nand_base.c 125.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4
/*
 *  Overview:
 *   This is the generic MTD driver for NAND flash devices. It should be
 *   capable of working with almost all NAND chips currently available.
5
 *
L
Linus Torvalds 已提交
6
 *	Additional technical information is available on
7
 *	http://www.linux-mtd.infradead.org/doc/nand.html
8
 *
L
Linus Torvalds 已提交
9
 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10
 *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
L
Linus Torvalds 已提交
11
 *
12
 *  Credits:
13 14
 *	David Woodhouse for adding multichip support
 *
L
Linus Torvalds 已提交
15 16 17
 *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
 *	rework for 2K page size chips
 *
18
 *  TODO:
L
Linus Torvalds 已提交
19 20
 *	Enable cached programming for 2k page size chips
 *	Check, if mtd->ecctype should be set to MTD_ECC_HW
21
 *	if we have HW ECC support.
22
 *	BBT table is not serialized, has to be fixed
L
Linus Torvalds 已提交
23 24 25 26 27 28 29
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 */

30 31
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

32
#include <linux/module.h>
L
Linus Torvalds 已提交
33 34
#include <linux/delay.h>
#include <linux/errno.h>
T
Thomas Gleixner 已提交
35
#include <linux/err.h>
L
Linus Torvalds 已提交
36 37
#include <linux/sched.h>
#include <linux/slab.h>
38
#include <linux/mm.h>
L
Linus Torvalds 已提交
39 40 41 42
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
43
#include <linux/mtd/nand_bch.h>
L
Linus Torvalds 已提交
44 45
#include <linux/interrupt.h>
#include <linux/bitops.h>
46
#include <linux/io.h>
L
Linus Torvalds 已提交
47
#include <linux/mtd/partitions.h>
48
#include <linux/of.h>
L
Linus Torvalds 已提交
49

50 51 52 53
static int nand_get_device(struct mtd_info *mtd, int new_state);

static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops);
L
Linus Torvalds 已提交
54 55

/* Define default oob placement schemes for large and small page devices */
56 57 58 59 60
static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
L
Linus Torvalds 已提交
61

62 63
	if (section > 1)
		return -ERANGE;
L
Linus Torvalds 已提交
64

65 66 67 68 69 70 71
	if (!section) {
		oobregion->offset = 0;
		oobregion->length = 4;
	} else {
		oobregion->offset = 6;
		oobregion->length = ecc->total - 4;
	}
L
Linus Torvalds 已提交
72

73 74 75 76 77 78 79 80
	return 0;
}

static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	if (section > 1)
		return -ERANGE;
L
Linus Torvalds 已提交
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
	if (mtd->oobsize == 16) {
		if (section)
			return -ERANGE;

		oobregion->length = 8;
		oobregion->offset = 8;
	} else {
		oobregion->length = 2;
		if (!section)
			oobregion->offset = 3;
		else
			oobregion->offset = 6;
	}

	return 0;
}

const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
	.ecc = nand_ooblayout_ecc_sp,
	.free = nand_ooblayout_free_sp,
102
};
103
EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
104

105 106 107 108 109
static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
				 struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
L
Linus Torvalds 已提交
110

111 112
	if (section)
		return -ERANGE;
113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
	oobregion->length = ecc->total;
	oobregion->offset = mtd->oobsize - oobregion->length;

	return 0;
}

static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
				  struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;

	if (section)
		return -ERANGE;

	oobregion->length = mtd->oobsize - ecc->total - 2;
	oobregion->offset = 2;

	return 0;
}

const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
	.ecc = nand_ooblayout_ecc_lp,
	.free = nand_ooblayout_free_lp,
};
EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
T
Thomas Gleixner 已提交
140

141 142 143
static int check_offs_len(struct mtd_info *mtd,
					loff_t ofs, uint64_t len)
{
144
	struct nand_chip *chip = mtd_to_nand(mtd);
145 146 147
	int ret = 0;

	/* Start address must align on block boundary */
148
	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
149
		pr_debug("%s: unaligned address\n", __func__);
150 151 152 153
		ret = -EINVAL;
	}

	/* Length must align on block boundary */
154
	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
155
		pr_debug("%s: length not block aligned\n", __func__);
156 157 158 159 160 161
		ret = -EINVAL;
	}

	return ret;
}

L
Linus Torvalds 已提交
162 163
/**
 * nand_release_device - [GENERIC] release chip
164
 * @mtd: MTD device structure
165
 *
166
 * Release chip lock and wake up anyone waiting on the device.
L
Linus Torvalds 已提交
167
 */
168
static void nand_release_device(struct mtd_info *mtd)
L
Linus Torvalds 已提交
169
{
170
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
171

T
Thomas Gleixner 已提交
172
	/* Release the controller and the chip */
173 174 175 176 177
	spin_lock(&chip->controller->lock);
	chip->controller->active = NULL;
	chip->state = FL_READY;
	wake_up(&chip->controller->wq);
	spin_unlock(&chip->controller->lock);
L
Linus Torvalds 已提交
178 179 180 181
}

/**
 * nand_read_byte - [DEFAULT] read one byte from the chip
182
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
183
 *
184
 * Default read function for 8bit buswidth
L
Linus Torvalds 已提交
185
 */
186
static uint8_t nand_read_byte(struct mtd_info *mtd)
L
Linus Torvalds 已提交
187
{
188
	struct nand_chip *chip = mtd_to_nand(mtd);
189
	return readb(chip->IO_ADDR_R);
L
Linus Torvalds 已提交
190 191 192
}

/**
193
 * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
194
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
195
 *
196 197
 * Default read function for 16bit buswidth with endianness conversion.
 *
L
Linus Torvalds 已提交
198
 */
199
static uint8_t nand_read_byte16(struct mtd_info *mtd)
L
Linus Torvalds 已提交
200
{
201
	struct nand_chip *chip = mtd_to_nand(mtd);
202
	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
L
Linus Torvalds 已提交
203 204 205 206
}

/**
 * nand_read_word - [DEFAULT] read one word from the chip
207
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
208
 *
209
 * Default read function for 16bit buswidth without endianness conversion.
L
Linus Torvalds 已提交
210 211 212
 */
static u16 nand_read_word(struct mtd_info *mtd)
{
213
	struct nand_chip *chip = mtd_to_nand(mtd);
214
	return readw(chip->IO_ADDR_R);
L
Linus Torvalds 已提交
215 216 217 218
}

/**
 * nand_select_chip - [DEFAULT] control CE line
219 220
 * @mtd: MTD device structure
 * @chipnr: chipnumber to select, -1 for deselect
L
Linus Torvalds 已提交
221 222 223
 *
 * Default select function for 1 chip devices.
 */
224
static void nand_select_chip(struct mtd_info *mtd, int chipnr)
L
Linus Torvalds 已提交
225
{
226
	struct nand_chip *chip = mtd_to_nand(mtd);
227 228

	switch (chipnr) {
L
Linus Torvalds 已提交
229
	case -1:
230
		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
L
Linus Torvalds 已提交
231 232 233 234 235 236 237 238 239
		break;
	case 0:
		break;

	default:
		BUG();
	}
}

240 241 242 243 244 245 246 247 248
/**
 * nand_write_byte - [DEFAULT] write single byte to chip
 * @mtd: MTD device structure
 * @byte: value to write
 *
 * Default function to write a byte to I/O[7:0]
 */
static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
{
249
	struct nand_chip *chip = mtd_to_nand(mtd);
250 251 252 253 254 255 256 257 258 259 260 261 262

	chip->write_buf(mtd, &byte, 1);
}

/**
 * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
 * @mtd: MTD device structure
 * @byte: value to write
 *
 * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
 */
static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
{
263
	struct nand_chip *chip = mtd_to_nand(mtd);
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	uint16_t word = byte;

	/*
	 * It's not entirely clear what should happen to I/O[15:8] when writing
	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
	 *
	 *    When the host supports a 16-bit bus width, only data is
	 *    transferred at the 16-bit width. All address and command line
	 *    transfers shall use only the lower 8-bits of the data bus. During
	 *    command transfers, the host may place any value on the upper
	 *    8-bits of the data bus. During address transfers, the host shall
	 *    set the upper 8-bits of the data bus to 00h.
	 *
	 * One user of the write_byte callback is nand_onfi_set_features. The
	 * four parameters are specified to be written to I/O[7:0], but this is
	 * neither an address nor a command transfer. Let's assume a 0 on the
	 * upper I/O lines is OK.
	 */
	chip->write_buf(mtd, (uint8_t *)&word, 2);
}

L
Linus Torvalds 已提交
285 286
/**
 * nand_write_buf - [DEFAULT] write buffer to chip
287 288 289
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
L
Linus Torvalds 已提交
290
 *
291
 * Default write function for 8bit buswidth.
L
Linus Torvalds 已提交
292
 */
293
static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
L
Linus Torvalds 已提交
294
{
295
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
296

297
	iowrite8_rep(chip->IO_ADDR_W, buf, len);
L
Linus Torvalds 已提交
298 299 300
}

/**
301
 * nand_read_buf - [DEFAULT] read chip data into buffer
302 303 304
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
L
Linus Torvalds 已提交
305
 *
306
 * Default read function for 8bit buswidth.
L
Linus Torvalds 已提交
307
 */
308
static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
L
Linus Torvalds 已提交
309
{
310
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
311

312
	ioread8_rep(chip->IO_ADDR_R, buf, len);
L
Linus Torvalds 已提交
313 314 315 316
}

/**
 * nand_write_buf16 - [DEFAULT] write buffer to chip
317 318 319
 * @mtd: MTD device structure
 * @buf: data buffer
 * @len: number of bytes to write
L
Linus Torvalds 已提交
320
 *
321
 * Default write function for 16bit buswidth.
L
Linus Torvalds 已提交
322
 */
323
static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
L
Linus Torvalds 已提交
324
{
325
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
326
	u16 *p = (u16 *) buf;
327

328
	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
L
Linus Torvalds 已提交
329 330 331
}

/**
332
 * nand_read_buf16 - [DEFAULT] read chip data into buffer
333 334 335
 * @mtd: MTD device structure
 * @buf: buffer to store date
 * @len: number of bytes to read
L
Linus Torvalds 已提交
336
 *
337
 * Default read function for 16bit buswidth.
L
Linus Torvalds 已提交
338
 */
339
static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
L
Linus Torvalds 已提交
340
{
341
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
342 343
	u16 *p = (u16 *) buf;

344
	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
L
Linus Torvalds 已提交
345 346 347 348
}

/**
 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
349 350
 * @mtd: MTD device structure
 * @ofs: offset from device start
L
Linus Torvalds 已提交
351
 *
352
 * Check, if the block is bad.
L
Linus Torvalds 已提交
353
 */
354
static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
355
{
356
	int page, res = 0, i = 0;
357
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
358 359
	u16 bad;

360
	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
361 362
		ofs += mtd->erasesize - mtd->writesize;

363 364
	page = (int)(ofs >> chip->page_shift) & chip->pagemask;

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
	do {
		if (chip->options & NAND_BUSWIDTH_16) {
			chip->cmdfunc(mtd, NAND_CMD_READOOB,
					chip->badblockpos & 0xFE, page);
			bad = cpu_to_le16(chip->read_word(mtd));
			if (chip->badblockpos & 0x1)
				bad >>= 8;
			else
				bad &= 0xFF;
		} else {
			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
					page);
			bad = chip->read_byte(mtd);
		}

		if (likely(chip->badblockbits == 8))
			res = bad != 0xFF;
382
		else
383 384 385 386 387
			res = hweight8(bad) < chip->badblockbits;
		ofs += mtd->writesize;
		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
		i++;
	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
388

L
Linus Torvalds 已提交
389 390 391 392
	return res;
}

/**
393
 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
394 395
 * @mtd: MTD device structure
 * @ofs: offset from device start
L
Linus Torvalds 已提交
396
 *
397
 * This is the default implementation, which can be overridden by a hardware
398 399 400 401 402
 * specific driver. It provides the details for writing a bad block marker to a
 * block.
 */
static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
403
	struct nand_chip *chip = mtd_to_nand(mtd);
404 405 406 407
	struct mtd_oob_ops ops;
	uint8_t buf[2] = { 0, 0 };
	int ret = 0, res, i = 0;

408
	memset(&ops, 0, sizeof(ops));
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	ops.oobbuf = buf;
	ops.ooboffs = chip->badblockpos;
	if (chip->options & NAND_BUSWIDTH_16) {
		ops.ooboffs &= ~0x01;
		ops.len = ops.ooblen = 2;
	} else {
		ops.len = ops.ooblen = 1;
	}
	ops.mode = MTD_OPS_PLACE_OOB;

	/* Write to first/last page(s) if necessary */
	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
		ofs += mtd->erasesize - mtd->writesize;
	do {
		res = nand_do_write_oob(mtd, ofs, &ops);
		if (!ret)
			ret = res;

		i++;
		ofs += mtd->writesize;
	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);

	return ret;
}

/**
 * nand_block_markbad_lowlevel - mark a block bad
 * @mtd: MTD device structure
 * @ofs: offset from device start
 *
 * This function performs the generic NAND bad block marking steps (i.e., bad
 * block table(s) and/or marker(s)). We only allow the hardware driver to
 * specify how to write bad block markers to OOB (chip->block_markbad).
 *
443
 * We try operations in the following order:
444
 *  (1) erase the affected block, to allow OOB marker to be written cleanly
445 446 447 448
 *  (2) write bad block marker to OOB area of affected block (unless flag
 *      NAND_BBT_NO_OOB_BBM is present)
 *  (3) update the BBT
 * Note that we retain the first error encountered in (2) or (3), finish the
449
 * procedures, and dump the error in the end.
L
Linus Torvalds 已提交
450
*/
451
static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
452
{
453
	struct nand_chip *chip = mtd_to_nand(mtd);
454
	int res, ret = 0;
455

456
	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
457 458 459 460 461 462
		struct erase_info einfo;

		/* Attempt erase before marking OOB */
		memset(&einfo, 0, sizeof(einfo));
		einfo.mtd = mtd;
		einfo.addr = ofs;
463
		einfo.len = 1ULL << chip->phys_erase_shift;
464
		nand_erase_nand(mtd, &einfo, 0);
L
Linus Torvalds 已提交
465

466
		/* Write bad block marker to OOB */
467
		nand_get_device(mtd, FL_WRITING);
468
		ret = chip->block_markbad(mtd, ofs);
469
		nand_release_device(mtd);
470
	}
471

472 473 474
	/* Mark block bad in BBT */
	if (chip->bbt) {
		res = nand_markbad_bbt(mtd, ofs);
475 476 477 478
		if (!ret)
			ret = res;
	}

479 480
	if (!ret)
		mtd->ecc_stats.badblocks++;
481

482
	return ret;
L
Linus Torvalds 已提交
483 484
}

485
/**
L
Linus Torvalds 已提交
486
 * nand_check_wp - [GENERIC] check if the chip is write protected
487
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
488
 *
489 490
 * Check, if the device is write protected. The function expects, that the
 * device is already selected.
L
Linus Torvalds 已提交
491
 */
492
static int nand_check_wp(struct mtd_info *mtd)
L
Linus Torvalds 已提交
493
{
494
	struct nand_chip *chip = mtd_to_nand(mtd);
495

496
	/* Broken xD cards report WP despite being writable */
497 498 499
	if (chip->options & NAND_BROKEN_XD)
		return 0;

L
Linus Torvalds 已提交
500
	/* Check the WP bit */
501 502
	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
L
Linus Torvalds 已提交
503 504
}

505
/**
506
 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
507 508 509
 * @mtd: MTD device structure
 * @ofs: offset from device start
 *
510
 * Check if the block is marked as reserved.
511 512 513
 */
static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
514
	struct nand_chip *chip = mtd_to_nand(mtd);
515 516 517 518 519 520 521

	if (!chip->bbt)
		return 0;
	/* Return info from the table */
	return nand_isreserved_bbt(mtd, ofs);
}

L
Linus Torvalds 已提交
522 523
/**
 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
524 525 526
 * @mtd: MTD device structure
 * @ofs: offset from device start
 * @allowbbt: 1, if its allowed to access the bbt area
L
Linus Torvalds 已提交
527 528 529 530
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
531
static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
L
Linus Torvalds 已提交
532
{
533
	struct nand_chip *chip = mtd_to_nand(mtd);
534

535
	if (!chip->bbt)
536
		return chip->block_bad(mtd, ofs);
537

L
Linus Torvalds 已提交
538
	/* Return info from the table */
539
	return nand_isbad_bbt(mtd, ofs, allowbbt);
L
Linus Torvalds 已提交
540 541
}

542 543
/**
 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
544 545
 * @mtd: MTD device structure
 * @timeo: Timeout
546 547 548 549 550 551
 *
 * Helper function for nand_wait_ready used when needing to wait in interrupt
 * context.
 */
static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
{
552
	struct nand_chip *chip = mtd_to_nand(mtd);
553 554 555 556 557 558 559 560 561 562 563
	int i;

	/* Wait for the device to get ready */
	for (i = 0; i < timeo; i++) {
		if (chip->dev_ready(mtd))
			break;
		touch_softlockup_watchdog();
		mdelay(1);
	}
}

564 565 566 567 568 569
/**
 * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 * @mtd: MTD device structure
 *
 * Wait for the ready pin after a command, and warn if a timeout occurs.
 */
570
void nand_wait_ready(struct mtd_info *mtd)
571
{
572
	struct nand_chip *chip = mtd_to_nand(mtd);
573
	unsigned long timeo = 400;
574

575
	if (in_interrupt() || oops_in_progress)
576
		return panic_nand_wait_ready(mtd, timeo);
577

578
	/* Wait until command is processed or timeout occurs */
579
	timeo = jiffies + msecs_to_jiffies(timeo);
580
	do {
581
		if (chip->dev_ready(mtd))
582
			return;
583
		cond_resched();
584
	} while (time_before(jiffies, timeo));
585

586 587
	if (!chip->dev_ready(mtd))
		pr_warn_ratelimited("timeout while waiting for chip to become ready\n");
588
}
589
EXPORT_SYMBOL_GPL(nand_wait_ready);
590

591 592 593 594 595 596 597 598 599
/**
 * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
 * @mtd: MTD device structure
 * @timeo: Timeout in ms
 *
 * Wait for status ready (i.e. command done) or timeout.
 */
static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
{
600
	register struct nand_chip *chip = mtd_to_nand(mtd);
601 602 603 604 605 606 607 608 609

	timeo = jiffies + msecs_to_jiffies(timeo);
	do {
		if ((chip->read_byte(mtd) & NAND_STATUS_READY))
			break;
		touch_softlockup_watchdog();
	} while (time_before(jiffies, timeo));
};

L
Linus Torvalds 已提交
610 611
/**
 * nand_command - [DEFAULT] Send command to NAND device
612 613 614 615
 * @mtd: MTD device structure
 * @command: the command to be sent
 * @column: the column address for this command, -1 if none
 * @page_addr: the page address for this command, -1 if none
L
Linus Torvalds 已提交
616
 *
617
 * Send command to NAND device. This function is used for small page devices
618
 * (512 Bytes per page).
L
Linus Torvalds 已提交
619
 */
620 621
static void nand_command(struct mtd_info *mtd, unsigned int command,
			 int column, int page_addr)
L
Linus Torvalds 已提交
622
{
623
	register struct nand_chip *chip = mtd_to_nand(mtd);
624
	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
L
Linus Torvalds 已提交
625

626
	/* Write out the command to the device */
L
Linus Torvalds 已提交
627 628 629
	if (command == NAND_CMD_SEQIN) {
		int readcmd;

J
Joern Engel 已提交
630
		if (column >= mtd->writesize) {
L
Linus Torvalds 已提交
631
			/* OOB area */
J
Joern Engel 已提交
632
			column -= mtd->writesize;
L
Linus Torvalds 已提交
633 634 635 636 637 638 639 640
			readcmd = NAND_CMD_READOOB;
		} else if (column < 256) {
			/* First 256 bytes --> READ0 */
			readcmd = NAND_CMD_READ0;
		} else {
			column -= 256;
			readcmd = NAND_CMD_READ1;
		}
641
		chip->cmd_ctrl(mtd, readcmd, ctrl);
642
		ctrl &= ~NAND_CTRL_CHANGE;
L
Linus Torvalds 已提交
643
	}
644
	chip->cmd_ctrl(mtd, command, ctrl);
L
Linus Torvalds 已提交
645

646
	/* Address cycle, when necessary */
647 648 649 650
	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
	/* Serially input address */
	if (column != -1) {
		/* Adjust columns for 16 bit buswidth */
651 652
		if (chip->options & NAND_BUSWIDTH_16 &&
				!nand_opcode_8bits(command))
653
			column >>= 1;
654
		chip->cmd_ctrl(mtd, column, ctrl);
655 656 657
		ctrl &= ~NAND_CTRL_CHANGE;
	}
	if (page_addr != -1) {
658
		chip->cmd_ctrl(mtd, page_addr, ctrl);
659
		ctrl &= ~NAND_CTRL_CHANGE;
660
		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
661
		/* One more address cycle for devices > 32MiB */
662 663
		if (chip->chipsize > (32 << 20))
			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
L
Linus Torvalds 已提交
664
	}
665
	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
666 667

	/*
668 669
	 * Program and erase have their own busy handlers status and sequential
	 * in needs no delay
670
	 */
L
Linus Torvalds 已提交
671
	switch (command) {
672

L
Linus Torvalds 已提交
673 674 675 676 677 678 679 680
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_STATUS:
		return;

	case NAND_CMD_RESET:
681
		if (chip->dev_ready)
L
Linus Torvalds 已提交
682
			break;
683 684
		udelay(chip->chip_delay);
		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
685
			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
686 687
		chip->cmd_ctrl(mtd,
			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
688 689
		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
		nand_wait_status_ready(mtd, 250);
L
Linus Torvalds 已提交
690 691
		return;

692
		/* This applies to read commands */
L
Linus Torvalds 已提交
693
	default:
694
		/*
L
Linus Torvalds 已提交
695 696
		 * If we don't have access to the busy pin, we apply the given
		 * command delay
697
		 */
698 699
		if (!chip->dev_ready) {
			udelay(chip->chip_delay);
L
Linus Torvalds 已提交
700
			return;
701
		}
L
Linus Torvalds 已提交
702
	}
703 704 705 706
	/*
	 * Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine.
	 */
707
	ndelay(100);
708 709

	nand_wait_ready(mtd);
L
Linus Torvalds 已提交
710 711
}

712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
static void nand_ccs_delay(struct nand_chip *chip)
{
	/*
	 * The controller already takes care of waiting for tCCS when the RNDIN
	 * or RNDOUT command is sent, return directly.
	 */
	if (!(chip->options & NAND_WAIT_TCCS))
		return;

	/*
	 * Wait tCCS_min if it is correctly defined, otherwise wait 500ns
	 * (which should be safe for all NANDs).
	 */
	if (chip->data_interface && chip->data_interface->timings.sdr.tCCS_min)
		ndelay(chip->data_interface->timings.sdr.tCCS_min / 1000);
	else
		ndelay(500);
}

L
Linus Torvalds 已提交
731 732
/**
 * nand_command_lp - [DEFAULT] Send command to NAND large page device
733 734 735 736
 * @mtd: MTD device structure
 * @command: the command to be sent
 * @column: the column address for this command, -1 if none
 * @page_addr: the page address for this command, -1 if none
L
Linus Torvalds 已提交
737
 *
738
 * Send command to NAND device. This is the version for the new large page
739 740
 * devices. We don't have the separate regions as we have in the small page
 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
L
Linus Torvalds 已提交
741
 */
742 743
static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
			    int column, int page_addr)
L
Linus Torvalds 已提交
744
{
745
	register struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
746 747 748

	/* Emulate NAND_CMD_READOOB */
	if (command == NAND_CMD_READOOB) {
J
Joern Engel 已提交
749
		column += mtd->writesize;
L
Linus Torvalds 已提交
750 751
		command = NAND_CMD_READ0;
	}
752

753
	/* Command latch cycle */
754
	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
L
Linus Torvalds 已提交
755 756

	if (column != -1 || page_addr != -1) {
757
		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
L
Linus Torvalds 已提交
758 759 760 761

		/* Serially input address */
		if (column != -1) {
			/* Adjust columns for 16 bit buswidth */
762 763
			if (chip->options & NAND_BUSWIDTH_16 &&
					!nand_opcode_8bits(command))
L
Linus Torvalds 已提交
764
				column >>= 1;
765
			chip->cmd_ctrl(mtd, column, ctrl);
766
			ctrl &= ~NAND_CTRL_CHANGE;
767

768
			/* Only output a single addr cycle for 8bits opcodes. */
769 770
			if (!nand_opcode_8bits(command))
				chip->cmd_ctrl(mtd, column >> 8, ctrl);
771
		}
L
Linus Torvalds 已提交
772
		if (page_addr != -1) {
773 774
			chip->cmd_ctrl(mtd, page_addr, ctrl);
			chip->cmd_ctrl(mtd, page_addr >> 8,
775
				       NAND_NCE | NAND_ALE);
L
Linus Torvalds 已提交
776
			/* One more address cycle for devices > 128MiB */
777 778
			if (chip->chipsize > (128 << 20))
				chip->cmd_ctrl(mtd, page_addr >> 16,
779
					       NAND_NCE | NAND_ALE);
L
Linus Torvalds 已提交
780 781
		}
	}
782
	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
783 784

	/*
785
	 * Program and erase have their own busy handlers status, sequential
786
	 * in and status need no delay.
787
	 */
L
Linus Torvalds 已提交
788
	switch (command) {
789

L
Linus Torvalds 已提交
790 791 792 793 794 795
	case NAND_CMD_CACHEDPROG:
	case NAND_CMD_PAGEPROG:
	case NAND_CMD_ERASE1:
	case NAND_CMD_ERASE2:
	case NAND_CMD_SEQIN:
	case NAND_CMD_STATUS:
796
		return;
L
Linus Torvalds 已提交
797

798 799 800 801
	case NAND_CMD_RNDIN:
		nand_ccs_delay(chip);
		return;

L
Linus Torvalds 已提交
802
	case NAND_CMD_RESET:
803
		if (chip->dev_ready)
L
Linus Torvalds 已提交
804
			break;
805
		udelay(chip->chip_delay);
806 807 808 809
		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
810 811
		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
		nand_wait_status_ready(mtd, 250);
L
Linus Torvalds 已提交
812 813
		return;

814 815 816 817 818 819
	case NAND_CMD_RNDOUT:
		/* No ready / busy check necessary */
		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
820 821

		nand_ccs_delay(chip);
822 823
		return;

L
Linus Torvalds 已提交
824
	case NAND_CMD_READ0:
825 826 827 828
		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
			       NAND_NCE | NAND_CTRL_CHANGE);
829

830
		/* This applies to read commands */
L
Linus Torvalds 已提交
831
	default:
832
		/*
L
Linus Torvalds 已提交
833
		 * If we don't have access to the busy pin, we apply the given
834
		 * command delay.
835
		 */
836 837
		if (!chip->dev_ready) {
			udelay(chip->chip_delay);
L
Linus Torvalds 已提交
838
			return;
839
		}
L
Linus Torvalds 已提交
840
	}
841

842 843 844 845
	/*
	 * Apply this short delay always to ensure that we do wait tWB in
	 * any case on any machine.
	 */
846
	ndelay(100);
847 848

	nand_wait_ready(mtd);
L
Linus Torvalds 已提交
849 850
}

851 852
/**
 * panic_nand_get_device - [GENERIC] Get chip for selected access
853 854 855
 * @chip: the nand chip descriptor
 * @mtd: MTD device structure
 * @new_state: the state which is requested
856 857 858 859 860 861
 *
 * Used when in panic, no locks are taken.
 */
static void panic_nand_get_device(struct nand_chip *chip,
		      struct mtd_info *mtd, int new_state)
{
862
	/* Hardware controller shared among independent devices */
863 864 865 866
	chip->controller->active = chip;
	chip->state = new_state;
}

L
Linus Torvalds 已提交
867 868
/**
 * nand_get_device - [GENERIC] Get chip for selected access
869 870
 * @mtd: MTD device structure
 * @new_state: the state which is requested
L
Linus Torvalds 已提交
871 872 873
 *
 * Get the device and lock it for exclusive access
 */
874
static int
875
nand_get_device(struct mtd_info *mtd, int new_state)
L
Linus Torvalds 已提交
876
{
877
	struct nand_chip *chip = mtd_to_nand(mtd);
878 879
	spinlock_t *lock = &chip->controller->lock;
	wait_queue_head_t *wq = &chip->controller->wq;
880
	DECLARE_WAITQUEUE(wait, current);
881
retry:
882 883
	spin_lock(lock);

884
	/* Hardware controller shared among independent devices */
885 886
	if (!chip->controller->active)
		chip->controller->active = chip;
T
Thomas Gleixner 已提交
887

888 889
	if (chip->controller->active == chip && chip->state == FL_READY) {
		chip->state = new_state;
890
		spin_unlock(lock);
891 892 893
		return 0;
	}
	if (new_state == FL_PM_SUSPENDED) {
894 895 896 897 898
		if (chip->controller->active->state == FL_PM_SUSPENDED) {
			chip->state = FL_PM_SUSPENDED;
			spin_unlock(lock);
			return 0;
		}
899 900 901 902 903 904
	}
	set_current_state(TASK_UNINTERRUPTIBLE);
	add_wait_queue(wq, &wait);
	spin_unlock(lock);
	schedule();
	remove_wait_queue(wq, &wait);
L
Linus Torvalds 已提交
905 906 907
	goto retry;
}

908
/**
909 910 911 912
 * panic_nand_wait - [GENERIC] wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND chip structure
 * @timeo: timeout
913 914 915
 *
 * Wait for command done. This is a helper function for nand_wait used when
 * we are in interrupt context. May happen when in panic and trying to write
916
 * an oops through mtdoops.
917 918 919 920 921 922 923 924 925 926 927 928 929 930
 */
static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
			    unsigned long timeo)
{
	int i;
	for (i = 0; i < timeo; i++) {
		if (chip->dev_ready) {
			if (chip->dev_ready(mtd))
				break;
		} else {
			if (chip->read_byte(mtd) & NAND_STATUS_READY)
				break;
		}
		mdelay(1);
931
	}
932 933
}

L
Linus Torvalds 已提交
934
/**
935 936 937
 * nand_wait - [DEFAULT] wait until the command is done
 * @mtd: MTD device structure
 * @chip: NAND chip structure
L
Linus Torvalds 已提交
938
 *
939
 * Wait for command done. This applies to erase and program only.
R
Randy Dunlap 已提交
940
 */
941
static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
L
Linus Torvalds 已提交
942 943
{

944 945
	int status;
	unsigned long timeo = 400;
L
Linus Torvalds 已提交
946

947 948 949 950
	/*
	 * Apply this short delay always to ensure that we do wait tWB in any
	 * case on any machine.
	 */
951
	ndelay(100);
L
Linus Torvalds 已提交
952

953
	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
L
Linus Torvalds 已提交
954

955 956 957
	if (in_interrupt() || oops_in_progress)
		panic_nand_wait(mtd, chip, timeo);
	else {
958
		timeo = jiffies + msecs_to_jiffies(timeo);
959
		do {
960 961 962 963 964 965 966 967
			if (chip->dev_ready) {
				if (chip->dev_ready(mtd))
					break;
			} else {
				if (chip->read_byte(mtd) & NAND_STATUS_READY)
					break;
			}
			cond_resched();
968
		} while (time_before(jiffies, timeo));
L
Linus Torvalds 已提交
969
	}
970

971
	status = (int)chip->read_byte(mtd);
972 973
	/* This can happen if in case of timeout or buggy dev_ready */
	WARN_ON(!(status & NAND_STATUS_READY));
L
Linus Torvalds 已提交
974 975 976
	return status;
}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
/**
 * nand_reset_data_interface - Reset data interface and timings
 * @chip: The NAND chip
 *
 * Reset the Data interface and timings to ONFI mode 0.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_reset_data_interface(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	const struct nand_data_interface *conf;
	int ret;

	if (!chip->setup_data_interface)
		return 0;

	/*
	 * The ONFI specification says:
	 * "
	 * To transition from NV-DDR or NV-DDR2 to the SDR data
	 * interface, the host shall use the Reset (FFh) command
	 * using SDR timing mode 0. A device in any timing mode is
	 * required to recognize Reset (FFh) command issued in SDR
	 * timing mode 0.
	 * "
	 *
	 * Configure the data interface in SDR mode and set the
	 * timings to timing mode 0.
	 */

	conf = nand_get_default_data_interface();
	ret = chip->setup_data_interface(mtd, conf, false);
	if (ret)
		pr_err("Failed to configure data interface to SDR timing mode 0\n");

	return ret;
}

/**
 * nand_setup_data_interface - Setup the best data interface and timings
 * @chip: The NAND chip
 *
 * Find and configure the best data interface and NAND timings supported by
 * the chip and the driver.
 * First tries to retrieve supported timing modes from ONFI information,
 * and if the NAND chip does not support ONFI, relies on the
 * ->onfi_timing_mode_default specified in the nand_ids table.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_setup_data_interface(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	if (!chip->setup_data_interface || !chip->data_interface)
		return 0;

	/*
	 * Ensure the timing mode has been changed on the chip side
	 * before changing timings on the controller side.
	 */
	if (chip->onfi_version) {
		u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
			chip->onfi_timing_mode_default,
		};

		ret = chip->onfi_set_features(mtd, chip,
				ONFI_FEATURE_ADDR_TIMING_MODE,
				tmode_param);
		if (ret)
			goto err;
	}

	ret = chip->setup_data_interface(mtd, chip->data_interface, false);
err:
	return ret;
}

/**
 * nand_init_data_interface - find the best data interface and timings
 * @chip: The NAND chip
 *
 * Find the best data interface and NAND timings supported by the chip
 * and the driver.
 * First tries to retrieve supported timing modes from ONFI information,
 * and if the NAND chip does not support ONFI, relies on the
 * ->onfi_timing_mode_default specified in the nand_ids table. After this
 * function nand_chip->data_interface is initialized with the best timing mode
 * available.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_init_data_interface(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int modes, mode, ret;

	if (!chip->setup_data_interface)
		return 0;

	/*
	 * First try to identify the best timings from ONFI parameters and
	 * if the NAND does not support ONFI, fallback to the default ONFI
	 * timing mode.
	 */
	modes = onfi_get_async_timing_mode(chip);
	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
		if (!chip->onfi_timing_mode_default)
			return 0;

		modes = GENMASK(chip->onfi_timing_mode_default, 0);
	}

	chip->data_interface = kzalloc(sizeof(*chip->data_interface),
				       GFP_KERNEL);
	if (!chip->data_interface)
		return -ENOMEM;

	for (mode = fls(modes) - 1; mode >= 0; mode--) {
		ret = onfi_init_data_interface(chip, chip->data_interface,
					       NAND_SDR_IFACE, mode);
		if (ret)
			continue;

		ret = chip->setup_data_interface(mtd, chip->data_interface,
						 true);
		if (!ret) {
			chip->onfi_timing_mode_default = mode;
			break;
		}
	}

	return 0;
}

static void nand_release_data_interface(struct nand_chip *chip)
{
	kfree(chip->data_interface);
}

1119 1120 1121 1122 1123 1124 1125 1126 1127
/**
 * nand_reset - Reset and initialize a NAND device
 * @chip: The NAND chip
 *
 * Returns 0 for success or negative error code otherwise
 */
int nand_reset(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
1128 1129 1130 1131 1132
	int ret;

	ret = nand_reset_data_interface(chip);
	if (ret)
		return ret;
1133 1134 1135

	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);

1136 1137 1138 1139
	ret = nand_setup_data_interface(chip);
	if (ret)
		return ret;

1140 1141 1142
	return 0;
}

1143
/**
1144 1145 1146 1147
 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1148 1149 1150 1151
 * @invert: when = 0, unlock the range of blocks within the lower and
 *                    upper boundary address
 *          when = 1, unlock the range of blocks outside the boundaries
 *                    of the lower and upper boundary address
1152
 *
1153
 * Returs unlock status.
1154 1155 1156 1157 1158 1159
 */
static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
					uint64_t len, int invert)
{
	int ret = 0;
	int status, page;
1160
	struct nand_chip *chip = mtd_to_nand(mtd);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

	/* Submit address of first page to unlock */
	page = ofs >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);

	/* Submit address of last page to unlock */
	page = (ofs + len) >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
				(page | invert) & chip->pagemask);

	/* Call wait ready function */
	status = chip->waitfunc(mtd, chip);
	/* See if device thinks it succeeded */
1174
	if (status & NAND_STATUS_FAIL) {
1175
		pr_debug("%s: error status = 0x%08x\n",
1176 1177 1178 1179 1180 1181 1182 1183
					__func__, status);
		ret = -EIO;
	}

	return ret;
}

/**
1184 1185 1186 1187
 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1188
 *
1189
 * Returns unlock status.
1190 1191 1192 1193 1194
 */
int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	int ret = 0;
	int chipnr;
1195
	struct nand_chip *chip = mtd_to_nand(mtd);
1196

1197
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
1198 1199 1200
			__func__, (unsigned long long)ofs, len);

	if (check_offs_len(mtd, ofs, len))
1201
		return -EINVAL;
1202 1203 1204 1205 1206

	/* Align to last block address if size addresses end of the device */
	if (ofs + len == mtd->size)
		len -= mtd->erasesize;

1207
	nand_get_device(mtd, FL_UNLOCKING);
1208 1209 1210 1211 1212 1213

	/* Shift to get chip number */
	chipnr = ofs >> chip->chip_shift;

	chip->select_chip(mtd, chipnr);

1214 1215 1216 1217 1218 1219 1220
	/*
	 * Reset the chip.
	 * If we want to check the WP through READ STATUS and check the bit 7
	 * we must reset the chip
	 * some operation can also clear the bit 7 of status register
	 * eg. erase/program a locked block
	 */
1221
	nand_reset(chip);
1222

1223 1224
	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
1225
		pr_debug("%s: device is write protected!\n",
1226 1227 1228 1229 1230 1231 1232 1233
					__func__);
		ret = -EIO;
		goto out;
	}

	ret = __nand_unlock(mtd, ofs, len, 0);

out:
1234
	chip->select_chip(mtd, -1);
1235 1236 1237 1238
	nand_release_device(mtd);

	return ret;
}
1239
EXPORT_SYMBOL(nand_unlock);
1240 1241

/**
1242 1243 1244 1245
 * nand_lock - [REPLACEABLE] locks all blocks present in the device
 * @mtd: mtd info
 * @ofs: offset to start unlock from
 * @len: length to unlock
1246
 *
1247 1248 1249 1250
 * This feature is not supported in many NAND parts. 'Micron' NAND parts do
 * have this feature, but it allows only to lock all blocks, not for specified
 * range for block. Implementing 'lock' feature by making use of 'unlock', for
 * now.
1251
 *
1252
 * Returns lock status.
1253 1254 1255 1256 1257
 */
int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	int ret = 0;
	int chipnr, status, page;
1258
	struct nand_chip *chip = mtd_to_nand(mtd);
1259

1260
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
1261 1262 1263
			__func__, (unsigned long long)ofs, len);

	if (check_offs_len(mtd, ofs, len))
1264
		return -EINVAL;
1265

1266
	nand_get_device(mtd, FL_LOCKING);
1267 1268 1269 1270 1271 1272

	/* Shift to get chip number */
	chipnr = ofs >> chip->chip_shift;

	chip->select_chip(mtd, chipnr);

1273 1274 1275 1276 1277 1278 1279
	/*
	 * Reset the chip.
	 * If we want to check the WP through READ STATUS and check the bit 7
	 * we must reset the chip
	 * some operation can also clear the bit 7 of status register
	 * eg. erase/program a locked block
	 */
1280
	nand_reset(chip);
1281

1282 1283
	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
1284
		pr_debug("%s: device is write protected!\n",
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
					__func__);
		status = MTD_ERASE_FAILED;
		ret = -EIO;
		goto out;
	}

	/* Submit address of first page to lock */
	page = ofs >> chip->page_shift;
	chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);

	/* Call wait ready function */
	status = chip->waitfunc(mtd, chip);
	/* See if device thinks it succeeded */
1298
	if (status & NAND_STATUS_FAIL) {
1299
		pr_debug("%s: error status = 0x%08x\n",
1300 1301 1302 1303 1304 1305 1306 1307
					__func__, status);
		ret = -EIO;
		goto out;
	}

	ret = __nand_unlock(mtd, ofs, len, 0x1);

out:
1308
	chip->select_chip(mtd, -1);
1309 1310 1311 1312
	nand_release_device(mtd);

	return ret;
}
1313
EXPORT_SYMBOL(nand_lock);
1314

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
/**
 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
 * @buf: buffer to test
 * @len: buffer length
 * @bitflips_threshold: maximum number of bitflips
 *
 * Check if a buffer contains only 0xff, which means the underlying region
 * has been erased and is ready to be programmed.
 * The bitflips_threshold specify the maximum number of bitflips before
 * considering the region is not erased.
 * Note: The logic of this function has been extracted from the memweight
 * implementation, except that nand_check_erased_buf function exit before
 * testing the whole buffer if the number of bitflips exceed the
 * bitflips_threshold value.
 *
 * Returns a positive number of bitflips less than or equal to
 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 * threshold.
 */
static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
{
	const unsigned char *bitmap = buf;
	int bitflips = 0;
	int weight;

	for (; len && ((uintptr_t)bitmap) % sizeof(long);
	     len--, bitmap++) {
		weight = hweight8(*bitmap);
		bitflips += BITS_PER_BYTE - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	for (; len >= sizeof(long);
	     len -= sizeof(long), bitmap += sizeof(long)) {
		weight = hweight_long(*((unsigned long *)bitmap));
		bitflips += BITS_PER_LONG - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	for (; len > 0; len--, bitmap++) {
		weight = hweight8(*bitmap);
		bitflips += BITS_PER_BYTE - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	return bitflips;
}

/**
 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
 *				 0xff data
 * @data: data buffer to test
 * @datalen: data length
 * @ecc: ECC buffer
 * @ecclen: ECC length
 * @extraoob: extra OOB buffer
 * @extraooblen: extra OOB length
 * @bitflips_threshold: maximum number of bitflips
 *
 * Check if a data buffer and its associated ECC and OOB data contains only
 * 0xff pattern, which means the underlying region has been erased and is
 * ready to be programmed.
 * The bitflips_threshold specify the maximum number of bitflips before
 * considering the region as not erased.
 *
 * Note:
 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
 *    different from the NAND page size. When fixing bitflips, ECC engines will
 *    report the number of errors per chunk, and the NAND core infrastructure
 *    expect you to return the maximum number of bitflips for the whole page.
 *    This is why you should always use this function on a single chunk and
 *    not on the whole page. After checking each chunk you should update your
 *    max_bitflips value accordingly.
 * 2/ When checking for bitflips in erased pages you should not only check
 *    the payload data but also their associated ECC data, because a user might
 *    have programmed almost all bits to 1 but a few. In this case, we
 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
 *    this case.
 * 3/ The extraoob argument is optional, and should be used if some of your OOB
 *    data are protected by the ECC engine.
 *    It could also be used if you support subpages and want to attach some
 *    extra OOB data to an ECC chunk.
 *
 * Returns a positive number of bitflips less than or equal to
 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 * threshold. In case of success, the passed buffers are filled with 0xff.
 */
int nand_check_erased_ecc_chunk(void *data, int datalen,
				void *ecc, int ecclen,
				void *extraoob, int extraooblen,
				int bitflips_threshold)
{
	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;

	data_bitflips = nand_check_erased_buf(data, datalen,
					      bitflips_threshold);
	if (data_bitflips < 0)
		return data_bitflips;

	bitflips_threshold -= data_bitflips;

	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
	if (ecc_bitflips < 0)
		return ecc_bitflips;

	bitflips_threshold -= ecc_bitflips;

	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
						  bitflips_threshold);
	if (extraoob_bitflips < 0)
		return extraoob_bitflips;

	if (data_bitflips)
		memset(data, 0xff, datalen);

	if (ecc_bitflips)
		memset(ecc, 0xff, ecclen);

	if (extraoob_bitflips)
		memset(extraoob, 0xff, extraooblen);

	return data_bitflips + ecc_bitflips + extraoob_bitflips;
}
EXPORT_SYMBOL(nand_check_erased_ecc_chunk);

1443
/**
1444
 * nand_read_page_raw - [INTERN] read raw page data without ecc
1445 1446 1447
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1448
 * @oob_required: caller requires OOB data read to chip->oob_poi
1449
 * @page: page number to read
1450
 *
1451
 * Not for syndrome calculating ECC controllers, which use a special oob layout.
1452 1453
 */
static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1454
			      uint8_t *buf, int oob_required, int page)
1455 1456
{
	chip->read_buf(mtd, buf, mtd->writesize);
1457 1458
	if (oob_required)
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1459 1460 1461
	return 0;
}

1462
/**
1463
 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1464 1465 1466
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1467
 * @oob_required: caller requires OOB data read to chip->oob_poi
1468
 * @page: page number to read
1469 1470 1471
 *
 * We need a special oob layout and handling even when OOB isn't used.
 */
1472
static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1473 1474
				       struct nand_chip *chip, uint8_t *buf,
				       int oob_required, int page)
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
{
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint8_t *oob = chip->oob_poi;
	int steps, size;

	for (steps = chip->ecc.steps; steps > 0; steps--) {
		chip->read_buf(mtd, buf, eccsize);
		buf += eccsize;

		if (chip->ecc.prepad) {
			chip->read_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		chip->read_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->read_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size)
		chip->read_buf(mtd, oob, size);

	return 0;
}

L
Linus Torvalds 已提交
1506
/**
1507
 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1508 1509 1510
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1511
 * @oob_required: caller requires OOB data read to chip->oob_poi
1512
 * @page: page number to read
1513
 */
1514
static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1515
				uint8_t *buf, int oob_required, int page)
L
Linus Torvalds 已提交
1516
{
1517
	int i, eccsize = chip->ecc.size, ret;
1518 1519 1520
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
1521 1522
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
1523
	unsigned int max_bitflips = 0;
1524

1525
	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1526 1527 1528 1529

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

1530 1531 1532 1533
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
1534 1535 1536 1537 1538 1539 1540 1541

	eccsteps = chip->ecc.steps;
	p = buf;

	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1542
		if (stat < 0) {
1543
			mtd->ecc_stats.failed++;
1544
		} else {
1545
			mtd->ecc_stats.corrected += stat;
1546 1547
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1548
	}
1549
	return max_bitflips;
1550
}
L
Linus Torvalds 已提交
1551

1552
/**
1553
 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1554 1555 1556 1557 1558
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @data_offs: offset of requested data within the page
 * @readlen: data length
 * @bufpoi: buffer to store read data
1559
 * @page: page number to read
1560
 */
1561
static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1562 1563
			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
			int page)
1564
{
1565
	int start_step, end_step, num_steps, ret;
1566 1567 1568 1569
	uint8_t *p;
	int data_col_addr, i, gaps = 0;
	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1570
	int index, section = 0;
1571
	unsigned int max_bitflips = 0;
1572
	struct mtd_oob_region oobregion = { };
1573

1574
	/* Column address within the page aligned to ECC size (256bytes) */
1575 1576 1577
	start_step = data_offs / chip->ecc.size;
	end_step = (data_offs + readlen - 1) / chip->ecc.size;
	num_steps = end_step - start_step + 1;
R
Ron 已提交
1578
	index = start_step * chip->ecc.bytes;
1579

1580
	/* Data size aligned to ECC ecc.size */
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	datafrag_len = num_steps * chip->ecc.size;
	eccfrag_len = num_steps * chip->ecc.bytes;

	data_col_addr = start_step * chip->ecc.size;
	/* If we read not a page aligned data */
	if (data_col_addr != 0)
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);

	p = bufpoi + data_col_addr;
	chip->read_buf(mtd, p, datafrag_len);

1592
	/* Calculate ECC */
1593 1594 1595
	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);

1596 1597
	/*
	 * The performance is faster if we position offsets according to
1598
	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1599
	 */
1600 1601 1602 1603 1604 1605 1606
	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
	if (ret)
		return ret;

	if (oobregion.length < eccfrag_len)
		gaps = 1;

1607 1608 1609 1610
	if (gaps) {
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	} else {
1611
		/*
1612
		 * Send the command to read the particular ECC bytes take care
1613 1614
		 * about buswidth alignment in read_buf.
		 */
1615
		aligned_pos = oobregion.offset & ~(busw - 1);
1616
		aligned_len = eccfrag_len;
1617
		if (oobregion.offset & (busw - 1))
1618
			aligned_len++;
1619 1620
		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
		    (busw - 1))
1621 1622
			aligned_len++;

1623
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1624
			      mtd->writesize + aligned_pos, -1);
1625 1626 1627
		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
	}

1628 1629 1630 1631
	ret = mtd_ooblayout_get_eccbytes(mtd, chip->buffers->ecccode,
					 chip->oob_poi, index, eccfrag_len);
	if (ret)
		return ret;
1632 1633 1634 1635 1636

	p = bufpoi + data_col_addr;
	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
		int stat;

1637 1638
		stat = chip->ecc.correct(mtd, p,
			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
						&chip->buffers->ecccode[i],
						chip->ecc.bytes,
						NULL, 0,
						chip->ecc.strength);
		}

1649
		if (stat < 0) {
1650
			mtd->ecc_stats.failed++;
1651
		} else {
1652
			mtd->ecc_stats.corrected += stat;
1653 1654
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1655
	}
1656
	return max_bitflips;
1657 1658
}

1659
/**
1660
 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1661 1662 1663
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1664
 * @oob_required: caller requires OOB data read to chip->oob_poi
1665
 * @page: page number to read
1666
 *
1667
 * Not for syndrome calculating ECC controllers which need a special oob layout.
1668
 */
1669
static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1670
				uint8_t *buf, int oob_required, int page)
L
Linus Torvalds 已提交
1671
{
1672
	int i, eccsize = chip->ecc.size, ret;
1673 1674 1675
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
1676 1677
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	uint8_t *ecc_code = chip->buffers->ecccode;
1678
	unsigned int max_bitflips = 0;
1679 1680 1681 1682 1683

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
L
Linus Torvalds 已提交
1684
	}
1685
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
L
Linus Torvalds 已提交
1686

1687 1688 1689 1690
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
L
Linus Torvalds 已提交
1691

1692 1693
	eccsteps = chip->ecc.steps;
	p = buf;
1694

1695 1696
	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;
L
Linus Torvalds 已提交
1697

1698
		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1699 1700 1701 1702 1703 1704 1705 1706 1707
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
						&ecc_code[i], eccbytes,
						NULL, 0,
						chip->ecc.strength);
		}

1708
		if (stat < 0) {
1709
			mtd->ecc_stats.failed++;
1710
		} else {
1711
			mtd->ecc_stats.corrected += stat;
1712 1713
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1714
	}
1715
	return max_bitflips;
1716
}
L
Linus Torvalds 已提交
1717

1718
/**
1719
 * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1720 1721 1722
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1723
 * @oob_required: caller requires OOB data read to chip->oob_poi
1724
 * @page: page number to read
1725
 *
1726 1727 1728 1729 1730
 * Hardware ECC for large page chips, require OOB to be read first. For this
 * ECC mode, the write_page method is re-used from ECC_HW. These methods
 * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
 * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
 * the data area, by overwriting the NAND manufacturer bad block markings.
1731 1732
 */
static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1733
	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1734
{
1735
	int i, eccsize = chip->ecc.size, ret;
1736 1737 1738 1739 1740
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
1741
	unsigned int max_bitflips = 0;
1742 1743 1744 1745 1746 1747

	/* Read the OOB area first */
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

1748 1749 1750 1751
	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
1752 1753 1754 1755 1756 1757 1758 1759 1760

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1761 1762 1763 1764 1765 1766 1767 1768 1769
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
						&ecc_code[i], eccbytes,
						NULL, 0,
						chip->ecc.strength);
		}

1770
		if (stat < 0) {
1771
			mtd->ecc_stats.failed++;
1772
		} else {
1773
			mtd->ecc_stats.corrected += stat;
1774 1775
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1776
	}
1777
	return max_bitflips;
1778 1779
}

1780
/**
1781
 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1782 1783 1784
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
1785
 * @oob_required: caller requires OOB data read to chip->oob_poi
1786
 * @page: page number to read
1787
 *
1788 1789
 * The hw generator calculates the error syndrome automatically. Therefore we
 * need a special oob layout and handling.
1790 1791
 */
static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1792
				   uint8_t *buf, int oob_required, int page)
1793 1794 1795 1796
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
1797
	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1798
	uint8_t *p = buf;
1799
	uint8_t *oob = chip->oob_poi;
1800
	unsigned int max_bitflips = 0;
L
Linus Torvalds 已提交
1801

1802 1803
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;
1804

1805 1806
		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
L
Linus Torvalds 已提交
1807

1808 1809 1810 1811
		if (chip->ecc.prepad) {
			chip->read_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}
L
Linus Torvalds 已提交
1812

1813 1814 1815
		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
		chip->read_buf(mtd, oob, eccbytes);
		stat = chip->ecc.correct(mtd, p, oob, NULL);
1816

1817
		oob += eccbytes;
L
Linus Torvalds 已提交
1818

1819 1820 1821
		if (chip->ecc.postpad) {
			chip->read_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
1822
		}
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
							   oob - eccpadbytes,
							   eccpadbytes,
							   NULL, 0,
							   chip->ecc.strength);
		}

		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
1840
	}
L
Linus Torvalds 已提交
1841

1842
	/* Calculate remaining oob bytes */
1843
	i = mtd->oobsize - (oob - chip->oob_poi);
1844 1845
	if (i)
		chip->read_buf(mtd, oob, i);
1846

1847
	return max_bitflips;
1848
}
L
Linus Torvalds 已提交
1849

1850
/**
1851
 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1852
 * @mtd: mtd info structure
1853 1854 1855
 * @oob: oob destination address
 * @ops: oob ops structure
 * @len: size of oob to transfer
1856
 */
1857
static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob,
1858
				  struct mtd_oob_ops *ops, size_t len)
1859
{
1860 1861 1862
	struct nand_chip *chip = mtd_to_nand(mtd);
	int ret;

1863
	switch (ops->mode) {
1864

1865 1866
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_RAW:
1867 1868 1869
		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
		return oob + len;

1870 1871 1872 1873 1874 1875
	case MTD_OPS_AUTO_OOB:
		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
						  ops->ooboffs, len);
		BUG_ON(ret);
		return oob + len;

1876 1877 1878 1879 1880 1881
	default:
		BUG();
	}
	return NULL;
}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
/**
 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
 * @mtd: MTD device structure
 * @retry_mode: the retry mode to use
 *
 * Some vendors supply a special command to shift the Vt threshold, to be used
 * when there are too many bitflips in a page (i.e., ECC error). After setting
 * a new threshold, the host should retry reading the page.
 */
static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
{
1893
	struct nand_chip *chip = mtd_to_nand(mtd);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905

	pr_debug("setting READ RETRY mode %d\n", retry_mode);

	if (retry_mode >= chip->read_retries)
		return -EINVAL;

	if (!chip->setup_read_retry)
		return -EOPNOTSUPP;

	return chip->setup_read_retry(mtd, retry_mode);
}

1906
/**
1907
 * nand_do_read_ops - [INTERN] Read data with ECC
1908 1909 1910
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob ops structure
1911 1912 1913
 *
 * Internal function. Called with chip held.
 */
1914 1915
static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
1916
{
1917
	int chipnr, page, realpage, col, bytes, aligned, oob_required;
1918
	struct nand_chip *chip = mtd_to_nand(mtd);
1919
	int ret = 0;
1920
	uint32_t readlen = ops->len;
1921
	uint32_t oobreadlen = ops->ooblen;
1922
	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1923

1924
	uint8_t *bufpoi, *oob, *buf;
1925
	int use_bufpoi;
1926
	unsigned int max_bitflips = 0;
1927
	int retry_mode = 0;
1928
	bool ecc_fail = false;
L
Linus Torvalds 已提交
1929

1930 1931
	chipnr = (int)(from >> chip->chip_shift);
	chip->select_chip(mtd, chipnr);
1932

1933 1934
	realpage = (int)(from >> chip->page_shift);
	page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
1935

1936
	col = (int)(from & (mtd->writesize - 1));
1937

1938 1939
	buf = ops->datbuf;
	oob = ops->oobbuf;
1940
	oob_required = oob ? 1 : 0;
1941

1942
	while (1) {
1943 1944
		unsigned int ecc_failures = mtd->ecc_stats.failed;

1945 1946
		bytes = min(mtd->writesize - col, readlen);
		aligned = (bytes == mtd->writesize);
1947

1948 1949 1950 1951 1952 1953 1954
		if (!aligned)
			use_bufpoi = 1;
		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
			use_bufpoi = !virt_addr_valid(buf);
		else
			use_bufpoi = 0;

1955
		/* Is the current page in the buffer? */
1956
		if (realpage != chip->pagebuf || oob) {
1957 1958 1959 1960 1961
			bufpoi = use_bufpoi ? chip->buffers->databuf : buf;

			if (use_bufpoi && aligned)
				pr_debug("%s: using read bounce buffer for buf@%p\n",
						 __func__, buf);
1962

1963
read_retry:
1964
			chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
L
Linus Torvalds 已提交
1965

1966 1967 1968 1969
			/*
			 * Now read the page into the buffer.  Absent an error,
			 * the read methods return max bitflips per ecc step.
			 */
1970
			if (unlikely(ops->mode == MTD_OPS_RAW))
1971
				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1972 1973
							      oob_required,
							      page);
1974 1975
			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
				 !oob)
1976
				ret = chip->ecc.read_subpage(mtd, chip,
1977 1978
							col, bytes, bufpoi,
							page);
1979
			else
1980
				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1981
							  oob_required, page);
1982
			if (ret < 0) {
1983
				if (use_bufpoi)
1984 1985
					/* Invalidate page cache */
					chip->pagebuf = -1;
L
Linus Torvalds 已提交
1986
				break;
1987
			}
1988

1989 1990
			max_bitflips = max_t(unsigned int, max_bitflips, ret);

1991
			/* Transfer not aligned data */
1992
			if (use_bufpoi) {
1993
				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1994
				    !(mtd->ecc_stats.failed - ecc_failures) &&
1995
				    (ops->mode != MTD_OPS_RAW)) {
1996
					chip->pagebuf = realpage;
1997 1998
					chip->pagebuf_bitflips = ret;
				} else {
1999 2000
					/* Invalidate page cache */
					chip->pagebuf = -1;
2001
				}
2002
				memcpy(buf, chip->buffers->databuf + col, bytes);
2003 2004
			}

2005
			if (unlikely(oob)) {
2006 2007 2008
				int toread = min(oobreadlen, max_oobsize);

				if (toread) {
2009
					oob = nand_transfer_oob(mtd,
2010 2011 2012
						oob, ops, toread);
					oobreadlen -= toread;
				}
2013
			}
2014 2015 2016 2017 2018 2019 2020 2021

			if (chip->options & NAND_NEED_READRDY) {
				/* Apply delay or wait for ready/busy pin */
				if (!chip->dev_ready)
					udelay(chip->chip_delay);
				else
					nand_wait_ready(mtd);
			}
2022

2023
			if (mtd->ecc_stats.failed - ecc_failures) {
2024
				if (retry_mode + 1 < chip->read_retries) {
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
					retry_mode++;
					ret = nand_setup_read_retry(mtd,
							retry_mode);
					if (ret < 0)
						break;

					/* Reset failures; retry */
					mtd->ecc_stats.failed = ecc_failures;
					goto read_retry;
				} else {
					/* No more retry modes; real failure */
					ecc_fail = true;
				}
			}

			buf += bytes;
2041
		} else {
2042
			memcpy(buf, chip->buffers->databuf + col, bytes);
2043
			buf += bytes;
2044 2045
			max_bitflips = max_t(unsigned int, max_bitflips,
					     chip->pagebuf_bitflips);
2046
		}
L
Linus Torvalds 已提交
2047

2048
		readlen -= bytes;
2049

2050 2051 2052 2053 2054 2055 2056 2057
		/* Reset to retry mode 0 */
		if (retry_mode) {
			ret = nand_setup_read_retry(mtd, 0);
			if (ret < 0)
				break;
			retry_mode = 0;
		}

2058
		if (!readlen)
2059
			break;
L
Linus Torvalds 已提交
2060

2061
		/* For subsequent reads align to page boundary */
L
Linus Torvalds 已提交
2062 2063 2064 2065
		col = 0;
		/* Increment page address */
		realpage++;

2066
		page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
2067 2068 2069
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
2070 2071
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2072 2073
		}
	}
2074
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2075

2076
	ops->retlen = ops->len - (size_t) readlen;
2077 2078
	if (oob)
		ops->oobretlen = ops->ooblen - oobreadlen;
L
Linus Torvalds 已提交
2079

2080
	if (ret < 0)
2081 2082
		return ret;

2083
	if (ecc_fail)
2084 2085
		return -EBADMSG;

2086
	return max_bitflips;
2087 2088 2089
}

/**
L
Lucas De Marchi 已提交
2090
 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
2091 2092 2093 2094 2095
 * @mtd: MTD device structure
 * @from: offset to read from
 * @len: number of bytes to read
 * @retlen: pointer to variable to store the number of read bytes
 * @buf: the databuffer to put data
2096
 *
2097
 * Get hold of the chip and call nand_do_read.
2098 2099 2100 2101
 */
static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
		     size_t *retlen, uint8_t *buf)
{
2102
	struct mtd_oob_ops ops;
2103 2104
	int ret;

2105
	nand_get_device(mtd, FL_READING);
2106
	memset(&ops, 0, sizeof(ops));
2107 2108
	ops.len = len;
	ops.datbuf = buf;
2109
	ops.mode = MTD_OPS_PLACE_OOB;
2110 2111
	ret = nand_do_read_ops(mtd, from, &ops);
	*retlen = ops.retlen;
2112 2113
	nand_release_device(mtd);
	return ret;
L
Linus Torvalds 已提交
2114 2115
}

2116
/**
2117
 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
2118 2119 2120
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to read
2121
 */
2122
int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2123
{
2124
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
2125
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
2126
	return 0;
2127
}
2128
EXPORT_SYMBOL(nand_read_oob_std);
2129 2130

/**
2131
 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
2132
 *			    with syndromes
2133 2134 2135
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to read
2136
 */
2137 2138
int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
			   int page)
2139 2140 2141 2142
{
	int length = mtd->oobsize;
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsize = chip->ecc.size;
2143
	uint8_t *bufpoi = chip->oob_poi;
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
	int i, toread, sndrnd = 0, pos;

	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
	for (i = 0; i < chip->ecc.steps; i++) {
		if (sndrnd) {
			pos = eccsize + i * (eccsize + chunk);
			if (mtd->writesize > 512)
				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
			else
				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
		} else
			sndrnd = 1;
		toread = min_t(int, length, chunk);
		chip->read_buf(mtd, bufpoi, toread);
		bufpoi += toread;
		length -= toread;
	}
	if (length > 0)
		chip->read_buf(mtd, bufpoi, length);

2164
	return 0;
2165
}
2166
EXPORT_SYMBOL(nand_read_oob_syndrome);
2167 2168

/**
2169
 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
2170 2171 2172
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to write
2173
 */
2174
int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page)
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
{
	int status = 0;
	const uint8_t *buf = chip->oob_poi;
	int length = mtd->oobsize;

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
	chip->write_buf(mtd, buf, length);
	/* Send command to program the OOB data */
	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);

	status = chip->waitfunc(mtd, chip);

S
Savin Zlobec 已提交
2187
	return status & NAND_STATUS_FAIL ? -EIO : 0;
2188
}
2189
EXPORT_SYMBOL(nand_write_oob_std);
2190 2191

/**
2192
 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
2193 2194 2195 2196
 *			     with syndrome - only for large page flash
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @page: page number to write
2197
 */
2198 2199
int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
			    int page)
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
{
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsize = chip->ecc.size, length = mtd->oobsize;
	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
	const uint8_t *bufpoi = chip->oob_poi;

	/*
	 * data-ecc-data-ecc ... ecc-oob
	 * or
	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
	 */
	if (!chip->ecc.prepad && !chip->ecc.postpad) {
		pos = steps * (eccsize + chunk);
		steps = 0;
	} else
2215
		pos = eccsize;
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
	for (i = 0; i < steps; i++) {
		if (sndcmd) {
			if (mtd->writesize <= 512) {
				uint32_t fill = 0xFFFFFFFF;

				len = eccsize;
				while (len > 0) {
					int num = min_t(int, len, 4);
					chip->write_buf(mtd, (uint8_t *)&fill,
							num);
					len -= num;
				}
			} else {
				pos = eccsize + i * (eccsize + chunk);
				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
			}
		} else
			sndcmd = 1;
		len = min_t(int, length, chunk);
		chip->write_buf(mtd, bufpoi, len);
		bufpoi += len;
		length -= len;
	}
	if (length > 0)
		chip->write_buf(mtd, bufpoi, length);

	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	return status & NAND_STATUS_FAIL ? -EIO : 0;
}
2249
EXPORT_SYMBOL(nand_write_oob_syndrome);
2250

L
Linus Torvalds 已提交
2251
/**
2252
 * nand_do_read_oob - [INTERN] NAND read out-of-band
2253 2254 2255
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob operations description structure
L
Linus Torvalds 已提交
2256
 *
2257
 * NAND read out-of-band data from the spare area.
L
Linus Torvalds 已提交
2258
 */
2259 2260
static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
			    struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2261
{
2262
	int page, realpage, chipnr;
2263
	struct nand_chip *chip = mtd_to_nand(mtd);
2264
	struct mtd_ecc_stats stats;
2265 2266
	int readlen = ops->ooblen;
	int len;
2267
	uint8_t *buf = ops->oobbuf;
2268
	int ret = 0;
2269

2270
	pr_debug("%s: from = 0x%08Lx, len = %i\n",
2271
			__func__, (unsigned long long)from, readlen);
L
Linus Torvalds 已提交
2272

2273 2274
	stats = mtd->ecc_stats;

2275
	len = mtd_oobavail(mtd, ops);
2276 2277

	if (unlikely(ops->ooboffs >= len)) {
2278 2279
		pr_debug("%s: attempt to start read outside oob\n",
				__func__);
2280 2281 2282 2283 2284 2285 2286
		return -EINVAL;
	}

	/* Do not allow reads past end of device */
	if (unlikely(from >= mtd->size ||
		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
					(from >> chip->page_shift)) * len)) {
2287 2288
		pr_debug("%s: attempt to read beyond end of device\n",
				__func__);
2289 2290
		return -EINVAL;
	}
2291

2292
	chipnr = (int)(from >> chip->chip_shift);
2293
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2294

2295 2296 2297
	/* Shift to get page */
	realpage = (int)(from >> chip->page_shift);
	page = realpage & chip->pagemask;
L
Linus Torvalds 已提交
2298

2299
	while (1) {
2300
		if (ops->mode == MTD_OPS_RAW)
2301
			ret = chip->ecc.read_oob_raw(mtd, chip, page);
2302
		else
2303 2304 2305 2306
			ret = chip->ecc.read_oob(mtd, chip, page);

		if (ret < 0)
			break;
2307 2308

		len = min(len, readlen);
2309
		buf = nand_transfer_oob(mtd, buf, ops, len);
2310

2311 2312 2313 2314 2315 2316 2317 2318
		if (chip->options & NAND_NEED_READRDY) {
			/* Apply delay or wait for ready/busy pin */
			if (!chip->dev_ready)
				udelay(chip->chip_delay);
			else
				nand_wait_ready(mtd);
		}

2319
		readlen -= len;
S
Savin Zlobec 已提交
2320 2321 2322
		if (!readlen)
			break;

2323 2324 2325 2326 2327 2328 2329 2330 2331
		/* Increment page address */
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2332 2333
		}
	}
2334
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2335

2336 2337 2338 2339
	ops->oobretlen = ops->ooblen - readlen;

	if (ret < 0)
		return ret;
2340 2341 2342 2343 2344

	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
L
Linus Torvalds 已提交
2345 2346 2347
}

/**
2348
 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2349 2350 2351
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob operation description structure
L
Linus Torvalds 已提交
2352
 *
2353
 * NAND read data and/or out-of-band data.
L
Linus Torvalds 已提交
2354
 */
2355 2356
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
			 struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2357
{
2358
	int ret;
2359 2360

	ops->retlen = 0;
L
Linus Torvalds 已提交
2361 2362

	/* Do not allow reads past end of device */
2363
	if (ops->datbuf && (from + ops->len) > mtd->size) {
2364 2365
		pr_debug("%s: attempt to read beyond end of device\n",
				__func__);
L
Linus Torvalds 已提交
2366 2367 2368
		return -EINVAL;
	}

2369 2370 2371 2372
	if (ops->mode != MTD_OPS_PLACE_OOB &&
	    ops->mode != MTD_OPS_AUTO_OOB &&
	    ops->mode != MTD_OPS_RAW)
		return -ENOTSUPP;
L
Linus Torvalds 已提交
2373

2374
	nand_get_device(mtd, FL_READING);
L
Linus Torvalds 已提交
2375

2376 2377 2378 2379
	if (!ops->datbuf)
		ret = nand_do_read_oob(mtd, from, ops);
	else
		ret = nand_do_read_ops(mtd, from, ops);
2380

2381 2382 2383
	nand_release_device(mtd);
	return ret;
}
2384

L
Linus Torvalds 已提交
2385

2386
/**
2387
 * nand_write_page_raw - [INTERN] raw page write function
2388 2389 2390
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2391
 * @oob_required: must write chip->oob_poi to OOB
2392
 * @page: page number to write
2393
 *
2394
 * Not for syndrome calculating ECC controllers, which use a special oob layout.
2395
 */
2396
static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2397
			       const uint8_t *buf, int oob_required, int page)
2398 2399
{
	chip->write_buf(mtd, buf, mtd->writesize);
2400 2401
	if (oob_required)
		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2402 2403

	return 0;
L
Linus Torvalds 已提交
2404 2405
}

2406
/**
2407
 * nand_write_page_raw_syndrome - [INTERN] raw page write function
2408 2409 2410
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2411
 * @oob_required: must write chip->oob_poi to OOB
2412
 * @page: page number to write
2413 2414 2415
 *
 * We need a special oob layout and handling even when ECC isn't checked.
 */
2416
static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2417
					struct nand_chip *chip,
2418 2419
					const uint8_t *buf, int oob_required,
					int page)
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
{
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint8_t *oob = chip->oob_poi;
	int steps, size;

	for (steps = chip->ecc.steps; steps > 0; steps--) {
		chip->write_buf(mtd, buf, eccsize);
		buf += eccsize;

		if (chip->ecc.prepad) {
			chip->write_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

2435
		chip->write_buf(mtd, oob, eccbytes);
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->write_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size)
		chip->write_buf(mtd, oob, size);
2447 2448

	return 0;
2449
}
2450
/**
2451
 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2452 2453 2454
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2455
 * @oob_required: must write chip->oob_poi to OOB
2456
 * @page: page number to write
2457
 */
2458
static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2459 2460
				 const uint8_t *buf, int oob_required,
				 int page)
2461
{
2462
	int i, eccsize = chip->ecc.size, ret;
2463 2464
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
2465
	uint8_t *ecc_calc = chip->buffers->ecccalc;
2466
	const uint8_t *p = buf;
2467

2468
	/* Software ECC calculation */
2469 2470
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2471

2472 2473 2474 2475
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
2476

2477
	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2478
}
2479

2480
/**
2481
 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2482 2483 2484
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2485
 * @oob_required: must write chip->oob_poi to OOB
2486
 * @page: page number to write
2487
 */
2488
static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2489 2490
				  const uint8_t *buf, int oob_required,
				  int page)
2491
{
2492
	int i, eccsize = chip->ecc.size, ret;
2493 2494
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
2495
	uint8_t *ecc_calc = chip->buffers->ecccalc;
2496
	const uint8_t *p = buf;
2497

2498 2499
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2500
		chip->write_buf(mtd, p, eccsize);
2501
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2502 2503
	}

2504 2505 2506 2507
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
2508 2509

	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2510 2511

	return 0;
2512 2513
}

2514 2515

/**
2516
 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2517 2518
 * @mtd:	mtd info structure
 * @chip:	nand chip info structure
2519
 * @offset:	column address of subpage within the page
2520
 * @data_len:	data length
2521
 * @buf:	data buffer
2522
 * @oob_required: must write chip->oob_poi to OOB
2523
 * @page: page number to write
2524 2525 2526
 */
static int nand_write_subpage_hwecc(struct mtd_info *mtd,
				struct nand_chip *chip, uint32_t offset,
2527
				uint32_t data_len, const uint8_t *buf,
2528
				int oob_required, int page)
2529 2530 2531 2532 2533 2534 2535 2536 2537
{
	uint8_t *oob_buf  = chip->oob_poi;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	int ecc_size      = chip->ecc.size;
	int ecc_bytes     = chip->ecc.bytes;
	int ecc_steps     = chip->ecc.steps;
	uint32_t start_step = offset / ecc_size;
	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
	int oob_bytes       = mtd->oobsize / ecc_steps;
2538
	int step, ret;
2539 2540 2541 2542 2543 2544

	for (step = 0; step < ecc_steps; step++) {
		/* configure controller for WRITE access */
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);

		/* write data (untouched subpages already masked by 0xFF) */
2545
		chip->write_buf(mtd, buf, ecc_size);
2546 2547 2548 2549 2550

		/* mask ECC of un-touched subpages by padding 0xFF */
		if ((step < start_step) || (step > end_step))
			memset(ecc_calc, 0xff, ecc_bytes);
		else
2551
			chip->ecc.calculate(mtd, buf, ecc_calc);
2552 2553 2554 2555 2556 2557

		/* mask OOB of un-touched subpages by padding 0xFF */
		/* if oob_required, preserve OOB metadata of written subpage */
		if (!oob_required || (step < start_step) || (step > end_step))
			memset(oob_buf, 0xff, oob_bytes);

2558
		buf += ecc_size;
2559 2560 2561 2562 2563 2564 2565
		ecc_calc += ecc_bytes;
		oob_buf  += oob_bytes;
	}

	/* copy calculated ECC for whole page to chip->buffer->oob */
	/* this include masked-value(0xFF) for unwritten subpages */
	ecc_calc = chip->buffers->ecccalc;
2566 2567 2568 2569
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;
2570 2571 2572 2573 2574 2575 2576 2577

	/* write OOB buffer to NAND device */
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}


2578
/**
2579
 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2580 2581 2582
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: data buffer
2583
 * @oob_required: must write chip->oob_poi to OOB
2584
 * @page: page number to write
L
Linus Torvalds 已提交
2585
 *
2586 2587
 * The hw generator calculates the error syndrome automatically. Therefore we
 * need a special oob layout and handling.
2588
 */
2589
static int nand_write_page_syndrome(struct mtd_info *mtd,
2590
				    struct nand_chip *chip,
2591 2592
				    const uint8_t *buf, int oob_required,
				    int page)
L
Linus Torvalds 已提交
2593
{
2594 2595 2596 2597 2598
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	const uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;
L
Linus Torvalds 已提交
2599

2600
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
L
Linus Torvalds 已提交
2601

2602 2603
		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
		chip->write_buf(mtd, p, eccsize);
2604

2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
		if (chip->ecc.prepad) {
			chip->write_buf(mtd, oob, chip->ecc.prepad);
			oob += chip->ecc.prepad;
		}

		chip->ecc.calculate(mtd, p, oob);
		chip->write_buf(mtd, oob, eccbytes);
		oob += eccbytes;

		if (chip->ecc.postpad) {
			chip->write_buf(mtd, oob, chip->ecc.postpad);
			oob += chip->ecc.postpad;
L
Linus Torvalds 已提交
2617 2618
		}
	}
2619 2620

	/* Calculate remaining oob bytes */
2621
	i = mtd->oobsize - (oob - chip->oob_poi);
2622 2623
	if (i)
		chip->write_buf(mtd, oob, i);
2624 2625

	return 0;
2626 2627 2628
}

/**
2629
 * nand_write_page - [REPLACEABLE] write one page
2630 2631
 * @mtd: MTD device structure
 * @chip: NAND chip descriptor
2632 2633
 * @offset: address offset within the page
 * @data_len: length of actual data to be written
2634
 * @buf: the data to write
2635
 * @oob_required: must write chip->oob_poi to OOB
2636 2637 2638
 * @page: page number to write
 * @cached: cached programming
 * @raw: use _raw version of write_page
2639 2640
 */
static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2641 2642
		uint32_t offset, int data_len, const uint8_t *buf,
		int oob_required, int page, int cached, int raw)
2643
{
2644 2645 2646 2647 2648 2649 2650
	int status, subpage;

	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
		chip->ecc.write_subpage)
		subpage = offset || (data_len < mtd->writesize);
	else
		subpage = 0;
2651 2652 2653

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);

2654
	if (unlikely(raw))
2655
		status = chip->ecc.write_page_raw(mtd, chip, buf,
2656
						  oob_required, page);
2657 2658
	else if (subpage)
		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2659
						 buf, oob_required, page);
2660
	else
2661 2662
		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
					      page);
2663 2664 2665

	if (status < 0)
		return status;
2666 2667

	/*
2668
	 * Cached progamming disabled for now. Not sure if it's worth the
2669
	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2670 2671 2672
	 */
	cached = 0;

2673
	if (!cached || !NAND_HAS_CACHEPROG(chip)) {
2674 2675

		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2676
		status = chip->waitfunc(mtd, chip);
2677 2678
		/*
		 * See if operation failed and additional status checks are
2679
		 * available.
2680 2681 2682 2683 2684 2685 2686 2687 2688
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_WRITING, status,
					       page);

		if (status & NAND_STATUS_FAIL)
			return -EIO;
	} else {
		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2689
		status = chip->waitfunc(mtd, chip);
2690 2691 2692
	}

	return 0;
L
Linus Torvalds 已提交
2693 2694
}

2695
/**
2696
 * nand_fill_oob - [INTERN] Transfer client buffer to oob
2697
 * @mtd: MTD device structure
2698 2699 2700
 * @oob: oob data buffer
 * @len: oob data write length
 * @ops: oob ops structure
2701
 */
2702 2703
static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
			      struct mtd_oob_ops *ops)
2704
{
2705
	struct nand_chip *chip = mtd_to_nand(mtd);
2706
	int ret;
2707 2708 2709 2710 2711 2712 2713

	/*
	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
	 * data from a previous OOB read.
	 */
	memset(chip->oob_poi, 0xff, mtd->oobsize);

2714
	switch (ops->mode) {
2715

2716 2717
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_RAW:
2718 2719 2720
		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
		return oob + len;

2721 2722 2723 2724 2725 2726
	case MTD_OPS_AUTO_OOB:
		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
						  ops->ooboffs, len);
		BUG_ON(ret);
		return oob + len;

2727 2728 2729 2730 2731 2732
	default:
		BUG();
	}
	return NULL;
}

2733
#define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
L
Linus Torvalds 已提交
2734 2735

/**
2736
 * nand_do_write_ops - [INTERN] NAND write with ECC
2737 2738 2739
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operations description structure
L
Linus Torvalds 已提交
2740
 *
2741
 * NAND write with ECC.
L
Linus Torvalds 已提交
2742
 */
2743 2744
static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2745
{
2746
	int chipnr, realpage, page, blockmask, column;
2747
	struct nand_chip *chip = mtd_to_nand(mtd);
2748
	uint32_t writelen = ops->len;
2749 2750

	uint32_t oobwritelen = ops->ooblen;
2751
	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2752

2753 2754
	uint8_t *oob = ops->oobbuf;
	uint8_t *buf = ops->datbuf;
2755
	int ret;
2756
	int oob_required = oob ? 1 : 0;
L
Linus Torvalds 已提交
2757

2758
	ops->retlen = 0;
2759 2760
	if (!writelen)
		return 0;
L
Linus Torvalds 已提交
2761

2762
	/* Reject writes, which are not page aligned */
2763
	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2764 2765
		pr_notice("%s: attempt to write non page aligned data\n",
			   __func__);
L
Linus Torvalds 已提交
2766 2767 2768
		return -EINVAL;
	}

2769
	column = to & (mtd->writesize - 1);
L
Linus Torvalds 已提交
2770

2771 2772 2773
	chipnr = (int)(to >> chip->chip_shift);
	chip->select_chip(mtd, chipnr);

L
Linus Torvalds 已提交
2774
	/* Check, if it is write protected */
2775 2776 2777 2778
	if (nand_check_wp(mtd)) {
		ret = -EIO;
		goto err_out;
	}
L
Linus Torvalds 已提交
2779

2780 2781 2782 2783 2784
	realpage = (int)(to >> chip->page_shift);
	page = realpage & chip->pagemask;
	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;

	/* Invalidate the page cache, when we write to the cached page */
2785 2786
	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2787
		chip->pagebuf = -1;
2788

2789
	/* Don't allow multipage oob writes with offset */
2790 2791 2792 2793
	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
		ret = -EINVAL;
		goto err_out;
	}
2794

2795
	while (1) {
2796
		int bytes = mtd->writesize;
2797
		int cached = writelen > bytes && page != blockmask;
2798
		uint8_t *wbuf = buf;
2799
		int use_bufpoi;
2800
		int part_pagewr = (column || writelen < mtd->writesize);
2801 2802 2803 2804 2805 2806 2807

		if (part_pagewr)
			use_bufpoi = 1;
		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
			use_bufpoi = !virt_addr_valid(buf);
		else
			use_bufpoi = 0;
2808

2809 2810 2811 2812
		/* Partial page write?, or need to use bounce buffer */
		if (use_bufpoi) {
			pr_debug("%s: using write bounce buffer for buf@%p\n",
					 __func__, buf);
2813
			cached = 0;
2814 2815
			if (part_pagewr)
				bytes = min_t(int, bytes - column, writelen);
2816 2817 2818 2819 2820
			chip->pagebuf = -1;
			memset(chip->buffers->databuf, 0xff, mtd->writesize);
			memcpy(&chip->buffers->databuf[column], buf, bytes);
			wbuf = chip->buffers->databuf;
		}
L
Linus Torvalds 已提交
2821

2822 2823
		if (unlikely(oob)) {
			size_t len = min(oobwritelen, oobmaxlen);
2824
			oob = nand_fill_oob(mtd, oob, len, ops);
2825
			oobwritelen -= len;
2826 2827 2828
		} else {
			/* We still need to erase leftover OOB data */
			memset(chip->oob_poi, 0xff, mtd->oobsize);
2829
		}
2830 2831 2832
		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
					oob_required, page, cached,
					(ops->mode == MTD_OPS_RAW));
2833 2834 2835 2836 2837 2838 2839
		if (ret)
			break;

		writelen -= bytes;
		if (!writelen)
			break;

2840
		column = 0;
2841 2842 2843 2844 2845 2846 2847 2848 2849
		buf += bytes;
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2850 2851
		}
	}
2852 2853

	ops->retlen = ops->len - writelen;
2854 2855
	if (unlikely(oob))
		ops->oobretlen = ops->ooblen;
2856 2857 2858

err_out:
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
2859 2860 2861
	return ret;
}

2862 2863
/**
 * panic_nand_write - [MTD Interface] NAND write with ECC
2864 2865 2866 2867 2868
 * @mtd: MTD device structure
 * @to: offset to write to
 * @len: number of bytes to write
 * @retlen: pointer to variable to store the number of written bytes
 * @buf: the data to write
2869 2870 2871 2872 2873 2874 2875
 *
 * NAND write with ECC. Used when performing writes in interrupt context, this
 * may for example be called by mtdoops when writing an oops while in panic.
 */
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
			    size_t *retlen, const uint8_t *buf)
{
2876
	struct nand_chip *chip = mtd_to_nand(mtd);
2877
	struct mtd_oob_ops ops;
2878 2879
	int ret;

2880
	/* Wait for the device to get ready */
2881 2882
	panic_nand_wait(mtd, chip, 400);

2883
	/* Grab the device */
2884 2885
	panic_nand_get_device(chip, mtd, FL_WRITING);

2886
	memset(&ops, 0, sizeof(ops));
2887 2888
	ops.len = len;
	ops.datbuf = (uint8_t *)buf;
2889
	ops.mode = MTD_OPS_PLACE_OOB;
2890

2891
	ret = nand_do_write_ops(mtd, to, &ops);
2892

2893
	*retlen = ops.retlen;
2894 2895 2896
	return ret;
}

2897
/**
2898
 * nand_write - [MTD Interface] NAND write with ECC
2899 2900 2901 2902 2903
 * @mtd: MTD device structure
 * @to: offset to write to
 * @len: number of bytes to write
 * @retlen: pointer to variable to store the number of written bytes
 * @buf: the data to write
2904
 *
2905
 * NAND write with ECC.
2906
 */
2907 2908
static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
			  size_t *retlen, const uint8_t *buf)
2909
{
2910
	struct mtd_oob_ops ops;
2911 2912
	int ret;

2913
	nand_get_device(mtd, FL_WRITING);
2914
	memset(&ops, 0, sizeof(ops));
2915 2916
	ops.len = len;
	ops.datbuf = (uint8_t *)buf;
2917
	ops.mode = MTD_OPS_PLACE_OOB;
2918 2919
	ret = nand_do_write_ops(mtd, to, &ops);
	*retlen = ops.retlen;
2920
	nand_release_device(mtd);
2921
	return ret;
2922
}
2923

L
Linus Torvalds 已提交
2924
/**
2925
 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2926 2927 2928
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operation description structure
L
Linus Torvalds 已提交
2929
 *
2930
 * NAND write out-of-band.
L
Linus Torvalds 已提交
2931
 */
2932 2933
static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
			     struct mtd_oob_ops *ops)
L
Linus Torvalds 已提交
2934
{
2935
	int chipnr, page, status, len;
2936
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
2937

2938
	pr_debug("%s: to = 0x%08x, len = %i\n",
2939
			 __func__, (unsigned int)to, (int)ops->ooblen);
L
Linus Torvalds 已提交
2940

2941
	len = mtd_oobavail(mtd, ops);
2942

L
Linus Torvalds 已提交
2943
	/* Do not allow write past end of page */
2944
	if ((ops->ooboffs + ops->ooblen) > len) {
2945 2946
		pr_debug("%s: attempt to write past end of page\n",
				__func__);
L
Linus Torvalds 已提交
2947 2948 2949
		return -EINVAL;
	}

2950
	if (unlikely(ops->ooboffs >= len)) {
2951 2952
		pr_debug("%s: attempt to start write outside oob\n",
				__func__);
2953 2954 2955
		return -EINVAL;
	}

2956
	/* Do not allow write past end of device */
2957 2958 2959 2960
	if (unlikely(to >= mtd->size ||
		     ops->ooboffs + ops->ooblen >
			((mtd->size >> chip->page_shift) -
			 (to >> chip->page_shift)) * len)) {
2961 2962
		pr_debug("%s: attempt to write beyond end of device\n",
				__func__);
2963 2964 2965
		return -EINVAL;
	}

2966
	chipnr = (int)(to >> chip->chip_shift);
2967
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
2968

2969 2970 2971 2972 2973 2974 2975 2976 2977
	/* Shift to get page */
	page = (int)(to >> chip->page_shift);

	/*
	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
	 * of my DiskOnChip 2000 test units) will clear the whole data page too
	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
	 * it in the doc2000 driver in August 1999.  dwmw2.
	 */
2978
	nand_reset(chip);
L
Linus Torvalds 已提交
2979 2980

	/* Check, if it is write protected */
2981 2982
	if (nand_check_wp(mtd)) {
		chip->select_chip(mtd, -1);
2983
		return -EROFS;
2984
	}
2985

L
Linus Torvalds 已提交
2986
	/* Invalidate the page cache, if we write to the cached page */
2987 2988
	if (page == chip->pagebuf)
		chip->pagebuf = -1;
L
Linus Torvalds 已提交
2989

2990
	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2991

2992
	if (ops->mode == MTD_OPS_RAW)
2993 2994 2995
		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
	else
		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
L
Linus Torvalds 已提交
2996

2997 2998
	chip->select_chip(mtd, -1);

2999 3000
	if (status)
		return status;
L
Linus Torvalds 已提交
3001

3002
	ops->oobretlen = ops->ooblen;
L
Linus Torvalds 已提交
3003

3004
	return 0;
3005 3006 3007 3008
}

/**
 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
3009 3010 3011
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operation description structure
3012 3013 3014 3015 3016 3017 3018 3019 3020
 */
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
			  struct mtd_oob_ops *ops)
{
	int ret = -ENOTSUPP;

	ops->retlen = 0;

	/* Do not allow writes past end of device */
3021
	if (ops->datbuf && (to + ops->len) > mtd->size) {
3022 3023
		pr_debug("%s: attempt to write beyond end of device\n",
				__func__);
3024 3025 3026
		return -EINVAL;
	}

3027
	nand_get_device(mtd, FL_WRITING);
3028

3029
	switch (ops->mode) {
3030 3031 3032
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_AUTO_OOB:
	case MTD_OPS_RAW:
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
		break;

	default:
		goto out;
	}

	if (!ops->datbuf)
		ret = nand_do_write_oob(mtd, to, ops);
	else
		ret = nand_do_write_ops(mtd, to, ops);

3044
out:
L
Linus Torvalds 已提交
3045 3046 3047 3048 3049
	nand_release_device(mtd);
	return ret;
}

/**
3050
 * single_erase - [GENERIC] NAND standard block erase command function
3051 3052
 * @mtd: MTD device structure
 * @page: the page address of the block which will be erased
L
Linus Torvalds 已提交
3053
 *
3054
 * Standard erase command for NAND chips. Returns NAND status.
L
Linus Torvalds 已提交
3055
 */
3056
static int single_erase(struct mtd_info *mtd, int page)
L
Linus Torvalds 已提交
3057
{
3058
	struct nand_chip *chip = mtd_to_nand(mtd);
L
Linus Torvalds 已提交
3059
	/* Send commands to erase a block */
3060 3061
	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
3062 3063

	return chip->waitfunc(mtd, chip);
L
Linus Torvalds 已提交
3064 3065 3066 3067
}

/**
 * nand_erase - [MTD Interface] erase block(s)
3068 3069
 * @mtd: MTD device structure
 * @instr: erase instruction
L
Linus Torvalds 已提交
3070
 *
3071
 * Erase one ore more blocks.
L
Linus Torvalds 已提交
3072
 */
3073
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
L
Linus Torvalds 已提交
3074
{
3075
	return nand_erase_nand(mtd, instr, 0);
L
Linus Torvalds 已提交
3076
}
3077

L
Linus Torvalds 已提交
3078
/**
3079
 * nand_erase_nand - [INTERN] erase block(s)
3080 3081 3082
 * @mtd: MTD device structure
 * @instr: erase instruction
 * @allowbbt: allow erasing the bbt area
L
Linus Torvalds 已提交
3083
 *
3084
 * Erase one ore more blocks.
L
Linus Torvalds 已提交
3085
 */
3086 3087
int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
		    int allowbbt)
L
Linus Torvalds 已提交
3088
{
3089
	int page, status, pages_per_block, ret, chipnr;
3090
	struct nand_chip *chip = mtd_to_nand(mtd);
3091
	loff_t len;
L
Linus Torvalds 已提交
3092

3093 3094 3095
	pr_debug("%s: start = 0x%012llx, len = %llu\n",
			__func__, (unsigned long long)instr->addr,
			(unsigned long long)instr->len);
L
Linus Torvalds 已提交
3096

3097
	if (check_offs_len(mtd, instr->addr, instr->len))
L
Linus Torvalds 已提交
3098 3099 3100
		return -EINVAL;

	/* Grab the lock and see if the device is available */
3101
	nand_get_device(mtd, FL_ERASING);
L
Linus Torvalds 已提交
3102 3103

	/* Shift to get first page */
3104 3105
	page = (int)(instr->addr >> chip->page_shift);
	chipnr = (int)(instr->addr >> chip->chip_shift);
L
Linus Torvalds 已提交
3106 3107

	/* Calculate pages in each block */
3108
	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
L
Linus Torvalds 已提交
3109 3110

	/* Select the NAND device */
3111
	chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
3112 3113 3114

	/* Check, if it is write protected */
	if (nand_check_wp(mtd)) {
3115 3116
		pr_debug("%s: device is write protected!\n",
				__func__);
L
Linus Torvalds 已提交
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
		instr->state = MTD_ERASE_FAILED;
		goto erase_exit;
	}

	/* Loop through the pages */
	len = instr->len;

	instr->state = MTD_ERASING;

	while (len) {
W
Wolfram Sang 已提交
3127
		/* Check if we have a bad block, we do not erase bad blocks! */
3128
		if (nand_block_checkbad(mtd, ((loff_t) page) <<
3129
					chip->page_shift, allowbbt)) {
3130 3131
			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
				    __func__, page);
L
Linus Torvalds 已提交
3132 3133 3134
			instr->state = MTD_ERASE_FAILED;
			goto erase_exit;
		}
3135

3136 3137
		/*
		 * Invalidate the page cache, if we erase the block which
3138
		 * contains the current cached page.
3139 3140 3141 3142
		 */
		if (page <= chip->pagebuf && chip->pagebuf <
		    (page + pages_per_block))
			chip->pagebuf = -1;
L
Linus Torvalds 已提交
3143

3144
		status = chip->erase(mtd, page & chip->pagemask);
L
Linus Torvalds 已提交
3145

3146 3147 3148 3149 3150 3151 3152
		/*
		 * See if operation failed and additional status checks are
		 * available
		 */
		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
			status = chip->errstat(mtd, chip, FL_ERASING,
					       status, page);
3153

L
Linus Torvalds 已提交
3154
		/* See if block erase succeeded */
3155
		if (status & NAND_STATUS_FAIL) {
3156 3157
			pr_debug("%s: failed erase, page 0x%08x\n",
					__func__, page);
L
Linus Torvalds 已提交
3158
			instr->state = MTD_ERASE_FAILED;
3159 3160
			instr->fail_addr =
				((loff_t)page << chip->page_shift);
L
Linus Torvalds 已提交
3161 3162
			goto erase_exit;
		}
3163

L
Linus Torvalds 已提交
3164
		/* Increment page address and decrement length */
3165
		len -= (1ULL << chip->phys_erase_shift);
L
Linus Torvalds 已提交
3166 3167 3168
		page += pages_per_block;

		/* Check, if we cross a chip boundary */
3169
		if (len && !(page & chip->pagemask)) {
L
Linus Torvalds 已提交
3170
			chipnr++;
3171 3172
			chip->select_chip(mtd, -1);
			chip->select_chip(mtd, chipnr);
L
Linus Torvalds 已提交
3173 3174 3175 3176
		}
	}
	instr->state = MTD_ERASE_DONE;

3177
erase_exit:
L
Linus Torvalds 已提交
3178 3179 3180 3181

	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;

	/* Deselect and wake up anyone waiting on the device */
3182
	chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
3183 3184
	nand_release_device(mtd);

3185 3186 3187 3188
	/* Do call back function */
	if (!ret)
		mtd_erase_callback(instr);

L
Linus Torvalds 已提交
3189 3190 3191 3192 3193 3194
	/* Return more or less happy */
	return ret;
}

/**
 * nand_sync - [MTD Interface] sync
3195
 * @mtd: MTD device structure
L
Linus Torvalds 已提交
3196
 *
3197
 * Sync is actually a wait for chip ready function.
L
Linus Torvalds 已提交
3198
 */
3199
static void nand_sync(struct mtd_info *mtd)
L
Linus Torvalds 已提交
3200
{
3201
	pr_debug("%s: called\n", __func__);
L
Linus Torvalds 已提交
3202 3203

	/* Grab the lock and see if the device is available */
3204
	nand_get_device(mtd, FL_SYNCING);
L
Linus Torvalds 已提交
3205
	/* Release it and go back */
3206
	nand_release_device(mtd);
L
Linus Torvalds 已提交
3207 3208 3209
}

/**
3210
 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
3211 3212
 * @mtd: MTD device structure
 * @offs: offset relative to mtd start
L
Linus Torvalds 已提交
3213
 */
3214
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
L
Linus Torvalds 已提交
3215
{
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
	struct nand_chip *chip = mtd_to_nand(mtd);
	int chipnr = (int)(offs >> chip->chip_shift);
	int ret;

	/* Select the NAND device */
	nand_get_device(mtd, FL_READING);
	chip->select_chip(mtd, chipnr);

	ret = nand_block_checkbad(mtd, offs, 0);

	chip->select_chip(mtd, -1);
	nand_release_device(mtd);

	return ret;
L
Linus Torvalds 已提交
3230 3231 3232
}

/**
3233
 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
3234 3235
 * @mtd: MTD device structure
 * @ofs: offset relative to mtd start
L
Linus Torvalds 已提交
3236
 */
3237
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
L
Linus Torvalds 已提交
3238 3239 3240
{
	int ret;

3241 3242
	ret = nand_block_isbad(mtd, ofs);
	if (ret) {
3243
		/* If it was bad already, return success and do nothing */
L
Linus Torvalds 已提交
3244 3245
		if (ret > 0)
			return 0;
3246 3247
		return ret;
	}
L
Linus Torvalds 已提交
3248

3249
	return nand_block_markbad_lowlevel(mtd, ofs);
L
Linus Torvalds 已提交
3250 3251
}

3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
/**
 * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
 * @mtd: MTD device structure
 * @chip: nand chip info structure
 * @addr: feature address.
 * @subfeature_param: the subfeature parameters, a four bytes array.
 */
static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
			int addr, uint8_t *subfeature_param)
{
	int status;
3263
	int i;
3264

3265 3266 3267
	if (!chip->onfi_version ||
	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3268 3269 3270
		return -EINVAL;

	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
3271 3272 3273
	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
		chip->write_byte(mtd, subfeature_param[i]);

3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	status = chip->waitfunc(mtd, chip);
	if (status & NAND_STATUS_FAIL)
		return -EIO;
	return 0;
}

/**
 * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
 * @mtd: MTD device structure
 * @chip: nand chip info structure
 * @addr: feature address.
 * @subfeature_param: the subfeature parameters, a four bytes array.
 */
static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
			int addr, uint8_t *subfeature_param)
{
3290 3291
	int i;

3292 3293 3294
	if (!chip->onfi_version ||
	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3295 3296 3297
		return -EINVAL;

	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3298 3299
	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
		*subfeature_param++ = chip->read_byte(mtd);
3300 3301 3302
	return 0;
}

3303 3304
/**
 * nand_suspend - [MTD Interface] Suspend the NAND flash
3305
 * @mtd: MTD device structure
3306 3307 3308
 */
static int nand_suspend(struct mtd_info *mtd)
{
3309
	return nand_get_device(mtd, FL_PM_SUSPENDED);
3310 3311 3312 3313
}

/**
 * nand_resume - [MTD Interface] Resume the NAND flash
3314
 * @mtd: MTD device structure
3315 3316 3317
 */
static void nand_resume(struct mtd_info *mtd)
{
3318
	struct nand_chip *chip = mtd_to_nand(mtd);
3319

3320
	if (chip->state == FL_PM_SUSPENDED)
3321 3322
		nand_release_device(mtd);
	else
3323 3324
		pr_err("%s called for a chip which is not in suspended state\n",
			__func__);
3325 3326
}

S
Scott Branden 已提交
3327 3328 3329 3330 3331 3332 3333
/**
 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
 *                 prevent further operations
 * @mtd: MTD device structure
 */
static void nand_shutdown(struct mtd_info *mtd)
{
3334
	nand_get_device(mtd, FL_PM_SUSPENDED);
S
Scott Branden 已提交
3335 3336
}

3337
/* Set default functions */
3338
static void nand_set_defaults(struct nand_chip *chip, int busw)
T
Thomas Gleixner 已提交
3339
{
L
Linus Torvalds 已提交
3340
	/* check for proper chip_delay setup, set 20us if not */
3341 3342
	if (!chip->chip_delay)
		chip->chip_delay = 20;
L
Linus Torvalds 已提交
3343 3344

	/* check, if a user supplied command function given */
3345 3346
	if (chip->cmdfunc == NULL)
		chip->cmdfunc = nand_command;
L
Linus Torvalds 已提交
3347 3348

	/* check, if a user supplied wait function given */
3349 3350 3351 3352 3353
	if (chip->waitfunc == NULL)
		chip->waitfunc = nand_wait;

	if (!chip->select_chip)
		chip->select_chip = nand_select_chip;
3354

3355 3356 3357 3358 3359 3360
	/* set for ONFI nand */
	if (!chip->onfi_set_features)
		chip->onfi_set_features = nand_onfi_set_features;
	if (!chip->onfi_get_features)
		chip->onfi_get_features = nand_onfi_get_features;

3361 3362
	/* If called twice, pointers that depend on busw may need to be reset */
	if (!chip->read_byte || chip->read_byte == nand_read_byte)
3363 3364 3365 3366 3367 3368 3369
		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
	if (!chip->read_word)
		chip->read_word = nand_read_word;
	if (!chip->block_bad)
		chip->block_bad = nand_block_bad;
	if (!chip->block_markbad)
		chip->block_markbad = nand_default_block_markbad;
3370
	if (!chip->write_buf || chip->write_buf == nand_write_buf)
3371
		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3372 3373
	if (!chip->write_byte || chip->write_byte == nand_write_byte)
		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3374
	if (!chip->read_buf || chip->read_buf == nand_read_buf)
3375 3376 3377
		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
	if (!chip->scan_bbt)
		chip->scan_bbt = nand_default_bbt;
3378 3379 3380

	if (!chip->controller) {
		chip->controller = &chip->hwcontrol;
3381
		nand_hw_control_init(chip->controller);
3382 3383
	}

T
Thomas Gleixner 已提交
3384 3385
}

3386
/* Sanitize ONFI strings so we can safely print them */
3387 3388 3389 3390
static void sanitize_string(uint8_t *s, size_t len)
{
	ssize_t i;

3391
	/* Null terminate */
3392 3393
	s[len - 1] = 0;

3394
	/* Remove non printable chars */
3395 3396 3397 3398 3399
	for (i = 0; i < len - 1; i++) {
		if (s[i] < ' ' || s[i] > 127)
			s[i] = '?';
	}

3400
	/* Remove trailing spaces */
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
	strim(s);
}

static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
{
	int i;
	while (len--) {
		crc ^= *p++ << 8;
		for (i = 0; i < 8; i++)
			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
	}

	return crc;
}

3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
/* Parse the Extended Parameter Page. */
static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
		struct nand_chip *chip, struct nand_onfi_params *p)
{
	struct onfi_ext_param_page *ep;
	struct onfi_ext_section *s;
	struct onfi_ext_ecc_info *ecc;
	uint8_t *cursor;
	int ret = -EINVAL;
	int len;
	int i;

	len = le16_to_cpu(p->ext_param_page_length) * 16;
	ep = kmalloc(len, GFP_KERNEL);
3430 3431
	if (!ep)
		return -ENOMEM;
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472

	/* Send our own NAND_CMD_PARAM. */
	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);

	/* Use the Change Read Column command to skip the ONFI param pages. */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
			sizeof(*p) * p->num_of_param_pages , -1);

	/* Read out the Extended Parameter Page. */
	chip->read_buf(mtd, (uint8_t *)ep, len);
	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
		!= le16_to_cpu(ep->crc))) {
		pr_debug("fail in the CRC.\n");
		goto ext_out;
	}

	/*
	 * Check the signature.
	 * Do not strictly follow the ONFI spec, maybe changed in future.
	 */
	if (strncmp(ep->sig, "EPPS", 4)) {
		pr_debug("The signature is invalid.\n");
		goto ext_out;
	}

	/* find the ECC section. */
	cursor = (uint8_t *)(ep + 1);
	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
		s = ep->sections + i;
		if (s->type == ONFI_SECTION_TYPE_2)
			break;
		cursor += s->length * 16;
	}
	if (i == ONFI_EXT_SECTION_MAX) {
		pr_debug("We can not find the ECC section.\n");
		goto ext_out;
	}

	/* get the info we want. */
	ecc = (struct onfi_ext_ecc_info *)cursor;

3473 3474 3475
	if (!ecc->codeword_size) {
		pr_debug("Invalid codeword size\n");
		goto ext_out;
3476 3477
	}

3478 3479
	chip->ecc_strength_ds = ecc->ecc_bits;
	chip->ecc_step_ds = 1 << ecc->codeword_size;
3480
	ret = 0;
3481 3482 3483 3484 3485 3486

ext_out:
	kfree(ep);
	return ret;
}

3487 3488
static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
{
3489
	struct nand_chip *chip = mtd_to_nand(mtd);
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};

	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
			feature);
}

/*
 * Configure chip properties from Micron vendor-specific ONFI table
 */
static void nand_onfi_detect_micron(struct nand_chip *chip,
		struct nand_onfi_params *p)
{
	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;

	if (le16_to_cpu(p->vendor_revision) < 1)
		return;

	chip->read_retries = micron->read_retry_options;
	chip->setup_read_retry = nand_setup_read_retry_micron;
}

3511
/*
3512
 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3513 3514
 */
static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3515
					int *busw)
3516 3517
{
	struct nand_onfi_params *p = &chip->onfi_params;
3518
	int i, j;
3519 3520
	int val;

3521
	/* Try ONFI for unknown chip or LP */
3522 3523 3524 3525 3526 3527 3528
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
		return 0;

	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
	for (i = 0; i < 3; i++) {
3529 3530
		for (j = 0; j < sizeof(*p); j++)
			((uint8_t *)p)[j] = chip->read_byte(mtd);
3531 3532 3533 3534 3535 3536
		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
				le16_to_cpu(p->crc)) {
			break;
		}
	}

3537 3538
	if (i == 3) {
		pr_err("Could not find valid ONFI parameter page; aborting\n");
3539
		return 0;
3540
	}
3541

3542
	/* Check version */
3543
	val = le16_to_cpu(p->revision);
3544 3545 3546
	if (val & (1 << 5))
		chip->onfi_version = 23;
	else if (val & (1 << 4))
3547 3548 3549 3550 3551
		chip->onfi_version = 22;
	else if (val & (1 << 3))
		chip->onfi_version = 21;
	else if (val & (1 << 2))
		chip->onfi_version = 20;
3552
	else if (val & (1 << 1))
3553
		chip->onfi_version = 10;
3554 3555

	if (!chip->onfi_version) {
3556
		pr_info("unsupported ONFI version: %d\n", val);
3557 3558
		return 0;
	}
3559 3560 3561 3562 3563

	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
	sanitize_string(p->model, sizeof(p->model));
	if (!mtd->name)
		mtd->name = p->model;
3564

3565
	mtd->writesize = le32_to_cpu(p->byte_per_page);
3566 3567 3568 3569 3570 3571 3572 3573 3574

	/*
	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
	 * (don't ask me who thought of this...). MTD assumes that these
	 * dimensions will be power-of-2, so just truncate the remaining area.
	 */
	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
	mtd->erasesize *= mtd->writesize;

3575
	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3576 3577 3578

	/* See erasesize comment */
	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3579
	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3580
	chip->bits_per_cell = p->bits_per_cell;
3581 3582

	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3583
		*busw = NAND_BUSWIDTH_16;
3584 3585
	else
		*busw = 0;
3586

3587 3588 3589
	if (p->ecc_bits != 0xff) {
		chip->ecc_strength_ds = p->ecc_bits;
		chip->ecc_step_ds = 512;
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
	} else if (chip->onfi_version >= 21 &&
		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {

		/*
		 * The nand_flash_detect_ext_param_page() uses the
		 * Change Read Column command which maybe not supported
		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
		 * now. We do not replace user supplied command function.
		 */
		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
			chip->cmdfunc = nand_command_lp;

		/* The Extended Parameter Page is supported since ONFI 2.1. */
		if (nand_flash_detect_ext_param_page(mtd, chip, p))
3604 3605 3606
			pr_warn("Failed to detect ONFI extended param page\n");
	} else {
		pr_warn("Could not retrieve ONFI ECC requirements\n");
3607 3608
	}

3609 3610 3611
	if (p->jedec_id == NAND_MFR_MICRON)
		nand_onfi_detect_micron(chip, p);

3612 3613 3614
	return 1;
}

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
/*
 * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
 */
static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
					int *busw)
{
	struct nand_jedec_params *p = &chip->jedec_params;
	struct jedec_ecc_info *ecc;
	int val;
	int i, j;

	/* Try JEDEC for unknown chip or LP */
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
	if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
		chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
		chip->read_byte(mtd) != 'C')
		return 0;

	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
	for (i = 0; i < 3; i++) {
		for (j = 0; j < sizeof(*p); j++)
			((uint8_t *)p)[j] = chip->read_byte(mtd);

		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
				le16_to_cpu(p->crc))
			break;
	}

	if (i == 3) {
		pr_err("Could not find valid JEDEC parameter page; aborting\n");
		return 0;
	}

	/* Check version */
	val = le16_to_cpu(p->revision);
	if (val & (1 << 2))
		chip->jedec_version = 10;
	else if (val & (1 << 1))
		chip->jedec_version = 1; /* vendor specific version */

	if (!chip->jedec_version) {
		pr_info("unsupported JEDEC version: %d\n", val);
		return 0;
	}

	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
	sanitize_string(p->model, sizeof(p->model));
	if (!mtd->name)
		mtd->name = p->model;

	mtd->writesize = le32_to_cpu(p->byte_per_page);

	/* Please reference to the comment for nand_flash_detect_onfi. */
	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
	mtd->erasesize *= mtd->writesize;

	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);

	/* Please reference to the comment for nand_flash_detect_onfi. */
	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
	chip->bits_per_cell = p->bits_per_cell;

	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
		*busw = NAND_BUSWIDTH_16;
	else
		*busw = 0;

	/* ECC info */
	ecc = &p->ecc_info[0];

	if (ecc->codeword_size >= 9) {
		chip->ecc_strength_ds = ecc->ecc_bits;
		chip->ecc_step_ds = 1 << ecc->codeword_size;
	} else {
		pr_warn("Invalid codeword size\n");
	}

	return 1;
}

3696 3697 3698 3699 3700 3701 3702 3703
/*
 * nand_id_has_period - Check if an ID string has a given wraparound period
 * @id_data: the ID string
 * @arrlen: the length of the @id_data array
 * @period: the period of repitition
 *
 * Check if an ID string is repeated within a given sequence of bytes at
 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3704
 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
 * if the repetition has a period of @period; otherwise, returns zero.
 */
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
{
	int i, j;
	for (i = 0; i < period; i++)
		for (j = i + period; j < arrlen; j += period)
			if (id_data[i] != id_data[j])
				return 0;
	return 1;
}

/*
 * nand_id_len - Get the length of an ID string returned by CMD_READID
 * @id_data: the ID string
 * @arrlen: the length of the @id_data array

 * Returns the length of the ID string, according to known wraparound/trailing
 * zero patterns. If no pattern exists, returns the length of the array.
 */
static int nand_id_len(u8 *id_data, int arrlen)
{
	int last_nonzero, period;

	/* Find last non-zero byte */
	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
		if (id_data[last_nonzero])
			break;

	/* All zeros */
	if (last_nonzero < 0)
		return 0;

	/* Calculate wraparound period */
	for (period = 1; period < arrlen; period++)
		if (nand_id_has_period(id_data, arrlen, period))
			break;

	/* There's a repeated pattern */
	if (period < arrlen)
		return period;

	/* There are trailing zeros */
	if (last_nonzero < arrlen - 1)
		return last_nonzero + 1;

	/* No pattern detected */
	return arrlen;
}

3755 3756 3757 3758 3759 3760 3761 3762 3763 3764
/* Extract the bits of per cell from the 3rd byte of the extended ID */
static int nand_get_bits_per_cell(u8 cellinfo)
{
	int bits;

	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
	bits >>= NAND_CI_CELLTYPE_SHIFT;
	return bits + 1;
}

3765 3766 3767 3768 3769 3770 3771 3772
/*
 * Many new NAND share similar device ID codes, which represent the size of the
 * chip. The rest of the parameters must be decoded according to generic or
 * manufacturer-specific "extended ID" decoding patterns.
 */
static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
				u8 id_data[8], int *busw)
{
3773
	int extid, id_len;
3774
	/* The 3rd id byte holds MLC / multichip data */
3775
	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3776 3777 3778
	/* The 4th id byte is the important one */
	extid = id_data[3];

3779 3780
	id_len = nand_id_len(id_data, 8);

3781 3782 3783
	/*
	 * Field definitions are in the following datasheets:
	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3784
	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3785
	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3786
	 *
3787 3788
	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
	 * ID to decide what to do.
3789
	 */
3790
	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3791
			!nand_is_slc(chip) && id_data[5] != 0x00) {
3792 3793 3794 3795
		/* Calc pagesize */
		mtd->writesize = 2048 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
3796
		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3797 3798 3799 3800 3801 3802 3803 3804 3805
		case 1:
			mtd->oobsize = 128;
			break;
		case 2:
			mtd->oobsize = 218;
			break;
		case 3:
			mtd->oobsize = 400;
			break;
3806
		case 4:
3807 3808
			mtd->oobsize = 436;
			break;
3809 3810 3811 3812 3813 3814
		case 5:
			mtd->oobsize = 512;
			break;
		case 6:
			mtd->oobsize = 640;
			break;
3815 3816 3817 3818
		case 7:
		default: /* Other cases are "reserved" (unknown) */
			mtd->oobsize = 1024;
			break;
3819 3820 3821 3822 3823 3824
		}
		extid >>= 2;
		/* Calc blocksize */
		mtd->erasesize = (128 * 1024) <<
			(((extid >> 1) & 0x04) | (extid & 0x03));
		*busw = 0;
3825
	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3826
			!nand_is_slc(chip)) {
3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
		unsigned int tmp;

		/* Calc pagesize */
		mtd->writesize = 2048 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
		case 0:
			mtd->oobsize = 128;
			break;
		case 1:
			mtd->oobsize = 224;
			break;
		case 2:
			mtd->oobsize = 448;
			break;
		case 3:
			mtd->oobsize = 64;
			break;
		case 4:
			mtd->oobsize = 32;
			break;
		case 5:
			mtd->oobsize = 16;
			break;
		default:
			mtd->oobsize = 640;
			break;
		}
		extid >>= 2;
		/* Calc blocksize */
		tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
		if (tmp < 0x03)
			mtd->erasesize = (128 * 1024) << tmp;
		else if (tmp == 0x03)
			mtd->erasesize = 768 * 1024;
		else
			mtd->erasesize = (64 * 1024) << tmp;
		*busw = 0;
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878
	} else {
		/* Calc pagesize */
		mtd->writesize = 1024 << (extid & 0x03);
		extid >>= 2;
		/* Calc oobsize */
		mtd->oobsize = (8 << (extid & 0x01)) *
			(mtd->writesize >> 9);
		extid >>= 2;
		/* Calc blocksize. Blocksize is multiples of 64KiB */
		mtd->erasesize = (64 * 1024) << (extid & 0x03);
		extid >>= 2;
		/* Get buswidth information */
		*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888

		/*
		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
		 * follows:
		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
		 *                         110b -> 24nm
		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
		 */
		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3889
				nand_is_slc(chip) &&
3890 3891 3892 3893 3894
				(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
				!(id_data[4] & 0x80) /* !BENAND */) {
			mtd->oobsize = 32 * mtd->writesize >> 9;
		}

3895 3896 3897
	}
}

3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913
/*
 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
 * decodes a matching ID table entry and assigns the MTD size parameters for
 * the chip.
 */
static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
				struct nand_flash_dev *type, u8 id_data[8],
				int *busw)
{
	int maf_id = id_data[0];

	mtd->erasesize = type->erasesize;
	mtd->writesize = type->pagesize;
	mtd->oobsize = mtd->writesize / 32;
	*busw = type->options & NAND_BUSWIDTH_16;

3914 3915 3916
	/* All legacy ID NAND are small-page, SLC */
	chip->bits_per_cell = 1;

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930
	/*
	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
	 * some Spansion chips have erasesize that conflicts with size
	 * listed in nand_ids table.
	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
	 */
	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
			&& id_data[6] == 0x00 && id_data[7] == 0x00
			&& mtd->writesize == 512) {
		mtd->erasesize = 128 * 1024;
		mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
	}
}

3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952
/*
 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
 * heuristic patterns using various detected parameters (e.g., manufacturer,
 * page size, cell-type information).
 */
static void nand_decode_bbm_options(struct mtd_info *mtd,
				    struct nand_chip *chip, u8 id_data[8])
{
	int maf_id = id_data[0];

	/* Set the bad block position */
	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
	else
		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;

	/*
	 * Bad block marker is stored in the last page of each block on Samsung
	 * and Hynix MLC devices; stored in first two pages of each block on
	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
	 * AMD/Spansion, and Macronix.  All others scan only the first page.
	 */
3953
	if (!nand_is_slc(chip) &&
3954 3955 3956
			(maf_id == NAND_MFR_SAMSUNG ||
			 maf_id == NAND_MFR_HYNIX))
		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3957
	else if ((nand_is_slc(chip) &&
3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
				(maf_id == NAND_MFR_SAMSUNG ||
				 maf_id == NAND_MFR_HYNIX ||
				 maf_id == NAND_MFR_TOSHIBA ||
				 maf_id == NAND_MFR_AMD ||
				 maf_id == NAND_MFR_MACRONIX)) ||
			(mtd->writesize == 2048 &&
			 maf_id == NAND_MFR_MICRON))
		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
}

3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
static inline bool is_full_id_nand(struct nand_flash_dev *type)
{
	return type->id_len;
}

static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
		   struct nand_flash_dev *type, u8 *id_data, int *busw)
{
	if (!strncmp(type->id, id_data, type->id_len)) {
		mtd->writesize = type->pagesize;
		mtd->erasesize = type->erasesize;
		mtd->oobsize = type->oobsize;

3981
		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3982 3983
		chip->chipsize = (uint64_t)type->chipsize << 20;
		chip->options |= type->options;
3984 3985
		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
		chip->ecc_step_ds = NAND_ECC_STEP(type);
3986 3987
		chip->onfi_timing_mode_default =
					type->onfi_timing_mode_default;
3988 3989 3990

		*busw = type->options & NAND_BUSWIDTH_16;

3991 3992 3993
		if (!mtd->name)
			mtd->name = type->name;

3994 3995 3996 3997 3998
		return true;
	}
	return false;
}

T
Thomas Gleixner 已提交
3999
/*
4000
 * Get the flash and manufacturer id and lookup if the type is supported.
T
Thomas Gleixner 已提交
4001
 */
4002 4003 4004
static int nand_get_flash_type(struct mtd_info *mtd, struct nand_chip *chip,
			       int *maf_id, int *dev_id,
			       struct nand_flash_dev *type)
T
Thomas Gleixner 已提交
4005
{
4006
	int busw;
4007
	int i, maf_idx;
4008
	u8 id_data[8];
L
Linus Torvalds 已提交
4009 4010

	/* Select the device */
4011
	chip->select_chip(mtd, 0);
L
Linus Torvalds 已提交
4012

4013 4014
	/*
	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
4015
	 * after power-up.
4016
	 */
4017
	nand_reset(chip);
4018

L
Linus Torvalds 已提交
4019
	/* Send the command for reading device ID */
4020
	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
L
Linus Torvalds 已提交
4021 4022

	/* Read manufacturer and device IDs */
4023
	*maf_id = chip->read_byte(mtd);
4024
	*dev_id = chip->read_byte(mtd);
L
Linus Torvalds 已提交
4025

4026 4027
	/*
	 * Try again to make sure, as some systems the bus-hold or other
4028 4029 4030 4031 4032 4033 4034
	 * interface concerns can cause random data which looks like a
	 * possibly credible NAND flash to appear. If the two results do
	 * not match, ignore the device completely.
	 */

	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);

4035 4036
	/* Read entire ID string */
	for (i = 0; i < 8; i++)
4037
		id_data[i] = chip->read_byte(mtd);
4038

4039
	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
4040
		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
4041
			*maf_id, *dev_id, id_data[0], id_data[1]);
4042
		return -ENODEV;
4043 4044
	}

T
Thomas Gleixner 已提交
4045
	if (!type)
4046 4047
		type = nand_flash_ids;

4048 4049 4050 4051 4052
	for (; type->name != NULL; type++) {
		if (is_full_id_nand(type)) {
			if (find_full_id_nand(mtd, chip, type, id_data, &busw))
				goto ident_done;
		} else if (*dev_id == type->dev_id) {
4053
			break;
4054 4055
		}
	}
4056

4057 4058
	chip->onfi_version = 0;
	if (!type->name || !type->pagesize) {
4059
		/* Check if the chip is ONFI compliant */
4060
		if (nand_flash_detect_onfi(mtd, chip, &busw))
4061
			goto ident_done;
4062 4063 4064 4065

		/* Check if the chip is JEDEC compliant */
		if (nand_flash_detect_jedec(mtd, chip, &busw))
			goto ident_done;
4066 4067
	}

4068
	if (!type->name)
4069
		return -ENODEV;
T
Thomas Gleixner 已提交
4070

4071 4072 4073
	if (!mtd->name)
		mtd->name = type->name;

4074
	chip->chipsize = (uint64_t)type->chipsize << 20;
T
Thomas Gleixner 已提交
4075

4076
	if (!type->pagesize) {
4077 4078
		/* Decode parameters from extended ID */
		nand_decode_ext_id(mtd, chip, id_data, &busw);
T
Thomas Gleixner 已提交
4079
	} else {
4080
		nand_decode_id(mtd, chip, type, id_data, &busw);
T
Thomas Gleixner 已提交
4081
	}
4082 4083
	/* Get chip options */
	chip->options |= type->options;
4084

4085 4086 4087
	/*
	 * Check if chip is not a Samsung device. Do not clear the
	 * options for chips which do not have an extended id.
4088 4089 4090 4091 4092
	 */
	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
ident_done:

T
Thomas Gleixner 已提交
4093
	/* Try to identify manufacturer */
4094
	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
T
Thomas Gleixner 已提交
4095 4096 4097
		if (nand_manuf_ids[maf_idx].id == *maf_id)
			break;
	}
4098

4099 4100 4101 4102 4103 4104 4105 4106 4107
	if (chip->options & NAND_BUSWIDTH_AUTO) {
		WARN_ON(chip->options & NAND_BUSWIDTH_16);
		chip->options |= busw;
		nand_set_defaults(chip, busw);
	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
		/*
		 * Check, if buswidth is correct. Hardware drivers should set
		 * chip correct!
		 */
4108 4109 4110 4111
		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
			*maf_id, *dev_id);
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
		pr_warn("bus width %d instead %d bit\n",
4112 4113
			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
			   busw ? 16 : 8);
4114
		return -EINVAL;
T
Thomas Gleixner 已提交
4115
	}
4116

4117 4118
	nand_decode_bbm_options(mtd, chip, id_data);

T
Thomas Gleixner 已提交
4119
	/* Calculate the address shift from the page size */
4120
	chip->page_shift = ffs(mtd->writesize) - 1;
4121
	/* Convert chipsize to number of pages per chip -1 */
4122
	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
4123

4124
	chip->bbt_erase_shift = chip->phys_erase_shift =
T
Thomas Gleixner 已提交
4125
		ffs(mtd->erasesize) - 1;
4126 4127
	if (chip->chipsize & 0xffffffff)
		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
4128 4129 4130 4131
	else {
		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
		chip->chip_shift += 32 - 1;
	}
L
Linus Torvalds 已提交
4132

A
Artem Bityutskiy 已提交
4133
	chip->badblockbits = 8;
4134
	chip->erase = single_erase;
T
Thomas Gleixner 已提交
4135

4136
	/* Do not replace user supplied command function! */
4137 4138
	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
		chip->cmdfunc = nand_command_lp;
T
Thomas Gleixner 已提交
4139

4140 4141
	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
		*maf_id, *dev_id);
4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152

	if (chip->onfi_version)
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				chip->onfi_params.model);
	else if (chip->jedec_version)
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				chip->jedec_params.model);
	else
		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
				type->name);

4153
	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
4154
		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
4155
		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
4156
	return 0;
T
Thomas Gleixner 已提交
4157 4158
}

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
static const char * const nand_ecc_modes[] = {
	[NAND_ECC_NONE]		= "none",
	[NAND_ECC_SOFT]		= "soft",
	[NAND_ECC_HW]		= "hw",
	[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
	[NAND_ECC_HW_OOB_FIRST]	= "hw_oob_first",
};

static int of_get_nand_ecc_mode(struct device_node *np)
{
	const char *pm;
	int err, i;

	err = of_property_read_string(np, "nand-ecc-mode", &pm);
	if (err < 0)
		return err;

	for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++)
		if (!strcasecmp(pm, nand_ecc_modes[i]))
			return i;

4180 4181 4182 4183 4184 4185 4186 4187
	/*
	 * For backward compatibility we support few obsoleted values that don't
	 * have their mappings into nand_ecc_modes_t anymore (they were merged
	 * with other enums).
	 */
	if (!strcasecmp(pm, "soft_bch"))
		return NAND_ECC_SOFT;

4188 4189 4190
	return -ENODEV;
}

4191 4192 4193 4194 4195
static const char * const nand_ecc_algos[] = {
	[NAND_ECC_HAMMING]	= "hamming",
	[NAND_ECC_BCH]		= "bch",
};

4196 4197 4198
static int of_get_nand_ecc_algo(struct device_node *np)
{
	const char *pm;
4199
	int err, i;
4200

4201 4202 4203 4204 4205 4206 4207
	err = of_property_read_string(np, "nand-ecc-algo", &pm);
	if (!err) {
		for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++)
			if (!strcasecmp(pm, nand_ecc_algos[i]))
				return i;
		return -ENODEV;
	}
4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263

	/*
	 * For backward compatibility we also read "nand-ecc-mode" checking
	 * for some obsoleted values that were specifying ECC algorithm.
	 */
	err = of_property_read_string(np, "nand-ecc-mode", &pm);
	if (err < 0)
		return err;

	if (!strcasecmp(pm, "soft"))
		return NAND_ECC_HAMMING;
	else if (!strcasecmp(pm, "soft_bch"))
		return NAND_ECC_BCH;

	return -ENODEV;
}

static int of_get_nand_ecc_step_size(struct device_node *np)
{
	int ret;
	u32 val;

	ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
	return ret ? ret : val;
}

static int of_get_nand_ecc_strength(struct device_node *np)
{
	int ret;
	u32 val;

	ret = of_property_read_u32(np, "nand-ecc-strength", &val);
	return ret ? ret : val;
}

static int of_get_nand_bus_width(struct device_node *np)
{
	u32 val;

	if (of_property_read_u32(np, "nand-bus-width", &val))
		return 8;

	switch (val) {
	case 8:
	case 16:
		return val;
	default:
		return -EIO;
	}
}

static bool of_get_nand_on_flash_bbt(struct device_node *np)
{
	return of_property_read_bool(np, "nand-on-flash-bbt");
}

4264
static int nand_dt_init(struct nand_chip *chip)
4265
{
4266
	struct device_node *dn = nand_get_flash_node(chip);
4267
	int ecc_mode, ecc_algo, ecc_strength, ecc_step;
4268

4269 4270 4271
	if (!dn)
		return 0;

4272 4273 4274 4275 4276 4277 4278
	if (of_get_nand_bus_width(dn) == 16)
		chip->options |= NAND_BUSWIDTH_16;

	if (of_get_nand_on_flash_bbt(dn))
		chip->bbt_options |= NAND_BBT_USE_FLASH;

	ecc_mode = of_get_nand_ecc_mode(dn);
4279
	ecc_algo = of_get_nand_ecc_algo(dn);
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291
	ecc_strength = of_get_nand_ecc_strength(dn);
	ecc_step = of_get_nand_ecc_step_size(dn);

	if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
	    (!(ecc_step >= 0) && ecc_strength >= 0)) {
		pr_err("must set both strength and step size in DT\n");
		return -EINVAL;
	}

	if (ecc_mode >= 0)
		chip->ecc.mode = ecc_mode;

4292 4293 4294
	if (ecc_algo >= 0)
		chip->ecc.algo = ecc_algo;

4295 4296 4297 4298 4299 4300
	if (ecc_strength >= 0)
		chip->ecc.strength = ecc_strength;

	if (ecc_step > 0)
		chip->ecc.size = ecc_step;

4301 4302 4303
	if (of_property_read_bool(dn, "nand-ecc-maximize"))
		chip->ecc.options |= NAND_ECC_MAXIMIZE;

4304 4305 4306
	return 0;
}

T
Thomas Gleixner 已提交
4307
/**
4308
 * nand_scan_ident - [NAND Interface] Scan for the NAND device
4309 4310 4311
 * @mtd: MTD device structure
 * @maxchips: number of chips to scan for
 * @table: alternative NAND ID table
T
Thomas Gleixner 已提交
4312
 *
4313 4314
 * This is the first phase of the normal nand_scan() function. It reads the
 * flash ID and sets up MTD fields accordingly.
T
Thomas Gleixner 已提交
4315 4316
 *
 */
4317 4318
int nand_scan_ident(struct mtd_info *mtd, int maxchips,
		    struct nand_flash_dev *table)
T
Thomas Gleixner 已提交
4319
{
4320
	int i, nand_maf_id, nand_dev_id;
4321
	struct nand_chip *chip = mtd_to_nand(mtd);
4322 4323
	int ret;

4324 4325 4326
	ret = nand_dt_init(chip);
	if (ret)
		return ret;
T
Thomas Gleixner 已提交
4327

4328 4329 4330
	if (!mtd->name && mtd->dev.parent)
		mtd->name = dev_name(mtd->dev.parent);

4331 4332 4333 4334 4335 4336 4337 4338 4339
	if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) {
		/*
		 * Default functions assigned for chip_select() and
		 * cmdfunc() both expect cmd_ctrl() to be populated,
		 * so we need to check that that's the case
		 */
		pr_err("chip.cmd_ctrl() callback is not provided");
		return -EINVAL;
	}
T
Thomas Gleixner 已提交
4340
	/* Set the default functions */
4341
	nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
T
Thomas Gleixner 已提交
4342 4343

	/* Read the flash type */
4344 4345
	ret = nand_get_flash_type(mtd, chip, &nand_maf_id, &nand_dev_id, table);
	if (ret) {
4346
		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
4347
			pr_warn("No NAND device found\n");
4348
		chip->select_chip(mtd, -1);
4349
		return ret;
L
Linus Torvalds 已提交
4350 4351
	}

4352 4353 4354 4355
	ret = nand_init_data_interface(chip);
	if (ret)
		return ret;

4356 4357
	chip->select_chip(mtd, -1);

T
Thomas Gleixner 已提交
4358
	/* Check for a chip array */
4359
	for (i = 1; i < maxchips; i++) {
4360
		chip->select_chip(mtd, i);
4361
		/* See comment in nand_get_flash_type for reset */
4362
		nand_reset(chip);
L
Linus Torvalds 已提交
4363
		/* Send the command for reading device ID */
4364
		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
L
Linus Torvalds 已提交
4365
		/* Read manufacturer and device IDs */
4366
		if (nand_maf_id != chip->read_byte(mtd) ||
4367 4368
		    nand_dev_id != chip->read_byte(mtd)) {
			chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
4369
			break;
4370 4371
		}
		chip->select_chip(mtd, -1);
L
Linus Torvalds 已提交
4372 4373
	}
	if (i > 1)
4374
		pr_info("%d chips detected\n", i);
4375

L
Linus Torvalds 已提交
4376
	/* Store the number of chips and calc total size for mtd */
4377 4378
	chip->numchips = i;
	mtd->size = i * chip->chipsize;
T
Thomas Gleixner 已提交
4379

4380 4381
	return 0;
}
4382
EXPORT_SYMBOL(nand_scan_ident);
4383

4384 4385 4386 4387 4388
static int nand_set_ecc_soft_ops(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;

4389
	if (WARN_ON(ecc->mode != NAND_ECC_SOFT))
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421
		return -EINVAL;

	switch (ecc->algo) {
	case NAND_ECC_HAMMING:
		ecc->calculate = nand_calculate_ecc;
		ecc->correct = nand_correct_data;
		ecc->read_page = nand_read_page_swecc;
		ecc->read_subpage = nand_read_subpage;
		ecc->write_page = nand_write_page_swecc;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->write_oob = nand_write_oob_std;
		if (!ecc->size)
			ecc->size = 256;
		ecc->bytes = 3;
		ecc->strength = 1;
		return 0;
	case NAND_ECC_BCH:
		if (!mtd_nand_has_bch()) {
			WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n");
			return -EINVAL;
		}
		ecc->calculate = nand_bch_calculate_ecc;
		ecc->correct = nand_bch_correct_data;
		ecc->read_page = nand_read_page_swecc;
		ecc->read_subpage = nand_read_subpage;
		ecc->write_page = nand_write_page_swecc;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->write_oob = nand_write_oob_std;
4422

4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
		/*
		* Board driver should supply ecc.size and ecc.strength
		* values to select how many bits are correctable.
		* Otherwise, default to 4 bits for large page devices.
		*/
		if (!ecc->size && (mtd->oobsize >= 64)) {
			ecc->size = 512;
			ecc->strength = 4;
		}

		/*
		 * if no ecc placement scheme was provided pickup the default
		 * large page one.
		 */
		if (!mtd->ooblayout) {
			/* handle large page devices only */
			if (mtd->oobsize < 64) {
				WARN(1, "OOB layout is required when using software BCH on small pages\n");
				return -EINVAL;
			}

			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463

		}

		/*
		 * We can only maximize ECC config when the default layout is
		 * used, otherwise we don't know how many bytes can really be
		 * used.
		 */
		if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
		    ecc->options & NAND_ECC_MAXIMIZE) {
			int steps, bytes;

			/* Always prefer 1k blocks over 512bytes ones */
			ecc->size = 1024;
			steps = mtd->writesize / ecc->size;

			/* Reserve 2 bytes for the BBM */
			bytes = (mtd->oobsize - 2) / steps;
			ecc->strength = bytes * 8 / fls(8 * ecc->size);
4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479
		}

		/* See nand_bch_init() for details. */
		ecc->bytes = 0;
		ecc->priv = nand_bch_init(mtd);
		if (!ecc->priv) {
			WARN(1, "BCH ECC initialization failed!\n");
			return -EINVAL;
		}
		return 0;
	default:
		WARN(1, "Unsupported ECC algorithm!\n");
		return -EINVAL;
	}
}

4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495
/*
 * Check if the chip configuration meet the datasheet requirements.

 * If our configuration corrects A bits per B bytes and the minimum
 * required correction level is X bits per Y bytes, then we must ensure
 * both of the following are true:
 *
 * (1) A / B >= X / Y
 * (2) A >= X
 *
 * Requirement (1) ensures we can correct for the required bitflip density.
 * Requirement (2) ensures we can correct even when all bitflips are clumped
 * in the same sector.
 */
static bool nand_ecc_strength_good(struct mtd_info *mtd)
{
4496
	struct nand_chip *chip = mtd_to_nand(mtd);
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int corr, ds_corr;

	if (ecc->size == 0 || chip->ecc_step_ds == 0)
		/* Not enough information */
		return true;

	/*
	 * We get the number of corrected bits per page to compare
	 * the correction density.
	 */
	corr = (mtd->writesize * ecc->strength) / ecc->size;
	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;

	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
}
4513 4514 4515

/**
 * nand_scan_tail - [NAND Interface] Scan for the NAND device
4516
 * @mtd: MTD device structure
4517
 *
4518 4519 4520
 * This is the second phase of the normal nand_scan() function. It fills out
 * all the uninitialized function pointers with the defaults and scans for a
 * bad block table if appropriate.
4521 4522 4523
 */
int nand_scan_tail(struct mtd_info *mtd)
{
4524
	struct nand_chip *chip = mtd_to_nand(mtd);
4525
	struct nand_ecc_ctrl *ecc = &chip->ecc;
4526
	struct nand_buffers *nbuf;
4527
	int ret;
4528

4529
	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
4530 4531 4532
	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
		   !(chip->bbt_options & NAND_BBT_USE_FLASH)))
		return -EINVAL;
4533

4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
	if (!(chip->options & NAND_OWN_BUFFERS)) {
		nbuf = kzalloc(sizeof(*nbuf) + mtd->writesize
				+ mtd->oobsize * 3, GFP_KERNEL);
		if (!nbuf)
			return -ENOMEM;
		nbuf->ecccalc = (uint8_t *)(nbuf + 1);
		nbuf->ecccode = nbuf->ecccalc + mtd->oobsize;
		nbuf->databuf = nbuf->ecccode + mtd->oobsize;

		chip->buffers = nbuf;
	} else {
		if (!chip->buffers)
			return -ENOMEM;
	}
4548

4549
	/* Set the internal oob buffer location, just after the page data */
4550
	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
L
Linus Torvalds 已提交
4551

T
Thomas Gleixner 已提交
4552
	/*
4553
	 * If no default placement scheme is given, select an appropriate one.
T
Thomas Gleixner 已提交
4554
	 */
4555
	if (!mtd->ooblayout &&
4556
	    !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) {
4557
		switch (mtd->oobsize) {
L
Linus Torvalds 已提交
4558 4559
		case 8:
		case 16:
4560
			mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
L
Linus Torvalds 已提交
4561 4562
			break;
		case 64:
4563
		case 128:
4564
			mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
4565
			break;
L
Linus Torvalds 已提交
4566
		default:
4567 4568 4569 4570
			WARN(1, "No oob scheme defined for oobsize %d\n",
				mtd->oobsize);
			ret = -EINVAL;
			goto err_free;
L
Linus Torvalds 已提交
4571 4572
		}
	}
4573

4574 4575 4576
	if (!chip->write_page)
		chip->write_page = nand_write_page;

4577
	/*
4578
	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
T
Thomas Gleixner 已提交
4579
	 * selected and we have 256 byte pagesize fallback to software ECC
4580
	 */
4581

4582
	switch (ecc->mode) {
4583 4584
	case NAND_ECC_HW_OOB_FIRST:
		/* Similar to NAND_ECC_HW, but a separate read_page handle */
4585
		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4586 4587 4588
			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
			ret = -EINVAL;
			goto err_free;
4589
		}
4590 4591
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_hwecc_oob_first;
4592

T
Thomas Gleixner 已提交
4593
	case NAND_ECC_HW:
4594
		/* Use standard hwecc read page function? */
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_hwecc;
		if (!ecc->write_page)
			ecc->write_page = nand_write_page_hwecc;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw;
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_std;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_std;
		if (!ecc->read_subpage)
			ecc->read_subpage = nand_read_subpage;
4609
		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4610
			ecc->write_subpage = nand_write_subpage_hwecc;
4611

T
Thomas Gleixner 已提交
4612
	case NAND_ECC_HW_SYNDROME:
4613 4614 4615 4616 4617
		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
		    (!ecc->read_page ||
		     ecc->read_page == nand_read_page_hwecc ||
		     !ecc->write_page ||
		     ecc->write_page == nand_write_page_hwecc)) {
4618 4619 4620
			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
			ret = -EINVAL;
			goto err_free;
T
Thomas Gleixner 已提交
4621
		}
4622
		/* Use standard syndrome read/write page function? */
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_syndrome;
		if (!ecc->write_page)
			ecc->write_page = nand_write_page_syndrome;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw_syndrome;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw_syndrome;
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_syndrome;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_syndrome;

		if (mtd->writesize >= ecc->size) {
			if (!ecc->strength) {
4638 4639 4640
				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
				ret = -EINVAL;
				goto err_free;
4641
			}
T
Thomas Gleixner 已提交
4642
			break;
4643
		}
4644 4645
		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
			ecc->size, mtd->writesize);
4646
		ecc->mode = NAND_ECC_SOFT;
4647
		ecc->algo = NAND_ECC_HAMMING;
4648

T
Thomas Gleixner 已提交
4649
	case NAND_ECC_SOFT:
4650 4651
		ret = nand_set_ecc_soft_ops(mtd);
		if (ret) {
4652 4653
			ret = -EINVAL;
			goto err_free;
4654 4655 4656
		}
		break;

4657
	case NAND_ECC_NONE:
4658
		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4659 4660 4661 4662 4663 4664 4665 4666 4667
		ecc->read_page = nand_read_page_raw;
		ecc->write_page = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->write_oob = nand_write_oob_std;
		ecc->size = mtd->writesize;
		ecc->bytes = 0;
		ecc->strength = 0;
L
Linus Torvalds 已提交
4668
		break;
4669

L
Linus Torvalds 已提交
4670
	default:
4671 4672 4673
		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode);
		ret = -EINVAL;
		goto err_free;
L
Linus Torvalds 已提交
4674
	}
4675

4676
	/* For many systems, the standard OOB write also works for raw */
4677 4678 4679 4680
	if (!ecc->read_oob_raw)
		ecc->read_oob_raw = ecc->read_oob;
	if (!ecc->write_oob_raw)
		ecc->write_oob_raw = ecc->write_oob;
4681

4682 4683 4684
	/* propagate ecc info to mtd_info */
	mtd->ecc_strength = ecc->strength;
	mtd->ecc_step_size = ecc->size;
4685

T
Thomas Gleixner 已提交
4686 4687
	/*
	 * Set the number of read / write steps for one page depending on ECC
4688
	 * mode.
T
Thomas Gleixner 已提交
4689
	 */
4690 4691
	ecc->steps = mtd->writesize / ecc->size;
	if (ecc->steps * ecc->size != mtd->writesize) {
4692 4693 4694
		WARN(1, "Invalid ECC parameters\n");
		ret = -EINVAL;
		goto err_free;
L
Linus Torvalds 已提交
4695
	}
4696
	ecc->total = ecc->steps * ecc->bytes;
4697

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
	/*
	 * The number of bytes available for a client to place data into
	 * the out of band area.
	 */
	ret = mtd_ooblayout_count_freebytes(mtd);
	if (ret < 0)
		ret = 0;

	mtd->oobavail = ret;

	/* ECC sanity check: warn if it's too weak */
	if (!nand_ecc_strength_good(mtd))
		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
			mtd->name);

4713
	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4714
	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4715
		switch (ecc->steps) {
4716 4717 4718 4719 4720
		case 2:
			mtd->subpage_sft = 1;
			break;
		case 4:
		case 8:
4721
		case 16:
4722 4723 4724 4725 4726 4727
			mtd->subpage_sft = 2;
			break;
		}
	}
	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;

4728
	/* Initialize state */
4729
	chip->state = FL_READY;
L
Linus Torvalds 已提交
4730 4731

	/* Invalidate the pagebuffer reference */
4732
	chip->pagebuf = -1;
L
Linus Torvalds 已提交
4733

4734
	/* Large page NAND with SOFT_ECC should support subpage reads */
4735 4736 4737 4738 4739 4740 4741 4742 4743
	switch (ecc->mode) {
	case NAND_ECC_SOFT:
		if (chip->page_shift > 9)
			chip->options |= NAND_SUBPAGE_READ;
		break;

	default:
		break;
	}
4744

L
Linus Torvalds 已提交
4745
	/* Fill in remaining MTD driver data */
4746
	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4747 4748
	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
						MTD_CAP_NANDFLASH;
4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761
	mtd->_erase = nand_erase;
	mtd->_point = NULL;
	mtd->_unpoint = NULL;
	mtd->_read = nand_read;
	mtd->_write = nand_write;
	mtd->_panic_write = panic_nand_write;
	mtd->_read_oob = nand_read_oob;
	mtd->_write_oob = nand_write_oob;
	mtd->_sync = nand_sync;
	mtd->_lock = NULL;
	mtd->_unlock = NULL;
	mtd->_suspend = nand_suspend;
	mtd->_resume = nand_resume;
S
Scott Branden 已提交
4762
	mtd->_reboot = nand_shutdown;
4763
	mtd->_block_isreserved = nand_block_isreserved;
4764 4765
	mtd->_block_isbad = nand_block_isbad;
	mtd->_block_markbad = nand_block_markbad;
4766
	mtd->writebufsize = mtd->writesize;
L
Linus Torvalds 已提交
4767

4768 4769 4770 4771 4772 4773
	/*
	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
	 * properly set.
	 */
	if (!mtd->bitflip_threshold)
4774
		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
L
Linus Torvalds 已提交
4775

4776
	/* Check, if we should skip the bad block table scan */
4777
	if (chip->options & NAND_SKIP_BBTSCAN)
4778
		return 0;
L
Linus Torvalds 已提交
4779 4780

	/* Build bad block table */
4781
	return chip->scan_bbt(mtd);
4782 4783 4784 4785
err_free:
	if (!(chip->options & NAND_OWN_BUFFERS))
		kfree(chip->buffers);
	return ret;
L
Linus Torvalds 已提交
4786
}
4787
EXPORT_SYMBOL(nand_scan_tail);
L
Linus Torvalds 已提交
4788

4789 4790
/*
 * is_module_text_address() isn't exported, and it's mostly a pointless
4791
 * test if this is a module _anyway_ -- they'd have to try _really_ hard
4792 4793
 * to call us from in-kernel code if the core NAND support is modular.
 */
4794 4795 4796 4797
#ifdef MODULE
#define caller_is_module() (1)
#else
#define caller_is_module() \
4798
	is_module_text_address((unsigned long)__builtin_return_address(0))
4799 4800 4801 4802
#endif

/**
 * nand_scan - [NAND Interface] Scan for the NAND device
4803 4804
 * @mtd: MTD device structure
 * @maxchips: number of chips to scan for
4805
 *
4806 4807
 * This fills out all the uninitialized function pointers with the defaults.
 * The flash ID is read and the mtd/chip structures are filled with the
4808
 * appropriate values.
4809 4810 4811 4812 4813
 */
int nand_scan(struct mtd_info *mtd, int maxchips)
{
	int ret;

4814
	ret = nand_scan_ident(mtd, maxchips, NULL);
4815 4816 4817 4818
	if (!ret)
		ret = nand_scan_tail(mtd);
	return ret;
}
4819
EXPORT_SYMBOL(nand_scan);
4820

L
Linus Torvalds 已提交
4821
/**
4822 4823
 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
 * @chip: NAND chip object
4824
 */
4825
void nand_cleanup(struct nand_chip *chip)
L
Linus Torvalds 已提交
4826
{
4827
	if (chip->ecc.mode == NAND_ECC_SOFT &&
4828
	    chip->ecc.algo == NAND_ECC_BCH)
4829 4830
		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);

4831 4832
	nand_release_data_interface(chip);

J
Jesper Juhl 已提交
4833
	/* Free bad block table memory */
4834
	kfree(chip->bbt);
4835 4836
	if (!(chip->options & NAND_OWN_BUFFERS))
		kfree(chip->buffers);
4837 4838 4839 4840 4841

	/* Free bad block descriptor memory */
	if (chip->badblock_pattern && chip->badblock_pattern->options
			& NAND_BBT_DYNAMICSTRUCT)
		kfree(chip->badblock_pattern);
L
Linus Torvalds 已提交
4842
}
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854
EXPORT_SYMBOL_GPL(nand_cleanup);

/**
 * nand_release - [NAND Interface] Unregister the MTD device and free resources
 *		  held by the NAND device
 * @mtd: MTD device structure
 */
void nand_release(struct mtd_info *mtd)
{
	mtd_device_unregister(mtd);
	nand_cleanup(mtd_to_nand(mtd));
}
4855
EXPORT_SYMBOL_GPL(nand_release);
4856

4857
MODULE_LICENSE("GPL");
4858 4859
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4860
MODULE_DESCRIPTION("Generic NAND flash driver code");