cgroup.c 137.3 KB
Newer Older
1 2 3 4 5 6
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
7 8 9 10
 *  Notifications support
 *  Copyright (C) 2009 Nokia Corporation
 *  Author: Kirill A. Shutemov
 *
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
30
#include <linux/ctype.h>
31 32 33 34 35 36 37 38
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
39
#include <linux/proc_fs.h>
40 41
#include <linux/rcupdate.h>
#include <linux/sched.h>
42
#include <linux/backing-dev.h>
43 44 45 46 47
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
48
#include <linux/sort.h>
49
#include <linux/kmod.h>
50
#include <linux/module.h>
B
Balbir Singh 已提交
51 52
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
53
#include <linux/hash.h>
54
#include <linux/namei.h>
L
Li Zefan 已提交
55
#include <linux/pid_namespace.h>
56
#include <linux/idr.h>
57
#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 59
#include <linux/eventfd.h>
#include <linux/poll.h>
60
#include <linux/flex_array.h> /* used in cgroup_attach_proc */
B
Balbir Singh 已提交
61

62 63
#include <asm/atomic.h>

64 65
static DEFINE_MUTEX(cgroup_mutex);

B
Ben Blum 已提交
66 67 68 69 70 71
/*
 * Generate an array of cgroup subsystem pointers. At boot time, this is
 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
 * registered after that. The mutable section of this array is protected by
 * cgroup_mutex.
 */
72
#define SUBSYS(_x) &_x ## _subsys,
B
Ben Blum 已提交
73
static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
74 75 76
#include <linux/cgroup_subsys.h>
};

77 78
#define MAX_CGROUP_ROOT_NAMELEN 64

79 80 81 82 83 84 85 86 87 88 89 90 91 92
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

93 94 95
	/* Unique id for this hierarchy. */
	int hierarchy_id;

96 97 98 99 100 101 102 103 104 105 106 107
	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

108
	/* A list running through the active hierarchies */
109 110 111 112
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
113

114
	/* The path to use for release notifications. */
115
	char release_agent_path[PATH_MAX];
116 117 118

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
119 120 121 122 123 124 125 126 127
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
A
Arnd Bergmann 已提交
141
	struct cgroup_subsys_state __rcu *css;
K
KAMEZAWA Hiroyuki 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};

160
/*
L
Lucas De Marchi 已提交
161
 * cgroup_event represents events which userspace want to receive.
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
 */
struct cgroup_event {
	/*
	 * Cgroup which the event belongs to.
	 */
	struct cgroup *cgrp;
	/*
	 * Control file which the event associated.
	 */
	struct cftype *cft;
	/*
	 * eventfd to signal userspace about the event.
	 */
	struct eventfd_ctx *eventfd;
	/*
	 * Each of these stored in a list by the cgroup.
	 */
	struct list_head list;
	/*
	 * All fields below needed to unregister event when
	 * userspace closes eventfd.
	 */
	poll_table pt;
	wait_queue_head_t *wqh;
	wait_queue_t wait;
	struct work_struct remove;
};
K
KAMEZAWA Hiroyuki 已提交
189

190 191 192
/* The list of hierarchy roots */

static LIST_HEAD(roots);
193
static int root_count;
194

195 196 197 198
static DEFINE_IDA(hierarchy_ida);
static int next_hierarchy_id;
static DEFINE_SPINLOCK(hierarchy_id_lock);

199 200 201 202
/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
203 204 205
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
206
 */
207
static int need_forkexit_callback __read_mostly;
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222
#ifdef CONFIG_PROVE_LOCKING
int cgroup_lock_is_held(void)
{
	return lockdep_is_held(&cgroup_mutex);
}
#else /* #ifdef CONFIG_PROVE_LOCKING */
int cgroup_lock_is_held(void)
{
	return mutex_is_locked(&cgroup_mutex);
}
#endif /* #else #ifdef CONFIG_PROVE_LOCKING */

EXPORT_SYMBOL_GPL(cgroup_lock_is_held);

223
/* convenient tests for these bits */
224
inline int cgroup_is_removed(const struct cgroup *cgrp)
225
{
226
	return test_bit(CGRP_REMOVED, &cgrp->flags);
227 228 229 230 231 232 233
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

234
static int cgroup_is_releasable(const struct cgroup *cgrp)
235 236
{
	const int bits =
237 238 239
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
240 241
}

242
static int notify_on_release(const struct cgroup *cgrp)
243
{
244
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
245 246
}

247 248 249 250 251
static int clone_children(const struct cgroup *cgrp)
{
	return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
}

252 253 254 255 256 257 258
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

259 260
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
261 262
list_for_each_entry(_root, &roots, root_list)

263 264 265 266 267 268
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
269
static void check_for_release(struct cgroup *cgrp);
270

271 272 273 274 275 276
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
277
	struct list_head cgrp_link_list;
278
	struct cgroup *cgrp;
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

297 298
static int cgroup_init_idr(struct cgroup_subsys *ss,
			   struct cgroup_subsys_state *css);
K
KAMEZAWA Hiroyuki 已提交
299

300 301 302 303 304 305
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

306 307 308 309 310
/*
 * hash table for cgroup groups. This improves the performance to find
 * an existing css_set. This hash doesn't (currently) take into
 * account cgroups in empty hierarchies.
 */
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

330 331 332 333
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
334
static int use_task_css_set_links __read_mostly;
335

336
static void __put_css_set(struct css_set *cg, int taskexit)
337
{
K
KOSAKI Motohiro 已提交
338 339
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
340 341 342 343 344 345 346 347 348 349 350 351
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
352

353 354 355 356 357 358 359 360 361
	/* This css_set is dead. unlink it and release cgroup refcounts */
	hlist_del(&cg->hlist);
	css_set_count--;

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
		struct cgroup *cgrp = link->cgrp;
		list_del(&link->cg_link_list);
		list_del(&link->cgrp_link_list);
362 363
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
364
			if (taskexit)
365 366
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
367
		}
368 369

		kfree(link);
370
	}
371 372

	write_unlock(&css_set_lock);
373
	kfree_rcu(cg, rcu_head);
374 375
}

376 377 378 379 380
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
381
	atomic_inc(&cg->refcount);
382 383 384 385
}

static inline void put_css_set(struct css_set *cg)
{
386
	__put_css_set(cg, 0);
387 388
}

389 390
static inline void put_css_set_taskexit(struct css_set *cg)
{
391
	__put_css_set(cg, 1);
392 393
}

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 * compare_css_sets - helper function for find_existing_css_set().
 * @cg: candidate css_set being tested
 * @old_cg: existing css_set for a task
 * @new_cgrp: cgroup that's being entered by the task
 * @template: desired set of css pointers in css_set (pre-calculated)
 *
 * Returns true if "cg" matches "old_cg" except for the hierarchy
 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
 */
static bool compare_css_sets(struct css_set *cg,
			     struct css_set *old_cg,
			     struct cgroup *new_cgrp,
			     struct cgroup_subsys_state *template[])
{
	struct list_head *l1, *l2;

	if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
		/* Not all subsystems matched */
		return false;
	}

	/*
	 * Compare cgroup pointers in order to distinguish between
	 * different cgroups in heirarchies with no subsystems. We
	 * could get by with just this check alone (and skip the
	 * memcmp above) but on most setups the memcmp check will
	 * avoid the need for this more expensive check on almost all
	 * candidates.
	 */

	l1 = &cg->cg_links;
	l2 = &old_cg->cg_links;
	while (1) {
		struct cg_cgroup_link *cgl1, *cgl2;
		struct cgroup *cg1, *cg2;

		l1 = l1->next;
		l2 = l2->next;
		/* See if we reached the end - both lists are equal length. */
		if (l1 == &cg->cg_links) {
			BUG_ON(l2 != &old_cg->cg_links);
			break;
		} else {
			BUG_ON(l2 == &old_cg->cg_links);
		}
		/* Locate the cgroups associated with these links. */
		cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
		cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
		cg1 = cgl1->cgrp;
		cg2 = cgl2->cgrp;
		/* Hierarchies should be linked in the same order. */
		BUG_ON(cg1->root != cg2->root);

		/*
		 * If this hierarchy is the hierarchy of the cgroup
		 * that's changing, then we need to check that this
		 * css_set points to the new cgroup; if it's any other
		 * hierarchy, then this css_set should point to the
		 * same cgroup as the old css_set.
		 */
		if (cg1->root == new_cgrp->root) {
			if (cg1 != new_cgrp)
				return false;
		} else {
			if (cg1 != cg2)
				return false;
		}
	}
	return true;
}

466 467 468
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
469
 * css_set is suitable.
470 471 472 473
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
474
 * cgrp: the cgroup that we're moving into
475 476 477 478 479 480
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
481
	struct cgroup *cgrp,
482
	struct cgroup_subsys_state *template[])
483 484
{
	int i;
485
	struct cgroupfs_root *root = cgrp->root;
486 487 488
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
489

B
Ben Blum 已提交
490 491 492 493 494
	/*
	 * Build the set of subsystem state objects that we want to see in the
	 * new css_set. while subsystems can change globally, the entries here
	 * won't change, so no need for locking.
	 */
495
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
496
		if (root->subsys_bits & (1UL << i)) {
497 498 499
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
500
			template[i] = cgrp->subsys[i];
501 502 503 504 505 506 507
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

508 509
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
510 511 512 513 514
		if (!compare_css_sets(cg, oldcg, cgrp, template))
			continue;

		/* This css_set matches what we need */
		return cg;
515
	}
516 517 518 519 520

	/* No existing cgroup group matched */
	return NULL;
}

521 522 523 524 525 526 527 528 529 530 531
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

532 533
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
534
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
535 536 537 538 539 540 541 542 543 544
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
545
			free_cg_links(tmp);
546 547
			return -ENOMEM;
		}
548
		list_add(&link->cgrp_link_list, tmp);
549 550 551 552
	}
	return 0;
}

553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
568
	link->cgrp = cgrp;
569
	atomic_inc(&cgrp->count);
570
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
571 572 573 574 575
	/*
	 * Always add links to the tail of the list so that the list
	 * is sorted by order of hierarchy creation
	 */
	list_add_tail(&link->cg_link_list, &cg->cg_links);
576 577
}

578 579 580 581 582 583 584 585
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
586
	struct css_set *oldcg, struct cgroup *cgrp)
587 588 589 590 591 592
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	struct list_head tmp_cg_links;

593
	struct hlist_head *hhead;
594
	struct cg_cgroup_link *link;
595

596 597
	/* First see if we already have a cgroup group that matches
	 * the desired set */
598
	read_lock(&css_set_lock);
599
	res = find_existing_css_set(oldcg, cgrp, template);
600 601
	if (res)
		get_css_set(res);
602
	read_unlock(&css_set_lock);
603 604 605 606 607 608 609 610 611 612 613 614 615 616

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

617
	atomic_set(&res->refcount, 1);
618 619
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
620
	INIT_HLIST_NODE(&res->hlist);
621 622 623 624 625 626 627

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
628 629 630 631 632 633
	list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		if (c->root == cgrp->root)
			c = cgrp;
		link_css_set(&tmp_cg_links, res, c);
	}
634 635 636 637

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
638 639 640 641 642

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

643 644 645
	write_unlock(&css_set_lock);

	return res;
646 647
}

648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
/*
 * Return the cgroup for "task" from the given hierarchy. Must be
 * called with cgroup_mutex held.
 */
static struct cgroup *task_cgroup_from_root(struct task_struct *task,
					    struct cgroupfs_root *root)
{
	struct css_set *css;
	struct cgroup *res = NULL;

	BUG_ON(!mutex_is_locked(&cgroup_mutex));
	read_lock(&css_set_lock);
	/*
	 * No need to lock the task - since we hold cgroup_mutex the
	 * task can't change groups, so the only thing that can happen
	 * is that it exits and its css is set back to init_css_set.
	 */
	css = task->cgroups;
	if (css == &init_css_set) {
		res = &root->top_cgroup;
	} else {
		struct cg_cgroup_link *link;
		list_for_each_entry(link, &css->cg_links, cg_link_list) {
			struct cgroup *c = link->cgrp;
			if (c->root == root) {
				res = c;
				break;
			}
		}
	}
	read_unlock(&css_set_lock);
	BUG_ON(!res);
	return res;
}

