intel_rdt_rdtgroup.c 51.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * User interface for Resource Alloction in Resource Director Technology(RDT)
 *
 * Copyright (C) 2016 Intel Corporation
 *
 * Author: Fenghua Yu <fenghua.yu@intel.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * More information about RDT be found in the Intel (R) x86 Architecture
 * Software Developer Manual.
 */

#define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt

T
Tony Luck 已提交
23
#include <linux/cpu.h>
24 25 26
#include <linux/fs.h>
#include <linux/sysfs.h>
#include <linux/kernfs.h>
27
#include <linux/seq_buf.h>
28
#include <linux/seq_file.h>
29
#include <linux/sched/signal.h>
30
#include <linux/sched/task.h>
31
#include <linux/slab.h>
F
Fenghua Yu 已提交
32
#include <linux/task_work.h>
33 34 35

#include <uapi/linux/magic.h>

36 37
#include <asm/intel_rdt_sched.h>
#include "intel_rdt.h"
38

39 40
DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
41
DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
42
static struct kernfs_root *rdt_root;
43 44 45
struct rdtgroup rdtgroup_default;
LIST_HEAD(rdt_all_groups);

46 47 48
/* Kernel fs node for "info" directory under root */
static struct kernfs_node *kn_info;

49 50 51 52 53 54
/* Kernel fs node for "mon_groups" directory under root */
static struct kernfs_node *kn_mongrp;

/* Kernel fs node for "mon_data" directory under root */
static struct kernfs_node *kn_mondata;

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
static struct seq_buf last_cmd_status;
static char last_cmd_status_buf[512];

void rdt_last_cmd_clear(void)
{
	lockdep_assert_held(&rdtgroup_mutex);
	seq_buf_clear(&last_cmd_status);
}

void rdt_last_cmd_puts(const char *s)
{
	lockdep_assert_held(&rdtgroup_mutex);
	seq_buf_puts(&last_cmd_status, s);
}

void rdt_last_cmd_printf(const char *fmt, ...)
{
	va_list ap;

	va_start(ap, fmt);
	lockdep_assert_held(&rdtgroup_mutex);
	seq_buf_vprintf(&last_cmd_status, fmt, ap);
	va_end(ap);
}

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/*
 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
 * we can keep a bitmap of free CLOSIDs in a single integer.
 *
 * Using a global CLOSID across all resources has some advantages and
 * some drawbacks:
 * + We can simply set "current->closid" to assign a task to a resource
 *   group.
 * + Context switch code can avoid extra memory references deciding which
 *   CLOSID to load into the PQR_ASSOC MSR
 * - We give up some options in configuring resource groups across multi-socket
 *   systems.
 * - Our choices on how to configure each resource become progressively more
 *   limited as the number of resources grows.
 */
static int closid_free_map;

static void closid_init(void)
{
	struct rdt_resource *r;
	int rdt_min_closid = 32;

	/* Compute rdt_min_closid across all resources */
103
	for_each_alloc_enabled_rdt_resource(r)
104 105 106 107 108 109 110 111
		rdt_min_closid = min(rdt_min_closid, r->num_closid);

	closid_free_map = BIT_MASK(rdt_min_closid) - 1;

	/* CLOSID 0 is always reserved for the default group */
	closid_free_map &= ~1;
}

112
static int closid_alloc(void)
113
{
114
	u32 closid = ffs(closid_free_map);
115 116 117 118 119 120 121 122 123 124 125 126 127 128

	if (closid == 0)
		return -ENOSPC;
	closid--;
	closid_free_map &= ~(1 << closid);

	return closid;
}

static void closid_free(int closid)
{
	closid_free_map |= 1 << closid;
}

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * rdtgroup_mode_by_closid - Return mode of resource group with closid
 * @closid: closid if the resource group
 *
 * Each resource group is associated with a @closid. Here the mode
 * of a resource group can be queried by searching for it using its closid.
 *
 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
 */
enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
{
	struct rdtgroup *rdtgrp;

	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
		if (rdtgrp->closid == closid)
			return rdtgrp->mode;
	}

	return RDT_NUM_MODES;
}

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
static const char * const rdt_mode_str[] = {
	[RDT_MODE_SHAREABLE]	= "shareable",
};

/**
 * rdtgroup_mode_str - Return the string representation of mode
 * @mode: the resource group mode as &enum rdtgroup_mode
 *
 * Return: string representation of valid mode, "unknown" otherwise
 */
static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
{
	if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
		return "unknown";

	return rdt_mode_str[mode];
}

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/* set uid and gid of rdtgroup dirs and files to that of the creator */
static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
{
	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
				.ia_uid = current_fsuid(),
				.ia_gid = current_fsgid(), };

	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
		return 0;

	return kernfs_setattr(kn, &iattr);
}

static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
{
	struct kernfs_node *kn;
	int ret;

	kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
				  0, rft->kf_ops, rft, NULL, NULL);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	ret = rdtgroup_kn_set_ugid(kn);
	if (ret) {
		kernfs_remove(kn);
		return ret;
	}

	return 0;
}

static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct kernfs_open_file *of = m->private;
	struct rftype *rft = of->kn->priv;

	if (rft->seq_show)
		return rft->seq_show(of, m, arg);
	return 0;
}

static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
				   size_t nbytes, loff_t off)
{
	struct rftype *rft = of->kn->priv;

	if (rft->write)
		return rft->write(of, buf, nbytes, off);

	return -EINVAL;
}

static struct kernfs_ops rdtgroup_kf_single_ops = {
	.atomic_write_len	= PAGE_SIZE,
	.write			= rdtgroup_file_write,
	.seq_show		= rdtgroup_seqfile_show,
};

V
Vikas Shivappa 已提交
228 229 230 231 232
static struct kernfs_ops kf_mondata_ops = {
	.atomic_write_len	= PAGE_SIZE,
	.seq_show		= rdtgroup_mondata_show,
};

233 234 235 236 237 238 239
static bool is_cpu_list(struct kernfs_open_file *of)
{
	struct rftype *rft = of->kn->priv;

	return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
}

T
Tony Luck 已提交
240 241 242 243 244 245 246 247
static int rdtgroup_cpus_show(struct kernfs_open_file *of,
			      struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;
	int ret = 0;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);

248 249 250 251
	if (rdtgrp) {
		seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
			   cpumask_pr_args(&rdtgrp->cpu_mask));
	} else {
T
Tony Luck 已提交
252
		ret = -ENOENT;
253
	}
T
Tony Luck 已提交
254 255 256 257 258
	rdtgroup_kn_unlock(of->kn);

	return ret;
}

259 260 261
/*
 * This is safe against intel_rdt_sched_in() called from __switch_to()
 * because __switch_to() is executed with interrupts disabled. A local call
262
 * from update_closid_rmid() is proteced against __switch_to() because
263 264
 * preemption is disabled.
 */
265
static void update_cpu_closid_rmid(void *info)
266
{
267 268
	struct rdtgroup *r = info;

269
	if (r) {
270 271
		this_cpu_write(pqr_state.default_closid, r->closid);
		this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
272
	}
273

274 275 276 277 278 279 280 281
	/*
	 * We cannot unconditionally write the MSR because the current
	 * executing task might have its own closid selected. Just reuse
	 * the context switch code.
	 */
	intel_rdt_sched_in();
}

282 283 284
/*
 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
 *
285
 * Per task closids/rmids must have been set up before calling this function.
286 287
 */
static void
288
update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
289 290 291 292
{
	int cpu = get_cpu();

	if (cpumask_test_cpu(cpu, cpu_mask))
293 294
		update_cpu_closid_rmid(r);
	smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
295 296 297
	put_cpu();
}

298 299 300 301 302 303 304 305
static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
			  cpumask_var_t tmpmask)
{
	struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
	struct list_head *head;

	/* Check whether cpus belong to parent ctrl group */
	cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
306 307
	if (cpumask_weight(tmpmask)) {
		rdt_last_cmd_puts("can only add CPUs to mongroup that belong to parent\n");
308
		return -EINVAL;
309
	}
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

	/* Check whether cpus are dropped from this group */
	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
	if (cpumask_weight(tmpmask)) {
		/* Give any dropped cpus to parent rdtgroup */
		cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
		update_closid_rmid(tmpmask, prgrp);
	}

	/*
	 * If we added cpus, remove them from previous group that owned them
	 * and update per-cpu rmid
	 */
	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
	if (cpumask_weight(tmpmask)) {
		head = &prgrp->mon.crdtgrp_list;
		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
			if (crgrp == rdtgrp)
				continue;
			cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
				       tmpmask);
		}
		update_closid_rmid(tmpmask, rdtgrp);
	}

	/* Done pushing/pulling - update this group with new mask */
	cpumask_copy(&rdtgrp->cpu_mask, newmask);

	return 0;
}

static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
{
	struct rdtgroup *crgrp;

	cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
	/* update the child mon group masks as well*/
	list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
		cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
}

351
static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
352
			   cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
353
{
354 355
	struct rdtgroup *r, *crgrp;
	struct list_head *head;
356 357 358 359 360

	/* Check whether cpus are dropped from this group */
	cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
	if (cpumask_weight(tmpmask)) {
		/* Can't drop from default group */
361 362
		if (rdtgrp == &rdtgroup_default) {
			rdt_last_cmd_puts("Can't drop CPUs from default group\n");
363
			return -EINVAL;
364
		}
365 366 367 368

		/* Give any dropped cpus to rdtgroup_default */
		cpumask_or(&rdtgroup_default.cpu_mask,
			   &rdtgroup_default.cpu_mask, tmpmask);
369
		update_closid_rmid(tmpmask, &rdtgroup_default);
370 371 372
	}

	/*
373 374 375
	 * If we added cpus, remove them from previous group and
	 * the prev group's child groups that owned them
	 * and update per-cpu closid/rmid.
376 377 378 379 380 381
	 */
	cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
	if (cpumask_weight(tmpmask)) {
		list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
			if (r == rdtgrp)
				continue;
382 383 384
			cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
			if (cpumask_weight(tmpmask1))
				cpumask_rdtgrp_clear(r, tmpmask1);
385
		}
386
		update_closid_rmid(tmpmask, rdtgrp);
387 388 389 390 391
	}

	/* Done pushing/pulling - update this group with new mask */
	cpumask_copy(&rdtgrp->cpu_mask, newmask);

392 393 394 395 396 397 398 399 400 401 402
	/*
	 * Clear child mon group masks since there is a new parent mask
	 * now and update the rmid for the cpus the child lost.
	 */
	head = &rdtgrp->mon.crdtgrp_list;
	list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
		cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
		update_closid_rmid(tmpmask, rdtgrp);
		cpumask_clear(&crgrp->cpu_mask);
	}

403 404 405
	return 0;
}

T
Tony Luck 已提交
406 407 408
static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
				   char *buf, size_t nbytes, loff_t off)
{
409
	cpumask_var_t tmpmask, newmask, tmpmask1;
410
	struct rdtgroup *rdtgrp;
411
	int ret;
T
Tony Luck 已提交
412 413 414 415 416 417 418 419 420 421

	if (!buf)
		return -EINVAL;

	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
		return -ENOMEM;
	if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
		free_cpumask_var(tmpmask);
		return -ENOMEM;
	}
422 423 424 425 426
	if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
		free_cpumask_var(tmpmask);
		free_cpumask_var(newmask);
		return -ENOMEM;
	}
427

T
Tony Luck 已提交
428
	rdtgrp = rdtgroup_kn_lock_live(of->kn);
429
	rdt_last_cmd_clear();
T
Tony Luck 已提交
430 431
	if (!rdtgrp) {
		ret = -ENOENT;
432
		rdt_last_cmd_puts("directory was removed\n");
T
Tony Luck 已提交
433 434 435
		goto unlock;
	}

436 437 438 439 440
	if (is_cpu_list(of))
		ret = cpulist_parse(buf, newmask);
	else
		ret = cpumask_parse(buf, newmask);

441 442
	if (ret) {
		rdt_last_cmd_puts("bad cpu list/mask\n");
T
Tony Luck 已提交
443
		goto unlock;
444
	}
T
Tony Luck 已提交
445 446 447 448 449

	/* check that user didn't specify any offline cpus */
	cpumask_andnot(tmpmask, newmask, cpu_online_mask);
	if (cpumask_weight(tmpmask)) {
		ret = -EINVAL;
450
		rdt_last_cmd_puts("can only assign online cpus\n");
451
		goto unlock;
T
Tony Luck 已提交
452 453
	}

454
	if (rdtgrp->type == RDTCTRL_GROUP)
455 456 457
		ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
	else if (rdtgrp->type == RDTMON_GROUP)
		ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
458 459
	else
		ret = -EINVAL;
T
Tony Luck 已提交
460 461 462 463 464

unlock:
	rdtgroup_kn_unlock(of->kn);
	free_cpumask_var(tmpmask);
	free_cpumask_var(newmask);
465
	free_cpumask_var(tmpmask1);
T
Tony Luck 已提交
466 467 468 469

	return ret ?: nbytes;
}

F
Fenghua Yu 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
struct task_move_callback {
	struct callback_head	work;
	struct rdtgroup		*rdtgrp;
};

static void move_myself(struct callback_head *head)
{
	struct task_move_callback *callback;
	struct rdtgroup *rdtgrp;

	callback = container_of(head, struct task_move_callback, work);
	rdtgrp = callback->rdtgrp;

	/*
	 * If resource group was deleted before this task work callback
	 * was invoked, then assign the task to root group and free the
	 * resource group.
	 */
	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
	    (rdtgrp->flags & RDT_DELETED)) {
		current->closid = 0;
491
		current->rmid = 0;
F
Fenghua Yu 已提交
492 493 494
		kfree(rdtgrp);
	}

495
	preempt_disable();
F
Fenghua Yu 已提交
496 497
	/* update PQR_ASSOC MSR to make resource group go into effect */
	intel_rdt_sched_in();
498
	preempt_enable();
F
Fenghua Yu 已提交
499

F
Fenghua Yu 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
	kfree(callback);
}

static int __rdtgroup_move_task(struct task_struct *tsk,
				struct rdtgroup *rdtgrp)
{
	struct task_move_callback *callback;
	int ret;

	callback = kzalloc(sizeof(*callback), GFP_KERNEL);
	if (!callback)
		return -ENOMEM;
	callback->work.func = move_myself;
	callback->rdtgrp = rdtgrp;

	/*
	 * Take a refcount, so rdtgrp cannot be freed before the
	 * callback has been invoked.
	 */
	atomic_inc(&rdtgrp->waitcount);
	ret = task_work_add(tsk, &callback->work, true);
	if (ret) {
		/*
		 * Task is exiting. Drop the refcount and free the callback.
		 * No need to check the refcount as the group cannot be
		 * deleted before the write function unlocks rdtgroup_mutex.
		 */
		atomic_dec(&rdtgrp->waitcount);
		kfree(callback);
529
		rdt_last_cmd_puts("task exited\n");
F
Fenghua Yu 已提交
530
	} else {
531 532 533 534 535 536 537 538 539
		/*
		 * For ctrl_mon groups move both closid and rmid.
		 * For monitor groups, can move the tasks only from
		 * their parent CTRL group.
		 */
		if (rdtgrp->type == RDTCTRL_GROUP) {
			tsk->closid = rdtgrp->closid;
			tsk->rmid = rdtgrp->mon.rmid;
		} else if (rdtgrp->type == RDTMON_GROUP) {
540
			if (rdtgrp->mon.parent->closid == tsk->closid) {
541
				tsk->rmid = rdtgrp->mon.rmid;
542 543
			} else {
				rdt_last_cmd_puts("Can't move task to different control group\n");
544
				ret = -EINVAL;
545
			}
546
		}
F
Fenghua Yu 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	}
	return ret;
}

static int rdtgroup_task_write_permission(struct task_struct *task,
					  struct kernfs_open_file *of)
{
	const struct cred *tcred = get_task_cred(task);
	const struct cred *cred = current_cred();
	int ret = 0;

	/*
	 * Even if we're attaching all tasks in the thread group, we only
	 * need to check permissions on one of them.
	 */
	if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
	    !uid_eq(cred->euid, tcred->uid) &&
564 565
	    !uid_eq(cred->euid, tcred->suid)) {
		rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
F
Fenghua Yu 已提交
566
		ret = -EPERM;
567
	}
F
Fenghua Yu 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583

	put_cred(tcred);
	return ret;
}

static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
			      struct kernfs_open_file *of)
{
	struct task_struct *tsk;
	int ret;

	rcu_read_lock();
	if (pid) {
		tsk = find_task_by_vpid(pid);
		if (!tsk) {
			rcu_read_unlock();
584
			rdt_last_cmd_printf("No task %d\n", pid);
F
Fenghua Yu 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
			return -ESRCH;
		}
	} else {
		tsk = current;
	}

	get_task_struct(tsk);
	rcu_read_unlock();

	ret = rdtgroup_task_write_permission(tsk, of);
	if (!ret)
		ret = __rdtgroup_move_task(tsk, rdtgrp);

	put_task_struct(tsk);
	return ret;
}

static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
				    char *buf, size_t nbytes, loff_t off)
{
	struct rdtgroup *rdtgrp;
	int ret = 0;
	pid_t pid;

	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
		return -EINVAL;
	rdtgrp = rdtgroup_kn_lock_live(of->kn);
612
	rdt_last_cmd_clear();
F
Fenghua Yu 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629

	if (rdtgrp)
		ret = rdtgroup_move_task(pid, rdtgrp, of);
	else
		ret = -ENOENT;

	rdtgroup_kn_unlock(of->kn);

	return ret ?: nbytes;
}

static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
{
	struct task_struct *p, *t;

	rcu_read_lock();
	for_each_process_thread(p, t) {
630 631
		if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
		    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
F
Fenghua Yu 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
			seq_printf(s, "%d\n", t->pid);
	}
	rcu_read_unlock();
}

static int rdtgroup_tasks_show(struct kernfs_open_file *of,
			       struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;
	int ret = 0;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (rdtgrp)
		show_rdt_tasks(rdtgrp, s);
	else
		ret = -ENOENT;
	rdtgroup_kn_unlock(of->kn);

	return ret;
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
				    struct seq_file *seq, void *v)
{
	int len;

	mutex_lock(&rdtgroup_mutex);
	len = seq_buf_used(&last_cmd_status);
	if (len)
		seq_printf(seq, "%.*s", len, last_cmd_status_buf);
	else
		seq_puts(seq, "ok\n");
	mutex_unlock(&rdtgroup_mutex);
	return 0;
}

668 669 670 671 672 673 674 675 676
static int rdt_num_closids_show(struct kernfs_open_file *of,
				struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%d\n", r->num_closid);
	return 0;
}

677
static int rdt_default_ctrl_show(struct kernfs_open_file *of,
678 679 680 681
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

682
	seq_printf(seq, "%x\n", r->default_ctrl);
683 684 685
	return 0;
}

686 687 688 689 690
static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

691
	seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
692 693 694
	return 0;
}

695 696 697 698 699 700 701 702 703
static int rdt_shareable_bits_show(struct kernfs_open_file *of,
				   struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%x\n", r->cache.shareable_bits);
	return 0;
}

704 705 706 707
static int rdt_min_bw_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;
708

709 710 711 712
	seq_printf(seq, "%u\n", r->membw.min_bw);
	return 0;
}

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
static int rdt_num_rmids_show(struct kernfs_open_file *of,
			      struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%d\n", r->num_rmid);

	return 0;
}

static int rdt_mon_features_show(struct kernfs_open_file *of,
				 struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;
	struct mon_evt *mevt;

	list_for_each_entry(mevt, &r->evt_list, list)
		seq_printf(seq, "%s\n", mevt->name);

	return 0;
}

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749
static int rdt_bw_gran_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%u\n", r->membw.bw_gran);
	return 0;
}

static int rdt_delay_linear_show(struct kernfs_open_file *of,
			     struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%u\n", r->membw.delay_linear);
750 751 752
	return 0;
}

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
static int max_threshold_occ_show(struct kernfs_open_file *of,
				  struct seq_file *seq, void *v)
{
	struct rdt_resource *r = of->kn->parent->priv;

	seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale);

	return 0;
}

static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
				       char *buf, size_t nbytes, loff_t off)
{
	struct rdt_resource *r = of->kn->parent->priv;
	unsigned int bytes;
	int ret;

	ret = kstrtouint(buf, 0, &bytes);
	if (ret)
		return ret;

	if (bytes > (boot_cpu_data.x86_cache_size * 1024))
		return -EINVAL;

	intel_cqm_threshold = bytes / r->mon_scale;

779
	return nbytes;
780 781
}

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
/*
 * rdtgroup_mode_show - Display mode of this resource group
 */
static int rdtgroup_mode_show(struct kernfs_open_file *of,
			      struct seq_file *s, void *v)
{
	struct rdtgroup *rdtgrp;

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}

	seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));

	rdtgroup_kn_unlock(of->kn);
	return 0;
}

static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
				   char *buf, size_t nbytes, loff_t off)
{
	struct rdtgroup *rdtgrp;
	enum rdtgrp_mode mode;
	int ret = 0;

	/* Valid input requires a trailing newline */
	if (nbytes == 0 || buf[nbytes - 1] != '\n')
		return -EINVAL;
	buf[nbytes - 1] = '\0';

	rdtgrp = rdtgroup_kn_lock_live(of->kn);
	if (!rdtgrp) {
		rdtgroup_kn_unlock(of->kn);
		return -ENOENT;
	}

	rdt_last_cmd_clear();

	mode = rdtgrp->mode;

	if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE))
		goto out;

	if (!strcmp(buf, "shareable")) {
		rdtgrp->mode = RDT_MODE_SHAREABLE;
	} else {
		rdt_last_cmd_printf("unknown/unsupported mode\n");
		ret = -EINVAL;
	}

out:
	rdtgroup_kn_unlock(of->kn);
	return ret ?: nbytes;
}

839
/* rdtgroup information files for one cache resource. */
840
static struct rftype res_common_files[] = {
841 842 843 844 845 846 847
	{
		.name		= "last_cmd_status",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_last_cmd_status_show,
		.fflags		= RF_TOP_INFO,
	},
848 849 850 851 852
	{
		.name		= "num_closids",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_num_closids_show,
853
		.fflags		= RF_CTRL_INFO,
854
	},
855 856 857 858 859 860 861 862 863 864 865 866 867 868
	{
		.name		= "mon_features",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_mon_features_show,
		.fflags		= RF_MON_INFO,
	},
	{
		.name		= "num_rmids",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_num_rmids_show,
		.fflags		= RF_MON_INFO,
	},
869 870 871 872
	{
		.name		= "cbm_mask",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
873
		.seq_show	= rdt_default_ctrl_show,
874
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
875
	},
876 877 878 879 880
	{
		.name		= "min_cbm_bits",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_min_cbm_bits_show,
881
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
882
	},
883 884 885 886 887 888 889
	{
		.name		= "shareable_bits",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_shareable_bits_show,
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_CACHE,
	},
890 891 892 893 894
	{
		.name		= "min_bandwidth",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_min_bw_show,
895
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
896 897 898 899 900 901
	},
	{
		.name		= "bandwidth_gran",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_bw_gran_show,
902
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
903 904 905 906 907 908
	},
	{
		.name		= "delay_linear",
		.mode		= 0444,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.seq_show	= rdt_delay_linear_show,
909 910
		.fflags		= RF_CTRL_INFO | RFTYPE_RES_MB,
	},
911 912 913 914 915 916 917 918
	{
		.name		= "max_threshold_occupancy",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= max_threshold_occ_write,
		.seq_show	= max_threshold_occ_show,
		.fflags		= RF_MON_INFO | RFTYPE_RES_CACHE,
	},
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	{
		.name		= "cpus",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_cpus_write,
		.seq_show	= rdtgroup_cpus_show,
		.fflags		= RFTYPE_BASE,
	},
	{
		.name		= "cpus_list",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_cpus_write,
		.seq_show	= rdtgroup_cpus_show,
		.flags		= RFTYPE_FLAGS_CPUS_LIST,
		.fflags		= RFTYPE_BASE,
	},
	{
		.name		= "tasks",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_tasks_write,
		.seq_show	= rdtgroup_tasks_show,
		.fflags		= RFTYPE_BASE,
	},
	{
		.name		= "schemata",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_schemata_write,
		.seq_show	= rdtgroup_schemata_show,
		.fflags		= RF_CTRL_BASE,
951
	},
952 953 954 955 956 957 958 959
	{
		.name		= "mode",
		.mode		= 0644,
		.kf_ops		= &rdtgroup_kf_single_ops,
		.write		= rdtgroup_mode_write,
		.seq_show	= rdtgroup_mode_show,
		.fflags		= RF_CTRL_BASE,
	},
960 961
};

962
static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
963
{
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
	struct rftype *rfts, *rft;
	int ret, len;

	rfts = res_common_files;
	len = ARRAY_SIZE(res_common_files);

	lockdep_assert_held(&rdtgroup_mutex);

	for (rft = rfts; rft < rfts + len; rft++) {
		if ((fflags & rft->fflags) == rft->fflags) {
			ret = rdtgroup_add_file(kn, rft);
			if (ret)
				goto error;
		}
	}

	return 0;
error:
	pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
	while (--rft >= rfts) {
		if ((fflags & rft->fflags) == rft->fflags)
			kernfs_remove_by_name(kn, rft->name);
	}
	return ret;
988 989
}

990 991
static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
				      unsigned long fflags)
992
{
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	struct kernfs_node *kn_subdir;
	int ret;

	kn_subdir = kernfs_create_dir(kn_info, name,
				      kn_info->mode, r);
	if (IS_ERR(kn_subdir))
		return PTR_ERR(kn_subdir);

	kernfs_get(kn_subdir);
	ret = rdtgroup_kn_set_ugid(kn_subdir);
	if (ret)
		return ret;

	ret = rdtgroup_add_files(kn_subdir, fflags);
	if (!ret)
		kernfs_activate(kn_subdir);

	return ret;
1011 1012
}

1013 1014 1015
static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
{
	struct rdt_resource *r;
1016
	unsigned long fflags;
1017
	char name[32];
1018
	int ret;
1019 1020 1021 1022 1023 1024 1025

	/* create the directory */
	kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
	if (IS_ERR(kn_info))
		return PTR_ERR(kn_info);
	kernfs_get(kn_info);

1026 1027 1028 1029
	ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
	if (ret)
		goto out_destroy;

1030
	for_each_alloc_enabled_rdt_resource(r) {
1031 1032
		fflags =  r->fflags | RF_CTRL_INFO;
		ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1033 1034 1035
		if (ret)
			goto out_destroy;
	}
1036 1037 1038 1039 1040 1041 1042 1043 1044

	for_each_mon_enabled_rdt_resource(r) {
		fflags =  r->fflags | RF_MON_INFO;
		sprintf(name, "%s_MON", r->name);
		ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
		if (ret)
			goto out_destroy;
	}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
	/*
	 * This extra ref will be put in kernfs_remove() and guarantees
	 * that @rdtgrp->kn is always accessible.
	 */
	kernfs_get(kn_info);

	ret = rdtgroup_kn_set_ugid(kn_info);
	if (ret)
		goto out_destroy;

	kernfs_activate(kn_info);

	return 0;

out_destroy:
	kernfs_remove(kn_info);
	return ret;
}

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
static int
mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
		    char *name, struct kernfs_node **dest_kn)
{
	struct kernfs_node *kn;
	int ret;

	/* create the directory */
	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	if (dest_kn)
		*dest_kn = kn;

	/*
	 * This extra ref will be put in kernfs_remove() and guarantees
	 * that @rdtgrp->kn is always accessible.
	 */
	kernfs_get(kn);

	ret = rdtgroup_kn_set_ugid(kn);
	if (ret)
		goto out_destroy;

	kernfs_activate(kn);

	return 0;

out_destroy:
	kernfs_remove(kn);
	return ret;
}
1097

1098 1099 1100 1101 1102 1103 1104
static void l3_qos_cfg_update(void *arg)
{
	bool *enable = arg;

	wrmsrl(IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
}

1105
static void l2_qos_cfg_update(void *arg)
1106
{
1107 1108 1109 1110 1111
	bool *enable = arg;

	wrmsrl(IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
}

1112 1113 1114 1115 1116
static inline bool is_mba_linear(void)
{
	return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
}

1117 1118 1119 1120
static int set_cache_qos_cfg(int level, bool enable)
{
	void (*update)(void *arg);
	struct rdt_resource *r_l;
1121 1122 1123 1124 1125 1126 1127
	cpumask_var_t cpu_mask;
	struct rdt_domain *d;
	int cpu;

	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
		return -ENOMEM;

1128 1129 1130 1131 1132 1133 1134 1135 1136
	if (level == RDT_RESOURCE_L3)
		update = l3_qos_cfg_update;
	else if (level == RDT_RESOURCE_L2)
		update = l2_qos_cfg_update;
	else
		return -EINVAL;

	r_l = &rdt_resources_all[level];
	list_for_each_entry(d, &r_l->domains, list) {
1137 1138 1139 1140 1141 1142
		/* Pick one CPU from each domain instance to update MSR */
		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
	}
	cpu = get_cpu();
	/* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
	if (cpumask_test_cpu(cpu, cpu_mask))
1143
		update(&enable);
1144
	/* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1145
	smp_call_function_many(cpu_mask, update, &enable, 1);
1146 1147 1148 1149 1150 1151 1152
	put_cpu();

	free_cpumask_var(cpu_mask);

	return 0;
}

1153 1154 1155 1156 1157 1158 1159 1160 1161
/*
 * Enable or disable the MBA software controller
 * which helps user specify bandwidth in MBps.
 * MBA software controller is supported only if
 * MBM is supported and MBA is in linear scale.
 */
static int set_mba_sc(bool mba_sc)
{
	struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1162
	struct rdt_domain *d;
1163 1164 1165 1166 1167 1168

	if (!is_mbm_enabled() || !is_mba_linear() ||
	    mba_sc == is_mba_sc(r))
		return -EINVAL;

	r->membw.mba_sc = mba_sc;
1169 1170
	list_for_each_entry(d, &r->domains, list)
		setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1171 1172 1173 1174

	return 0;
}

1175
static int cdp_enable(int level, int data_type, int code_type)
1176
{
1177 1178 1179
	struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
	struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
	struct rdt_resource *r_l = &rdt_resources_all[level];
1180 1181
	int ret;

1182 1183
	if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
	    !r_lcode->alloc_capable)
1184 1185
		return -EINVAL;

1186
	ret = set_cache_qos_cfg(level, true);
1187
	if (!ret) {
1188 1189 1190
		r_l->alloc_enabled = false;
		r_ldata->alloc_enabled = true;
		r_lcode->alloc_enabled = true;
1191 1192 1193 1194
	}
	return ret;
}

1195 1196 1197 1198 1199 1200 1201
static int cdpl3_enable(void)
{
	return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
			  RDT_RESOURCE_L3CODE);
}

static int cdpl2_enable(void)
1202
{
1203 1204 1205 1206 1207 1208 1209
	return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
			  RDT_RESOURCE_L2CODE);
}

static void cdp_disable(int level, int data_type, int code_type)
{
	struct rdt_resource *r = &rdt_resources_all[level];
1210

1211
	r->alloc_enabled = r->alloc_capable;
1212

1213 1214 1215 1216
	if (rdt_resources_all[data_type].alloc_enabled) {
		rdt_resources_all[data_type].alloc_enabled = false;
		rdt_resources_all[code_type].alloc_enabled = false;
		set_cache_qos_cfg(level, false);
1217 1218 1219
	}
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static void cdpl3_disable(void)
{
	cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
}

static void cdpl2_disable(void)
{
	cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
}

static void cdp_disable_all(void)
{
	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
		cdpl3_disable();
	if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
		cdpl2_disable();
}

1238 1239 1240 1241 1242 1243
static int parse_rdtgroupfs_options(char *data)
{
	char *token, *o = data;
	int ret = 0;

	while ((token = strsep(&o, ",")) != NULL) {
1244 1245 1246 1247
		if (!*token) {
			ret = -EINVAL;
			goto out;
		}
1248

1249 1250 1251 1252 1253 1254 1255 1256
		if (!strcmp(token, "cdp")) {
			ret = cdpl3_enable();
			if (ret)
				goto out;
		} else if (!strcmp(token, "cdpl2")) {
			ret = cdpl2_enable();
			if (ret)
				goto out;
1257 1258 1259 1260
		} else if (!strcmp(token, "mba_MBps")) {
			ret = set_mba_sc(true);
			if (ret)
				goto out;
1261 1262 1263 1264
		} else {
			ret = -EINVAL;
			goto out;
		}
1265 1266
	}

1267 1268 1269 1270 1271
	return 0;

out:
	pr_err("Invalid mount option \"%s\"\n", token);

1272 1273 1274
	return ret;
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * We don't allow rdtgroup directories to be created anywhere
 * except the root directory. Thus when looking for the rdtgroup
 * structure for a kernfs node we are either looking at a directory,
 * in which case the rdtgroup structure is pointed at by the "priv"
 * field, otherwise we have a file, and need only look to the parent
 * to find the rdtgroup.
 */
static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
{
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	if (kernfs_type(kn) == KERNFS_DIR) {
		/*
		 * All the resource directories use "kn->priv"
		 * to point to the "struct rdtgroup" for the
		 * resource. "info" and its subdirectories don't
		 * have rdtgroup structures, so return NULL here.
		 */
		if (kn == kn_info || kn->parent == kn_info)
			return NULL;
		else
			return kn->priv;
	} else {
1297
		return kn->parent->priv;
1298
	}
1299 1300 1301 1302 1303 1304
}

struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
{
	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);

1305 1306 1307
	if (!rdtgrp)
		return NULL;

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	atomic_inc(&rdtgrp->waitcount);
	kernfs_break_active_protection(kn);

	mutex_lock(&rdtgroup_mutex);

	/* Was this group deleted while we waited? */
	if (rdtgrp->flags & RDT_DELETED)
		return NULL;

	return rdtgrp;
}

void rdtgroup_kn_unlock(struct kernfs_node *kn)
{
	struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);

1324 1325 1326
	if (!rdtgrp)
		return;

1327 1328 1329 1330 1331
	mutex_unlock(&rdtgroup_mutex);

	if (atomic_dec_and_test(&rdtgrp->waitcount) &&
	    (rdtgrp->flags & RDT_DELETED)) {
		kernfs_unbreak_active_protection(kn);
1332
		kernfs_put(rdtgrp->kn);
1333 1334 1335 1336 1337 1338
		kfree(rdtgrp);
	} else {
		kernfs_unbreak_active_protection(kn);
	}
}

1339 1340 1341 1342
static int mkdir_mondata_all(struct kernfs_node *parent_kn,
			     struct rdtgroup *prgrp,
			     struct kernfs_node **mon_data_kn);

1343 1344 1345 1346
static struct dentry *rdt_mount(struct file_system_type *fs_type,
				int flags, const char *unused_dev_name,
				void *data)
{
1347 1348
	struct rdt_domain *dom;
	struct rdt_resource *r;
1349 1350 1351
	struct dentry *dentry;
	int ret;

1352
	cpus_read_lock();
1353 1354 1355 1356
	mutex_lock(&rdtgroup_mutex);
	/*
	 * resctrl file system can only be mounted once.
	 */
1357
	if (static_branch_unlikely(&rdt_enable_key)) {
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
		dentry = ERR_PTR(-EBUSY);
		goto out;
	}

	ret = parse_rdtgroupfs_options(data);
	if (ret) {
		dentry = ERR_PTR(ret);
		goto out_cdp;
	}

1368 1369
	closid_init();

1370
	ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1371 1372
	if (ret) {
		dentry = ERR_PTR(ret);
1373
		goto out_cdp;
1374
	}
1375

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	if (rdt_mon_capable) {
		ret = mongroup_create_dir(rdtgroup_default.kn,
					  NULL, "mon_groups",
					  &kn_mongrp);
		if (ret) {
			dentry = ERR_PTR(ret);
			goto out_info;
		}
		kernfs_get(kn_mongrp);

		ret = mkdir_mondata_all(rdtgroup_default.kn,
					&rdtgroup_default, &kn_mondata);
		if (ret) {
			dentry = ERR_PTR(ret);
			goto out_mongrp;
		}
		kernfs_get(kn_mondata);
		rdtgroup_default.mon.mon_data_kn = kn_mondata;
	}

1396 1397 1398 1399 1400 1401
	ret = rdt_pseudo_lock_init();
	if (ret) {
		dentry = ERR_PTR(ret);
		goto out_mondata;
	}

1402 1403 1404
	dentry = kernfs_mount(fs_type, flags, rdt_root,
			      RDTGROUP_SUPER_MAGIC, NULL);
	if (IS_ERR(dentry))
1405
		goto out_psl;
1406 1407

	if (rdt_alloc_capable)
1408
		static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
1409
	if (rdt_mon_capable)
1410
		static_branch_enable_cpuslocked(&rdt_mon_enable_key);
1411

1412
	if (rdt_alloc_capable || rdt_mon_capable)
1413
		static_branch_enable_cpuslocked(&rdt_enable_key);
1414 1415 1416 1417

	if (is_mbm_enabled()) {
		r = &rdt_resources_all[RDT_RESOURCE_L3];
		list_for_each_entry(dom, &r->domains, list)
1418
			mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
1419 1420
	}

1421 1422
	goto out;

1423 1424
out_psl:
	rdt_pseudo_lock_release();
1425 1426 1427 1428 1429 1430 1431
out_mondata:
	if (rdt_mon_capable)
		kernfs_remove(kn_mondata);
out_mongrp:
	if (rdt_mon_capable)
		kernfs_remove(kn_mongrp);
out_info:
1432
	kernfs_remove(kn_info);
1433
out_cdp:
1434
	cdp_disable_all();
1435
out:
1436
	rdt_last_cmd_clear();
1437
	mutex_unlock(&rdtgroup_mutex);
1438
	cpus_read_unlock();
1439 1440 1441 1442

	return dentry;
}

1443
static int reset_all_ctrls(struct rdt_resource *r)
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
{
	struct msr_param msr_param;
	cpumask_var_t cpu_mask;
	struct rdt_domain *d;
	int i, cpu;

	if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
		return -ENOMEM;

	msr_param.res = r;
	msr_param.low = 0;
	msr_param.high = r->num_closid;

	/*
	 * Disable resource control for this resource by setting all
	 * CBMs in all domains to the maximum mask value. Pick one CPU
	 * from each domain to update the MSRs below.
	 */
	list_for_each_entry(d, &r->domains, list) {
		cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);

		for (i = 0; i < r->num_closid; i++)
1466
			d->ctrl_val[i] = r->default_ctrl;
1467 1468 1469 1470
	}
	cpu = get_cpu();
	/* Update CBM on this cpu if it's in cpu_mask. */
	if (cpumask_test_cpu(cpu, cpu_mask))
1471
		rdt_ctrl_update(&msr_param);
1472
	/* Update CBM on all other cpus in cpu_mask. */
1473
	smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
1474 1475 1476 1477 1478 1479 1480
	put_cpu();

	free_cpumask_var(cpu_mask);

	return 0;
}

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
{
	return (rdt_alloc_capable &&
		(r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
}

static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
{
	return (rdt_mon_capable &&
		(r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
}

1493
/*
1494 1495 1496 1497 1498 1499
 * Move tasks from one to the other group. If @from is NULL, then all tasks
 * in the systems are moved unconditionally (used for teardown).
 *
 * If @mask is not NULL the cpus on which moved tasks are running are set
 * in that mask so the update smp function call is restricted to affected
 * cpus.
1500
 */
1501 1502
static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
				 struct cpumask *mask)
1503
{
F
Fenghua Yu 已提交
1504 1505 1506
	struct task_struct *p, *t;

	read_lock(&tasklist_lock);
1507
	for_each_process_thread(p, t) {
1508 1509
		if (!from || is_closid_match(t, from) ||
		    is_rmid_match(t, from)) {
1510
			t->closid = to->closid;
1511 1512
			t->rmid = to->mon.rmid;

1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
#ifdef CONFIG_SMP
			/*
			 * This is safe on x86 w/o barriers as the ordering
			 * of writing to task_cpu() and t->on_cpu is
			 * reverse to the reading here. The detection is
			 * inaccurate as tasks might move or schedule
			 * before the smp function call takes place. In
			 * such a case the function call is pointless, but
			 * there is no other side effect.
			 */
			if (mask && t->on_cpu)
				cpumask_set_cpu(task_cpu(t), mask);
#endif
		}
	}
F
Fenghua Yu 已提交
1528
	read_unlock(&tasklist_lock);
1529 1530
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
{
	struct rdtgroup *sentry, *stmp;
	struct list_head *head;

	head = &rdtgrp->mon.crdtgrp_list;
	list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
		free_rmid(sentry->mon.rmid);
		list_del(&sentry->mon.crdtgrp_list);
		kfree(sentry);
	}
}

1544 1545 1546 1547 1548 1549 1550 1551 1552
/*
 * Forcibly remove all of subdirectories under root.
 */
static void rmdir_all_sub(void)
{
	struct rdtgroup *rdtgrp, *tmp;

	/* Move all tasks to the default resource group */
	rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
1553 1554

	list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
1555 1556 1557
		/* Free any child rmids */
		free_all_child_rdtgrp(rdtgrp);

1558 1559 1560
		/* Remove each rdtgroup other than root */
		if (rdtgrp == &rdtgroup_default)
			continue;
1561 1562 1563 1564 1565 1566 1567 1568 1569

		/*
		 * Give any CPUs back to the default group. We cannot copy
		 * cpu_online_mask because a CPU might have executed the
		 * offline callback already, but is still marked online.
		 */
		cpumask_or(&rdtgroup_default.cpu_mask,
			   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);

1570 1571
		free_rmid(rdtgrp->mon.rmid);

1572 1573 1574 1575
		kernfs_remove(rdtgrp->kn);
		list_del(&rdtgrp->rdtgroup_list);
		kfree(rdtgrp);
	}
1576
	/* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
1577
	update_closid_rmid(cpu_online_mask, &rdtgroup_default);
1578

1579
	kernfs_remove(kn_info);
1580 1581
	kernfs_remove(kn_mongrp);
	kernfs_remove(kn_mondata);
1582 1583
}

1584 1585 1586 1587
static void rdt_kill_sb(struct super_block *sb)
{
	struct rdt_resource *r;

1588
	cpus_read_lock();
1589 1590
	mutex_lock(&rdtgroup_mutex);

1591 1592
	set_mba_sc(false);

1593
	/*Put everything back to default values. */
1594
	for_each_alloc_enabled_rdt_resource(r)
1595
		reset_all_ctrls(r);
1596
	cdp_disable_all();
1597
	rmdir_all_sub();
1598
	rdtgroup_default.mode = RDT_MODE_SHAREABLE;
1599 1600 1601
	static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
	static_branch_disable_cpuslocked(&rdt_mon_enable_key);
	static_branch_disable_cpuslocked(&rdt_enable_key);
1602 1603
	kernfs_kill_sb(sb);
	mutex_unlock(&rdtgroup_mutex);
1604
	cpus_read_unlock();
1605 1606 1607 1608 1609 1610 1611 1612
}

static struct file_system_type rdt_fs_type = {
	.name    = "resctrl",
	.mount   = rdt_mount,
	.kill_sb = rdt_kill_sb,
};

V
Vikas Shivappa 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
		       void *priv)
{
	struct kernfs_node *kn;
	int ret = 0;

	kn = __kernfs_create_file(parent_kn, name, 0444, 0,
				  &kf_mondata_ops, priv, NULL, NULL);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	ret = rdtgroup_kn_set_ugid(kn);
	if (ret) {
		kernfs_remove(kn);
		return ret;
	}

	return ret;
}

1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
/*
 * Remove all subdirectories of mon_data of ctrl_mon groups
 * and monitor groups with given domain id.
 */
void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
{
	struct rdtgroup *prgrp, *crgrp;
	char name[32];

	if (!r->mon_enabled)
		return;

	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
		sprintf(name, "mon_%s_%02d", r->name, dom_id);
		kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);

		list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
			kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
	}
}

V
Vikas Shivappa 已提交
1654 1655 1656 1657 1658 1659 1660
static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
				struct rdt_domain *d,
				struct rdt_resource *r, struct rdtgroup *prgrp)
{
	union mon_data_bits priv;
	struct kernfs_node *kn;
	struct mon_evt *mevt;
1661
	struct rmid_read rr;
V
Vikas Shivappa 已提交
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	char name[32];
	int ret;

	sprintf(name, "mon_%s_%02d", r->name, d->id);
	/* create the directory */
	kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
	if (IS_ERR(kn))
		return PTR_ERR(kn);

	/*
	 * This extra ref will be put in kernfs_remove() and guarantees
	 * that kn is always accessible.
	 */
	kernfs_get(kn);
	ret = rdtgroup_kn_set_ugid(kn);
	if (ret)
		goto out_destroy;

	if (WARN_ON(list_empty(&r->evt_list))) {
		ret = -EPERM;
		goto out_destroy;
	}

	priv.u.rid = r->rid;
	priv.u.domid = d->id;
	list_for_each_entry(mevt, &r->evt_list, list) {
		priv.u.evtid = mevt->evtid;
		ret = mon_addfile(kn, mevt->name, priv.priv);
		if (ret)
			goto out_destroy;
1692 1693 1694

		if (is_mbm_event(mevt->evtid))
			mon_event_read(&rr, d, prgrp, mevt->evtid, true);
V
Vikas Shivappa 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703
	}
	kernfs_activate(kn);
	return 0;

out_destroy:
	kernfs_remove(kn);
	return ret;
}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
/*
 * Add all subdirectories of mon_data for "ctrl_mon" groups
 * and "monitor" groups with given domain id.
 */
void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
				    struct rdt_domain *d)
{
	struct kernfs_node *parent_kn;
	struct rdtgroup *prgrp, *crgrp;
	struct list_head *head;

	if (!r->mon_enabled)
		return;

	list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
		parent_kn = prgrp->mon.mon_data_kn;
		mkdir_mondata_subdir(parent_kn, d, r, prgrp);

		head = &prgrp->mon.crdtgrp_list;
		list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
			parent_kn = crgrp->mon.mon_data_kn;
			mkdir_mondata_subdir(parent_kn, d, r, crgrp);
		}
	}
}

V
Vikas Shivappa 已提交
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
				       struct rdt_resource *r,
				       struct rdtgroup *prgrp)
{
	struct rdt_domain *dom;
	int ret;

	list_for_each_entry(dom, &r->domains, list) {
		ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
		if (ret)
			return ret;
	}

	return 0;
}

/*
 * This creates a directory mon_data which contains the monitored data.
 *
 * mon_data has one directory for each domain whic are named
 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
 * with L3 domain looks as below:
 * ./mon_data:
 * mon_L3_00
 * mon_L3_01
 * mon_L3_02
 * ...
 *
 * Each domain directory has one file per event:
 * ./mon_L3_00/:
 * llc_occupancy
 *
 */
static int mkdir_mondata_all(struct kernfs_node *parent_kn,
			     struct rdtgroup *prgrp,
			     struct kernfs_node **dest_kn)
{
	struct rdt_resource *r;
	struct kernfs_node *kn;
	int ret;

	/*
	 * Create the mon_data directory first.
	 */
	ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
	if (ret)
		return ret;

	if (dest_kn)
		*dest_kn = kn;

	/*
	 * Create the subdirectories for each domain. Note that all events
	 * in a domain like L3 are grouped into a resource whose domain is L3
	 */
	for_each_mon_enabled_rdt_resource(r) {
		ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
		if (ret)
			goto out_destroy;
	}

	return 0;

out_destroy:
	kernfs_remove(kn);
	return ret;
}

1798 1799 1800
static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
			     struct kernfs_node *prgrp_kn,
			     const char *name, umode_t mode,
1801
			     enum rdt_group_type rtype, struct rdtgroup **r)
1802
{
1803
	struct rdtgroup *prdtgrp, *rdtgrp;
1804
	struct kernfs_node *kn;
1805 1806
	uint files = 0;
	int ret;
1807

1808
	prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
1809
	rdt_last_cmd_clear();
1810
	if (!prdtgrp) {
1811
		ret = -ENODEV;
1812
		rdt_last_cmd_puts("directory was removed\n");
1813 1814 1815 1816 1817 1818 1819
		goto out_unlock;
	}

	/* allocate the rdtgroup. */
	rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
	if (!rdtgrp) {
		ret = -ENOSPC;
1820
		rdt_last_cmd_puts("kernel out of memory\n");
1821
		goto out_unlock;
1822
	}
1823
	*r = rdtgrp;
1824 1825 1826
	rdtgrp->mon.parent = prdtgrp;
	rdtgrp->type = rtype;
	INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
1827 1828

	/* kernfs creates the directory for rdtgrp */
1829
	kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
1830 1831
	if (IS_ERR(kn)) {
		ret = PTR_ERR(kn);
1832
		rdt_last_cmd_puts("kernfs create error\n");
1833
		goto out_free_rgrp;
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
	}
	rdtgrp->kn = kn;

	/*
	 * kernfs_remove() will drop the reference count on "kn" which
	 * will free it. But we still need it to stick around for the
	 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
	 * here, which will be dropped inside rdtgroup_kn_unlock().
	 */
	kernfs_get(kn);

	ret = rdtgroup_kn_set_ugid(kn);
1846 1847
	if (ret) {
		rdt_last_cmd_puts("kernfs perm error\n");
1848
		goto out_destroy;
1849
	}
1850

1851
	files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
1852
	ret = rdtgroup_add_files(kn, files);
1853 1854
	if (ret) {
		rdt_last_cmd_puts("kernfs fill error\n");
T
Tony Luck 已提交
1855
		goto out_destroy;
1856
	}
T
Tony Luck 已提交
1857

1858 1859
	if (rdt_mon_capable) {
		ret = alloc_rmid();
1860 1861
		if (ret < 0) {
			rdt_last_cmd_puts("out of RMIDs\n");
1862
			goto out_destroy;
1863
		}
1864
		rdtgrp->mon.rmid = ret;
V
Vikas Shivappa 已提交
1865 1866

		ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
1867 1868
		if (ret) {
			rdt_last_cmd_puts("kernfs subdir error\n");
V
Vikas Shivappa 已提交
1869
			goto out_idfree;
1870
		}
1871
	}
1872 1873
	kernfs_activate(kn);

1874 1875 1876 1877
	/*
	 * The caller unlocks the prgrp_kn upon success.
	 */
	return 0;
1878

V
Vikas Shivappa 已提交
1879 1880
out_idfree:
	free_rmid(rdtgrp->mon.rmid);
1881 1882
out_destroy:
	kernfs_remove(rdtgrp->kn);
1883
out_free_rgrp:
1884 1885
	kfree(rdtgrp);
out_unlock:
1886 1887 1888 1889 1890 1891 1892
	rdtgroup_kn_unlock(prgrp_kn);
	return ret;
}

static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
{
	kernfs_remove(rgrp->kn);
1893
	free_rmid(rgrp->mon.rmid);
1894 1895 1896
	kfree(rgrp);
}

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
/*
 * Create a monitor group under "mon_groups" directory of a control
 * and monitor group(ctrl_mon). This is a resource group
 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
 */
static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
			      struct kernfs_node *prgrp_kn,
			      const char *name,
			      umode_t mode)
{
	struct rdtgroup *rdtgrp, *prgrp;
	int ret;

	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
				&rdtgrp);
	if (ret)
		return ret;

	prgrp = rdtgrp->mon.parent;
	rdtgrp->closid = prgrp->closid;

	/*
	 * Add the rdtgrp to the list of rdtgrps the parent
	 * ctrl_mon group has to track.
	 */
	list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);

	rdtgroup_kn_unlock(prgrp_kn);
	return ret;
}

1928 1929
/*
 * These are rdtgroups created under the root directory. Can be used
1930
 * to allocate and monitor resources.
1931
 */
1932 1933 1934
static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
				   struct kernfs_node *prgrp_kn,
				   const char *name, umode_t mode)
1935 1936 1937 1938 1939 1940
{
	struct rdtgroup *rdtgrp;
	struct kernfs_node *kn;
	u32 closid;
	int ret;

1941 1942
	ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
				&rdtgrp);
1943 1944 1945 1946 1947
	if (ret)
		return ret;

	kn = rdtgrp->kn;
	ret = closid_alloc();
1948 1949
	if (ret < 0) {
		rdt_last_cmd_puts("out of CLOSIDs\n");
1950
		goto out_common_fail;
1951
	}
1952
	closid = ret;
1953
	ret = 0;
1954 1955 1956 1957

	rdtgrp->closid = closid;
	list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);

1958 1959 1960 1961 1962 1963
	if (rdt_mon_capable) {
		/*
		 * Create an empty mon_groups directory to hold the subset
		 * of tasks and cpus to monitor.
		 */
		ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
1964 1965
		if (ret) {
			rdt_last_cmd_puts("kernfs subdir error\n");
1966
			goto out_id_free;
1967
		}
1968 1969
	}

1970 1971
	goto out_unlock;

1972 1973 1974
out_id_free:
	closid_free(closid);
	list_del(&rdtgrp->rdtgroup_list);
1975 1976 1977 1978
out_common_fail:
	mkdir_rdt_prepare_clean(rdtgrp);
out_unlock:
	rdtgroup_kn_unlock(prgrp_kn);
1979 1980 1981
	return ret;
}

1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
/*
 * We allow creating mon groups only with in a directory called "mon_groups"
 * which is present in every ctrl_mon group. Check if this is a valid
 * "mon_groups" directory.
 *
 * 1. The directory should be named "mon_groups".
 * 2. The mon group itself should "not" be named "mon_groups".
 *   This makes sure "mon_groups" directory always has a ctrl_mon group
 *   as parent.
 */
static bool is_mon_groups(struct kernfs_node *kn, const char *name)
{
	return (!strcmp(kn->name, "mon_groups") &&
		strcmp(name, "mon_groups"));
}

1998 1999 2000 2001 2002 2003 2004 2005 2006
static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
			  umode_t mode)
{
	/* Do not accept '\n' to avoid unparsable situation. */
	if (strchr(name, '\n'))
		return -EINVAL;

	/*
	 * If the parent directory is the root directory and RDT
2007 2008
	 * allocation is supported, add a control and monitoring
	 * subdirectory
2009 2010
	 */
	if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2011 2012 2013 2014 2015 2016 2017 2018
		return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);

	/*
	 * If RDT monitoring is supported and the parent directory is a valid
	 * "mon_groups" directory, add a monitoring subdirectory.
	 */
	if (rdt_mon_capable && is_mon_groups(parent_kn, name))
		return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2019 2020 2021 2022

	return -EPERM;
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
			      cpumask_var_t tmpmask)
{
	struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
	int cpu;

	/* Give any tasks back to the parent group */
	rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);

	/* Update per cpu rmid of the moved CPUs first */
	for_each_cpu(cpu, &rdtgrp->cpu_mask)
2034
		per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
	/*
	 * Update the MSR on moved CPUs and CPUs which have moved
	 * task running on them.
	 */
	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
	update_closid_rmid(tmpmask, NULL);

	rdtgrp->flags = RDT_DELETED;
	free_rmid(rdtgrp->mon.rmid);

	/*
	 * Remove the rdtgrp from the parent ctrl_mon group's list
	 */
	WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
	list_del(&rdtgrp->mon.crdtgrp_list);

	/*
	 * one extra hold on this, will drop when we kfree(rdtgrp)
	 * in rdtgroup_kn_unlock()
	 */
	kernfs_get(kn);
	kernfs_remove(rdtgrp->kn);

	return 0;
}

2061 2062
static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
			       cpumask_var_t tmpmask)
2063
{
2064
	int cpu;
2065

F
Fenghua Yu 已提交
2066
	/* Give any tasks back to the default group */
2067
	rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
F
Fenghua Yu 已提交
2068

T
Tony Luck 已提交
2069 2070 2071
	/* Give any CPUs back to the default group */
	cpumask_or(&rdtgroup_default.cpu_mask,
		   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2072

2073 2074
	/* Update per cpu closid and rmid of the moved CPUs first */
	for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2075 2076
		per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
		per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2077 2078
	}

2079 2080 2081 2082 2083
	/*
	 * Update the MSR on moved CPUs and CPUs which have moved
	 * task running on them.
	 */
	cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2084
	update_closid_rmid(tmpmask, NULL);
T
Tony Luck 已提交
2085

2086 2087
	rdtgrp->flags = RDT_DELETED;
	closid_free(rdtgrp->closid);
2088 2089 2090 2091 2092 2093 2094
	free_rmid(rdtgrp->mon.rmid);

	/*
	 * Free all the child monitor group rmids.
	 */
	free_all_child_rdtgrp(rdtgrp);

2095 2096 2097 2098 2099 2100 2101 2102
	list_del(&rdtgrp->rdtgroup_list);

	/*
	 * one extra hold on this, will drop when we kfree(rdtgrp)
	 * in rdtgroup_kn_unlock()
	 */
	kernfs_get(kn);
	kernfs_remove(rdtgrp->kn);
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124

	return 0;
}

static int rdtgroup_rmdir(struct kernfs_node *kn)
{
	struct kernfs_node *parent_kn = kn->parent;
	struct rdtgroup *rdtgrp;
	cpumask_var_t tmpmask;
	int ret = 0;

	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
		return -ENOMEM;

	rdtgrp = rdtgroup_kn_lock_live(kn);
	if (!rdtgrp) {
		ret = -EPERM;
		goto out;
	}

	/*
	 * If the rdtgroup is a ctrl_mon group and parent directory
2125 2126 2127 2128
	 * is the root directory, remove the ctrl_mon group.
	 *
	 * If the rdtgroup is a mon group and parent directory
	 * is a valid "mon_groups" directory, remove the mon group.
2129 2130 2131
	 */
	if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn)
		ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
2132 2133 2134
	else if (rdtgrp->type == RDTMON_GROUP &&
		 is_mon_groups(parent_kn, kn->name))
		ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
2135 2136 2137
	else
		ret = -EPERM;

2138
out:
2139
	rdtgroup_kn_unlock(kn);
2140 2141
	free_cpumask_var(tmpmask);
	return ret;
2142 2143
}

2144 2145
static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
{
2146
	if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
2147 2148 2149 2150
		seq_puts(seq, ",cdp");
	return 0;
}

2151
static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
2152 2153 2154
	.mkdir		= rdtgroup_mkdir,
	.rmdir		= rdtgroup_rmdir,
	.show_options	= rdtgroup_show_options,
2155 2156 2157 2158
};

static int __init rdtgroup_setup_root(void)
{
T
Tony Luck 已提交
2159 2160
	int ret;

2161 2162 2163 2164 2165 2166 2167 2168 2169
	rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
				      KERNFS_ROOT_CREATE_DEACTIVATED,
				      &rdtgroup_default);
	if (IS_ERR(rdt_root))
		return PTR_ERR(rdt_root);

	mutex_lock(&rdtgroup_mutex);

	rdtgroup_default.closid = 0;
2170 2171 2172 2173
	rdtgroup_default.mon.rmid = 0;
	rdtgroup_default.type = RDTCTRL_GROUP;
	INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);

2174 2175
	list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);

2176
	ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
T
Tony Luck 已提交
2177 2178 2179 2180 2181
	if (ret) {
		kernfs_destroy_root(rdt_root);
		goto out;
	}

2182 2183 2184
	rdtgroup_default.kn = rdt_root->kn;
	kernfs_activate(rdtgroup_default.kn);

T
Tony Luck 已提交
2185
out:
2186 2187
	mutex_unlock(&rdtgroup_mutex);

T
Tony Luck 已提交
2188
	return ret;
2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
}

/*
 * rdtgroup_init - rdtgroup initialization
 *
 * Setup resctrl file system including set up root, create mount point,
 * register rdtgroup filesystem, and initialize files under root directory.
 *
 * Return: 0 on success or -errno
 */
int __init rdtgroup_init(void)
{
	int ret = 0;

2203 2204 2205
	seq_buf_init(&last_cmd_status, last_cmd_status_buf,
		     sizeof(last_cmd_status_buf));

2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
	ret = rdtgroup_setup_root();
	if (ret)
		return ret;

	ret = sysfs_create_mount_point(fs_kobj, "resctrl");
	if (ret)
		goto cleanup_root;

	ret = register_filesystem(&rdt_fs_type);
	if (ret)
		goto cleanup_mountpoint;

	return 0;

cleanup_mountpoint:
	sysfs_remove_mount_point(fs_kobj, "resctrl");
cleanup_root:
	kernfs_destroy_root(rdt_root);

	return ret;
}