cgroup.c 137.5 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/cred.h>
31
#include <linux/ctype.h>
32 33
#include <linux/errno.h>
#include <linux/fs.h>
34
#include <linux/init_task.h>
35 36 37 38 39 40
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
41
#include <linux/proc_fs.h>
42 43
#include <linux/rcupdate.h>
#include <linux/sched.h>
44
#include <linux/backing-dev.h>
45 46 47 48 49
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
50
#include <linux/sort.h>
51
#include <linux/kmod.h>
52
#include <linux/module.h>
B
Balbir Singh 已提交
53 54
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
55
#include <linux/hash.h>
56
#include <linux/namei.h>
L
Li Zefan 已提交
57
#include <linux/pid_namespace.h>
58
#include <linux/idr.h>
59
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 61
#include <linux/eventfd.h>
#include <linux/poll.h>
62
#include <linux/flex_array.h> /* used in cgroup_attach_proc */
B
Balbir Singh 已提交
63

A
Arun Sharma 已提交
64
#include <linux/atomic.h>
65

66 67
static DEFINE_MUTEX(cgroup_mutex);

B
Ben Blum 已提交
68 69 70 71 72 73
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
74
#define SUBSYS(_x) &_x ## _subsys,
B
Ben Blum 已提交
75
static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
76 77 78
#include <linux/cgroup_subsys.h>
};

79 80
#define MAX_CGROUP_ROOT_NAMELEN 64

81 82 83 84 85 86 87 88 89 90 91 92 93 94
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

95 96 97
	/* Unique id for this hierarchy. */
	int hierarchy_id;

98 99 100 101 102 103 104 105 106 107 108 109
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

110
	/* A list running through the active hierarchies */
111 112 113 114
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
115

116
	/* The path to use for release notifications. */
117
	char release_agent_path[PATH_MAX];
118 119 120

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
121 122 123 124 125 126 127 128 129
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
A
Arnd Bergmann 已提交
143
	struct cgroup_subsys_state __rcu *css;
K
KAMEZAWA Hiroyuki 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};

162
/*
L
Lucas De Marchi 已提交
163
 * cgroup_event represents events which userspace want to receive.
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
 */
struct cgroup_event {
	/*
	 * Cgroup which the event belongs to.
	 */
	struct cgroup *cgrp;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};
K
KAMEZAWA Hiroyuki 已提交
191

192 193 194
/* The list of hierarchy roots */

static LIST_HEAD(roots);
195
static int root_count;
196

197 198 199 200
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

201 202 203 204
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
205 206 207
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
208
 */
209
static int need_forkexit_callback __read_mostly;
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224
#ifdef CONFIG_PROVE_LOCKING
int cgroup_lock_is_held(void)
{
	return lockdep_is_held(&cgroup_mutex);
}
#else /* #ifdef CONFIG_PROVE_LOCKING */
int cgroup_lock_is_held(void)
{
	return mutex_is_locked(&cgroup_mutex);
}
#endif /* #else #ifdef CONFIG_PROVE_LOCKING */

EXPORT_SYMBOL_GPL(cgroup_lock_is_held);

225
/* convenient tests for these bits */
226
inline int cgroup_is_removed(const struct cgroup *cgrp)
227
{
228
	return test_bit(CGRP_REMOVED, &cgrp->flags);
229 230 231 232 233 234 235
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

236
static int cgroup_is_releasable(const struct cgroup *cgrp)
237 238
{
	const int bits =
239 240 241
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
242 243
}

244
static int notify_on_release(const struct cgroup *cgrp)
245
{
246
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
247 248
}

249 250 251 252 253
static int clone_children(const struct cgroup *cgrp)
{
	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
}

254 255 256 257 258 259 260
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

261 262
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
263 264
list_for_each_entry(_root, &roots, root_list)

265 266 267
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
268
static DEFINE_RAW_SPINLOCK(release_list_lock);
269 270
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
271
static void check_for_release(struct cgroup *cgrp);
272

273 274 275 276 277 278
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
279
	struct list_head cgrp_link_list;
280
	struct cgroup *cgrp;
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

299 300
static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);
K
KAMEZAWA Hiroyuki 已提交
301

302 303 304 305 306 307
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

308 309 310 311 312
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

332 333 334 335
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
336
static int use_task_css_set_links __read_mostly;
337

338
static void __put_css_set(struct css_set *cg, int taskexit)
339
{
K
KOSAKI Motohiro 已提交
340 341
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
342 343 344 345 346 347 348 349 350 351 352 353
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
354

355 356 357 358 359 360 361 362 363
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
364 365
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
366
			if (taskexit)
367 368
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
369
		}
370 371

		kfree(link);
372
	}
373 374

	write_unlock(&css_set_lock);
375
	kfree_rcu(cg, rcu_head);
376 377
}

378 379 380 381 382
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
383
	atomic_inc(&cg->refcount);
384 385 386 387
}

static inline void put_css_set(struct css_set *cg)
{
388
	__put_css_set(cg, 0);
389 390
}

391 392
static inline void put_css_set_taskexit(struct css_set *cg)
{
393
	__put_css_set(cg, 1);
394 395
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

468 469 470
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
471
 * css_set is suitable.
472 473 474 475
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
476
 * cgrp: the cgroup that we're moving into
477 478 479 480 481 482
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
483
	struct cgroup *cgrp,
484
	struct cgroup_subsys_state *template[])
485 486
{
	int i;
487
	struct cgroupfs_root *root = cgrp->root;
488 489 490
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
491

B
Ben Blum 已提交
492 493 494 495 496
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
497
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
498
		if (root->subsys_bits & (1UL << i)) {
499 500 501
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
502
			template[i] = cgrp->subsys[i];
503 504 505 506 507 508 509
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

510 511
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
512 513 514 515 516
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
517
	}
518 519 520 521 522

	/* No existing cgroup group matched */
	return NULL;
}

523 524 525 526 527 528 529 530 531 532 533
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

534 535
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
536
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
537 538 539 540 541 542 543 544 545 546
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
547
			free_cg_links(tmp);
548 549
			return -ENOMEM;
		}
550
		list_add(&link->cgrp_link_list, tmp);
551 552 553 554
	}
	return 0;
}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
570
	link->cgrp = cgrp;
571
	atomic_inc(&cgrp->count);
572
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
573 574 575 576 577
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
578 579
}

580 581 582 583 584 585 586 587
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
588
	struct css_set *oldcg, struct cgroup *cgrp)
589 590 591 592 593 594
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

595
	struct hlist_head *hhead;
596
	struct cg_cgroup_link *link;
597

598 599
	/* First see if we already have a cgroup group that matches
	 * the desired set */
600
	read_lock(&css_set_lock);
601
	res = find_existing_css_set(oldcg, cgrp, template);
602 603
	if (res)
		get_css_set(res);
604
	read_unlock(&css_set_lock);
605 606 607 608 609 610 611 612 613 614 615 616 617 618

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

619
	atomic_set(&res->refcount, 1);
620 621
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
622
	INIT_HLIST_NODE(&res->hlist);
623 624 625 626 627 628 629

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
630 631 632 633 634 635
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
636 637 638 639

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
640 641 642 643 644

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

645 646 647
	write_unlock(&css_set_lock);

	return res;
648 649
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

685 686 687 688 689 690 691 692 693 694
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
695
 * cgroup_attach_task() can increment it again.  Because a count of zero
696 697 698 699 700 701 702 703 704 705 706 707 708
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
709 710
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
711 712 713 714 715 716 717 718 719 720 721
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
722
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
723
 * another.  It does so using cgroup_mutex, however there are
724 725 726
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
727
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
728 729 730 731
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
732
 * update of a tasks cgroup pointer by cgroup_attach_task()
733 734 735 736 737 738 739 740 741 742
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}
B
Ben Blum 已提交
743
EXPORT_SYMBOL_GPL(cgroup_lock);
744 745 746 747 748 749 750 751 752 753

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}
B
Ben Blum 已提交
754
EXPORT_SYMBOL_GPL(cgroup_unlock);
755 756 757 758 759 760 761 762 763

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
764
static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
765
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
766
static int cgroup_populate_dir(struct cgroup *cgrp);
767
static const struct inode_operations cgroup_dir_inode_operations;
768
static const struct file_operations proc_cgroupstats_operations;
769 770

static struct backing_dev_info cgroup_backing_dev_info = {
771
	.name		= "cgroup",
772
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
773
};
774

K
KAMEZAWA Hiroyuki 已提交
775 776 777
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

778 779 780 781 782
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
783
		inode->i_ino = get_next_ino();
784
		inode->i_mode = mode;
785 786
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
787 788 789 790 791 792
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

793 794 795 796
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
797
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
798 799
{
	struct cgroup_subsys *ss;
800 801
	int ret = 0;

802
	for_each_subsys(cgrp->root, ss)
803 804 805
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
806
				break;
807
		}
808

809
	return ret;
810 811
}

812 813 814 815
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
816
		struct cgroup *cgrp = dentry->d_fsdata;
817
		struct cgroup_subsys *ss;
818
		BUG_ON(!(cgroup_is_removed(cgrp)));
819 820 821 822 823 824 825
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
826 827 828 829 830

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
831 832
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
833 834 835 836

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

837 838 839 840
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
841 842
		deactivate_super(cgrp->root->sb);

843 844 845 846 847 848
		/*
		 * if we're getting rid of the cgroup, refcount should ensure
		 * that there are no pidlists left.
		 */
		BUG_ON(!list_empty(&cgrp->pidlists));

849
		kfree_rcu(cgrp, rcu_head);
850 851 852 853
	}
	iput(inode);
}

854 855 856 857 858
static int cgroup_delete(const struct dentry *d)
{
	return 1;
}