683 684 685 686 687 688 689 690 691 692
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
693
 * cgroup_attach_task() can increment it again.  Because a count of zero
694 695 696 697 698 699 700 701 702 703 704 705 706
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
707 708
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
709 710 711 712 713 714 715 716 717 718 719
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
720
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
721
 * another.  It does so using cgroup_mutex, however there are
722 723 724
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
725
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
726 727 728 729
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
730
 * update of a tasks cgroup pointer by cgroup_attach_task()
731 732 733 734 735 736 737 738 739 740
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}
B
Ben Blum 已提交
741
EXPORT_SYMBOL_GPL(cgroup_lock);
742 743 744 745 746 747 748 749 750 751

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}
B
Ben Blum 已提交
752
EXPORT_SYMBOL_GPL(cgroup_unlock);
753 754 755 756 757 758 759 760 761

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
762
static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
763
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
764
static int cgroup_populate_dir(struct cgroup *cgrp);
765
static const struct inode_operations cgroup_dir_inode_operations;
766
static const struct file_operations proc_cgroupstats_operations;
767 768

static struct backing_dev_info cgroup_backing_dev_info = {
769
	.name		= "cgroup",
770
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
771
};
772

K
KAMEZAWA Hiroyuki 已提交
773 774 775
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

776 777 778 779 780
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
781
		inode->i_ino = get_next_ino();
782
		inode->i_mode = mode;
783 784
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
785 786 787 788 789 790
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

791 792 793 794
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
795
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
796 797
{
	struct cgroup_subsys *ss;
798 799
	int ret = 0;

800
	for_each_subsys(cgrp->root, ss)
801 802 803
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
804
				break;
805
		}
806

807
	return ret;
808 809
}

810 811 812 813
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
814
		struct cgroup *cgrp = dentry->d_fsdata;
815
		struct cgroup_subsys *ss;
816
		BUG_ON(!(cgroup_is_removed(cgrp)));
817 818 819 820 821 822 823
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
824 825 826 827 828

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
829 830
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
831 832 833 834

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

835 836 837 838
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
839 840
		deactivate_super(cgrp->root->sb);

841 842 843 844 845 846
		/*
		 * if we're getting rid of the cgroup, refcount should ensure
		 * that there are no pidlists left.
		 */
		BUG_ON(!list_empty(&cgrp->pidlists));

847
		kfree_rcu(cgrp, rcu_head);
848 849 850 851
	}
	iput(inode);
}

852 853 854 855 856
static int cgroup_delete(const struct dentry *d)
{
	return 1;
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870
static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
N
Nick Piggin 已提交
871
	spin_lock(&dentry->d_lock);
872 873 874
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
N
Nick Piggin 已提交
875 876

		spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
877 878 879 880 881
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
882
			dget_dlock(d);
N
Nick Piggin 已提交
883 884
			spin_unlock(&d->d_lock);
			spin_unlock(&dentry->d_lock);
885 886 887
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
N
Nick Piggin 已提交
888 889 890
			spin_lock(&dentry->d_lock);
		} else
			spin_unlock(&d->d_lock);
891 892
		node = dentry->d_subdirs.next;
	}
N
Nick Piggin 已提交
893
	spin_unlock(&dentry->d_lock);
894 895 896 897 898 899 900
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
N
Nick Piggin 已提交
901 902
	struct dentry *parent;

903 904
	cgroup_clear_directory(dentry);

N
Nick Piggin 已提交
905 906
	parent = dentry->d_parent;
	spin_lock(&parent->d_lock);
907
	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
908
	list_del_init(&dentry->d_u.d_child);
N
Nick Piggin 已提交
909 910
	spin_unlock(&dentry->d_lock);
	spin_unlock(&parent->d_lock);
911 912 913
	remove_dir(dentry);
}

914 915 916 917 918 919
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
920
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
921 922 923
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

924
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
925
{
926
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
927 928 929
		wake_up_all(&cgroup_rmdir_waitq);
}

930 931 932 933 934 935 936 937 938 939 940
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}

B
Ben Blum 已提交
941
/*
B
Ben Blum 已提交
942 943 944
 * Call with cgroup_mutex held. Drops reference counts on modules, including
 * any duplicate ones that parse_cgroupfs_options took. If this function
 * returns an error, no reference counts are touched.
B
Ben Blum 已提交
945
 */
946 947 948 949
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
950
	struct cgroup *cgrp = &root->top_cgroup;
951 952
	int i;

B
Ben Blum 已提交
953 954
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

955 956 957 958
	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
959
		unsigned long bit = 1UL << i;
960 961 962
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
B
Ben Blum 已提交
963 964 965 966 967 968
		/*
		 * Nobody should tell us to do a subsys that doesn't exist:
		 * parse_cgroupfs_options should catch that case and refcounts
		 * ensure that subsystems won't disappear once selected.
		 */
		BUG_ON(ss == NULL);
969 970 971 972 973 974 975 976 977 978
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
979
	if (root->number_of_cgroups > 1)
980 981 982 983 984 985 986 987
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
B
Ben Blum 已提交
988
			BUG_ON(ss == NULL);
989
			BUG_ON(cgrp->subsys[i]);
990 991
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
992
			mutex_lock(&ss->hierarchy_mutex);
993 994
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
995
			list_move(&ss->sibling, &root->subsys_list);
996
			ss->root = root;
997
			if (ss->bind)
998
				ss->bind(ss, cgrp);
999
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1000
			/* refcount was already taken, and we're keeping it */
1001 1002
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
B
Ben Blum 已提交
1003
			BUG_ON(ss == NULL);
1004 1005
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1006
			mutex_lock(&ss->hierarchy_mutex);
1007 1008 1009
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
1010
			cgrp->subsys[i] = NULL;
1011
			subsys[i]->root = &rootnode;
1012
			list_move(&ss->sibling, &rootnode.subsys_list);
1013
			mutex_unlock(&ss->hierarchy_mutex);
B
Ben Blum 已提交
1014 1015
			/* subsystem is now free - drop reference on module */
			module_put(ss->module);
1016 1017
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
B
Ben Blum 已提交
1018
			BUG_ON(ss == NULL);
1019
			BUG_ON(!cgrp->subsys[i]);
B
Ben Blum 已提交
1020 1021 1022 1023 1024 1025 1026 1027
			/*
			 * a refcount was taken, but we already had one, so
			 * drop the extra reference.
			 */
			module_put(ss->module);
#ifdef CONFIG_MODULE_UNLOAD
			BUG_ON(ss->module && !module_refcount(ss->module));
#endif
1028 1029
		} else {
			/* Subsystem state shouldn't exist */
1030
			BUG_ON(cgrp->subsys[i]);
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
1049 1050
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1051 1052
	if (clone_children(&root->top_cgroup))
		seq_puts(seq, ",clone_children");
1053 1054
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
1055 1056 1057 1058 1059 1060 1061
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
1062
	char *release_agent;
1063
	bool clone_children;
1064
	char *name;
1065 1066
	/* User explicitly requested empty subsystem */
	bool none;
1067 1068

	struct cgroupfs_root *new_root;
1069

1070 1071
};

B
Ben Blum 已提交
1072 1073
/*
 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
B
Ben Blum 已提交
1074 1075 1076
 * with cgroup_mutex held to protect the subsys[] array. This function takes
 * refcounts on subsystems to be used, unless it returns error, in which case
 * no refcounts are taken.
B
Ben Blum 已提交
1077
 */
B
Ben Blum 已提交
1078
static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1079
{
1080 1081
	char *token, *o = data;
	bool all_ss = false, one_ss = false;
1082
	unsigned long mask = (unsigned long)-1;
B
Ben Blum 已提交
1083 1084
	int i;
	bool module_pin_failed = false;
1085

B
Ben Blum 已提交
1086 1087
	BUG_ON(!mutex_is_locked(&cgroup_mutex));

1088 1089 1090
#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
1091

1092
	memset(opts, 0, sizeof(*opts));
1093 1094 1095 1096

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
1097
		if (!strcmp(token, "none")) {
1098 1099
			/* Explicitly have no subsystems */
			opts->none = true;
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
			continue;
		}
		if (!strcmp(token, "all")) {
			/* Mutually exclusive option 'all' + subsystem name */
			if (one_ss)
				return -EINVAL;
			all_ss = true;
			continue;
		}
		if (!strcmp(token, "noprefix")) {
1110
			set_bit(ROOT_NOPREFIX, &opts->flags);
1111 1112 1113
			continue;
		}
		if (!strcmp(token, "clone_children")) {
1114
			opts->clone_children = true;
1115 1116 1117
			continue;
		}
		if (!strncmp(token, "release_agent=", 14)) {
1118 1119 1120
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
1121
			opts->release_agent =
1122
				kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1123 1124
			if (!opts->release_agent)
				return -ENOMEM;
1125 1126 1127
			continue;
		}
		if (!strncmp(token, "name=", 5)) {
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
1145
					      MAX_CGROUP_ROOT_NAMELEN - 1,
1146 1147 1148
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186

			continue;
		}

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (strcmp(token, ss->name))
				continue;
			if (ss->disabled)
				continue;

			/* Mutually exclusive option 'all' + subsystem name */
			if (all_ss)
				return -EINVAL;
			set_bit(i, &opts->subsys_bits);
			one_ss = true;

			break;
		}
		if (i == CGROUP_SUBSYS_COUNT)
			return -ENOENT;
	}

	/*
	 * If the 'all' option was specified select all the subsystems,
	 * otherwise 'all, 'none' and a subsystem name options were not
	 * specified, let's default to 'all'
	 */
	if (all_ss || (!all_ss && !one_ss && !opts->none)) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss == NULL)
				continue;
			if (ss->disabled)
				continue;
			set_bit(i, &opts->subsys_bits);
1187 1188 1189
		}
	}

1190 1191
	/* Consistency checks */

1192 1193 1194 1195 1196 1197 1198 1199 1200
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

1201 1202 1203 1204 1205 1206 1207 1208 1209

	/* Can't specify "none" and some subsystems */
	if (opts->subsys_bits && opts->none)
		return -EINVAL;

	/*
	 * We either have to specify by name or by subsystems. (So all
	 * empty hierarchies must have a name).
	 */
1210
	if (!opts->subsys_bits && !opts->name)
1211 1212
		return -EINVAL;

B
Ben Blum 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
	/*
	 * Grab references on all the modules we'll need, so the subsystems
	 * don't dance around before rebind_subsystems attaches them. This may
	 * take duplicate reference counts on a subsystem that's already used,
	 * but rebind_subsystems handles this case.
	 */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & opts->subsys_bits))
			continue;
		if (!try_module_get(subsys[i]->module)) {
			module_pin_failed = true;
			break;
		}
	}
	if (module_pin_failed) {
		/*
		 * oops, one of the modules was going away. this means that we
		 * raced with a module_delete call, and to the user this is
		 * essentially a "subsystem doesn't exist" case.
		 */
		for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
			/* drop refcounts only on the ones we took */
			unsigned long bit = 1UL << i;

			if (!(bit & opts->subsys_bits))
				continue;
			module_put(subsys[i]->module);
		}
		return -ENOENT;
	}

1246 1247 1248
	return 0;
}

B
Ben Blum 已提交
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
static void drop_parsed_module_refcounts(unsigned long subsys_bits)
{
	int i;
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		unsigned long bit = 1UL << i;

		if (!(bit & subsys_bits))
			continue;
		module_put(subsys[i]->module);
	}
}

1261 1262 1263 1264
static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
1265
	struct cgroup *cgrp = &root->top_cgroup;
1266 1267
	struct cgroup_sb_opts opts;

1268
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1269 1270 1271 1272 1273 1274 1275
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

B
Ben Blum 已提交
1276 1277 1278
	/* Don't allow flags or name to change at remount */
	if (opts.flags != root->flags ||
	    (opts.name && strcmp(opts.name, root->name))) {
1279
		ret = -EINVAL;
B
Ben Blum 已提交
1280
		drop_parsed_module_refcounts(opts.subsys_bits);
1281 1282 1283
		goto out_unlock;
	}

1284
	ret = rebind_subsystems(root, opts.subsys_bits);
B
Ben Blum 已提交
1285 1286
	if (ret) {
		drop_parsed_module_refcounts(opts.subsys_bits);
1287
		goto out_unlock;
B
Ben Blum 已提交
1288
	}
1289 1290

	/* (re)populate subsystem files */
1291
	cgroup_populate_dir(cgrp);
1292

1293 1294
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
1295
 out_unlock:
1296
	kfree(opts.release_agent);
1297
	kfree(opts.name);
1298
	mutex_unlock(&cgroup_mutex);
1299
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1300 1301 1302
	return ret;
}

1303
static const struct super_operations cgroup_ops = {
1304 1305 1306 1307 1308 1309
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1310 1311 1312 1313 1314 1315
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
1316 1317
	INIT_LIST_HEAD(&cgrp->pidlists);
	mutex_init(&cgrp->pidlist_mutex);
1318 1319
	INIT_LIST_HEAD(&cgrp->event_list);
	spin_lock_init(&cgrp->event_list_lock);
1320
}
1321

1322 1323
static void init_cgroup_root(struct cgroupfs_root *root)
{
1324
	struct cgroup *cgrp = &root->top_cgroup;
1325 1326 1327
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1328 1329
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1330
	init_cgroup_housekeeping(cgrp);
1331 1332
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
static bool init_root_id(struct cgroupfs_root *root)
{
	int ret = 0;

	do {
		if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
			return false;
		spin_lock(&hierarchy_id_lock);
		/* Try to allocate the next unused ID */
		ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
					&root->hierarchy_id);
		if (ret == -ENOSPC)
			/* Try again starting from 0 */
			ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
		if (!ret) {
			next_hierarchy_id = root->hierarchy_id + 1;
		} else if (ret != -EAGAIN) {
			/* Can only get here if the 31-bit IDR is full ... */
			BUG_ON(ret);
		}
		spin_unlock(&hierarchy_id_lock);
	} while (ret);
	return true;
}

1358 1359
static int cgroup_test_super(struct super_block *sb, void *data)
{
1360
	struct cgroup_sb_opts *opts = data;
1361 1362
	struct cgroupfs_root *root = sb->s_fs_info;

1363 1364 1365
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1366

1367 1368 1369 1370 1371 1372
	/*
	 * If we asked for subsystems (or explicitly for no
	 * subsystems) then they must match
	 */
	if ((opts->subsys_bits || opts->none)
	    && (opts->subsys_bits != root->subsys_bits))
1373 1374 1375 1376 1377
		return 0;

	return 1;
}

1378 1379 1380 1381
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

1382
	if (!opts->subsys_bits && !opts->none)
1383 1384 1385 1386 1387 1388
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

1389 1390 1391 1392
	if (!init_root_id(root)) {
		kfree(root);
		return ERR_PTR(-ENOMEM);
	}
1393
	init_cgroup_root(root);
1394

1395 1396 1397 1398 1399 1400
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
1401 1402
	if (opts->clone_children)
		set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1403 1404 1405
	return root;
}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static void cgroup_drop_root(struct cgroupfs_root *root)
{
	if (!root)
		return;

	BUG_ON(!root->hierarchy_id);
	spin_lock(&hierarchy_id_lock);
	ida_remove(&hierarchy_ida, root->hierarchy_id);
	spin_unlock(&hierarchy_id_lock);
	kfree(root);
}

1418 1419 1420
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1421 1422 1423 1424 1425 1426
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

1427
	BUG_ON(!opts->subsys_bits && !opts->none);
1428 1429 1430 1431 1432

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1433 1434
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
A
Al Viro 已提交
1446 1447
	static const struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
1448
		.d_delete = cgroup_delete,
A
Al Viro 已提交
1449 1450
	};

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
A
Al Viro 已提交
1468 1469
	/* for everything else we want ->d_op set */
	sb->s_d_op = &cgroup_dops;
1470 1471 1472
	return 0;
}

A
Al Viro 已提交
1473
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1474
			 int flags, const char *unused_dev_name,
A
Al Viro 已提交
1475
			 void *data)
1476 1477
{
	struct cgroup_sb_opts opts;
1478
	struct cgroupfs_root *root;
1479 1480
	int ret = 0;
	struct super_block *sb;
1481
	struct cgroupfs_root *new_root;
1482 1483

	/* First find the desired set of subsystems */
B
Ben Blum 已提交
1484
	mutex_lock(&cgroup_mutex);
1485
	ret = parse_cgroupfs_options(data, &opts);
B
Ben Blum 已提交
1486
	mutex_unlock(&cgroup_mutex);
1487 1488
	if (ret)
		goto out_err;
1489

1490 1491 1492 1493 1494 1495 1496
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
B
Ben Blum 已提交
1497
		goto drop_modules;
1498
	}
1499
	opts.new_root = new_root;
1500

1501 1502
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1503
	if (IS_ERR(sb)) {
1504
		ret = PTR_ERR(sb);
1505
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1506
		goto drop_modules;
1507 1508
	}

1509 1510 1511 1512 1513
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1514
		struct cgroup *root_cgrp = &root->top_cgroup;
1515
		struct inode *inode;
1516
		struct cgroupfs_root *existing_root;
1517
		int i;
1518 1519 1520 1521 1522 1523

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1524
		inode = sb->s_root->d_inode;
1525

1526
		mutex_lock(&inode->i_mutex);
1527 1528
		mutex_lock(&cgroup_mutex);

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
		if (strlen(root->name)) {
			/* Check for name clashes with existing mounts */
			for_each_active_root(existing_root) {
				if (!strcmp(existing_root->name, root->name)) {
					ret = -EBUSY;
					mutex_unlock(&cgroup_mutex);
					mutex_unlock(&inode->i_mutex);
					goto drop_new_super;
				}
			}
		}

1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1555 1556 1557
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1558
			mutex_unlock(&inode->i_mutex);
1559 1560
			free_cg_links(&tmp_cg_links);
			goto drop_new_super;
1561
		}
B
Ben Blum 已提交
1562 1563 1564 1565 1566
		/*
		 * There must be no failure case after here, since rebinding
		 * takes care of subsystems' refcounts, which are explicitly
		 * dropped in the failure exit path.
		 */
1567 1568 1569 1570 1571

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1572
		root_count++;
1573

1574
		sb->s_root->d_fsdata = root_cgrp;
1575 1576
		root->top_cgroup.dentry = sb->s_root;

1577 1578 1579
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1580 1581 1582
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1583
			struct css_set *cg;
1584

1585 1586
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1587
		}
1588 1589 1590 1591
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1592 1593
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1594 1595
		BUG_ON(root->number_of_cgroups != 1);

1596
		cgroup_populate_dir(root_cgrp);
1597
		mutex_unlock(&cgroup_mutex);
1598
		mutex_unlock(&inode->i_mutex);
1599 1600 1601 1602 1603
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
1604
		cgroup_drop_root(opts.new_root);
B
Ben Blum 已提交
1605 1606
		/* no subsys rebinding, so refcounts don't change */
		drop_parsed_module_refcounts(opts.subsys_bits);
1607 1608
	}

1609 1610
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1611
	return dget(sb->s_root);
1612 1613

 drop_new_super:
1614
	deactivate_locked_super(sb);
B
Ben Blum 已提交
1615 1616
 drop_modules:
	drop_parsed_module_refcounts(opts.subsys_bits);
1617 1618 1619
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);
A
Al Viro 已提交
1620
	return ERR_PTR(ret);
1621 1622 1623 1624
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1625
	struct cgroup *cgrp = &root->top_cgroup;
1626
	int ret;
K
KOSAKI Motohiro 已提交
1627 1628
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1629 1630 1631 1632

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1633 1634
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1635 1636 1637 1638 1639 1640 1641 1642

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1643 1644 1645 1646 1647
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1648 1649 1650

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1651
		list_del(&link->cg_link_list);
1652
		list_del(&link->cgrp_link_list);
1653 1654 1655 1656
		kfree(link);
	}
	write_unlock(&css_set_lock);

1657 1658 1659 1660
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1661

1662 1663 1664
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
1665
	cgroup_drop_root(root);
1666 1667 1668 1669
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
A
Al Viro 已提交
1670
	.mount = cgroup_mount,
1671 1672 1673
	.kill_sb = cgroup_kill_sb,
};

1674 1675
static struct kobject *cgroup_kobj;

1676
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1677 1678 1679 1680 1681 1682 1683 1684 1685
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1686 1687 1688 1689 1690 1691
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1692 1693 1694
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1695
 */
1696
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1697 1698
{
	char *start;
1699 1700 1701
	struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
						      rcu_read_lock_held() ||
						      cgroup_lock_is_held());
1702

1703
	if (!dentry || cgrp == dummytop) {
1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1716
		int len = dentry->d_name.len;
1717

1718 1719
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1720
		memcpy(start, dentry->d_name.name, len);
1721 1722
		cgrp = cgrp->parent;
		if (!cgrp)
1723
			break;
1724 1725 1726 1727

		dentry = rcu_dereference_check(cgrp->dentry,
					       rcu_read_lock_held() ||
					       cgroup_lock_is_held());
1728
		if (!cgrp->parent)
1729 1730 1731 1732 1733 1734 1735 1736
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}
B
Ben Blum 已提交
1737
EXPORT_SYMBOL_GPL(cgroup_path);
1738

B
Ben Blum 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
/*
 * cgroup_task_migrate - move a task from one cgroup to another.
 *
 * 'guarantee' is set if the caller promises that a new css_set for the task
 * will already exist. If not set, this function might sleep, and can fail with
 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
 */
static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
			       struct task_struct *tsk, bool guarantee)
{
	struct css_set *oldcg;
	struct css_set *newcg;

	/*
	 * get old css_set. we need to take task_lock and refcount it, because
	 * an exiting task can change its css_set to init_css_set and drop its
	 * old one without taking cgroup_mutex.
	 */
	task_lock(tsk);
	oldcg = tsk->cgroups;
	get_css_set(oldcg);
	task_unlock(tsk);

	/* locate or allocate a new css_set for this task. */
	if (guarantee) {
		/* we know the css_set we want already exists. */
		struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
		read_lock(&css_set_lock);
		newcg = find_existing_css_set(oldcg, cgrp, template);
		BUG_ON(!newcg);
		get_css_set(newcg);
		read_unlock(&css_set_lock);
	} else {
		might_sleep();
		/* find_css_set will give us newcg already referenced. */
		newcg = find_css_set(oldcg, cgrp);
		if (!newcg) {
			put_css_set(oldcg);
			return -ENOMEM;
		}
	}
	put_css_set(oldcg);

	/* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
		put_css_set(newcg);
		return -ESRCH;
	}
	rcu_assign_pointer(tsk->cgroups, newcg);
	task_unlock(tsk);

	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list))
		list_move(&tsk->cg_list, &newcg->tasks);
	write_unlock(&css_set_lock);

	/*
	 * We just gained a reference on oldcg by taking it from the task. As
	 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
	 * it here; it will be freed under RCU.
	 */
	put_css_set(oldcg);

	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
	return 0;
}

L
Li Zefan 已提交
1809 1810 1811 1812
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1813
 *
L
Li Zefan 已提交
1814 1815
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1816
 */
1817
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1818
{
B
Ben Blum 已提交
1819
	int retval;
1820
	struct cgroup_subsys *ss, *failed_ss = NULL;
1821 1822
	struct cgroup *oldcgrp;
	struct cgroupfs_root *root = cgrp->root;
1823 1824

	/* Nothing to do if the task is already in that cgroup */
1825
	oldcgrp = task_cgroup_from_root(tsk, root);
1826
	if (cgrp == oldcgrp)
1827 1828 1829 1830
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1831
			retval = ss->can_attach(ss, cgrp, tsk);
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841
			if (retval) {
				/*
				 * Remember on which subsystem the can_attach()
				 * failed, so that we only call cancel_attach()
				 * against the subsystems whose can_attach()
				 * succeeded. (See below)
				 */
				failed_ss = ss;
				goto out;
			}
1842
		}
1843 1844 1845 1846 1847 1848 1849
		if (ss->can_attach_task) {
			retval = ss->can_attach_task(cgrp, tsk);
			if (retval) {
				failed_ss = ss;
				goto out;
			}
		}
1850 1851
	}

B
Ben Blum 已提交
1852 1853
	retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
	if (retval)
1854
		goto out;
1855

1856
	for_each_subsys(root, ss) {
1857 1858 1859 1860
		if (ss->pre_attach)
			ss->pre_attach(cgrp);
		if (ss->attach_task)
			ss->attach_task(cgrp, tsk);
P
Paul Jackson 已提交
1861
		if (ss->attach)
1862
			ss->attach(ss, cgrp, oldcgrp, tsk);
1863
	}
B
Ben Blum 已提交
1864

1865
	synchronize_rcu();
1866 1867 1868 1869 1870

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1871
	cgroup_wakeup_rmdir_waiter(cgrp);
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
out:
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss)
				/*
				 * This subsystem was the one that failed the
				 * can_attach() check earlier, so we don't need
				 * to call cancel_attach() against it or any
				 * remaining subsystems.
				 */
				break;
			if (ss->cancel_attach)
1884
				ss->cancel_attach(ss, cgrp, tsk);
1885 1886 1887
		}
	}
	return retval;
1888 1889
}

1890
/**
M
Michael S. Tsirkin 已提交
1891 1892
 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
 * @from: attach to all cgroups of a given task
1893 1894
 * @tsk: the task to be attached
 */
M
Michael S. Tsirkin 已提交
1895
int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1896 1897 1898 1899 1900 1901
{
	struct cgroupfs_root *root;
	int retval = 0;

	cgroup_lock();
	for_each_active_root(root) {
M
Michael S. Tsirkin 已提交
1902 1903 1904
		struct cgroup *from_cg = task_cgroup_from_root(from, root);

		retval = cgroup_attach_task(from_cg, tsk);
1905 1906 1907 1908 1909 1910 1911
		if (retval)
			break;
	}
	cgroup_unlock();

	return retval;
}
M
Michael S. Tsirkin 已提交
1912
EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1913

1914
/*
B
Ben Blum 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
 * cgroup_attach_proc works in two stages, the first of which prefetches all
 * new css_sets needed (to make sure we have enough memory before committing
 * to the move) and stores them in a list of entries of the following type.
 * TODO: possible optimization: use css_set->rcu_head for chaining instead
 */
struct cg_list_entry {
	struct css_set *cg;
	struct list_head links;
};

static bool css_set_check_fetched(struct cgroup *cgrp,
				  struct task_struct *tsk, struct css_set *cg,
				  struct list_head *newcg_list)
{
	struct css_set *newcg;
	struct cg_list_entry *cg_entry;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];

	read_lock(&css_set_lock);
	newcg = find_existing_css_set(cg, cgrp, template);
	if (newcg)
		get_css_set(newcg);
	read_unlock(&css_set_lock);

	/* doesn't exist at all? */
	if (!newcg)
		return false;
	/* see if it's already in the list */
	list_for_each_entry(cg_entry, newcg_list, links) {
		if (cg_entry->cg == newcg) {
			put_css_set(newcg);
			return true;
		}
	}

	/* not found */
	put_css_set(newcg);
	return false;
}

/*
 * Find the new css_set and store it in the list in preparation for moving the
 * given task to the given cgroup. Returns 0 or -ENOMEM.
 */
static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
			    struct list_head *newcg_list)
{
	struct css_set *newcg;
	struct cg_list_entry *cg_entry;

	/* ensure a new css_set will exist for this thread */
	newcg = find_css_set(cg, cgrp);
	if (!newcg)
		return -ENOMEM;
	/* add it to the list */
	cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
	if (!cg_entry) {
		put_css_set(newcg);
		return -ENOMEM;
	}
	cg_entry->cg = newcg;
	list_add(&cg_entry->links, newcg_list);
	return 0;
}

/**
 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
 * @cgrp: the cgroup to attach to
 * @leader: the threadgroup leader task_struct of the group to be attached
 *
 * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
 * take task_lock of each thread in leader's threadgroup individually in turn.
 */
int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
{
	int retval, i, group_size;
	struct cgroup_subsys *ss, *failed_ss = NULL;
	bool cancel_failed_ss = false;
	/* guaranteed to be initialized later, but the compiler needs this */
	struct cgroup *oldcgrp = NULL;
	struct css_set *oldcg;
	struct cgroupfs_root *root = cgrp->root;
	/* threadgroup list cursor and array */
	struct task_struct *tsk;
1999
	struct flex_array *group;
B
Ben Blum 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
	/*
	 * we need to make sure we have css_sets for all the tasks we're
	 * going to move -before- we actually start moving them, so that in
	 * case we get an ENOMEM we can bail out before making any changes.
	 */
	struct list_head newcg_list;
	struct cg_list_entry *cg_entry, *temp_nobe;

	/*
	 * step 0: in order to do expensive, possibly blocking operations for
	 * every thread, we cannot iterate the thread group list, since it needs
	 * rcu or tasklist locked. instead, build an array of all threads in the
	 * group - threadgroup_fork_lock prevents new threads from appearing,
	 * and if threads exit, this will just be an over-estimate.
	 */
	group_size = get_nr_threads(leader);
2016 2017 2018
	/* flex_array supports very large thread-groups better than kmalloc. */
	group = flex_array_alloc(sizeof(struct task_struct *), group_size,
				 GFP_KERNEL);
B
Ben Blum 已提交
2019 2020
	if (!group)
		return -ENOMEM;
2021 2022 2023 2024
	/* pre-allocate to guarantee space while iterating in rcu read-side. */
	retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
	if (retval)
		goto out_free_group_list;
B
Ben Blum 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046

	/* prevent changes to the threadgroup list while we take a snapshot. */
	rcu_read_lock();
	if (!thread_group_leader(leader)) {
		/*
		 * a race with de_thread from another thread's exec() may strip
		 * us of our leadership, making while_each_thread unsafe to use
		 * on this task. if this happens, there is no choice but to
		 * throw this task away and try again (from cgroup_procs_write);
		 * this is "double-double-toil-and-trouble-check locking".
		 */
		rcu_read_unlock();
		retval = -EAGAIN;
		goto out_free_group_list;
	}
	/* take a reference on each task in the group to go in the array. */
	tsk = leader;
	i = 0;
	do {
		/* as per above, nr_threads may decrease, but not increase. */
		BUG_ON(i >= group_size);
		get_task_struct(tsk);
2047 2048 2049 2050 2051 2052
		/*
		 * saying GFP_ATOMIC has no effect here because we did prealloc
		 * earlier, but it's good form to communicate our expectations.
		 */
		retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC);
		BUG_ON(retval != 0);
B
Ben Blum 已提交
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
		i++;
	} while_each_thread(leader, tsk);
	/* remember the number of threads in the array for later. */
	group_size = i;
	rcu_read_unlock();

	/*
	 * step 1: check that we can legitimately attach to the cgroup.
	 */
	for_each_subsys(root, ss) {
		if (ss->can_attach) {
			retval = ss->can_attach(ss, cgrp, leader);
			if (retval) {
				failed_ss = ss;
				goto out_cancel_attach;
			}
		}
		/* a callback to be run on every thread in the threadgroup. */
		if (ss->can_attach_task) {
			/* run on each task in the threadgroup. */
			for (i = 0; i < group_size; i++) {
2074 2075
				tsk = flex_array_get_ptr(group, i);
				retval = ss->can_attach_task(cgrp, tsk);
B
Ben Blum 已提交
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
				if (retval) {
					failed_ss = ss;
					cancel_failed_ss = true;
					goto out_cancel_attach;
				}
			}
		}
	}

	/*
	 * step 2: make sure css_sets exist for all threads to be migrated.
	 * we use find_css_set, which allocates a new one if necessary.
	 */
	INIT_LIST_HEAD(&newcg_list);
	for (i = 0; i < group_size; i++) {
2091
		tsk = flex_array_get_ptr(group, i);
B
Ben Blum 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
		/* nothing to do if this task is already in the cgroup */
		oldcgrp = task_cgroup_from_root(tsk, root);
		if (cgrp == oldcgrp)
			continue;
		/* get old css_set pointer */
		task_lock(tsk);
		if (tsk->flags & PF_EXITING) {
			/* ignore this task if it's going away */
			task_unlock(tsk);
			continue;
		}
		oldcg = tsk->cgroups;
		get_css_set(oldcg);
		task_unlock(tsk);
		/* see if the new one for us is already in the list? */
		if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
			/* was already there, nothing to do. */
			put_css_set(oldcg);
		} else {
			/* we don't already have it. get new one. */
			retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
			put_css_set(oldcg);
			if (retval)
				goto out_list_teardown;
		}
	}

	/*
	 * step 3: now that we're guaranteed success wrt the css_sets, proceed
	 * to move all tasks to the new cgroup, calling ss->attach_task for each
	 * one along the way. there are no failure cases after here, so this is
	 * the commit point.
	 */
	for_each_subsys(root, ss) {
		if (ss->pre_attach)
			ss->pre_attach(cgrp);
	}
	for (i = 0; i < group_size; i++) {
2130
		tsk = flex_array_get_ptr(group, i);
B
Ben Blum 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
		/* leave current thread as it is if it's already there */
		oldcgrp = task_cgroup_from_root(tsk, root);
		if (cgrp == oldcgrp)
			continue;
		/* attach each task to each subsystem */
		for_each_subsys(root, ss) {
			if (ss->attach_task)
				ss->attach_task(cgrp, tsk);
		}
		/* if the thread is PF_EXITING, it can just get skipped. */
		retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
		BUG_ON(retval != 0 && retval != -ESRCH);
	}
	/* nothing is sensitive to fork() after this point. */

	/*
	 * step 4: do expensive, non-thread-specific subsystem callbacks.
	 * TODO: if ever a subsystem needs to know the oldcgrp for each task
	 * being moved, this call will need to be reworked to communicate that.
	 */
	for_each_subsys(root, ss) {
		if (ss->attach)
			ss->attach(ss, cgrp, oldcgrp, leader);
	}

	/*
	 * step 5: success! and cleanup
	 */
	synchronize_rcu();
	cgroup_wakeup_rmdir_waiter(cgrp);
	retval = 0;
out_list_teardown:
	/* clean up the list of prefetched css_sets. */
	list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
		list_del(&cg_entry->links);
		put_css_set(cg_entry->cg);
		kfree(cg_entry);
	}
out_cancel_attach:
	/* same deal as in cgroup_attach_task */
	if (retval) {
		for_each_subsys(root, ss) {
			if (ss == failed_ss) {
				if (cancel_failed_ss && ss->cancel_attach)
					ss->cancel_attach(ss, cgrp, leader);
				break;
			}
			if (ss->cancel_attach)
				ss->cancel_attach(ss, cgrp, leader);
		}
	}
	/* clean up the array of referenced threads in the group. */
2183 2184 2185 2186
	for (i = 0; i < group_size; i++) {
		tsk = flex_array_get_ptr(group, i);
		put_task_struct(tsk);
	}
B
Ben Blum 已提交
2187
out_free_group_list:
2188
	flex_array_free(group);
B
Ben Blum 已提交
2189 2190 2191 2192 2193 2194 2195
	return retval;
}

/*
 * Find the task_struct of the task to attach by vpid and pass it along to the
 * function to attach either it or all tasks in its threadgroup. Will take
 * cgroup_mutex; may take task_lock of task.
2196
 */
B
Ben Blum 已提交
2197
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2198 2199
{
	struct task_struct *tsk;
2200
	const struct cred *cred = current_cred(), *tcred;
2201 2202
	int ret;

B
Ben Blum 已提交
2203 2204 2205
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;

2206 2207
	if (pid) {
		rcu_read_lock();
2208
		tsk = find_task_by_vpid(pid);
B
Ben Blum 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
		if (!tsk) {
			rcu_read_unlock();
			cgroup_unlock();
			return -ESRCH;
		}
		if (threadgroup) {
			/*
			 * RCU protects this access, since tsk was found in the
			 * tid map. a race with de_thread may cause group_leader
			 * to stop being the leader, but cgroup_attach_proc will
			 * detect it later.
			 */
			tsk = tsk->group_leader;
		} else if (tsk->flags & PF_EXITING) {
			/* optimization for the single-task-only case */
2224
			rcu_read_unlock();
B
Ben Blum 已提交
2225
			cgroup_unlock();
2226 2227 2228
			return -ESRCH;
		}

B
Ben Blum 已提交
2229 2230 2231 2232
		/*
		 * even if we're attaching all tasks in the thread group, we
		 * only need to check permissions on one of them.
		 */
2233 2234 2235 2236 2237
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
B
Ben Blum 已提交
2238
			cgroup_unlock();
2239 2240
			return -EACCES;
		}
2241 2242
		get_task_struct(tsk);
		rcu_read_unlock();
2243
	} else {
B
Ben Blum 已提交
2244 2245 2246 2247
		if (threadgroup)
			tsk = current->group_leader;
		else
			tsk = current;
2248 2249 2250
		get_task_struct(tsk);
	}

B
Ben Blum 已提交
2251 2252 2253 2254 2255 2256 2257
	if (threadgroup) {
		threadgroup_fork_write_lock(tsk);
		ret = cgroup_attach_proc(cgrp, tsk);
		threadgroup_fork_write_unlock(tsk);
	} else {
		ret = cgroup_attach_task(cgrp, tsk);
	}
2258
	put_task_struct(tsk);
B
Ben Blum 已提交
2259
	cgroup_unlock();
2260 2261 2262
	return ret;
}

2263
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
B
Ben Blum 已提交
2264 2265 2266 2267 2268
{
	return attach_task_by_pid(cgrp, pid, false);
}

static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2269 2270
{
	int ret;
B
Ben Blum 已提交
2271 2272 2273 2274 2275 2276 2277 2278
	do {
		/*
		 * attach_proc fails with -EAGAIN if threadgroup leadership
		 * changes in the middle of the operation, in which case we need
		 * to find the task_struct for the new leader and start over.
		 */
		ret = attach_task_by_pid(cgrp, tgid, true);
	} while (ret == -EAGAIN);
2279 2280 2281
	return ret;
}

2282 2283 2284 2285
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
2286 2287
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
2288
 */
2289
bool cgroup_lock_live_group(struct cgroup *cgrp)
2290 2291 2292 2293 2294 2295 2296 2297
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}
B
Ben Blum 已提交
2298
EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2299 2300 2301 2302 2303

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2304 2305
	if (strlen(buffer) >= PATH_MAX)
		return -EINVAL;
2306 2307 2308
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
2309
	cgroup_unlock();
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
2320
	cgroup_unlock();
2321 2322 2323
	return 0;
}

2324 2325 2326
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

2327
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2328 2329 2330
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
2331
{
2332
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
2344
	if (cft->write_u64) {
K
KOSAKI Motohiro 已提交
2345
		u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2346 2347 2348 2349
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
K
KOSAKI Motohiro 已提交
2350
		s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2351 2352 2353 2354
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
2355 2356 2357 2358 2359
	if (!retval)
		retval = nbytes;
	return retval;
}

2360 2361 2362 2363 2364
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
2365
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
2380 2381 2382 2383
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
2384 2385

	buffer[nbytes] = 0;     /* nul-terminate */
K
KOSAKI Motohiro 已提交
2386
	retval = cft->write_string(cgrp, cft, strstrip(buffer));
2387 2388
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
2389
out:
2390 2391 2392 2393 2394
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

2395 2396 2397 2398
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2399
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2400

2401
	if (cgroup_is_removed(cgrp))
2402
		return -ENODEV;
2403
	if (cft->write)
2404
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2405 2406
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2407 2408
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2409 2410 2411 2412
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
2413
	return -EINVAL;
2414 2415
}

2416 2417 2418 2419
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
2420
{
2421
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2422
	u64 val = cft->read_u64(cgrp, cft);
2423 2424 2425 2426 2427
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2428 2429 2430 2431 2432
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
2433
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2434 2435 2436 2437 2438 2439
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

2440 2441 2442 2443
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
2444
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2445

2446
	if (cgroup_is_removed(cgrp))
2447 2448 2449
		return -ENODEV;

	if (cft->read)
2450
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2451 2452
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2453 2454
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2455 2456 2457
	return -EINVAL;
}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
2478 2479 2480 2481 2482 2483 2484 2485
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
2486 2487
}

2488
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2489 2490 2491 2492 2493 2494
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

2495
static const struct file_operations cgroup_seqfile_operations = {
2496
	.read = seq_read,
2497
	.write = cgroup_file_write,
2498 2499 2500 2501
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

2502 2503 2504 2505 2506 2507 2508 2509 2510
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
2511

2512
	if (cft->read_map || cft->read_seq_string) {
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

2554
static const struct file_operations cgroup_file_operations = {
2555 2556 2557 2558 2559 2560 2561
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

2562
static const struct inode_operations cgroup_dir_inode_operations = {
2563
	.lookup = cgroup_lookup,
2564 2565 2566 2567 2568
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

2569 2570 2571 2572 2573 2574 2575 2576
static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
{
	if (dentry->d_name.len > NAME_MAX)
		return ERR_PTR(-ENAMETOOLONG);
	d_add(dentry, NULL);
	return NULL;
}

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
/*
 * Check if a file is a control file
 */
static inline struct cftype *__file_cft(struct file *file)
{
	if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
		return ERR_PTR(-EINVAL);
	return __d_cft(file->f_dentry);
}

2587 2588 2589
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
				struct super_block *sb)
{
2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
2610
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
2621 2622 2623 2624 2625
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
2626
 */
2627
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
2628
				mode_t mode)
2629 2630 2631 2632
{
	struct dentry *parent;
	int error = 0;

2633 2634
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2635
	if (!error) {
2636
		dentry->d_fsdata = cgrp;
2637
		inc_nlink(parent->d_inode);
2638
		rcu_assign_pointer(cgrp->dentry, dentry);
2639 2640 2641 2642 2643 2644 2645
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

2673
int cgroup_add_file(struct cgroup *cgrp,
2674 2675 2676
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
2677
	struct dentry *dir = cgrp->dentry;
2678 2679
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
2680
	mode_t mode;
2681 2682

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2683
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2684 2685 2686 2687 2688 2689 2690
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
2691 2692
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
2693
						cgrp->root->sb);
2694 2695 2696 2697 2698 2699 2700
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}
2701
EXPORT_SYMBOL_GPL(cgroup_add_file);
2702

2703
int cgroup_add_files(struct cgroup *cgrp,
2704 2705 2706 2707 2708 2709
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
2710
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
2711 2712 2713 2714 2715
		if (err)
			return err;
	}
	return 0;
}
2716
EXPORT_SYMBOL_GPL(cgroup_add_files);
2717

L
Li Zefan 已提交
2718 2719 2720 2721 2722 2723
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
2724
int cgroup_task_count(const struct cgroup *cgrp)
2725 2726
{
	int count = 0;
K
KOSAKI Motohiro 已提交
2727
	struct cg_cgroup_link *link;
2728 2729

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
2730
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2731
		count += atomic_read(&link->cg->refcount);
2732 2733
	}
	read_unlock(&css_set_lock);
2734 2735 2736
	return count;
}

2737 2738 2739 2740
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
2741
static void cgroup_advance_iter(struct cgroup *cgrp,
2742
				struct cgroup_iter *it)
2743 2744 2745 2746 2747 2748 2749 2750
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
2751
		if (l == &cgrp->css_sets) {
2752 2753 2754
			it->cg_link = NULL;
			return;
		}
2755
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2756 2757 2758 2759 2760 2761
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

2762 2763 2764 2765 2766 2767 2768 2769 2770
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
2771
static void cgroup_enable_task_cg_lists(void)
2772 2773 2774 2775 2776 2777
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
2778 2779 2780 2781 2782 2783
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2784 2785 2786 2787 2788 2789
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

2790
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2791 2792 2793 2794 2795 2796
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2797 2798 2799
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2800
	read_lock(&css_set_lock);
2801 2802
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2803 2804
}

2805
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2806 2807 2808 2809
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2810
	struct cg_cgroup_link *link;
2811 2812 2813 2814 2815 2816 2817

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2818 2819
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2820 2821
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2822
		cgroup_advance_iter(cgrp, it);
2823 2824 2825 2826 2827 2828
	} else {
		it->task = l;
	}
	return res;
}

2829
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2830 2831 2832 2833
{
	read_unlock(&css_set_lock);
}

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2971
			struct task_struct *q = heap->ptrs[i];
2972
			if (i == 0) {
2973 2974
				latest_time = q->start_time;
				latest_task = q;
2975 2976
			}
			/* Process the task per the caller's callback */
2977 2978
			scan->process_task(q, scan);
			put_task_struct(q);
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2994
/*
2995
 * Stuff for reading the 'tasks'/'procs' files.
2996 2997 2998 2999 3000 3001 3002 3003
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
/*
 * The following two functions "fix" the issue where there are more pids
 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
 * TODO: replace with a kernel-wide solution to this problem
 */
#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
static void *pidlist_allocate(int count)
{
	if (PIDLIST_TOO_LARGE(count))
		return vmalloc(count * sizeof(pid_t));
	else
		return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
}
static void pidlist_free(void *p)
{
	if (is_vmalloc_addr(p))
		vfree(p);
	else
		kfree(p);
}
static void *pidlist_resize(void *p, int newcount)
{
	void *newlist;
	/* note: if new alloc fails, old p will still be valid either way */
	if (is_vmalloc_addr(p)) {
		newlist = vmalloc(newcount * sizeof(pid_t));
		if (!newlist)
			return NULL;
		memcpy(newlist, p, newcount * sizeof(pid_t));
		vfree(p);
	} else {
		newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
	}
	return newlist;
}

3040
/*
3041 3042 3043 3044
 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
 * If the new stripped list is sufficiently smaller and there's enough memory
 * to allocate a new buffer, will let go of the unneeded memory. Returns the
 * number of unique elements.
3045
 */
3046 3047 3048
/* is the size difference enough that we should re-allocate the array? */
#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
static int pidlist_uniq(pid_t **p, int length)
3049
{
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	int src, dest = 1;
	pid_t *list = *p;
	pid_t *newlist;

	/*
	 * we presume the 0th element is unique, so i starts at 1. trivial
	 * edge cases first; no work needs to be done for either
	 */
	if (length == 0 || length == 1)
		return length;
	/* src and dest walk down the list; dest counts unique elements */
	for (src = 1; src < length; src++) {
		/* find next unique element */
		while (list[src] == list[src-1]) {
			src++;
			if (src == length)
				goto after;
		}
		/* dest always points to where the next unique element goes */
		list[dest] = list[src];
		dest++;
	}
after:
	/*
	 * if the length difference is large enough, we want to allocate a
	 * smaller buffer to save memory. if this fails due to out of memory,
	 * we'll just stay with what we've got.
	 */
	if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3079
		newlist = pidlist_resize(list, dest);
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
		if (newlist)
			*p = newlist;
	}
	return dest;
}

static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
/*
 * find the appropriate pidlist for our purpose (given procs vs tasks)
 * returns with the lock on that pidlist already held, and takes care
 * of the use count, or returns NULL with no locks held if we're out of
 * memory.
 */
static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
						  enum cgroup_filetype type)
{
	struct cgroup_pidlist *l;
	/* don't need task_nsproxy() if we're looking at ourself */
3102 3103
	struct pid_namespace *ns = current->nsproxy->pid_ns;

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
	/*
	 * We can't drop the pidlist_mutex before taking the l->mutex in case
	 * the last ref-holder is trying to remove l from the list at the same
	 * time. Holding the pidlist_mutex precludes somebody taking whichever
	 * list we find out from under us - compare release_pid_array().
	 */
	mutex_lock(&cgrp->pidlist_mutex);
	list_for_each_entry(l, &cgrp->pidlists, links) {
		if (l->key.type == type && l->key.ns == ns) {
			/* make sure l doesn't vanish out from under us */
			down_write(&l->mutex);
			mutex_unlock(&cgrp->pidlist_mutex);
			return l;
		}
	}
	/* entry not found; create a new one */
	l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
	if (!l) {
		mutex_unlock(&cgrp->pidlist_mutex);
		return l;
	}
	init_rwsem(&l->mutex);
	down_write(&l->mutex);
	l->key.type = type;
3128
	l->key.ns = get_pid_ns(ns);
3129 3130 3131 3132 3133 3134 3135 3136
	l->use_count = 0; /* don't increment here */
	l->list = NULL;
	l->owner = cgrp;
	list_add(&l->links, &cgrp->pidlists);
	mutex_unlock(&cgrp->pidlist_mutex);
	return l;
}

3137 3138 3139
/*
 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
 */
3140 3141
static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
			      struct cgroup_pidlist **lp)
3142 3143 3144 3145
{
	pid_t *array;
	int length;
	int pid, n = 0; /* used for populating the array */
3146 3147
	struct cgroup_iter it;
	struct task_struct *tsk;
3148 3149 3150 3151 3152 3153 3154 3155 3156
	struct cgroup_pidlist *l;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
	length = cgroup_task_count(cgrp);
3157
	array = pidlist_allocate(length);
3158 3159 3160
	if (!array)
		return -ENOMEM;
	/* now, populate the array */
3161 3162
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
3163
		if (unlikely(n == length))
3164
			break;
3165
		/* get tgid or pid for procs or tasks file respectively */
3166 3167 3168 3169
		if (type == CGROUP_FILE_PROCS)
			pid = task_tgid_vnr(tsk);
		else
			pid = task_pid_vnr(tsk);
3170 3171
		if (pid > 0) /* make sure to only use valid results */
			array[n++] = pid;
3172
	}
3173
	cgroup_iter_end(cgrp, &it);
3174 3175 3176
	length = n;
	/* now sort & (if procs) strip out duplicates */
	sort(array, length, sizeof(pid_t), cmppid, NULL);
3177
	if (type == CGROUP_FILE_PROCS)
3178
		length = pidlist_uniq(&array, length);
3179 3180
	l = cgroup_pidlist_find(cgrp, type);
	if (!l) {
3181
		pidlist_free(array);
3182
		return -ENOMEM;
3183
	}
3184
	/* store array, freeing old if necessary - lock already held */
3185
	pidlist_free(l->list);
3186 3187 3188 3189
	l->list = array;
	l->length = length;
	l->use_count++;
	up_write(&l->mutex);
3190
	*lp = l;
3191
	return 0;
3192 3193
}

B
Balbir Singh 已提交
3194
/**
L
Li Zefan 已提交
3195
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
3196 3197 3198
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
3199 3200 3201
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
3202 3203 3204 3205
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
3206
	struct cgroup *cgrp;
B
Balbir Singh 已提交
3207 3208
	struct cgroup_iter it;
	struct task_struct *tsk;
3209

B
Balbir Singh 已提交
3210
	/*
3211 3212
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
3213
	 */
3214 3215
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
3216 3217 3218
		 goto err;

	ret = 0;
3219
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
3220

3221 3222
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
3242
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
3243 3244 3245 3246 3247

err:
	return ret;
}

3248

3249
/*
3250
 * seq_file methods for the tasks/procs files. The seq_file position is the
3251
 * next pid to display; the seq_file iterator is a pointer to the pid
3252
 * in the cgroup->l->list array.
3253
 */
3254

3255
static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3256
{
3257 3258 3259 3260 3261 3262
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
3263
	struct cgroup_pidlist *l = s->private;
3264 3265 3266
	int index = 0, pid = *pos;
	int *iter;

3267
	down_read(&l->mutex);
3268
	if (pid) {
3269
		int end = l->length;
S
Stephen Rothwell 已提交
3270

3271 3272
		while (index < end) {
			int mid = (index + end) / 2;
3273
			if (l->list[mid] == pid) {
3274 3275
				index = mid;
				break;
3276
			} else if (l->list[mid] <= pid)
3277 3278 3279 3280 3281 3282
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
3283
	if (index >= l->length)
3284 3285
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
3286
	iter = l->list + index;
3287 3288 3289 3290
	*pos = *iter;
	return iter;
}

3291
static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3292
{
3293 3294
	struct cgroup_pidlist *l = s->private;
	up_read(&l->mutex);
3295 3296
}

3297
static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3298
{
3299 3300 3301
	struct cgroup_pidlist *l = s->private;
	pid_t *p = v;
	pid_t *end = l->list + l->length;
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

3315
static int cgroup_pidlist_show(struct seq_file *s, void *v)
3316 3317 3318
{
	return seq_printf(s, "%d\n", *(int *)v);
}
3319

3320 3321 3322 3323 3324 3325 3326 3327 3328
/*
 * seq_operations functions for iterating on pidlists through seq_file -
 * independent of whether it's tasks or procs
 */
static const struct seq_operations cgroup_pidlist_seq_operations = {
	.start = cgroup_pidlist_start,
	.stop = cgroup_pidlist_stop,
	.next = cgroup_pidlist_next,
	.show = cgroup_pidlist_show,
3329 3330
};

3331
static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3332
{
3333 3334 3335 3336 3337 3338 3339
	/*
	 * the case where we're the last user of this particular pidlist will
	 * have us remove it from the cgroup's list, which entails taking the
	 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
	 * pidlist_mutex, we have to take pidlist_mutex first.
	 */
	mutex_lock(&l->owner->pidlist_mutex);
3340 3341 3342
	down_write(&l->mutex);
	BUG_ON(!l->use_count);
	if (!--l->use_count) {
3343 3344 3345
		/* we're the last user if refcount is 0; remove and free */
		list_del(&l->links);
		mutex_unlock(&l->owner->pidlist_mutex);
3346
		pidlist_free(l->list);
3347 3348 3349 3350
		put_pid_ns(l->key.ns);
		up_write(&l->mutex);
		kfree(l);
		return;
3351
	}
3352
	mutex_unlock(&l->owner->pidlist_mutex);
3353
	up_write(&l->mutex);
3354 3355
}

3356
static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3357
{
3358
	struct cgroup_pidlist *l;
3359 3360
	if (!(file->f_mode & FMODE_READ))
		return 0;
3361 3362 3363 3364 3365 3366
	/*
	 * the seq_file will only be initialized if the file was opened for
	 * reading; hence we check if it's not null only in that case.
	 */
	l = ((struct seq_file *)file->private_data)->private;
	cgroup_release_pid_array(l);
3367 3368 3369
	return seq_release(inode, file);
}

3370
static const struct file_operations cgroup_pidlist_operations = {
3371 3372 3373
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
3374
	.release = cgroup_pidlist_release,
3375 3376
};

3377
/*
3378 3379 3380
 * The following functions handle opens on a file that displays a pidlist
 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
 * in the cgroup.
3381
 */
3382
/* helper function for the two below it */
3383
static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3384
{
3385
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3386
	struct cgroup_pidlist *l;
3387
	int retval;
3388

3389
	/* Nothing to do for write-only files */
3390 3391 3392
	if (!(file->f_mode & FMODE_READ))
		return 0;

3393
	/* have the array populated */
3394
	retval = pidlist_array_load(cgrp, type, &l);
3395 3396 3397 3398
	if (retval)
		return retval;
	/* configure file information */
	file->f_op = &cgroup_pidlist_operations;
3399

3400
	retval = seq_open(file, &cgroup_pidlist_seq_operations);
3401
	if (retval) {
3402
		cgroup_release_pid_array(l);
3403
		return retval;
3404
	}
3405
	((struct seq_file *)file->private_data)->private = l;
3406 3407
	return 0;
}
3408 3409
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
3410
	return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3411 3412 3413
}
static int cgroup_procs_open(struct inode *unused, struct file *file)
{
3414
	return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3415
}
3416

3417
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3418 3419
					    struct cftype *cft)
{
3420
	return notify_on_release(cgrp);
3421 3422
}

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
/*
 * Unregister event and free resources.
 *
 * Gets called from workqueue.
 */
static void cgroup_event_remove(struct work_struct *work)
{
	struct cgroup_event *event = container_of(work, struct cgroup_event,
			remove);
	struct cgroup *cgrp = event->cgrp;

	event->cft->unregister_event(cgrp, event->cft, event->eventfd);

	eventfd_ctx_put(event->eventfd);
	kfree(event);
3450
	dput(cgrp->dentry);
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466
}

/*
 * Gets called on POLLHUP on eventfd when user closes it.
 *
 * Called with wqh->lock held and interrupts disabled.
 */
static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
		int sync, void *key)
{
	struct cgroup_event *event = container_of(wait,
			struct cgroup_event, wait);
	struct cgroup *cgrp = event->cgrp;
	unsigned long flags = (unsigned long)key;

	if (flags & POLLHUP) {
C
Changli Gao 已提交
3467
		__remove_wait_queue(event->wqh, &event->wait);
3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
		spin_lock(&cgrp->event_list_lock);
		list_del(&event->list);
		spin_unlock(&cgrp->event_list_lock);
		/*
		 * We are in atomic context, but cgroup_event_remove() may
		 * sleep, so we have to call it in workqueue.
		 */
		schedule_work(&event->remove);
	}

	return 0;
}

static void cgroup_event_ptable_queue_proc(struct file *file,
		wait_queue_head_t *wqh, poll_table *pt)
{
	struct cgroup_event *event = container_of(pt,
			struct cgroup_event, pt);

	event->wqh = wqh;
	add_wait_queue(wqh, &event->wait);
}

/*
 * Parse input and register new cgroup event handler.
 *
 * Input must be in format '<event_fd> <control_fd> <args>'.
 * Interpretation of args is defined by control file implementation.
 */
static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	struct cgroup_event *event = NULL;
	unsigned int efd, cfd;
	struct file *efile = NULL;
	struct file *cfile = NULL;
	char *endp;
	int ret;

	efd = simple_strtoul(buffer, &endp, 10);
	if (*endp != ' ')
		return -EINVAL;
	buffer = endp + 1;

	cfd = simple_strtoul(buffer, &endp, 10);
	if ((*endp != ' ') && (*endp != '\0'))
		return -EINVAL;
	buffer = endp + 1;

	event = kzalloc(sizeof(*event), GFP_KERNEL);
	if (!event)
		return -ENOMEM;
	event->cgrp = cgrp;
	INIT_LIST_HEAD(&event->list);
	init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
	init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
	INIT_WORK(&event->remove, cgroup_event_remove);

	efile = eventfd_fget(efd);
	if (IS_ERR(efile)) {
		ret = PTR_ERR(efile);
		goto fail;
	}

	event->eventfd = eventfd_ctx_fileget(efile);
	if (IS_ERR(event->eventfd)) {
		ret = PTR_ERR(event->eventfd);
		goto fail;
	}

	cfile = fget(cfd);
	if (!cfile) {
		ret = -EBADF;
		goto fail;
	}

	/* the process need read permission on control file */
	ret = file_permission(cfile, MAY_READ);
	if (ret < 0)
		goto fail;

	event->cft = __file_cft(cfile);
	if (IS_ERR(event->cft)) {
		ret = PTR_ERR(event->cft);
		goto fail;
	}

	if (!event->cft->register_event || !event->cft->unregister_event) {
		ret = -EINVAL;
		goto fail;
	}

	ret = event->cft->register_event(cgrp, event->cft,
			event->eventfd, buffer);
	if (ret)
		goto fail;

	if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
		event->cft->unregister_event(cgrp, event->cft, event->eventfd);
		ret = 0;
		goto fail;
	}

3571 3572 3573 3574 3575 3576 3577
	/*
	 * Events should be removed after rmdir of cgroup directory, but before
	 * destroying subsystem state objects. Let's take reference to cgroup
	 * directory dentry to do that.
	 */
	dget(cgrp->dentry);

3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
	spin_lock(&cgrp->event_list_lock);
	list_add(&event->list, &cgrp->event_list);
	spin_unlock(&cgrp->event_list_lock);

	fput(cfile);
	fput(efile);

	return 0;

fail:
	if (cfile)
		fput(cfile);

	if (event && event->eventfd && !IS_ERR(event->eventfd))
		eventfd_ctx_put(event->eventfd);

	if (!IS_ERR_OR_NULL(efile))
		fput(efile);

	kfree(event);

	return ret;
}

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
static u64 cgroup_clone_children_read(struct cgroup *cgrp,
				    struct cftype *cft)
{
	return clone_children(cgrp);
}

static int cgroup_clone_children_write(struct cgroup *cgrp,
				     struct cftype *cft,
				     u64 val)
{
	if (val)
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	else
		clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
	return 0;
}

3619 3620 3621
/*
 * for the common functions, 'private' gives the type of file
 */
3622 3623
/* for hysterical raisins, we can't put this on the older files */
#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3624 3625 3626 3627
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
3628
		.write_u64 = cgroup_tasks_write,
3629
		.release = cgroup_pidlist_release,
L
Li Zefan 已提交
3630
		.mode = S_IRUGO | S_IWUSR,
3631
	},
3632 3633 3634
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "procs",
		.open = cgroup_procs_open,
B
Ben Blum 已提交
3635
		.write_u64 = cgroup_procs_write,
3636
		.release = cgroup_pidlist_release,
B
Ben Blum 已提交
3637
		.mode = S_IRUGO | S_IWUSR,
3638
	},
3639 3640
	{
		.name = "notify_on_release",
3641
		.read_u64 = cgroup_read_notify_on_release,
3642
		.write_u64 = cgroup_write_notify_on_release,
3643
	},
3644 3645 3646 3647 3648
	{
		.name = CGROUP_FILE_GENERIC_PREFIX "event_control",
		.write_string = cgroup_write_event_control,
		.mode = S_IWUGO,
	},
3649 3650 3651 3652 3653
	{
		.name = "cgroup.clone_children",
		.read_u64 = cgroup_clone_children_read,
		.write_u64 = cgroup_clone_children_write,
	},
3654 3655 3656 3657
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
3658 3659 3660
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
3661 3662
};

3663
static int cgroup_populate_dir(struct cgroup *cgrp)
3664 3665 3666 3667 3668
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
3669
	cgroup_clear_directory(cgrp->dentry);
3670

3671
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3672 3673 3674
	if (err < 0)
		return err;

3675 3676
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3677 3678 3679
			return err;
	}

3680 3681
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3682 3683
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
3695 3696 3697 3698 3699 3700

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
3701
			       struct cgroup *cgrp)
3702
{
3703
	css->cgroup = cgrp;
P
Paul Menage 已提交
3704
	atomic_set(&css->refcnt, 1);
3705
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
3706
	css->id = NULL;
3707
	if (cgrp == dummytop)
3708
		set_bit(CSS_ROOT, &css->flags);
3709 3710
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
3711 3712
}

3713 3714 3715 3716 3717
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

B
Ben Blum 已提交
3718 3719 3720 3721
	/*
	 * No worry about a race with rebind_subsystems that might mess up the
	 * locking order, since both parties are under cgroup_mutex.
	 */
3722 3723
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3724 3725
		if (ss == NULL)
			continue;
3726
		if (ss->root == root)
3727
			mutex_lock(&ss->hierarchy_mutex);
3728 3729 3730 3731 3732 3733 3734 3735 3736
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
3737 3738
		if (ss == NULL)
			continue;
3739 3740 3741 3742 3743
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

3744
/*
L
Li Zefan 已提交
3745 3746 3747 3748
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
3749
 *
L
Li Zefan 已提交
3750
 * Must be called with the mutex on the parent inode held
3751 3752
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
3753
			     mode_t mode)
3754
{
3755
	struct cgroup *cgrp;
3756 3757 3758 3759 3760
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

3761 3762
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

3774
	init_cgroup_housekeeping(cgrp);
3775

3776 3777 3778
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
3779

3780 3781 3782
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

3783 3784 3785
	if (clone_children(parent))
		set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);

3786
	for_each_subsys(root, ss) {
3787
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3788

3789 3790 3791 3792
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
3793
		init_cgroup_css(css, ss, cgrp);
3794 3795 3796
		if (ss->use_id) {
			err = alloc_css_id(ss, parent, cgrp);
			if (err)
K
KAMEZAWA Hiroyuki 已提交
3797
				goto err_destroy;
3798
		}
K
KAMEZAWA Hiroyuki 已提交
3799
		/* At error, ->destroy() callback has to free assigned ID. */
3800 3801
		if (clone_children(parent) && ss->post_clone)
			ss->post_clone(ss, cgrp);
3802 3803
	}

3804
	cgroup_lock_hierarchy(root);
3805
	list_add(&cgrp->sibling, &cgrp->parent->children);
3806
	cgroup_unlock_hierarchy(root);
3807 3808
	root->number_of_cgroups++;

3809
	err = cgroup_create_dir(cgrp, dentry, mode);
3810 3811 3812 3813
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
3814
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3815

3816
	err = cgroup_populate_dir(cgrp);
3817 3818 3819
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
3820
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3821 3822 3823 3824 3825

	return 0;

 err_remove:

3826
	cgroup_lock_hierarchy(root);
3827
	list_del(&cgrp->sibling);
3828
	cgroup_unlock_hierarchy(root);
3829 3830 3831 3832 3833
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
3834 3835
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
3836 3837 3838 3839 3840 3841 3842
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

3843
	kfree(cgrp);
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

3855
static int cgroup_has_css_refs(struct cgroup *cgrp)
3856 3857 3858
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
3859
	 * cgroup, if the css refcount is also 1, then there should
3860 3861 3862 3863 3864 3865 3866
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
B
Ben Blum 已提交
3867 3868 3869 3870 3871
	/*
	 * We won't need to lock the subsys array, because the subsystems
	 * we're concerned about aren't going anywhere since our cgroup root
	 * has a reference on them.
	 */
3872 3873 3874
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
B
Ben Blum 已提交
3875 3876
		/* Skip subsystems not present or not in this hierarchy */
		if (ss == NULL || ss->root != cgrp->root)
3877
			continue;
3878
		css = cgrp->subsys[ss->subsys_id];
3879 3880 3881 3882 3883 3884
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
3885
		if (css && (atomic_read(&css->refcnt) > 1))
3886 3887 3888 3889 3890
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
3906
		while (1) {
P
Paul Menage 已提交
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
3920 3921 3922 3923
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

3944 3945
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
3946
	struct cgroup *cgrp = dentry->d_fsdata;
3947 3948
	struct dentry *d;
	struct cgroup *parent;
3949
	DEFINE_WAIT(wait);
3950
	struct cgroup_event *event, *tmp;
3951
	int ret;
3952 3953

	/* the vfs holds both inode->i_mutex already */
3954
again:
3955
	mutex_lock(&cgroup_mutex);
3956
	if (atomic_read(&cgrp->count) != 0) {
3957 3958 3959
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3960
	if (!list_empty(&cgrp->children)) {
3961 3962 3963
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3964
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
3965

3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

3977
	/*
L
Li Zefan 已提交
3978 3979
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
3980
	 */
3981
	ret = cgroup_call_pre_destroy(cgrp);
3982 3983
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3984
		return ret;
3985
	}
3986

3987 3988
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
3989
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3990
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3991 3992 3993
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
3994 3995 3996
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
3997 3998 3999 4000 4001 4002
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
4003 4004 4005 4006 4007 4008 4009 4010 4011
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4012

4013
	spin_lock(&release_list_lock);
4014 4015
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
4016
		list_del_init(&cgrp->release_list);
4017
	spin_unlock(&release_list_lock);
4018 4019 4020

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
4021
	list_del_init(&cgrp->sibling);
4022 4023
	cgroup_unlock_hierarchy(cgrp->root);

4024
	d = dget(cgrp->dentry);
4025 4026 4027 4028

	cgroup_d_remove_dir(d);
	dput(d);

4029
	set_bit(CGRP_RELEASABLE, &parent->flags);
4030 4031
	check_for_release(parent);

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045
	/*
	 * Unregister events and notify userspace.
	 * Notify userspace about cgroup removing only after rmdir of cgroup
	 * directory to avoid race between userspace and kernelspace
	 */
	spin_lock(&cgrp->event_list_lock);
	list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
		list_del(&event->list);
		remove_wait_queue(event->wqh, &event->wait);
		eventfd_signal(event->eventfd, 1);
		schedule_work(&event->remove);
	}
	spin_unlock(&cgrp->event_list_lock);

4046 4047 4048 4049
	mutex_unlock(&cgroup_mutex);
	return 0;
}

4050
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4051 4052
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
4053 4054

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4055 4056

	/* Create the top cgroup state for this subsystem */
4057
	list_add(&ss->sibling, &rootnode.subsys_list);
4058 4059 4060 4061 4062 4063
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
4064
	/* Update the init_css_set to contain a subsys
4065
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
4066 4067 4068
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4069 4070 4071

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
4072 4073 4074 4075 4076
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

4077
	mutex_init(&ss->hierarchy_mutex);
4078
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4079
	ss->active = 1;
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090

	/* this function shouldn't be used with modular subsystems, since they
	 * need to register a subsys_id, among other things */
	BUG_ON(ss->module);
}

/**
 * cgroup_load_subsys: load and register a modular subsystem at runtime
 * @ss: the subsystem to load
 *
 * This function should be called in a modular subsystem's initcall. If the
T
Thomas Weber 已提交
4091
 * subsystem is built as a module, it will be assigned a new subsys_id and set
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
 * up for use. If the subsystem is built-in anyway, work is delegated to the
 * simpler cgroup_init_subsys.
 */
int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
{
	int i;
	struct cgroup_subsys_state *css;

	/* check name and function validity */
	if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
	    ss->create == NULL || ss->destroy == NULL)
		return -EINVAL;

	/*
	 * we don't support callbacks in modular subsystems. this check is
	 * before the ss->module check for consistency; a subsystem that could
	 * be a module should still have no callbacks even if the user isn't
	 * compiling it as one.
	 */
	if (ss->fork || ss->exit)
		return -EINVAL;

	/*
	 * an optionally modular subsystem is built-in: we want to do nothing,
	 * since cgroup_init_subsys will have already taken care of it.
	 */
	if (ss->module == NULL) {
		/* a few sanity checks */
		BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
		BUG_ON(subsys[ss->subsys_id] != ss);
		return 0;
	}

	/*
	 * need to register a subsys id before anything else - for example,
	 * init_cgroup_css needs it.
	 */
	mutex_lock(&cgroup_mutex);
	/* find the first empty slot in the array */
	for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
		if (subsys[i] == NULL)
			break;
	}
	if (i == CGROUP_SUBSYS_COUNT) {
		/* maximum number of subsystems already registered! */
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
	/* assign ourselves the subsys_id */
	ss->subsys_id = i;
	subsys[i] = ss;

	/*
	 * no ss->create seems to need anything important in the ss struct, so
	 * this can happen first (i.e. before the rootnode attachment).
	 */
	css = ss->create(ss, dummytop);
	if (IS_ERR(css)) {
		/* failure case - need to deassign the subsys[] slot. */
		subsys[i] = NULL;
		mutex_unlock(&cgroup_mutex);
		return PTR_ERR(css);
	}

	list_add(&ss->sibling, &rootnode.subsys_list);
	ss->root = &rootnode;

	/* our new subsystem will be attached to the dummy hierarchy. */
	init_cgroup_css(css, ss, dummytop);
	/* init_idr must be after init_cgroup_css because it sets css->id. */
	if (ss->use_id) {
		int ret = cgroup_init_idr(ss, css);
		if (ret) {
			dummytop->subsys[ss->subsys_id] = NULL;
			ss->destroy(ss, dummytop);
			subsys[i] = NULL;
			mutex_unlock(&cgroup_mutex);
			return ret;
		}
	}

	/*
	 * Now we need to entangle the css into the existing css_sets. unlike
	 * in cgroup_init_subsys, there are now multiple css_sets, so each one
	 * will need a new pointer to it; done by iterating the css_set_table.
	 * furthermore, modifying the existing css_sets will corrupt the hash
	 * table state, so each changed css_set will need its hash recomputed.
	 * this is all done under the css_set_lock.
	 */
	write_lock(&css_set_lock);
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
		struct css_set *cg;
		struct hlist_node *node, *tmp;
		struct hlist_head *bucket = &css_set_table[i], *new_bucket;

		hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
			/* skip entries that we already rehashed */
			if (cg->subsys[ss->subsys_id])
				continue;
			/* remove existing entry */
			hlist_del(&cg->hlist);
			/* set new value */
			cg->subsys[ss->subsys_id] = css;
			/* recompute hash and restore entry */
			new_bucket = css_set_hash(cg->subsys);
			hlist_add_head(&cg->hlist, new_bucket);
		}
	}
	write_unlock(&css_set_lock);

	mutex_init(&ss->hierarchy_mutex);
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
	ss->active = 1;

	/* success! */
	mutex_unlock(&cgroup_mutex);
	return 0;
4209
}
4210
EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4211

B
Ben Blum 已提交
4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
/**
 * cgroup_unload_subsys: unload a modular subsystem
 * @ss: the subsystem to unload
 *
 * This function should be called in a modular subsystem's exitcall. When this
 * function is invoked, the refcount on the subsystem's module will be 0, so
 * the subsystem will not be attached to any hierarchy.
 */
void cgroup_unload_subsys(struct cgroup_subsys *ss)
{
	struct cg_cgroup_link *link;
	struct hlist_head *hhead;

	BUG_ON(ss->module == NULL);

	/*
	 * we shouldn't be called if the subsystem is in use, and the use of
	 * try_module_get in parse_cgroupfs_options should ensure that it
	 * doesn't start being used while we're killing it off.
	 */
	BUG_ON(ss->root != &rootnode);

	mutex_lock(&cgroup_mutex);
	/* deassign the subsys_id */
	BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
	subsys[ss->subsys_id] = NULL;

	/* remove subsystem from rootnode's list of subsystems */
4240
	list_del_init(&ss->sibling);
B
Ben Blum 已提交
4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270

	/*
	 * disentangle the css from all css_sets attached to the dummytop. as
	 * in loading, we need to pay our respects to the hashtable gods.
	 */
	write_lock(&css_set_lock);
	list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;

		hlist_del(&cg->hlist);
		BUG_ON(!cg->subsys[ss->subsys_id]);
		cg->subsys[ss->subsys_id] = NULL;
		hhead = css_set_hash(cg->subsys);
		hlist_add_head(&cg->hlist, hhead);
	}
	write_unlock(&css_set_lock);

	/*
	 * remove subsystem's css from the dummytop and free it - need to free
	 * before marking as null because ss->destroy needs the cgrp->subsys
	 * pointer to find their state. note that this also takes care of
	 * freeing the css_id.
	 */
	ss->destroy(ss, dummytop);
	dummytop->subsys[ss->subsys_id] = NULL;

	mutex_unlock(&cgroup_mutex);
}
EXPORT_SYMBOL_GPL(cgroup_unload_subsys);

4271
/**
L
Li Zefan 已提交
4272 4273 4274 4275
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
4276 4277 4278 4279
 */
int __init cgroup_init_early(void)
{
	int i;
4280
	atomic_set(&init_css_set.refcount, 1);
4281 4282
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
4283
	INIT_HLIST_NODE(&init_css_set.hlist);
4284
	css_set_count = 1;
4285
	init_cgroup_root(&rootnode);
4286 4287 4288 4289
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
4290
	init_css_set_link.cgrp = dummytop;
4291
	list_add(&init_css_set_link.cgrp_link_list,
4292 4293 4294
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
4295

4296 4297 4298
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

B
Ben Blum 已提交
4299 4300
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4301 4302 4303 4304 4305 4306 4307
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
4308
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
4320 4321 4322 4323
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
4324 4325 4326 4327 4328
 */
int __init cgroup_init(void)
{
	int err;
	int i;
4329
	struct hlist_head *hhead;
4330 4331 4332 4333

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
4334

B
Ben Blum 已提交
4335 4336
	/* at bootup time, we don't worry about modular subsystems */
	for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4337 4338 4339
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
4340
		if (ss->use_id)
4341
			cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4342 4343
	}

4344 4345 4346
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);
4347
	BUG_ON(!init_root_id(&rootnode));
4348 4349 4350 4351 4352 4353 4354

	cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
	if (!cgroup_kobj) {
		err = -ENOMEM;
		goto out;
	}

4355
	err = register_filesystem(&cgroup_fs_type);
4356 4357
	if (err < 0) {
		kobject_put(cgroup_kobj);
4358
		goto out;
4359
	}
4360

L
Li Zefan 已提交
4361
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4362

4363
out:
4364 4365 4366
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

4367 4368
	return err;
}
4369

4370 4371 4372 4373 4374 4375
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
4376
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

4406
	for_each_active_root(root) {
4407
		struct cgroup_subsys *ss;
4408
		struct cgroup *cgrp;
4409 4410
		int count = 0;

4411
		seq_printf(m, "%d:", root->hierarchy_id);
4412 4413
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4414 4415 4416
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
4417
		seq_putc(m, ':');
4418
		cgrp = task_cgroup_from_root(tsk, root);
4419
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

4441
const struct file_operations proc_cgroup_operations = {
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

4453
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
B
Ben Blum 已提交
4454 4455 4456 4457 4458
	/*
	 * ideally we don't want subsystems moving around while we do this.
	 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
	 * subsys/hierarchy state.
	 */
4459 4460 4461
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
B
Ben Blum 已提交
4462 4463
		if (ss == NULL)
			continue;
4464 4465
		seq_printf(m, "%s\t%d\t%d\t%d\n",
			   ss->name, ss->root->hierarchy_id,
4466
			   ss->root->number_of_cgroups, !ss->disabled);
4467 4468 4469 4470 4471 4472 4473
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
4474
	return single_open(file, proc_cgroupstats_show, NULL);
4475 4476
}

4477
static const struct file_operations proc_cgroupstats_operations = {
4478 4479 4480 4481 4482 4483
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

4484 4485
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
4486
 * @child: pointer to task_struct of forking parent process.
4487 4488 4489 4490 4491 4492
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
4493
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
4494 4495
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
4496 4497 4498 4499 4500 4501
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
4502 4503 4504 4505 4506
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
4507 4508 4509
}

/**
L
Li Zefan 已提交
4510 4511 4512 4513 4514 4515
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
4516 4517 4518 4519 4520
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
B
Ben Blum 已提交
4521 4522 4523 4524 4525 4526
		/*
		 * forkexit callbacks are only supported for builtin
		 * subsystems, and the builtin section of the subsys array is
		 * immutable, so we don't need to lock the subsys array here.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4527 4528 4529 4530 4531 4532 4533
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

4534
/**
L
Li Zefan 已提交
4535 4536 4537 4538 4539 4540 4541 4542
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
4543 4544 4545 4546
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
4547
		task_lock(child);
4548 4549
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
4550
		task_unlock(child);
4551 4552 4553
		write_unlock(&css_set_lock);
	}
}
4554 4555 4556
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
4557
 * @run_callback: run exit callbacks?
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
4586 4587
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
4588 4589 4590
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
4591
	struct css_set *cg;
4592
	int i;
4593 4594 4595 4596 4597 4598 4599 4600 4601

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
4602
			list_del_init(&tsk->cg_list);
4603 4604 4605
		write_unlock(&css_set_lock);
	}

4606 4607
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
4608 4609
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625

	if (run_callbacks && need_forkexit_callback) {
		/*
		 * modular subsystems can't use callbacks, so no need to lock
		 * the subsys array
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit) {
				struct cgroup *old_cgrp =
					rcu_dereference_raw(cg->subsys[i])->cgroup;
				struct cgroup *cgrp = task_cgroup(tsk, i);
				ss->exit(ss, cgrp, old_cgrp, tsk);
			}
		}
	}
4626
	task_unlock(tsk);
4627

4628
	if (cg)
4629
		put_css_set_taskexit(cg);
4630
}
4631

L
Li Zefan 已提交
4632
/**
4633
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
4634
 * @cgrp: the cgroup in question
4635
 * @task: the task in question
L
Li Zefan 已提交
4636
 *
4637 4638
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
4639 4640 4641 4642 4643 4644
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
4645
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4646 4647 4648 4649
{
	int ret;
	struct cgroup *target;

4650
	if (cgrp == dummytop)
4651 4652
		return 1;

4653
	target = task_cgroup_from_root(task, cgrp->root);
4654 4655 4656
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
4657 4658
	return ret;
}
4659

4660
static void check_for_release(struct cgroup *cgrp)
4661 4662 4663
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
4664 4665
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4666 4667 4668 4669 4670
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
4671 4672 4673
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
4674 4675 4676 4677 4678 4679 4680 4681
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

4682 4683
/* Caller must verify that the css is not for root cgroup */
void __css_put(struct cgroup_subsys_state *css, int count)
4684
{
4685
	struct cgroup *cgrp = css->cgroup;
4686
	int val;
4687
	rcu_read_lock();
4688
	val = atomic_sub_return(count, &css->refcnt);
4689
	if (val == 1) {
4690 4691 4692 4693
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
4694
		cgroup_wakeup_rmdir_waiter(cgrp);
4695 4696
	}
	rcu_read_unlock();
4697
	WARN_ON_ONCE(val < 1);
4698
}
B
Ben Blum 已提交
4699
EXPORT_SYMBOL_GPL(__css_put);
4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
4732
		char *pathbuf = NULL, *agentbuf = NULL;
4733
		struct cgroup *cgrp = list_entry(release_list.next,
4734 4735
						    struct cgroup,
						    release_list);
4736
		list_del_init(&cgrp->release_list);
4737 4738
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4739 4740 4741 4742 4743 4744 4745
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
4746 4747

		i = 0;
4748 4749
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
4764 4765 4766
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
4767 4768 4769 4770 4771
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
4772 4773 4774 4775 4776 4777 4778 4779 4780

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;
B
Ben Blum 已提交
4781 4782 4783 4784 4785
		/*
		 * cgroup_disable, being at boot time, can't know about module
		 * subsystems, so we don't worry about them.
		 */
		for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
4799 4800 4801 4802 4803 4804 4805 4806 4807 4808

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
4809 4810 4811 4812 4813 4814 4815 4816 4817
	struct css_id *cssid;

	/*
	 * This css_id() can return correct value when somone has refcnt
	 * on this or this is under rcu_read_lock(). Once css->id is allocated,
	 * it's unchanged until freed.
	 */
	cssid = rcu_dereference_check(css->id,
			rcu_read_lock_held() || atomic_read(&css->refcnt));
K
KAMEZAWA Hiroyuki 已提交
4818 4819 4820 4821 4822

	if (cssid)
		return cssid->id;
	return 0;
}
B
Ben Blum 已提交
4823
EXPORT_SYMBOL_GPL(css_id);
K
KAMEZAWA Hiroyuki 已提交
4824 4825 4826

unsigned short css_depth(struct cgroup_subsys_state *css)
{
4827 4828 4829 4830
	struct css_id *cssid;

	cssid = rcu_dereference_check(css->id,
			rcu_read_lock_held() || atomic_read(&css->refcnt));
K
KAMEZAWA Hiroyuki 已提交
4831 4832 4833 4834 4835

	if (cssid)
		return cssid->depth;
	return 0;
}
B
Ben Blum 已提交
4836
EXPORT_SYMBOL_GPL(css_depth);
K
KAMEZAWA Hiroyuki 已提交
4837

4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850
/**
 *  css_is_ancestor - test "root" css is an ancestor of "child"
 * @child: the css to be tested.
 * @root: the css supporsed to be an ancestor of the child.
 *
 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
 * But, considering usual usage, the csses should be valid objects after test.
 * Assuming that the caller will do some action to the child if this returns
 * returns true, the caller must take "child";s reference count.
 * If "child" is valid object and this returns true, "root" is valid, too.
 */

K
KAMEZAWA Hiroyuki 已提交
4851
bool css_is_ancestor(struct cgroup_subsys_state *child,
4852
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
4853
{
4854 4855 4856
	struct css_id *child_id;
	struct css_id *root_id;
	bool ret = true;
K
KAMEZAWA Hiroyuki 已提交
4857

4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
	rcu_read_lock();
	child_id  = rcu_dereference(child->id);
	root_id = rcu_dereference(root->id);
	if (!child_id
	    || !root_id
	    || (child_id->depth < root_id->depth)
	    || (child_id->stack[root_id->depth] != root_id->id))
		ret = false;
	rcu_read_unlock();
	return ret;
K
KAMEZAWA Hiroyuki 已提交
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
4884
	kfree_rcu(id, rcu_head);
K
KAMEZAWA Hiroyuki 已提交
4885
}
B
Ben Blum 已提交
4886
EXPORT_SYMBOL_GPL(free_css_id);
K
KAMEZAWA Hiroyuki 已提交
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

4936 4937
static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
					    struct cgroup_subsys_state *rootcss)
K
KAMEZAWA Hiroyuki 已提交
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958
{
	struct css_id *newid;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
4959
	struct css_id *child_id, *parent_id;
K
KAMEZAWA Hiroyuki 已提交
4960 4961 4962 4963 4964

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	parent_id = parent_css->id;
4965
	depth = parent_id->depth + 1;
K
KAMEZAWA Hiroyuki 已提交
4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}
B
Ben Blum 已提交
5003
EXPORT_SYMBOL_GPL(css_lookup);
K
KAMEZAWA Hiroyuki 已提交
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

S
Stephane Eranian 已提交
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077
/*
 * get corresponding css from file open on cgroupfs directory
 */
struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
{
	struct cgroup *cgrp;
	struct inode *inode;
	struct cgroup_subsys_state *css;

	inode = f->f_dentry->d_inode;
	/* check in cgroup filesystem dir */
	if (inode->i_op != &cgroup_dir_inode_operations)
		return ERR_PTR(-EBADF);

	if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
		return ERR_PTR(-EINVAL);

	/* get cgroup */
	cgrp = __d_cgrp(f->f_dentry);
	css = cgrp->subsys[id];
	return css ? css : ERR_PTR(-ENOENT);
}

5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
						   struct cgroup *cont)
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138
static int current_css_set_cg_links_read(struct cgroup *cont,
					 struct cftype *cft,
					 struct seq_file *seq)
{
	struct cg_cgroup_link *link;
	struct css_set *cg;

	read_lock(&css_set_lock);
	rcu_read_lock();
	cg = rcu_dereference(current->cgroups);
	list_for_each_entry(link, &cg->cg_links, cg_link_list) {
		struct cgroup *c = link->cgrp;
		const char *name;

		if (c->dentry)
			name = c->dentry->d_name.name;
		else
			name = "?";
5139 5140
		seq_printf(seq, "Root %d group %s\n",
			   c->root->hierarchy_id, name);
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173
	}
	rcu_read_unlock();
	read_unlock(&css_set_lock);
	return 0;
}

#define MAX_TASKS_SHOWN_PER_CSS 25
static int cgroup_css_links_read(struct cgroup *cont,
				 struct cftype *cft,
				 struct seq_file *seq)
{
	struct cg_cgroup_link *link;

	read_lock(&css_set_lock);
	list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
		struct css_set *cg = link->cg;
		struct task_struct *task;
		int count = 0;
		seq_printf(seq, "css_set %p\n", cg);
		list_for_each_entry(task, &cg->tasks, cg_list) {
			if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
				seq_puts(seq, "  ...\n");
				break;
			} else {
				seq_printf(seq, "  task %d\n",
					   task_pid_vnr(task));
			}
		}
	}
	read_unlock(&css_set_lock);
	return 0;
}

5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208
	{
		.name = "current_css_set_cg_links",
		.read_seq_string = current_css_set_cg_links_read,
	},

	{
		.name = "cgroup_css_links",
		.read_seq_string = cgroup_css_links_read,
	},

5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */