_default.kn = rdt_root->kn;
	kernfs_activate(rdtgroup_default.kn);

T
Tony Luck 已提交
2562
out:
2563 2564
	mutex_unlock(&rdtgroup_mutex);

T
Tony Luck 已提交
2565
	return ret;
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579
}

/*
 * rdtgroup_init - rdtgroup initialization
 *
 * Setup resctrl file system including set up root, create mount point,
 * register rdtgroup filesystem, and initialize files under root directory.
 *
 * Return: 0 on success or -errno
 */
int __init rdtgroup_init(void)
{
	int ret = 0;

2580 2581 2582
	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
		     sizeof(last_cmd_status_buf));

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
	ret = rdtgroup_setup_root();
	if (ret)
		return ret;

	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
	if (ret)
		goto cleanup_root;

	ret = register_filesystem(&rdt_fs_type);
	if (ret)
		goto cleanup_mountpoint;

	return 0;

cleanup_mountpoint:
	sysfs_remove_mount_point(fs_kobj, "resctrl");
cleanup_root:
	kernfs_destroy_root(rdt_root);

	return ret;
}