859 860 861 862 863 864 865 866 867 868 869 870 871 872
static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
N
Nick Piggin 已提交
873
	spin_lock(&dentry->d_lock);
874 875 876
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
N
Nick Piggin 已提交
877 878

		spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
879 880 881 882 883
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
884
			dget_dlock(d);
N
Nick Piggin 已提交
885 886
			spin_unlock(&d->d_lock);
			spin_unlock(&dentry->d_lock);
887 888 889
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
N
Nick Piggin 已提交
890 891 892
			spin_lock(&dentry->d_lock);
		} else
			spin_unlock(&d->d_lock);
893 894
		node = dentry->d_subdirs.next;
	}
N
Nick Piggin 已提交
895
	spin_unlock(&dentry->d_lock);
896 897 898 899 900 901 902
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
903 904
	struct dentry *parent;

905 906
	cgroup_clear_directory(dentry);

N
Nick Piggin 已提交
907 908
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
909
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
910
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
911 912
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
913 914 915
	remove_dir(dentry);
}

916 917 918 919 920 921
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
922
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
923 924 925
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

926
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
927
{
928
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
929 930 931
		wake_up_all(&cgroup_rmdir_waitq);
}

932 933 934 935 936 937 938 939 940 941 942
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}

B
Ben Blum 已提交
943
/*
B
Ben Blum 已提交
944 945 946
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
947
 */
948 949 950 951
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
952
	struct cgroup *cgrp = &root->top_cgroup;
953 954
	int i;

B
Ben Blum 已提交
955 956
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

957 958 959 960
	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
961
		unsigned long bit = 1UL << i;
962 963 964
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
B
Ben Blum 已提交
965 966 967 968 969 970
		/*
		 * Nobody should tell us to do a subsys that doesn't exist:
		 * parse_cgroupfs_options should catch that case and refcounts
		 * ensure that subsystems won't disappear once selected.
		 */
		BUG_ON(ss == NULL);
971 972 973 974 975 976 977 978 979 980
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
981
	if (root->number_of_cgroups > 1)
982 983 984 985 986 987 988 989
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
B
Ben Blum 已提交
990
			BUG_ON(ss == NULL);
991
			BUG_ON(cgrp->subsys[i]);
992 993
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
994
			mutex_lock(&ss->hierarchy_mutex);
995 996
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
997
			list_move(&ss->sibling, &root->subsys_list);
998
			ss->root = root;
999
			if (ss->bind)
1000
				ss->bind(ss, cgrp);
1001
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1002
			/* refcount was already taken, and we're keeping it */
1003 1004
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
B
Ben Blum 已提交
1005
			BUG_ON(ss == NULL);
1006 1007
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1008
			mutex_lock(&ss->hierarchy_mutex);
1009 1010 1011
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
1012
			cgrp->subsys[i] = NULL;
1013
			subsys[i]->root = &rootnode;
1014
			list_move(&ss->sibling, &rootnode.subsys_list);
1015
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1016 1017
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1018 1019
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
B
Ben Blum 已提交
1020
			BUG_ON(ss == NULL);
1021
			BUG_ON(!cgrp->subsys[i]);
B
Ben Blum 已提交
1022 1023 1024 1025 1026 1027 1028 1029
			/*
			 * a refcount was taken, but we already had one, so
			 * drop the extra reference.
			 */
			module_put(ss->module);
#ifdef CONFIG_MODULE_UNLOAD
			BUG_ON(ss->module && !module_refcount(ss->module));
#endif
1030 1031
		} else {
			/* Subsystem state shouldn't exist */
1032
			BUG_ON(cgrp->subsys[i]);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
1051 1052
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1053 1054
	if (clone_children(&root->top_cgroup))
		seq_puts(seq, ",clone_children");
1055 1056
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
1057 1058 1059 1060 1061 1062 1063
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
1064
	char *release_agent;
1065
	bool clone_children;
1066
	char *name;
1067 1068
	/* User explicitly requested empty subsystem */
	bool none;
1069 1070

	struct cgroupfs_root *new_root;
1071

1072 1073
};

B
Ben Blum 已提交
1074 1075
/*
 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
B
Ben Blum 已提交
1076 1077 1078
 * with cgroup_mutex held to protect the subsys[] array. This function takes
 * refcounts on subsystems to be used, unless it returns error, in which case
 * no refcounts are taken.
B
Ben Blum 已提交
1079
 */
B
Ben Blum 已提交
1080
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1081
{
1082 1083
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1084
	unsigned long mask = (unsigned long)-1;
B
Ben Blum 已提交
1085 1086
	int i;
	bool module_pin_failed = false;
1087

B
Ben Blum 已提交
1088 1089
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1090 1091 1092
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1093

1094
	memset(opts, 0, sizeof(*opts));
1095 1096 1097 1098

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1099
		if (!strcmp(token, "none")) {
1100 1101
			/* Explicitly have no subsystems */
			opts->none = true;
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
		if (!strcmp(token, "noprefix")) {
1112
			set_bit(ROOT_NOPREFIX, &opts->flags);
1113 1114 1115
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1116
			opts->clone_children = true;
1117 1118 1119
			continue;
		}
		if (!strncmp(token, "release_agent=", 14)) {
1120 1121 1122
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1123
			opts->release_agent =
1124
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1125 1126
			if (!opts->release_agent)
				return -ENOMEM;
1127 1128 1129
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1147
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1148 1149 1150
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

			continue;
		}

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
			set_bit(i, &opts->subsys_bits);
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
	 * otherwise 'all, 'none' and a subsystem name options were not
	 * specified, let's default to 'all'
	 */
	if (all_ss || (!all_ss && !one_ss && !opts->none)) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (ss->disabled)
				continue;
			set_bit(i, &opts->subsys_bits);
1189 1190 1191
		}
	}

1192 1193
	/* Consistency checks */

1194 1195 1196 1197 1198 1199 1200 1201 1202
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1203 1204 1205 1206 1207 1208 1209 1210 1211

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1212
	if (!opts->subsys_bits && !opts->name)
1213 1214
		return -EINVAL;

B
Ben Blum 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
	/*
	 * Grab references on all the modules we'll need, so the subsystems
	 * don't dance around before rebind_subsystems attaches them. This may
	 * take duplicate reference counts on a subsystem that's already used,
	 * but rebind_subsystems handles this case.
	 */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & opts->subsys_bits))
			continue;
		if (!try_module_get(subsys[i]->module)) {
			module_pin_failed = true;
			break;
		}
	}
	if (module_pin_failed) {
		/*
		 * oops, one of the modules was going away. this means that we
		 * raced with a module_delete call, and to the user this is
		 * essentially a "subsystem doesn't exist" case.
		 */
		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
			/* drop refcounts only on the ones we took */
			unsigned long bit = 1UL << i;

			if (!(bit & opts->subsys_bits))
				continue;
			module_put(subsys[i]->module);
		}
		return -ENOENT;
	}

1248 1249 1250
	return 0;
}

B
Ben Blum 已提交
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
static void drop_parsed_module_refcounts(unsigned long subsys_bits)
{
	int i;
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & subsys_bits))
			continue;
		module_put(subsys[i]->module);
	}
}

1263 1264 1265 1266
static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1267
	struct cgroup *cgrp = &root->top_cgroup;
1268 1269
	struct cgroup_sb_opts opts;

1270
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1271 1272 1273 1274 1275 1276 1277
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

B
Ben Blum 已提交
1278 1279 1280
	/* Don't allow flags or name to change at remount */
	if (opts.flags != root->flags ||
	    (opts.name && strcmp(opts.name, root->name))) {
1281
		ret = -EINVAL;
B
Ben Blum 已提交
1282
		drop_parsed_module_refcounts(opts.subsys_bits);
1283 1284 1285
		goto out_unlock;
	}

1286
	ret = rebind_subsystems(root, opts.subsys_bits);
B
Ben Blum 已提交
1287 1288
	if (ret) {
		drop_parsed_module_refcounts(opts.subsys_bits);
1289
		goto out_unlock;
B
Ben Blum 已提交
1290
	}
1291 1292

	/* (re)populate subsystem files */
1293
	cgroup_populate_dir(cgrp);
1294

1295 1296
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1297
 out_unlock:
1298
	kfree(opts.release_agent);
1299
	kfree(opts.name);
1300
	mutex_unlock(&cgroup_mutex);
1301
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1302 1303 1304
	return ret;
}

1305
static const struct super_operations cgroup_ops = {
1306 1307 1308 1309 1310 1311
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1312 1313 1314 1315 1316 1317
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
1318 1319
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1320 1321
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
1322
}
1323

1324 1325
static void init_cgroup_root(struct cgroupfs_root *root)
{
1326
	struct cgroup *cgrp = &root->top_cgroup;
1327 1328 1329
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1330 1331
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1332
	init_cgroup_housekeeping(cgrp);
1333 1334
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1360 1361
static int cgroup_test_super(struct super_block *sb, void *data)
{
1362
	struct cgroup_sb_opts *opts = data;
1363 1364
	struct cgroupfs_root *root = sb->s_fs_info;

1365 1366 1367
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1368

1369 1370 1371 1372 1373 1374
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1375 1376 1377 1378 1379
		return 0;

	return 1;
}

1380 1381 1382 1383
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1384
	if (!opts->subsys_bits && !opts->none)
1385 1386 1387 1388 1389 1390
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1391 1392 1393 1394
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1395
	init_cgroup_root(root);
1396

1397 1398 1399 1400 1401 1402
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1403 1404
	if (opts->clone_children)
		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1405 1406 1407
	return root;
}

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1420 1421 1422
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1423 1424 1425 1426 1427 1428
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1429
	BUG_ON(!opts->subsys_bits && !opts->none);
1430 1431 1432 1433 1434

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1435 1436
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1448 1449
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1450
		.d_delete = cgroup_delete,
A
Al Viro 已提交
1451 1452
	};

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
A
Al Viro 已提交
1470 1471
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1472 1473 1474
	return 0;
}

A
Al Viro 已提交
1475
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1476
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1477
			 void *data)
1478 1479
{
	struct cgroup_sb_opts opts;
1480
	struct cgroupfs_root *root;
1481 1482
	int ret = 0;
	struct super_block *sb;
1483
	struct cgroupfs_root *new_root;
1484 1485

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1486
	mutex_lock(&cgroup_mutex);
1487
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1488
	mutex_unlock(&cgroup_mutex);
1489 1490
	if (ret)
		goto out_err;
1491

1492 1493 1494 1495 1496 1497 1498
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
B
Ben Blum 已提交
1499
		goto drop_modules;
1500
	}
1501
	opts.new_root = new_root;
1502

1503 1504
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1505
	if (IS_ERR(sb)) {
1506
		ret = PTR_ERR(sb);
1507
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1508
		goto drop_modules;
1509 1510
	}

1511 1512 1513 1514 1515
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1516
		struct cgroup *root_cgrp = &root->top_cgroup;
1517
		struct inode *inode;
1518
		struct cgroupfs_root *existing_root;
1519
		const struct cred *cred;
1520
		int i;
1521 1522 1523 1524 1525 1526

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1527
		inode = sb->s_root->d_inode;
1528

1529
		mutex_lock(&inode->i_mutex);
1530 1531
		mutex_lock(&cgroup_mutex);

1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
		if (strlen(root->name)) {
			/* Check for name clashes with existing mounts */
			for_each_active_root(existing_root) {
				if (!strcmp(existing_root->name, root->name)) {
					ret = -EBUSY;
					mutex_unlock(&cgroup_mutex);
					mutex_unlock(&inode->i_mutex);
					goto drop_new_super;
				}
			}
		}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1558 1559 1560
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1561
			mutex_unlock(&inode->i_mutex);
1562 1563
			free_cg_links(&tmp_cg_links);
			goto drop_new_super;
1564
		}
B
Ben Blum 已提交
1565 1566 1567 1568 1569
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1570 1571 1572 1573 1574

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1575
		root_count++;
1576

1577
		sb->s_root->d_fsdata = root_cgrp;
1578 1579
		root->top_cgroup.dentry = sb->s_root;

1580 1581 1582
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1583 1584 1585
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1586
			struct css_set *cg;
1587

1588 1589
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1590
		}
1591 1592 1593 1594
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1595 1596
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1597 1598
		BUG_ON(root->number_of_cgroups != 1);

1599
		cred = override_creds(&init_cred);
1600
		cgroup_populate_dir(root_cgrp);
1601
		revert_creds(cred);
1602
		mutex_unlock(&cgroup_mutex);
1603
		mutex_unlock(&inode->i_mutex);
1604 1605 1606 1607 1608
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1609
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1610 1611
		/* no subsys rebinding, so refcounts don't change */
		drop_parsed_module_refcounts(opts.subsys_bits);
1612 1613
	}

1614 1615
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1616
	return dget(sb->s_root);
1617 1618

 drop_new_super:
1619
	deactivate_locked_super(sb);
B
Ben Blum 已提交
1620 1621
 drop_modules:
	drop_parsed_module_refcounts(opts.subsys_bits);
1622 1623 1624
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1625
	return ERR_PTR(ret);
1626 1627 1628 1629
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1630
	struct cgroup *cgrp = &root->top_cgroup;
1631
	int ret;
K
KOSAKI Motohiro 已提交
1632 1633
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1634 1635 1636 1637

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1638 1639
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1640 1641 1642 1643 1644 1645 1646 1647

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1648 1649 1650 1651 1652
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1653 1654 1655

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1656
		list_del(&link->cg_link_list);
1657
		list_del(&link->cgrp_link_list);
1658 1659 1660 1661
		kfree(link);
	}
	write_unlock(&css_set_lock);

1662 1663 1664 1665
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1666

1667 1668 1669
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1670
	cgroup_drop_root(root);
1671 1672 1673 1674
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1675
	.mount = cgroup_mount,
1676 1677 1678
	.kill_sb = cgroup_kill_sb,
};

1679 1680
static struct kobject *cgroup_kobj;

1681
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1682 1683 1684 1685 1686 1687 1688 1689 1690
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1691 1692 1693 1694 1695 1696
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1697 1698 1699
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1700
 */
1701
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1702 1703
{
	char *start;
1704 1705
	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
						      cgroup_lock_is_held());
1706

1707
	if (!dentry || cgrp == dummytop) {
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1720
		int len = dentry->d_name.len;
1721

1722 1723
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1724
		memcpy(start, dentry->d_name.name, len);
1725 1726
		cgrp = cgrp->parent;
		if (!cgrp)
1727
			break;
1728 1729 1730

		dentry = rcu_dereference_check(cgrp->dentry,
					       cgroup_lock_is_held());
1731
		if (!cgrp->parent)
1732 1733 1734 1735 1736 1737 1738 1739
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}
B
Ben Blum 已提交
1740
EXPORT_SYMBOL_GPL(cgroup_path);
1741

B
Ben Blum 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
 * 'guarantee' is set if the caller promises that a new css_set for the task
 * will already exist. If not set, this function might sleep, and can fail with
 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
 */
static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
			       struct task_struct *tsk, bool guarantee)
{
	struct css_set *oldcg;
	struct css_set *newcg;

	/*
	 * get old css_set. we need to take task_lock and refcount it, because
	 * an exiting task can change its css_set to init_css_set and drop its
	 * old one without taking cgroup_mutex.
	 */
	task_lock(tsk);
	oldcg = tsk->cgroups;
	get_css_set(oldcg);
	task_unlock(tsk);

	/* locate or allocate a new css_set for this task. */
	if (guarantee) {
		/* we know the css_set we want already exists. */
		struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
		read_lock(&css_set_lock);
		newcg = find_existing_css_set(oldcg, cgrp, template);
		BUG_ON(!newcg);
		get_css_set(newcg);
		read_unlock(&css_set_lock);
	} else {
		might_sleep();
		/* find_css_set will give us newcg already referenced. */
		newcg = find_css_set(oldcg, cgrp);
		if (!newcg) {
			put_css_set(oldcg);
			return -ENOMEM;
		}
	}
	put_css_set(oldcg);

	/* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
		put_css_set(newcg);
		return -ESRCH;
	}
	rcu_assign_pointer(tsk->cgroups, newcg);
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
		list_move(&tsk->cg_list, &newcg->tasks);
	write_unlock(&css_set_lock);

	/*
	 * We just gained a reference on oldcg by taking it from the task. As
	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
	 * it here; it will be freed under RCU.
	 */
	put_css_set(oldcg);

	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
	return 0;
}

L
Li Zefan 已提交
1812 1813 1814 1815
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1816
 *
L
Li Zefan 已提交
1817 1818
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1819
 */
1820
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1821
{
B
Ben Blum 已提交
1822
	int retval;
1823
	struct cgroup_subsys *ss, *failed_ss = NULL;
1824 1825
	struct cgroup *oldcgrp;
	struct cgroupfs_root *root = cgrp->root;
1826 1827

	/* Nothing to do if the task is already in that cgroup */
1828
	oldcgrp = task_cgroup_from_root(tsk, root);
1829
	if (cgrp == oldcgrp)
1830 1831 1832 1833
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1834
			retval = ss->can_attach(ss, cgrp, tsk);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
			if (retval) {
				/*
				 * Remember on which subsystem the can_attach()
				 * failed, so that we only call cancel_attach()
				 * against the subsystems whose can_attach()
				 * succeeded. (See below)
				 */
				failed_ss = ss;
				goto out;
			}
1845
		}
1846 1847 1848 1849 1850 1851 1852
		if (ss->can_attach_task) {
			retval = ss->can_attach_task(cgrp, tsk);
			if (retval) {
				failed_ss = ss;
				goto out;
			}
		}
1853 1854
	}

B
Ben Blum 已提交
1855 1856
	retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
	if (retval)
1857
		goto out;
1858

1859
	for_each_subsys(root, ss) {
1860 1861 1862 1863
		if (ss->pre_attach)
			ss->pre_attach(cgrp);
		if (ss->attach_task)
			ss->attach_task(cgrp, tsk);
P
Paul Jackson 已提交
1864
		if (ss->attach)
1865
			ss->attach(ss, cgrp, oldcgrp, tsk);
1866
	}
B
Ben Blum 已提交
1867

1868
	synchronize_rcu();
1869 1870 1871 1872 1873

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1874
	cgroup_wakeup_rmdir_waiter(cgrp);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
out:
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss)
				/*
				 * This subsystem was the one that failed the
				 * can_attach() check earlier, so we don't need
				 * to call cancel_attach() against it or any
				 * remaining subsystems.
				 */
				break;
			if (ss->cancel_attach)
1887
				ss->cancel_attach(ss, cgrp, tsk);
1888 1889 1890
		}
	}
	return retval;
1891 1892
}

1893
/**
M
Michael S. Tsirkin 已提交
1894 1895
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
1896 1897
 * @tsk: the task to be attached
 */
M
Michael S. Tsirkin 已提交
1898
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1899 1900 1901 1902 1903 1904
{
	struct cgroupfs_root *root;
	int retval = 0;

	cgroup_lock();
	for_each_active_root(root) {
M
Michael S. Tsirkin 已提交
1905 1906 1907
		struct cgroup *from_cg = task_cgroup_from_root(from, root);

		retval = cgroup_attach_task(from_cg, tsk);
1908 1909 1910 1911 1912 1913 1914
		if (retval)
			break;
	}
	cgroup_unlock();

	return retval;
}
M
Michael S. Tsirkin 已提交
1915
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1916

1917
/*
B
Ben Blum 已提交
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
 * cgroup_attach_proc works in two stages, the first of which prefetches all
 * new css_sets needed (to make sure we have enough memory before committing
 * to the move) and stores them in a list of entries of the following type.
 * TODO: possible optimization: use css_set->rcu_head for chaining instead
 */
struct cg_list_entry {
	struct css_set *cg;
	struct list_head links;
};

static bool css_set_check_fetched(struct cgroup *cgrp,
				  struct task_struct *tsk, struct css_set *cg,
				  struct list_head *newcg_list)
{
	struct css_set *newcg;
	struct cg_list_entry *cg_entry;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	read_lock(&css_set_lock);
	newcg = find_existing_css_set(cg, cgrp, template);
	if (newcg)
		get_css_set(newcg);
	read_unlock(&css_set_lock);

	/* doesn't exist at all? */
	if (!newcg)
		return false;
	/* see if it's already in the list */
	list_for_each_entry(cg_entry, newcg_list, links) {
		if (cg_entry->cg == newcg) {
			put_css_set(newcg);
			return true;
		}
	}

	/* not found */
	put_css_set(newcg);
	return false;
}

/*
 * Find the new css_set and store it in the list in preparation for moving the
 * given task to the given cgroup. Returns 0 or -ENOMEM.
 */
static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
			    struct list_head *newcg_list)
{
	struct css_set *newcg;
	struct cg_list_entry *cg_entry;

	/* ensure a new css_set will exist for this thread */
	newcg = find_css_set(cg, cgrp);
	if (!newcg)
		return -ENOMEM;
	/* add it to the list */
	cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
	if (!cg_entry) {
		put_css_set(newcg);
		return -ENOMEM;
	}
	cg_entry->cg = newcg;
	list_add(&cg_entry->links, newcg_list);
	return 0;
}

/**
 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
 * @cgrp: the cgroup to attach to
 * @leader: the threadgroup leader task_struct of the group to be attached
 *
 * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
 * take task_lock of each thread in leader's threadgroup individually in turn.
 */
int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
{
	int retval, i, group_size;
	struct cgroup_subsys *ss, *failed_ss = NULL;
	bool cancel_failed_ss = false;
	/* guaranteed to be initialized later, but the compiler needs this */
	struct cgroup *oldcgrp = NULL;
	struct css_set *oldcg;
	struct cgroupfs_root *root = cgrp->root;
	/* threadgroup list cursor and array */
	struct task_struct *tsk;
2002
	struct flex_array *group;
B
Ben Blum 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
	/*
	 * we need to make sure we have css_sets for all the tasks we're
	 * going to move -before- we actually start moving them, so that in
	 * case we get an ENOMEM we can bail out before making any changes.
	 */
	struct list_head newcg_list;
	struct cg_list_entry *cg_entry, *temp_nobe;

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
	 * group - threadgroup_fork_lock prevents new threads from appearing,
	 * and if threads exit, this will just be an over-estimate.
	 */
	group_size = get_nr_threads(leader);
2019 2020 2021
	/* flex_array supports very large thread-groups better than kmalloc. */
	group = flex_array_alloc(sizeof(struct task_struct *), group_size,
				 GFP_KERNEL);
B
Ben Blum 已提交
2022 2023
	if (!group)
		return -ENOMEM;
2024 2025 2026 2027
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
	retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
	if (retval)
		goto out_free_group_list;
B
Ben Blum 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049

	/* prevent changes to the threadgroup list while we take a snapshot. */
	rcu_read_lock();
	if (!thread_group_leader(leader)) {
		/*
		 * a race with de_thread from another thread's exec() may strip
		 * us of our leadership, making while_each_thread unsafe to use
		 * on this task. if this happens, there is no choice but to
		 * throw this task away and try again (from cgroup_procs_write);
		 * this is "double-double-toil-and-trouble-check locking".
		 */
		rcu_read_unlock();
		retval = -EAGAIN;
		goto out_free_group_list;
	}
	/* take a reference on each task in the group to go in the array. */
	tsk = leader;
	i = 0;
	do {
		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
		get_task_struct(tsk);
2050 2051 2052 2053 2054 2055
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
		retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC);
		BUG_ON(retval != 0);
B
Ben Blum 已提交
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
		i++;
	} while_each_thread(leader, tsk);
	/* remember the number of threads in the array for later. */
	group_size = i;
	rcu_read_unlock();

	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
			retval = ss->can_attach(ss, cgrp, leader);
			if (retval) {
				failed_ss = ss;
				goto out_cancel_attach;
			}
		}
		/* a callback to be run on every thread in the threadgroup. */
		if (ss->can_attach_task) {
			/* run on each task in the threadgroup. */
			for (i = 0; i < group_size; i++) {
2077 2078
				tsk = flex_array_get_ptr(group, i);
				retval = ss->can_attach_task(cgrp, tsk);
B
Ben Blum 已提交
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
				if (retval) {
					failed_ss = ss;
					cancel_failed_ss = true;
					goto out_cancel_attach;
				}
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	INIT_LIST_HEAD(&newcg_list);
	for (i = 0; i < group_size; i++) {
2094
		tsk = flex_array_get_ptr(group, i);
B
Ben Blum 已提交
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
		/* nothing to do if this task is already in the cgroup */
		oldcgrp = task_cgroup_from_root(tsk, root);
		if (cgrp == oldcgrp)
			continue;
		/* get old css_set pointer */
		task_lock(tsk);
		if (tsk->flags & PF_EXITING) {
			/* ignore this task if it's going away */
			task_unlock(tsk);
			continue;
		}
		oldcg = tsk->cgroups;
		get_css_set(oldcg);
		task_unlock(tsk);
		/* see if the new one for us is already in the list? */
		if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
			/* was already there, nothing to do. */
			put_css_set(oldcg);
		} else {
			/* we don't already have it. get new one. */
			retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
			put_css_set(oldcg);
			if (retval)
				goto out_list_teardown;
		}
	}

	/*
	 * step 3: now that we're guaranteed success wrt the css_sets, proceed
	 * to move all tasks to the new cgroup, calling ss->attach_task for each
	 * one along the way. there are no failure cases after here, so this is
	 * the commit point.
	 */
	for_each_subsys(root, ss) {
		if (ss->pre_attach)
			ss->pre_attach(cgrp);
	}
	for (i = 0; i < group_size; i++) {
2133
		tsk = flex_array_get_ptr(group, i);
B
Ben Blum 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185
		/* leave current thread as it is if it's already there */
		oldcgrp = task_cgroup_from_root(tsk, root);
		if (cgrp == oldcgrp)
			continue;
		/* attach each task to each subsystem */
		for_each_subsys(root, ss) {
			if (ss->attach_task)
				ss->attach_task(cgrp, tsk);
		}
		/* if the thread is PF_EXITING, it can just get skipped. */
		retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
		BUG_ON(retval != 0 && retval != -ESRCH);
	}
	/* nothing is sensitive to fork() after this point. */

	/*
	 * step 4: do expensive, non-thread-specific subsystem callbacks.
	 * TODO: if ever a subsystem needs to know the oldcgrp for each task
	 * being moved, this call will need to be reworked to communicate that.
	 */
	for_each_subsys(root, ss) {
		if (ss->attach)
			ss->attach(ss, cgrp, oldcgrp, leader);
	}

	/*
	 * step 5: success! and cleanup
	 */
	synchronize_rcu();
	cgroup_wakeup_rmdir_waiter(cgrp);
	retval = 0;
out_list_teardown:
	/* clean up the list of prefetched css_sets. */
	list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
		list_del(&cg_entry->links);
		put_css_set(cg_entry->cg);
		kfree(cg_entry);
	}
out_cancel_attach:
	/* same deal as in cgroup_attach_task */
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss) {
				if (cancel_failed_ss && ss->cancel_attach)
					ss->cancel_attach(ss, cgrp, leader);
				break;
			}
			if (ss->cancel_attach)
				ss->cancel_attach(ss, cgrp, leader);
		}
	}
	/* clean up the array of referenced threads in the group. */
2186 2187 2188 2189
	for (i = 0; i < group_size; i++) {
		tsk = flex_array_get_ptr(group, i);
		put_task_struct(tsk);
	}
B
Ben Blum 已提交
2190
out_free_group_list:
2191
	flex_array_free(group);
B
Ben Blum 已提交
2192 2193 2194 2195 2196 2197 2198
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
 * function to attach either it or all tasks in its threadgroup. Will take
 * cgroup_mutex; may take task_lock of task.
2199
 */
B
Ben Blum 已提交
2200
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2201 2202
{
	struct task_struct *tsk;
2203
	const struct cred *cred = current_cred(), *tcred;
2204 2205
	int ret;

B
Ben Blum 已提交
2206 2207 2208
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

2209 2210
	if (pid) {
		rcu_read_lock();
2211
		tsk = find_task_by_vpid(pid);
B
Ben Blum 已提交
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
		if (!tsk) {
			rcu_read_unlock();
			cgroup_unlock();
			return -ESRCH;
		}
		if (threadgroup) {
			/*
			 * RCU protects this access, since tsk was found in the
			 * tid map. a race with de_thread may cause group_leader
			 * to stop being the leader, but cgroup_attach_proc will
			 * detect it later.
			 */
			tsk = tsk->group_leader;
		} else if (tsk->flags & PF_EXITING) {
			/* optimization for the single-task-only case */
2227
			rcu_read_unlock();
B
Ben Blum 已提交
2228
			cgroup_unlock();
2229 2230 2231
			return -ESRCH;
		}

B
Ben Blum 已提交
2232 2233 2234 2235
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
2236 2237 2238 2239 2240
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
B
Ben Blum 已提交
2241
			cgroup_unlock();
2242 2243
			return -EACCES;
		}
2244 2245
		get_task_struct(tsk);
		rcu_read_unlock();
2246
	} else {
B
Ben Blum 已提交
2247 2248 2249 2250
		if (threadgroup)
			tsk = current->group_leader;
		else
			tsk = current;
2251 2252 2253
		get_task_struct(tsk);
	}

B
Ben Blum 已提交
2254 2255 2256 2257 2258 2259 2260
	if (threadgroup) {
		threadgroup_fork_write_lock(tsk);
		ret = cgroup_attach_proc(cgrp, tsk);
		threadgroup_fork_write_unlock(tsk);
	} else {
		ret = cgroup_attach_task(cgrp, tsk);
	}
2261
	put_task_struct(tsk);
B
Ben Blum 已提交
2262
	cgroup_unlock();
2263 2264 2265
	return ret;
}

2266
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
B
Ben Blum 已提交
2267 2268 2269 2270 2271
{
	return attach_task_by_pid(cgrp, pid, false);
}

static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2272 2273
{
	int ret;
B
Ben Blum 已提交
2274 2275 2276 2277 2278 2279 2280 2281
	do {
		/*
		 * attach_proc fails with -EAGAIN if threadgroup leadership
		 * changes in the middle of the operation, in which case we need
		 * to find the task_struct for the new leader and start over.
		 */
		ret = attach_task_by_pid(cgrp, tgid, true);
	} while (ret == -EAGAIN);
2282 2283 2284
	return ret;
}

2285 2286 2287 2288
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
2289 2290
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
2291
 */
2292
bool cgroup_lock_live_group(struct cgroup *cgrp)
2293 2294 2295 2296 2297 2298 2299 2300
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}
B
Ben Blum 已提交
2301
EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2302 2303 2304 2305 2306

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2307 2308
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
2309 2310 2311
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
2312
	cgroup_unlock();
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
2323
	cgroup_unlock();
2324 2325 2326
	return 0;
}

2327 2328 2329
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

2330
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2331 2332 2333
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
2334
{
2335
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
2347
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
2348
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2349 2350 2351 2352
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
2353
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2354 2355 2356 2357
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
2358 2359 2360 2361 2362
	if (!retval)
		retval = nbytes;
	return retval;
}

2363 2364 2365 2366 2367
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
2368
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
2383 2384 2385 2386
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
2387 2388

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
2389
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2390 2391
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
2392
out:
2393 2394 2395 2396 2397
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

2398 2399 2400 2401
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2402
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2403

2404
	if (cgroup_is_removed(cgrp))
2405
		return -ENODEV;
2406
	if (cft->write)
2407
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2408 2409
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2410 2411
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2412 2413 2414 2415
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
2416
	return -EINVAL;
2417 2418
}

2419 2420 2421 2422
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
2423
{
2424
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2425
	u64 val = cft->read_u64(cgrp, cft);
2426 2427 2428 2429 2430
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2431 2432 2433 2434 2435
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
2436
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2437 2438 2439 2440 2441 2442
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2443 2444 2445 2446
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2447
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2448

2449
	if (cgroup_is_removed(cgrp))
2450 2451 2452
		return -ENODEV;

	if (cft->read)
2453
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2454 2455
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2456 2457
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2458 2459 2460
	return -EINVAL;
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
2481 2482 2483 2484 2485 2486 2487 2488
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
2489 2490
}

2491
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2492 2493 2494 2495 2496 2497
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

2498
static const struct file_operations cgroup_seqfile_operations = {
2499
	.read = seq_read,
2500
	.write = cgroup_file_write,
2501 2502 2503 2504
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

2505 2506 2507 2508 2509 2510 2511 2512 2513
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
2514

2515
	if (cft->read_map || cft->read_seq_string) {
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

2557
static const struct file_operations cgroup_file_operations = {
2558 2559 2560 2561 2562 2563 2564
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

2565
static const struct inode_operations cgroup_dir_inode_operations = {
2566
	.lookup = cgroup_lookup,
2567 2568 2569 2570 2571
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

2572 2573 2574 2575 2576 2577 2578 2579
static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
{
	if (dentry->d_name.len > NAME_MAX)
		return ERR_PTR(-ENAMETOOLONG);
	d_add(dentry, NULL);
	return NULL;
}

2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

2590 2591 2592
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
				struct super_block *sb)
{
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
2613
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
2624 2625 2626 2627 2628
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
2629
 */
2630
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
2631
				mode_t mode)
2632 2633 2634 2635
{
	struct dentry *parent;
	int error = 0;

2636 2637
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2638
	if (!error) {
2639
		dentry->d_fsdata = cgrp;
2640
		inc_nlink(parent->d_inode);
2641
		rcu_assign_pointer(cgrp->dentry, dentry);
2642 2643 2644 2645 2646 2647 2648
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

2676
int cgroup_add_file(struct cgroup *cgrp,
2677 2678 2679
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
2680
	struct dentry *dir = cgrp->dentry;
2681 2682
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
2683
	mode_t mode;
2684 2685

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2686
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2687 2688 2689 2690 2691 2692 2693
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
2694 2695
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
2696
						cgrp->root->sb);
2697 2698 2699 2700 2701 2702 2703
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}
2704
EXPORT_SYMBOL_GPL(cgroup_add_file);
2705

2706
int cgroup_add_files(struct cgroup *cgrp,
2707 2708 2709 2710 2711 2712
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
2713
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2714 2715 2716 2717 2718
		if (err)
			return err;
	}
	return 0;
}
2719
EXPORT_SYMBOL_GPL(cgroup_add_files);
2720

L
Li Zefan 已提交
2721 2722 2723 2724 2725 2726
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2727
int cgroup_task_count(const struct cgroup *cgrp)
2728 2729
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2730
	struct cg_cgroup_link *link;
2731 2732

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2733
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2734
		count += atomic_read(&link->cg->refcount);
2735 2736
	}
	read_unlock(&css_set_lock);
2737 2738 2739
	return count;
}

2740 2741 2742 2743
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2744
static void cgroup_advance_iter(struct cgroup *cgrp,
2745
				struct cgroup_iter *it)
2746 2747 2748 2749 2750 2751 2752 2753
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2754
		if (l == &cgrp->css_sets) {
2755 2756 2757
			it->cg_link = NULL;
			return;
		}
2758
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2759 2760 2761 2762 2763 2764
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2765 2766 2767 2768 2769 2770 2771 2772 2773
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
2774
static void cgroup_enable_task_cg_lists(void)
2775 2776 2777 2778 2779 2780
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
2781 2782 2783 2784 2785 2786
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2787 2788 2789 2790 2791 2792
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

2793
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2794 2795 2796 2797 2798 2799
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2800 2801 2802
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2803
	read_lock(&css_set_lock);
2804 2805
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2806 2807
}

2808
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2809 2810 2811 2812
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2813
	struct cg_cgroup_link *link;
2814 2815 2816 2817 2818 2819 2820

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2821 2822
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2823 2824
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2825
		cgroup_advance_iter(cgrp, it);
2826 2827 2828 2829 2830 2831
	} else {
		it->task = l;
	}
	return res;
}

2832
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2833 2834 2835 2836
{
	read_unlock(&css_set_lock);
}

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2974
			struct task_struct *q = heap->ptrs[i];
2975
			if (i == 0) {
2976 2977
				latest_time = q->start_time;
				latest_task = q;
2978 2979
			}
			/* Process the task per the caller's callback */
2980 2981
			scan->process_task(q, scan);
			put_task_struct(q);
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2997
/*
2998
 * Stuff for reading the 'tasks'/'procs' files.
2999 3000 3001 3002 3003 3004 3005 3006
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}
static void *pidlist_resize(void *p, int newcount)
{
	void *newlist;
	/* note: if new alloc fails, old p will still be valid either way */
	if (is_vmalloc_addr(p)) {
		newlist = vmalloc(newcount * sizeof(pid_t));
		if (!newlist)
			return NULL;
		memcpy(newlist, p, newcount * sizeof(pid_t));
		vfree(p);
	} else {
		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
	}
	return newlist;
}

3043
/*
3044 3045 3046 3047
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * If the new stripped list is sufficiently smaller and there's enough memory
 * to allocate a new buffer, will let go of the unneeded memory. Returns the
 * number of unique elements.
3048
 */
3049 3050 3051
/* is the size difference enough that we should re-allocate the array? */
#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
static int pidlist_uniq(pid_t **p, int length)
3052
{
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081
	int src, dest = 1;
	pid_t *list = *p;
	pid_t *newlist;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	/*
	 * if the length difference is large enough, we want to allocate a
	 * smaller buffer to save memory. if this fails due to out of memory,
	 * we'll just stay with what we've got.
	 */
	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3082
		newlist = pidlist_resize(list, dest);
3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
		if (newlist)
			*p = newlist;
	}
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
3105 3106
	struct pid_namespace *ns = current->nsproxy->pid_ns;

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
3131
	l->key.ns = get_pid_ns(ns);
3132 3133 3134 3135 3136 3137 3138 3139
	l->use_count = 0; /* don't increment here */
	l->list = NULL;
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

3140 3141 3142
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
3143 3144
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
3145 3146 3147 3148
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
3149 3150
	struct cgroup_iter it;
	struct task_struct *tsk;
3151 3152 3153 3154 3155 3156 3157 3158 3159
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
3160
	array = pidlist_allocate(length);
3161 3162 3163
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
3164 3165
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3166
		if (unlikely(n == length))
3167
			break;
3168
		/* get tgid or pid for procs or tasks file respectively */
3169 3170 3171 3172
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
3173 3174
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
3175
	}
3176
	cgroup_iter_end(cgrp, &it);
3177 3178 3179
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
3180
	if (type == CGROUP_FILE_PROCS)
3181
		length = pidlist_uniq(&array, length);
3182 3183
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
3184
		pidlist_free(array);
3185
		return -ENOMEM;
3186
	}
3187
	/* store array, freeing old if necessary - lock already held */
3188
	pidlist_free(l->list);
3189 3190 3191 3192
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
3193
	*lp = l;
3194
	return 0;
3195 3196
}

B
Balbir Singh 已提交
3197
/**
L
Li Zefan 已提交
3198
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
3199 3200 3201
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
3202 3203 3204
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
3205 3206 3207 3208
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
3209
	struct cgroup *cgrp;
B
Balbir Singh 已提交
3210 3211
	struct cgroup_iter it;
	struct task_struct *tsk;
3212

B
Balbir Singh 已提交
3213
	/*
3214 3215
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
3216
	 */
3217 3218
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
3219 3220 3221
		 goto err;

	ret = 0;
3222
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
3223

3224 3225
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
3245
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
3246 3247 3248 3249 3250

err:
	return ret;
}

3251

3252
/*
3253
 * seq_file methods for the tasks/procs files. The seq_file position is the
3254
 * next pid to display; the seq_file iterator is a pointer to the pid
3255
 * in the cgroup->l->list array.
3256
 */
3257

3258
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3259
{
3260 3261 3262 3263 3264 3265
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
3266
	struct cgroup_pidlist *l = s->private;
3267 3268 3269
	int index = 0, pid = *pos;
	int *iter;

3270
	down_read(&l->mutex);
3271
	if (pid) {
3272
		int end = l->length;
S
Stephen Rothwell 已提交
3273

3274 3275
		while (index < end) {
			int mid = (index + end) / 2;
3276
			if (l->list[mid] == pid) {
3277 3278
				index = mid;
				break;
3279
			} else if (l->list[mid] <= pid)
3280 3281 3282 3283 3284 3285
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
3286
	if (index >= l->length)
3287 3288
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
3289
	iter = l->list + index;
3290 3291 3292 3293
	*pos = *iter;
	return iter;
}

3294
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3295
{
3296 3297
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
3298 3299
}

3300
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3301
{
3302 3303 3304
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

3318
static int cgroup_pidlist_show(struct seq_file *s, void *v)
3319 3320 3321
{
	return seq_printf(s, "%d\n", *(int *)v);
}
3322

3323 3324 3325 3326 3327 3328 3329 3330 3331
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
3332 3333
};

3334
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3335
{
3336 3337 3338 3339 3340 3341 3342
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
3343 3344 3345
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
3346 3347 3348
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
3349
		pidlist_free(l->list);
3350 3351 3352 3353
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
3354
	}
3355
	mutex_unlock(&l->owner->pidlist_mutex);
3356
	up_write(&l->mutex);
3357 3358
}

3359
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3360
{
3361
	struct cgroup_pidlist *l;
3362 3363
	if (!(file->f_mode & FMODE_READ))
		return 0;
3364 3365 3366 3367 3368 3369
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
3370 3371 3372
	return seq_release(inode, file);
}

3373
static const struct file_operations cgroup_pidlist_operations = {
3374 3375 3376
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
3377
	.release = cgroup_pidlist_release,
3378 3379
};

3380
/*
3381 3382 3383
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
3384
 */
3385
/* helper function for the two below it */
3386
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3387
{
3388
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3389
	struct cgroup_pidlist *l;
3390
	int retval;
3391

3392
	/* Nothing to do for write-only files */
3393 3394 3395
	if (!(file->f_mode & FMODE_READ))
		return 0;

3396
	/* have the array populated */
3397
	retval = pidlist_array_load(cgrp, type, &l);
3398 3399 3400 3401
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
3402

3403
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3404
	if (retval) {
3405
		cgroup_release_pid_array(l);
3406
		return retval;
3407
	}
3408
	((struct seq_file *)file->private_data)->private = l;
3409 3410
	return 0;
}
3411 3412
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
3413
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3414 3415 3416
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
3417
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3418
}
3419

3420
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3421 3422
					    struct cftype *cft)
{
3423
	return notify_on_release(cgrp);
3424 3425
}

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup *cgrp = event->cgrp;

	event->cft->unregister_event(cgrp, event->cft, event->eventfd);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3453
	dput(cgrp->dentry);
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->cgrp;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
C
Changli Gao 已提交
3470
		__remove_wait_queue(event->wqh, &event->wait);
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547
		spin_lock(&cgrp->event_list_lock);
		list_del(&event->list);
		spin_unlock(&cgrp->event_list_lock);
		/*
		 * We are in atomic context, but cgroup_event_remove() may
		 * sleep, so we have to call it in workqueue.
		 */
		schedule_work(&event->remove);
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	struct cgroup_event *event = NULL;
	unsigned int efd, cfd;
	struct file *efile = NULL;
	struct file *cfile = NULL;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
	event->cgrp = cgrp;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = eventfd_fget(efd);
	if (IS_ERR(efile)) {
		ret = PTR_ERR(efile);
		goto fail;
	}

	event->eventfd = eventfd_ctx_fileget(efile);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto fail;
	}

	cfile = fget(cfd);
	if (!cfile) {
		ret = -EBADF;
		goto fail;
	}

	/* the process need read permission on control file */
A
Al Viro 已提交
3548 3549
	/* AV: shouldn't we check that it's been opened for read instead? */
	ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
	if (ret < 0)
		goto fail;

	event->cft = __file_cft(cfile);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto fail;
	}

	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto fail;
	}

	ret = event->cft->register_event(cgrp, event->cft,
			event->eventfd, buffer);
	if (ret)
		goto fail;

	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
		ret = 0;
		goto fail;
	}

3575 3576 3577 3578 3579 3580 3581
	/*
	 * Events should be removed after rmdir of cgroup directory, but before
	 * destroying subsystem state objects. Let's take reference to cgroup
	 * directory dentry to do that.
	 */
	dget(cgrp->dentry);

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605
	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fput(cfile);
	fput(efile);

	return 0;

fail:
	if (cfile)
		fput(cfile);

	if (event && event->eventfd && !IS_ERR(event->eventfd))
		eventfd_ctx_put(event->eventfd);

	if (!IS_ERR_OR_NULL(efile))
		fput(efile);

	kfree(event);

	return ret;
}

3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
static u64 cgroup_clone_children_read(struct cgroup *cgrp,
				    struct cftype *cft)
{
	return clone_children(cgrp);
}

static int cgroup_clone_children_write(struct cgroup *cgrp,
				     struct cftype *cft,
				     u64 val)
{
	if (val)
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	else
		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	return 0;
}

3623 3624 3625
/*
 * for the common functions, 'private' gives the type of file
 */
3626 3627
/* for hysterical raisins, we can't put this on the older files */
#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3628 3629 3630 3631
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
3632
		.write_u64 = cgroup_tasks_write,
3633
		.release = cgroup_pidlist_release,
L
Li Zefan 已提交
3634
		.mode = S_IRUGO | S_IWUSR,
3635
	},
3636 3637 3638
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
		.open = cgroup_procs_open,
B
Ben Blum 已提交
3639
		.write_u64 = cgroup_procs_write,
3640
		.release = cgroup_pidlist_release,
B
Ben Blum 已提交
3641
		.mode = S_IRUGO | S_IWUSR,
3642
	},
3643 3644
	{
		.name = "notify_on_release",
3645
		.read_u64 = cgroup_read_notify_on_release,
3646
		.write_u64 = cgroup_write_notify_on_release,
3647
	},
3648 3649 3650 3651 3652
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
3653 3654 3655 3656 3657
	{
		.name = "cgroup.clone_children",
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
3658 3659 3660 3661
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
3662 3663 3664
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
3665 3666
};

3667
static int cgroup_populate_dir(struct cgroup *cgrp)
3668 3669 3670 3671 3672
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
3673
	cgroup_clear_directory(cgrp->dentry);
3674

3675
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3676 3677 3678
	if (err < 0)
		return err;

3679 3680
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3681 3682 3683
			return err;
	}

3684 3685
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3686 3687
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
3699 3700 3701 3702 3703 3704

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
3705
			       struct cgroup *cgrp)
3706
{
3707
	css->cgroup = cgrp;
P
Paul Menage 已提交
3708
	atomic_set(&css->refcnt, 1);
3709
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
3710
	css->id = NULL;
3711
	if (cgrp == dummytop)
3712
		set_bit(CSS_ROOT, &css->flags);
3713 3714
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
3715 3716
}

3717 3718 3719 3720 3721
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

B
Ben Blum 已提交
3722 3723 3724 3725
	/*
	 * No worry about a race with rebind_subsystems that might mess up the
	 * locking order, since both parties are under cgroup_mutex.
	 */
3726 3727
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3728 3729
		if (ss == NULL)
			continue;
3730
		if (ss->root == root)
3731
			mutex_lock(&ss->hierarchy_mutex);
3732 3733 3734 3735 3736 3737 3738 3739 3740
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3741 3742
		if (ss == NULL)
			continue;
3743 3744 3745 3746 3747
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

3748
/*
L
Li Zefan 已提交
3749 3750 3751 3752
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
3753
 *
L
Li Zefan 已提交
3754
 * Must be called with the mutex on the parent inode held
3755 3756
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
3757
			     mode_t mode)
3758
{
3759
	struct cgroup *cgrp;
3760 3761 3762 3763 3764
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

3765 3766
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

3778
	init_cgroup_housekeeping(cgrp);
3779

3780 3781 3782
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
3783

3784 3785 3786
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

3787 3788 3789
	if (clone_children(parent))
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);

3790
	for_each_subsys(root, ss) {
3791
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3792

3793 3794 3795 3796
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
3797
		init_cgroup_css(css, ss, cgrp);
3798 3799 3800
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
K
KAMEZAWA Hiroyuki 已提交
3801
				goto err_destroy;
3802
		}
K
KAMEZAWA Hiroyuki 已提交
3803
		/* At error, ->destroy() callback has to free assigned ID. */
3804 3805
		if (clone_children(parent) && ss->post_clone)
			ss->post_clone(ss, cgrp);
3806 3807
	}

3808
	cgroup_lock_hierarchy(root);
3809
	list_add(&cgrp->sibling, &cgrp->parent->children);
3810
	cgroup_unlock_hierarchy(root);
3811 3812
	root->number_of_cgroups++;

3813
	err = cgroup_create_dir(cgrp, dentry, mode);
3814 3815 3816 3817
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
3818
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3819

3820
	err = cgroup_populate_dir(cgrp);
3821 3822 3823
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
3824
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3825 3826 3827 3828 3829

	return 0;

 err_remove:

3830
	cgroup_lock_hierarchy(root);
3831
	list_del(&cgrp->sibling);
3832
	cgroup_unlock_hierarchy(root);
3833 3834 3835 3836 3837
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
3838 3839
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
3840 3841 3842 3843 3844 3845 3846
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

3847
	kfree(cgrp);
3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

3859
static int cgroup_has_css_refs(struct cgroup *cgrp)
3860 3861 3862
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
3863
	 * cgroup, if the css refcount is also 1, then there should
3864 3865 3866 3867 3868 3869 3870
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
B
Ben Blum 已提交
3871 3872 3873 3874 3875
	/*
	 * We won't need to lock the subsys array, because the subsystems
	 * we're concerned about aren't going anywhere since our cgroup root
	 * has a reference on them.
	 */
3876 3877 3878
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
B
Ben Blum 已提交
3879 3880
		/* Skip subsystems not present or not in this hierarchy */
		if (ss == NULL || ss->root != cgrp->root)
3881
			continue;
3882
		css = cgrp->subsys[ss->subsys_id];
3883 3884 3885 3886 3887 3888
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
3889
		if (css && (atomic_read(&css->refcnt) > 1))
3890 3891 3892 3893 3894
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
3910
		while (1) {
P
Paul Menage 已提交
3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
3924 3925 3926 3927
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

3948 3949
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
3950
	struct cgroup *cgrp = dentry->d_fsdata;
3951 3952
	struct dentry *d;
	struct cgroup *parent;
3953
	DEFINE_WAIT(wait);
3954
	struct cgroup_event *event, *tmp;
3955
	int ret;
3956 3957

	/* the vfs holds both inode->i_mutex already */
3958
again:
3959
	mutex_lock(&cgroup_mutex);
3960
	if (atomic_read(&cgrp->count) != 0) {
3961 3962 3963
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3964
	if (!list_empty(&cgrp->children)) {
3965 3966 3967
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3968
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
3969

3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

3981
	/*
L
Li Zefan 已提交
3982 3983
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
3984
	 */
3985
	ret = cgroup_call_pre_destroy(cgrp);
3986 3987
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3988
		return ret;
3989
	}
3990

3991 3992
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
3993
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3994
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3995 3996 3997
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3998 3999 4000
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
4001 4002 4003 4004 4005 4006
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
4007 4008 4009 4010 4011 4012 4013 4014 4015
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4016

4017
	raw_spin_lock(&release_list_lock);
4018 4019
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
4020
		list_del_init(&cgrp->release_list);
4021
	raw_spin_unlock(&release_list_lock);
4022 4023 4024

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
4025
	list_del_init(&cgrp->sibling);
4026 4027
	cgroup_unlock_hierarchy(cgrp->root);

4028
	d = dget(cgrp->dentry);
4029 4030 4031 4032

	cgroup_d_remove_dir(d);
	dput(d);

4033
	set_bit(CGRP_RELEASABLE, &parent->flags);
4034 4035
	check_for_release(parent);

4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del(&event->list);
		remove_wait_queue(event->wqh, &event->wait);
		eventfd_signal(event->eventfd, 1);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

4050 4051 4052 4053
	mutex_unlock(&cgroup_mutex);
	return 0;
}

4054
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4055 4056
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
4057 4058

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4059 4060

	/* Create the top cgroup state for this subsystem */
4061
	list_add(&ss->sibling, &rootnode.subsys_list);
4062 4063 4064 4065 4066 4067
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
4068
	/* Update the init_css_set to contain a subsys
4069
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
4070 4071 4072
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4073 4074 4075

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
4076 4077 4078 4079 4080
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

4081
	mutex_init(&ss->hierarchy_mutex);
4082
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4083
	ss->active = 1;
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094

	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
T
Thomas Weber 已提交
4095
 * subsystem is built as a module, it will be assigned a new subsys_id and set
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	int i;
	struct cgroup_subsys_state *css;

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
	    ss->create == NULL || ss->destroy == NULL)
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
		/* a few sanity checks */
		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
		BUG_ON(subsys[ss->subsys_id] != ss);
		return 0;
	}

	/*
	 * need to register a subsys id before anything else - for example,
	 * init_cgroup_css needs it.
	 */
	mutex_lock(&cgroup_mutex);
	/* find the first empty slot in the array */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		if (subsys[i] == NULL)
			break;
	}
	if (i == CGROUP_SUBSYS_COUNT) {
		/* maximum number of subsystems already registered! */
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
	/* assign ourselves the subsys_id */
	ss->subsys_id = i;
	subsys[i] = ss;

	/*
	 * no ss->create seems to need anything important in the ss struct, so
	 * this can happen first (i.e. before the rootnode attachment).
	 */
	css = ss->create(ss, dummytop);
	if (IS_ERR(css)) {
		/* failure case - need to deassign the subsys[] slot. */
		subsys[i] = NULL;
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

	list_add(&ss->sibling, &rootnode.subsys_list);
	ss->root = &rootnode;

	/* our new subsystem will be attached to the dummy hierarchy. */
	init_cgroup_css(css, ss, dummytop);
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
		int ret = cgroup_init_idr(ss, css);
		if (ret) {
			dummytop->subsys[ss->subsys_id] = NULL;
			ss->destroy(ss, dummytop);
			subsys[i] = NULL;
			mutex_unlock(&cgroup_mutex);
			return ret;
		}
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
		struct css_set *cg;
		struct hlist_node *node, *tmp;
		struct hlist_head *bucket = &css_set_table[i], *new_bucket;

		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
			/* skip entries that we already rehashed */
			if (cg->subsys[ss->subsys_id])
				continue;
			/* remove existing entry */
			hlist_del(&cg->hlist);
			/* set new value */
			cg->subsys[ss->subsys_id] = css;
			/* recompute hash and restore entry */
			new_bucket = css_set_hash(cg->subsys);
			hlist_add_head(&cg->hlist, new_bucket);
		}
	}
	write_unlock(&css_set_lock);

	mutex_init(&ss->hierarchy_mutex);
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
	ss->active = 1;

	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
4213
}
4214
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4215

B
Ben Blum 已提交
4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
	struct cg_cgroup_link *link;
	struct hlist_head *hhead;

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
	 * try_module_get in parse_cgroupfs_options should ensure that it
	 * doesn't start being used while we're killing it off.
	 */
	BUG_ON(ss->root != &rootnode);

	mutex_lock(&cgroup_mutex);
	/* deassign the subsys_id */
	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
	subsys[ss->subsys_id] = NULL;

	/* remove subsystem from rootnode's list of subsystems */
4244
	list_del_init(&ss->sibling);
B
Ben Blum 已提交
4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274

	/*
	 * disentangle the css from all css_sets attached to the dummytop. as
	 * in loading, we need to pay our respects to the hashtable gods.
	 */
	write_lock(&css_set_lock);
	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;

		hlist_del(&cg->hlist);
		BUG_ON(!cg->subsys[ss->subsys_id]);
		cg->subsys[ss->subsys_id] = NULL;
		hhead = css_set_hash(cg->subsys);
		hlist_add_head(&cg->hlist, hhead);
	}
	write_unlock(&css_set_lock);

	/*
	 * remove subsystem's css from the dummytop and free it - need to free
	 * before marking as null because ss->destroy needs the cgrp->subsys
	 * pointer to find their state. note that this also takes care of
	 * freeing the css_id.
	 */
	ss->destroy(ss, dummytop);
	dummytop->subsys[ss->subsys_id] = NULL;

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

4275
/**
L
Li Zefan 已提交
4276 4277 4278 4279
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
4280 4281 4282 4283
 */
int __init cgroup_init_early(void)
{
	int i;
4284
	atomic_set(&init_css_set.refcount, 1);
4285 4286
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
4287
	INIT_HLIST_NODE(&init_css_set.hlist);
4288
	css_set_count = 1;
4289
	init_cgroup_root(&rootnode);
4290 4291 4292 4293
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
4294
	init_css_set_link.cgrp = dummytop;
4295
	list_add(&init_css_set_link.cgrp_link_list,
4296 4297 4298
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
4299

4300 4301 4302
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

B
Ben Blum 已提交
4303 4304
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4305 4306 4307 4308 4309 4310 4311
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
4312
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
4324 4325 4326 4327
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
4328 4329 4330 4331 4332
 */
int __init cgroup_init(void)
{
	int err;
	int i;
4333
	struct hlist_head *hhead;
4334 4335 4336 4337

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
4338

B
Ben Blum 已提交
4339 4340
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4341 4342 4343
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
4344
		if (ss->use_id)
4345
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4346 4347
	}

4348 4349 4350
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
4351
	BUG_ON(!init_root_id(&rootnode));
4352 4353 4354 4355 4356 4357 4358

	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

4359
	err = register_filesystem(&cgroup_fs_type);
4360 4361
	if (err < 0) {
		kobject_put(cgroup_kobj);
4362
		goto out;
4363
	}
4364

L
Li Zefan 已提交
4365
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4366

4367
out:
4368 4369 4370
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

4371 4372
	return err;
}
4373

4374 4375 4376 4377 4378 4379
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
4380
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

4410
	for_each_active_root(root) {
4411
		struct cgroup_subsys *ss;
4412
		struct cgroup *cgrp;
4413 4414
		int count = 0;

4415
		seq_printf(m, "%d:", root->hierarchy_id);
4416 4417
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4418 4419 4420
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
4421
		seq_putc(m, ':');
4422
		cgrp = task_cgroup_from_root(tsk, root);
4423
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

4445
const struct file_operations proc_cgroup_operations = {
4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

4457
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
4458 4459 4460 4461 4462
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
4463 4464 4465
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
4466 4467
		if (ss == NULL)
			continue;
4468 4469
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
4470
			   ss->root->number_of_cgroups, !ss->disabled);
4471 4472 4473 4474 4475 4476 4477
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
4478
	return single_open(file, proc_cgroupstats_show, NULL);
4479 4480
}

4481
static const struct file_operations proc_cgroupstats_operations = {
4482 4483 4484 4485 4486 4487
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

4488 4489
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
4490
 * @child: pointer to task_struct of forking parent process.
4491 4492 4493 4494 4495 4496
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
4497
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
4498 4499
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
4500 4501 4502 4503 4504 4505
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
4506 4507 4508 4509 4510
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
4511 4512 4513
}

/**
L
Li Zefan 已提交
4514 4515 4516 4517 4518 4519
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
4520 4521 4522 4523 4524
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
B
Ben Blum 已提交
4525 4526 4527 4528 4529 4530
		/*
		 * forkexit callbacks are only supported for builtin
		 * subsystems, and the builtin section of the subsys array is
		 * immutable, so we don't need to lock the subsys array here.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4531 4532 4533 4534 4535 4536 4537
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

4538
/**
L
Li Zefan 已提交
4539 4540 4541 4542 4543 4544 4545 4546
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
4547 4548 4549 4550
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
4551
		task_lock(child);
4552 4553
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
4554
		task_unlock(child);
4555 4556 4557
		write_unlock(&css_set_lock);
	}
}
4558 4559 4560
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
4561
 * @run_callback: run exit callbacks?
4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4590 4591
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
4592 4593 4594
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
4595
	struct css_set *cg;
4596
	int i;
4597 4598 4599 4600 4601 4602 4603 4604 4605

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
4606
			list_del_init(&tsk->cg_list);
4607 4608 4609
		write_unlock(&css_set_lock);
	}

4610 4611
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
4612 4613
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629

	if (run_callbacks && need_forkexit_callback) {
		/*
		 * modular subsystems can't use callbacks, so no need to lock
		 * the subsys array
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit) {
				struct cgroup *old_cgrp =
					rcu_dereference_raw(cg->subsys[i])->cgroup;
				struct cgroup *cgrp = task_cgroup(tsk, i);
				ss->exit(ss, cgrp, old_cgrp, tsk);
			}
		}
	}
4630
	task_unlock(tsk);
4631

4632
	if (cg)
4633
		put_css_set_taskexit(cg);
4634
}
4635

L
Li Zefan 已提交
4636
/**
4637
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
4638
 * @cgrp: the cgroup in question
4639
 * @task: the task in question
L
Li Zefan 已提交
4640
 *
4641 4642
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
4643 4644 4645 4646 4647 4648
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
4649
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4650 4651 4652 4653
{
	int ret;
	struct cgroup *target;

4654
	if (cgrp == dummytop)
4655 4656
		return 1;

4657
	target = task_cgroup_from_root(task, cgrp->root);
4658 4659 4660
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
4661 4662
	return ret;
}
4663

4664
static void check_for_release(struct cgroup *cgrp)
4665 4666 4667
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
4668 4669
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4670 4671 4672 4673
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
4674
		raw_spin_lock(&release_list_lock);
4675 4676 4677
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
4678 4679
			need_schedule_work = 1;
		}
4680
		raw_spin_unlock(&release_list_lock);
4681 4682 4683 4684 4685
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

4686 4687
/* Caller must verify that the css is not for root cgroup */
void __css_put(struct cgroup_subsys_state *css, int count)
4688
{
4689
	struct cgroup *cgrp = css->cgroup;
4690
	int val;
4691
	rcu_read_lock();
4692
	val = atomic_sub_return(count, &css->refcnt);
4693
	if (val == 1) {
4694 4695 4696 4697
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
4698
		cgroup_wakeup_rmdir_waiter(cgrp);
4699 4700
	}
	rcu_read_unlock();
4701
	WARN_ON_ONCE(val < 1);
4702
}
B
Ben Blum 已提交
4703
EXPORT_SYMBOL_GPL(__css_put);
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
4732
	raw_spin_lock(&release_list_lock);
4733 4734 4735
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
4736
		char *pathbuf = NULL, *agentbuf = NULL;
4737
		struct cgroup *cgrp = list_entry(release_list.next,
4738 4739
						    struct cgroup,
						    release_list);
4740
		list_del_init(&cgrp->release_list);
4741
		raw_spin_unlock(&release_list_lock);
4742
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4743 4744 4745 4746 4747 4748 4749
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
4750 4751

		i = 0;
4752 4753
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
4768 4769 4770
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
4771
		raw_spin_lock(&release_list_lock);
4772
	}
4773
	raw_spin_unlock(&release_list_lock);
4774 4775
	mutex_unlock(&cgroup_mutex);
}
4776 4777 4778 4779 4780 4781 4782 4783 4784

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
B
Ben Blum 已提交
4785 4786 4787 4788 4789
		/*
		 * cgroup_disable, being at boot time, can't know about module
		 * subsystems, so we don't worry about them.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
4803 4804 4805 4806 4807 4808 4809 4810 4811 4812

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
4813 4814 4815 4816 4817 4818 4819
	struct css_id *cssid;

	/*
	 * This css_id() can return correct value when somone has refcnt
	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
	 * it's unchanged until freed.
	 */
4820
	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
K
KAMEZAWA Hiroyuki 已提交
4821 4822 4823 4824 4825

	if (cssid)
		return cssid->id;
	return 0;
}
B
Ben Blum 已提交
4826
EXPORT_SYMBOL_GPL(css_id);
K
KAMEZAWA Hiroyuki 已提交
4827 4828 4829

unsigned short css_depth(struct cgroup_subsys_state *css)
{
4830 4831
	struct css_id *cssid;

4832
	cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
K
KAMEZAWA Hiroyuki 已提交
4833 4834 4835 4836 4837

	if (cssid)
		return cssid->depth;
	return 0;
}
B
Ben Blum 已提交
4838
EXPORT_SYMBOL_GPL(css_depth);
K
KAMEZAWA Hiroyuki 已提交
4839

4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
/**
 *  css_is_ancestor - test "root" css is an ancestor of "child"
 * @child: the css to be tested.
 * @root: the css supporsed to be an ancestor of the child.
 *
 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
 * But, considering usual usage, the csses should be valid objects after test.
 * Assuming that the caller will do some action to the child if this returns
 * returns true, the caller must take "child";s reference count.
 * If "child" is valid object and this returns true, "root" is valid, too.
 */

K
KAMEZAWA Hiroyuki 已提交
4853
bool css_is_ancestor(struct cgroup_subsys_state *child,
4854
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
4855
{
4856 4857 4858
	struct css_id *child_id;
	struct css_id *root_id;
	bool ret = true;
K
KAMEZAWA Hiroyuki 已提交
4859

4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
	rcu_read_lock();
	child_id  = rcu_dereference(child->id);
	root_id = rcu_dereference(root->id);
	if (!child_id
	    || !root_id
	    || (child_id->depth < root_id->depth)
	    || (child_id->stack[root_id->depth] != root_id->id))
		ret = false;
	rcu_read_unlock();
	return ret;
K
KAMEZAWA Hiroyuki 已提交
4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
4886
	kfree_rcu(id, rcu_head);
K
KAMEZAWA Hiroyuki 已提交
4887
}
B
Ben Blum 已提交
4888
EXPORT_SYMBOL_GPL(free_css_id);
K
KAMEZAWA Hiroyuki 已提交
4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

4938 4939
static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
K
KAMEZAWA Hiroyuki 已提交
4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960
{
	struct css_id *newid;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
4961
	struct css_id *child_id, *parent_id;
K
KAMEZAWA Hiroyuki 已提交
4962 4963 4964 4965 4966

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	parent_id = parent_css->id;
4967
	depth = parent_id->depth + 1;
K
KAMEZAWA Hiroyuki 已提交
4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}
B
Ben Blum 已提交
5005
EXPORT_SYMBOL_GPL(css_lookup);
K
KAMEZAWA Hiroyuki 已提交
5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

S
Stephane Eranian 已提交
5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079
/*
 * get corresponding css from file open on cgroupfs directory
 */
struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
{
	struct cgroup *cgrp;
	struct inode *inode;
	struct cgroup_subsys_state *css;

	inode = f->f_dentry->d_inode;
	/* check in cgroup filesystem dir */
	if (inode->i_op != &cgroup_dir_inode_operations)
		return ERR_PTR(-EBADF);

	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
		return ERR_PTR(-EINVAL);

	/* get cgroup */
	cgrp = __d_cgrp(f->f_dentry);
	css = cgrp->subsys[id];
	return css ? css : ERR_PTR(-ENOENT);
}

5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
						   struct cgroup *cont)
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
5141 5142
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

5201 5202 5203 5204 5205 5206 5207 5208 5209 5210
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */